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Abstract—Tree-based models and deep neural networks are two schools of effective classification methods in machine learning.
While tree-based models are robust irrespective of data domain, deep neural networks have advantages in handling high-dimensional
data. Adding a differentiable neural decision forest to the neural network can generally help exploit the benefits of both models.
Therefore, traditional decision trees diverge into a bagging version (i.e., random forest) and a boosting version (i.e., gradient boost
decision tree). In this work, we aim to harness the advantages of both bagging and boosting by applying gradient boost to a neural
decision forest. We propose a gradient boost that can learn the residual using neural decision forest, considering the residual as a part
for the final prediction. Besides, we design a structure for learning the parameters of neural decision forest and gradient boost module
in contiguous steps, which is extendable to incorporate multiple gradient-boosting modules in an end-to-end manner. Our extensive
experiments on several public datasets demonstrate the competitive performance and efficiency of our model against a series of
baseline methods in solving various machine learning tasks.
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1 INTRODUCTION

MACHINE learning techniques have shown great power
and efficacy in dealing with various tasks in the

past decade [1]. Among them, tree-based models [2] and
deep neural networks [3] are two promising classes of
machine learning methods that are proven successful in
many applications. Random forest [2] and Gradient Boost
Decision Tree [4] are two representative models for tree-
based models. Random forest is the ensemble of tree pre-
dictors [2]; it takes the mean prediction of the individual
decision trees as the prediction result, thereby alleviating
over-fitting while preserving the explanation ability of a
single decision tree and the robustness on data domain [5].
Gradient Boost Decision Tree (GBDT) [4] is a boosting version
of decision tree. The idea of gradient boost is to build a
new tree towards the residuals of the previous prediction
result for each step. While GBDT uses a decision tree as
the base learner, the idea of gradient boosting is proven to
improve the prediction performance on several traditional
machine learning techniques such as linear regression and
support vector machine [4]. In comparison, deep neural
networks have just begun to revolutionize domain appli-
cations, such as speech recognition [6] and computer vision
tasks [7]. Neural networks generally have more parameters
and have advantages in capturing complex information [8].
Supported by increasing computing power, deep neural
networks are becoming bigger, deeper, and more compli-
cated. For example, AlexNet, the champion of ImageNet
Large Scale Visual Recognition Challenge (ILSVRC), had
nine layers in the neural network model in 2012 [9]. This
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number had increased to 152 in the best model, ResNet, in
2015’s contest [7].

Despite their advantages, the two categories of models
have the following limitations. While neural networks show
stengths in dealing with large-scale data, it poses the risk of
over-fitting on smaller datasets [10]. Deep neural networks,
in comparison, face the black-box problem [3], meaning
those models generally lack explainability of their results.
Likewise, tree-based methods are not suitable for all occa-
sions. For example, the performance of tree-based models
highly rely on the quality of the features, due to the greedy
tree construction process [5]. Tree-based models generally
show good and fast prediction on small datasets with fewer
features but fall insufficient in dealing with more complex
features concerning images, speeches, and texts [10].

To address the above challenges, some recent studies aim
to combine the strength of both models [11], [12], [13]. One
direction is integrating random forest with neural networks.
Some work leverages the ‘deep’ idea from deep neural
networks to improve tree-based methods’ ability in dealing
with complex inputs while keeping the greedy-splitting
criterion of decision trees. For example, Zhou et al. [10]
propose a deep forest that repeatedly feeds features into
random forests and use the outputs of random forests for the
further random forests. Similarly, Feng et al. [14] construct
the random forests that follow the structure of autoencoders
[3]. Some work leverages the ‘end-to-end’ training strategy
and propose neural decision trees [12] so that the tree-based
methods can be optimized by the optimization function for
different purposes. Such a strategy improves the flexibility
of the tree-based models in dealing with a wide range of
tasks. Johannes et al. [12] point out that any decision tree
can be represented as a two-layer Convolutional Neural
Network (CNN), where the first layer includes the deci-
sion nodes with denoting the probability of delivering the
inputs to the left branch or right branch, and the second
comprises leaf nodes. The prediction is the average of votes
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from the whole tree ensemble. Kontschieder et al. [15]
introduce statistics into the neural network to construct a
neural decision forest. In particular, they represent decision
nodes as probability distributions to make the whole deci-
sion differentiable. Another direction is towards integrating
boosting idea into the neural networks. An example is to
use neural networks as the base classifier for an AdaBoost
framework [16]. Besides, Zhang et al. [17] use CNNs as weak
learners in gradient boosting for image classification.

In this work, we propose a general framework Gradient
Boosted Neural Decision Forest (GrNDF) that is flexible, sta-
ble, and applicable to a wide range of tasks, by integrating
the advantages of both tree-based methods and neural net-
works. GrNDF can effectively address the challenges raised
by traditional tree-based methods and neural networks
by improving the flexibility and explainabilty. Specifically,
GrNDF is flexible to handle different type or size of features
by mapping the inputs to embedding layers; it is also made
explainable by delivering the inputs via probabilistic neural
decision trees, where the split nodes show the probability of
the inputs transmitted to the leaf nodes, and the leaf nodes
show different probabilistic distributions for prediction. To
the best of our knowledge, our proposed framework is
the first work that integrates the ideas of boosting and
bagging under the neural network structure. The model can
be trained in an end-to-end manner, suitable for different
optimization tasks.

In a nutshell, we make the following contributions:

• We bring the gradient boost idea into neural decision
forest to take the advantages of both bagging and
boosting methods and to provide robust predictions
for different tasks. We unify the different methods
elegantly in an end-to-end trainable way.

• We describe how to construct a gradient boost mod-
ule for the neural decision forest and further make
the gradient boost module extendable to enhance
model robustness and performance.

• We have conducted extensive experiments under
different parameter settings and ablation studies to
evaluate the model’s performance on several public
datasets. The proposed model can achieve superior
prediction performance when compared with a series
of baselines and state-of-the-art.

The rest of the paper is organized as follows: Section 2
reviews the related work; Section 3 introduces the technical
details of the proposed method; Section 4 reports the experi-
mental results under different parameter settings, as well as
the ablation studies on different datasets; finally, Section 5
offers the concluding remarks.

2 RELATED WORK

Tree-based methods [4], [2] and neural networks [3] are two
important scopes of machine learning techniques and have
been applied to various tasks [18], [19], [20].

2.1 Tree-based Methods

Among tree-based methods, random forest [2] and gradient
boosting decision tree (GBDT) [4] are two popular models

that have been successfully applied to real-world prob-
lems [18], which can be regarded as bagging and boosting
version of decision tree, respectively.

The commonly-used random forest combines several
randomized decision trees and aggregates their predictions
by averaging [21]. Most random forests use bagging [2] and
CART (Classification And Regression Trees) [22] for aggre-
gating trees. Bagging is a general aggregation method which
constructs a predictor from each sample and then takes the
average prediction for the decision. It is regarded as one of
the most effective computationally intensive procedures to
improve on unstable estimates [5].

Gradient boost decision tree (GBDT) embraces the idea
of gradient boost, which originated from the observation by
Breiman [2] that boosting can be interpreted as an optimiza-
tion algorithm on a suitable cost function. Based on this idea,
Friedman [4] developed a gradient boosting machine (GBM)
and consistently provided more accurate results than the
conventional single machine learning models from which it
originated. Friedman gave examples for adding the gradient
boost idea into traditional machine learning models (e.g.,
logistic regression) and proposed gradient boost decision
tree (GBDT). Over the last few years, many empirical studies
revealed the power of gradient boost machine in various
areas. Most of them focused on taking decision trees as base
learners [23].

2.2 Neural Networks

The concept of deep learning originated from the study of
artificial neural networks (ANNs) [24]. Milestones of deep
learning can be traced from 2006 when Hinton proposed a
novel deep structured learning architecture called deep be-
lief network (DBN) [25]. Normally, we call a neural network
with three or more layers a deep neural network (DNN).
Supported by the increasing computing power, neural net-
works have become deeper and more complex, multiple
variants of simple neural layers are proposed for differ-
ent purpose, e.g., convolutional neural networks (CNNs),
recurrent neural networks (RNNs), autoencoders [3], and
graph neural networks (GNNs) [26]. The increasing number
of parameters enables neural networks to have more advan-
tages in capturing complex information. They have made
significant advances in dealing with image recognition [27],
activity recognition [28], document classification [29], etc.

2.3 Hybrid Methods

Despite their advantages, tree-based methods and deep
neural networks have several limitations. Deep neural net-
works face challenges in explainability and complexity. A
complicated network structure with a huge number of
parameters can improve the model’s performance while
costing more time in searching for the optimal solution,
meaning the performance depends heavily on the parameter
tuning [10]. Besides, the black-box training process makes it
unclear about how each component in the neural network
contributes to the final prediction. For tree-based methods,
a key issue is that the model’s performance is relevant to
the quality of the inputs. It is proven that random forest is
prone to over-fitting when handling noisy data [5]. Besides,
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the tree-based models become time-costly in handling high-
dimensional data sets. For the above reasons, some research
seeks to bridge the two models for leveraging the benefits
of both.

One direction is integrating random forest with neural
networks. 1) Some work leverages the ‘deep’ idea that they
construct cascade random forests with following the struc-
ture of neural networks while keeping the core concepts of
the random forest, i.e., using greedy splitting criteria of the
decision trees. For example, Zhou et al. [10] proposed deep
forest that repeatedly fed the features into random forests
and used the outputs of random forests as the inputs for the
subsequent random forests. The final prediction is taking
the average of the last layer of random forests. Similarly,
Feng et al. [?] constructed random forests that follow the
structure of autoencoders. Those structures optimize the
split functions one node at a time according to some split-
ting criteria, where the greedy procedure may lead to sub-
optimal trees. 2) An alternative way is leveraging the ‘end-
to-end’ training strategy of neural networks, i.e., learning
the random forests with back-propagation. Such way retains
the principles of neural networks but requires transforming
the random forests into differentiable embedding layers
before adding it to neural networks. Sethi [30] made the
first attempt in the 1990s by proposing entropy net, which
encoded decision trees into neural networks. Welbl et al. [12]
further suggested that any decision trees can be represented
as a two-layer Convolutional Neural Network (CNN) [9],
where the first layer includes the decision nodes and the
second layer includes leaf nodes.

Some other researchers tried to design differentiable
decision trees from a statistical perspective. Montillo [31]
did some early work in this direction by investigating
the use of sigmoid functions in differentiable information
gain maximization. Peter et al. [15] introduced a stochastic,
differentiable, and back-propagation compatible version of
decision trees to guide representation learning in the lower
layers of deep convolutional networks. Specifically, they
regarded decision nodes in the neural tree as probabilistic
distributions of passing down the parent nodes and leaf
nodes as the probabilistic distributions over predictions.
They then implemented their model over several bench-
mark image recognition datasets and beat a series of other
classical deep neural networks such as CNN. In this work,
we follow the idea of [15] in constructing the neural decision
forest. Adding statistical methods to neural networks makes
the networks more explainable, while randomly initialized
leaf nodes have the limitation of yielding biased prediction
when the forest comprises a small number of trees and leaf
nodes.

There is also some work that integrates the idea of
gradient boosting with neural networks [17]. The first few
attempts include Schwenk’s work [16], where they investi-
gate different techniques of using neural networks as base
classifiers for the AdaBoost framework. Similarly, Zhang
et al. [17] proposed to incorporate gradient boost machine
with convolutional neural networks (CNN), where they use
CNN as weak learners for dealing with image classifica-
tion tasks. Feng et al. [32] propose a general differentiable
gradient boosting framework for taking neural networks or
traditional classifiers as weak learners.
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Fig. 1. The proposed gradient boosted neural decision forest.

Our proposed framework is designed to provide a more
explainable and flexible solution that can also be applied
to a wide range of tasks to address the challenges faced
by tree-based models and deep neural networks alone. It
differs from the previous research by being the first work
to combine the advantages of bagging and boosting ideas
under the neural network architecture. On the one hand,
the nature of ensemble learning can alleviate the over-
fitting phenomenon of the deep learning models, and the
neural decision forest can also improve the explainability
of the traditional neural layers (see Section 4.5.3). On the
other hand, deep learning methods need less efforts in
feature engineering, thus bring more flexibility and capture
more interaction knowledge among the features than the
traditional tree-based methods.

3 GRADIENT BOOSTED NEURAL DECISION FOR-
EST

Figure 1 shows the overall workflow of the proposed
method with one gradient boost module. The workflow
includes three main components from top to bottom: the
input processing layer, the base learner (the neural decision forest),
and the gradient boost module. Suppose we have input-output
pairs {(xn, yn)|n = 1, 2, ..., N}, our target is training on
those pairs and providing prediction for new inputs xnew.
Specifically, we first train the base learner to get an initial
prediction: the input will go through an input processing
layer to get a latent representation H , followed by fully-
connected layers in mapping the latent representation to
nodes in K neural decision trees. The prediction is taking
the average of each neural decision trees. Second, a gradi-
ent boost module, i.e., a new neural decision forest, will
be constructed for predicting the gradient of the loss for
the initial prediction. More gradient boost modules can be
constructed for targeting the gradient of the loss from the
previous prediction. The final prediction will be the sum of
the results from the base learner and the following gradient
boosting modules. The input processing layer is shared
across weak learners. The module iteratively optimizes the
whole process until reaching the optimal results.

In the following subsections, we introduce each compo-
nent in detail.

3.1 Input Processing Layer
Usually, we can select different input processing layers
for different purposes. Here, we introduce convolutional
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TABLE 1
Notations in this work

Notation Meaning

(x, y) input and output pairs
N number of samples
M number of classes
K number of trees in a forest
F a forest F = {T1, ..., TK}
I number of gradient boost modules
W∗ weight matrices
b∗ biases
H latent representation of x
f∗ functions
σ activation function
D&L decision & leaf nodes
P probability distribution

2D input: X

1D input: X

Max
Pooling Unpooling Deconvolutional

Layer
Convolutional

Layer

Hidden representation: H
Encoder Decoder

Fig. 2. An example of using convolutional autoencoder as input proces-
sor, which can deal with both 1D and 2D inputs.

autoencoder (CAE), which can deal with both 1D and 2D
inputs, as our input processing module. An autoencoder
(AE) is an unsupervised component for producing dense
feature representations from the input [33], i.e., dimension
deduction. It consists of an encoder and a decoder. The
encoder takes input x to several neural layers for getting
the latent representation H with

H = fE(WEx+ bE) (1)

where fE(∗) is a non-linearity function (e.g., the sigmoid
function [34]) and WE and bE are the corresponding weight
and bias, respectively. The encoder tries to map the latent
representation H to the reconstruction of input x, which
can be denoted by xc, through several neural layers:

xc = fD(WDH + bD) (2)

where xc can be regarded as a prediction of x, given the
latent code H . Similarly, WD and bD are the weights and
bias variables for the decoder layers.

There are different ways to construct the encoder and
decoder layers, e.g., fully connected layers in the simplest
case. Here, we introduce convolutional autoencoder as the
input processor, which uses convolutional layers in the
encoder and decoder layers [35]. Convolutional layers differ
from fully connected layers in considering local information
and being less time-consuming [3]. It can also deal with
high-dimensional inputs such as images, thus exhibiting
high flexibility and efficiency. Generally, the autoencoder

models are optimized in an unsupervised manner, where
the loss function is defined to minimize the average re-
construction error, e.g., in terms of the squared error:
L(x, xc) =‖ x− xc ‖2. In this work, we update the parame-
ters of CA considering both reconstruction error and the task
prediction error, which can improve the robustness of the
latent representation H and the prediction performance by
using the hidden representation H . We will provide details
of our optimization strategy later.

We use the transformation of latent representation H as
the input for the further neural decision forests. Specifically,
the latent representation H will first go through several
fully-connected layers to get xFC as the input for the neural
decision forest, i.e., xFC = fFC(WFCXH + bFC).

3.2 Neural Decision Forest
In this subsection, we introduce how the input nodes xFC
are transferred through the tree layers in the neural decision
forest, which shares similar spirits of the structure suggested
by [15].

Suppose we have a number of K trees in a forest, each
being a structured classifier consisting of decision (or split)
nodes D and leaf (or prediction) nodes L. The leaf nodes are
the terminal nodes of the tree and each leaf node l ∈ L holds
a probability distribution Pl(Y |x) over the class distribution
Y . Each decision node d ∈ D in tree Tk holds a decision
function Dd(x; Θ) ∈ [0, 1], which stands for the probability
that a sample reaches decision node d and is sent to the
left sub-tree. More specifically, each decision node holds the
following representation:

Dd(x; Θ) = σ(fd(xFC)) (3)

where σ(x) = (1 + e−x)−1 is the sigmoid function;
fd(xFC) = WTxFC is the transfer function for xFC (WT

is weight variable); and Θ stands for the set of previous
parameters used in autoencoder and fully-connected layers,
i.e., {WE ,WD,WFC ,WT , bE , bD, bFC}.

In this paper, we suppose all the trees follow a classical
binary tree structure, meaning each node has two sub-
trees. Therefore, once the depth n depth is defined, we can
get 2n depth decision nodes and 2n depth+1 leaf nodes. For
example, after setting the depth n depth of a tree to 2 (as
shown in Figure 1), the tree has two decision nodes and
four leaf nodes.

The probability of a sample arriving at tree Tk and
reaching in leaf l is as follows:

Ql = Πd∈DDd(x; Θ)1leftDd(x; Θ)1right , (4)

where Dd(h; Θ) = 1 − Dd(h; Θ), 1left (1right) stands for
the indicator function for the nodes going left (right). Mean-
while, the probability of this sample to be predicted as class
y is:

Pk[y|x,Θ,Λ] = Σl∈LPly ·Ql, (5)

where Ply stands for the probability of the nodes in leaf l
predicted to be label y according to the previous defined
probability distribution Pl(Y |x); and Θ and Λ are parame-
ters for input processing layers and neural decision forest,
respectively.

For the forest of neural decision trees, it is an ensemble
of decision trees F = {T1, ..., TK} and delivers a prediction
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for sample x by averaging the output of each tree, which
can be shown from:

PF [y|x] =
1

K
ΣKk=1Pk[y|x] (6)

The prediction for a label, e.g., y, is as follows:

ŷ = argmax
y

PF [y|x] (7)

3.3 Gradient Boost Module

Here, we introduce the basic concepts of the gradient boost
idea and our design in integrating gradient boost with neu-
ral decision forest. Figure 1 gives an example for only one
gradient boost module, where the gradient boost module
shares same structure as base classifier, i.e., neural decision
forest in this case.

3.3.1 Traditional gradient boost algorithms

The principle of boosting methods is to hold out optimiza-
tion in the function space [4]. The key definitions in gradi-
ent boosting include weak learner, base learner, and gradient
boosting modules (boosts). Generally, for a given problem, the
estimated function f̂(x) is in an additive way:

f̂(x) = f̂ I(x) =
I∑
i=0

f̂i(x) (8)

where f̂0 is the initial prediction made by the base learner,
{f̂i}Ii=1 are the function increments (also called as ‘boosts’),
I is the number of gradient boost modules (iterations), and
f̂ i is the ensemble prediction in iteration i. The weak learner
is the option for the predictor of the base learner and the
gradient boost modules. For example, GBDT is taking decision
tree as the weak learner.

Under the idea of gradient boosting, each weak learner
h(x, θ) in this incremental functions are formulated in a
‘greedy stage-wise’ way. In particular, the model sets f̂0

with h(x, θ0) and then chooses a new function h(x, θi) to
be the most parallel to the negative gradient gi(x) along the
observed data.

gi(x) = Ey[
∂L(y, f(x))

∂f(x)
|x]

f(x)= ˆfi−1(x)
(9)

where L is the loss function. By setting each step with step
size ρ, we choose the new function increment to be the most
correlated with −gi(x). Suppose we have N samples, we
can formulate the optimization by least-squares minimiza-
tion:

(ρi, θi) = argmin
ρ,θ

N∑
j=1

[−gi(xj) + ρh(xj , θ)]
2 (10)

3.3.2 Proposed gradient boost module

In our model, the weak learner h(x, θ) is a neural decision
forest, meaning that we construct new neural decision forest
for each gradient boost step but share the input processing
layers across the weak learners (i.e., the base learner and the
gradient boost modules). After learning the initial model
f0 = h(x, θ0), we get the the prediction f̂0 = ŷ according to

equation 7. Suppose we have N samples and M classes, the
loss is defined as:

L(y, f0) = −ΣMm=1ym log pm(x), (11)

where ym ∈ {0, 1}, and pm(x) = P(ym = 1|x) or equiva-
lently, pk(x) = exp(P(y = ym))/ΣMm=1P(y = ym)).

Then, for the first gradient boost module, the prediction
target is:

G1 = −[
∂L(y, f0)

∂f0
]f0PF [y|x]

∼ Y − p(x) = Y − softmax(f0) (12)

where G1 is the ‘gradient boost’. In practice, we modify this
gradient as Error(1) = softmax(Y − f0). As an example,
consider a binary classification problem where M = 2
and the probability distribution estimation for sample x
is (0.4, 0.6). The sample will be predicted to be class y2.
Suppose x actually belongs to class y1, and we hope it to
take the distribution (1, 0) and to increase the probability
that x is predicted to class y1. Matching the ‘boosts’ h(x, θ1)
with (0.6,−0.6) to achieve the ideal distribution is unrea-
sonable since the range of PF [y|x] is [0, 1]. Therefore, we fit
the ‘boosts’ into a softmax version: ( e0.6

e0.6+e−0.6 ,
e−0.6

e0.6+e−0.6 ).
More specifically, for the first ‘boost’ module, we take the
next few steps:

Error(1) =softmax(Y − P0(Y |x)) = PGB1
(Y |x)

f1 =f0 + ρ1 · Error(1)

=(P0(y1) + ρ1 · PGB1(y1), . . . ,P0(yM )

+ ρ1 · PGB1(yM ))

=(P1(y1), . . . ,P1(yM ))

ScaleTo1
= (

P1(y1)∑M
m=1 P1(ym)

, . . . ,
P1(yM )∑M
m=1 P1(ym)

)

f̂1 = argmax
y

f1

(13)

where Error(1) is the prediction goal for the first gradient
boost module, which is the distance between the prediction
and the label. We update the prediction f1 by adding this
distance with a step size hyper-parameter ρ to the previous
guess of prediction f0 and scale the sum of each probability
nodes in f0 to 1.

We take similar approaches for the following gradient
boost modules. Suppose we have I gradient boost modules,
then for i-th module, the prediction target is Error(i). Then
after I steps of gradient boosting, we get the final prediction
ŷ by:

Error(I) =softmax(Y − f I−1) = PGBI
(Y |x)

f I =f I−1 + ρI · Error(I)

=(PI−1(y1) + ρI · PGBI
(y1), . . . ,PI(yM ))

+ ρM · PGBM
(yK)

=(PM (y1), . . . ,PM (yK))

ScaleTo1
= (

PM (y1)∑K
i=1 PM (yi)

, . . . ,
PM (yK)∑K
i=1 PM (yi)

)

ŷ = argmax
y

fM

(14)
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Fig. 3. Flowchart for training process with multiple gradient boost
modules. The shared part is our input processing module, which in this
case contains autoencoder and fully-connected layers. First, the whole
framework will be initialized with random variables, and the input x will
go through the black lines. The first neural decision forest is the base
learner, which processes the data flow and makes predictions. The label
Y will feed prediction loss back to update the parameters in the base
learner and the input processing layers, where the prediction error, i.e.,
Error 1, will be taken as the prediction target for the first gradient boost
module. Similar approaches will be taken for the following gradient boost
modules. The final prediction is the summation of the outputs from the
weak learners.

3.4 Training Process

The prediction of a GrNDF, i.e., ŷ, is given in equation 14. We
use cross-entropy [3] as the loss function for classification
tasks:

L(y, ŷ) = −(y×log(P[y|x,Θ,Λ])+(1−y)log(1−P[y|x,Θ,Λ]))
(15)

where Θ stands for the parameters used in the input pro-
cessing layers, and Λ stands for the parameters used in
neural decision forest.

In this case, the input processing layer is convolutional
autoencoder, the reconstruction loss for an autoencoder is:

LA(x, xc) =‖ x− xc ‖2 (16)

Then, the total loss for the model is:

L = L(y, ŷ) + LA(x, xc) (17)

which is equivalent to solving the optimal parameters:

(Θ,Λ) = argmin
Θ,Λ

L (18)

Notice that the middle layer of convolutional autoencoder
will be further fed into several fully connected layers to be
the input for each neural decision forest, the parameters of
the autoencoder and the neural decision forest will update
simultaneously. In this way, the latent representation of
x will be not only representative for the input but also
effective for the final prediction. We use RMSProp opti-
mization methods [36] and update the parameters one by
one. In particular, the learning rate will be divided by an
exponentially decaying average of squared gradients.

At the very first stage, the parameters will be given
randomly initialized values. Then, we can get the initial

prediction f0 and the according loss L. To update the
parameters Θ and Λ, we first set Λ unchanged and update Θ
by back-propagation following the updating strategy below
at step t:

gΘ
t =

∂L
∂Θ

(19)

GΘ
t = GΘ

t + gΘ
t � gΘ

t (20)

Θt = Θt−1 −
ηΘ√
GΘ
t + ε

� gΘ
t (21)

where gΘ
t is the gradient of parameter Θ; ηΘ and ε are

the corresponding learning rates; and the symbol � stands
for dot product. Then, we take a similar updating strategy
for updating the parameters Λ in neural decision forest.
There are two groups of parameters in neural decision
forest: parameters for decision nodes, and the probability
distribution of the leaf nodes. For the probability distribu-
tion of the leaf nodes, we add a softmax function to the
updated parameters. The details about how to calculate the
derivative of loss function for each parameter is included in
paper [15].

For the following gradient boost modules, we change
the loss function to equation 10 and update the parameters
Λ for each gradient boost module in a similar way as in
updating the base learner f0. Notice that we only update the
parameters Λ for each gradient boost module, which means
the parameters Θ are shared across the weak learners. This
way, the input processing layers will try to extract the most
useful latent feature patterns for the prediction.

The hyper-parameter ρ, i.e., the learning rate, can be
regarded as either a constant (e.g., between 0 and 1) or a
parameter that can be updated during the training process.
Here, we set this learning rate as a constant, and we will
discuss the model’s performance under different settings to
this learning rate.

The training process for the model with multiple gradi-
ent boost modules is shown in Figure 3, where the black
lines indicate the data flow and the red lines stand for the
back-propagation process. The following shows the pseudo-
code for the training and testing process of the proposed
framework.

Algorithm 1 Training for GrNDF
Require: Input x, labels y

1: Generalizing the structure for the forest with K trees
each with depth n depth

2: Randomly initialize parameters Θ,Λ
3: Randomly shuffle the datasets
4: for epoch in Epochs do
5: for batch in Batches do
6: Get the outputs of the input processing layer
7: Get the prediction of the base learner
8: Update Θ and Λ
9: for i in I do

10: Calculate Error(i) for i-th boost module
11: Update Θ and Λi
12: end for
13: end for
14: end for
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Algorithm 2 Testing for GrNDF
Require: Input xnew, Learned Θ, Learned Λ
Output: Prediction of label ŷ

1: Initialize GrNDF with the learned parameters Θ, Λ
2: Get hidden representation H of xnew by the encoder:
3: H = fE(WExnew + bE)
4: Get input for decision trees:
5: xFC = fFC(WFCH + bFC)
6: Get initial prediction f̂0(xnew) by eq. 7
7: for i in I do
8: Get prediction f̂i(xnew)by eq. 13 and eq. 14
9: end for

10: Get the final prediction by:
11: ŷ = f̂(x) = f̂ I(x) =

∑I
i=0 f̂i(x)

12: return y

3.5 Computational Complexity
The proposed framework contains three parts: the input
processing layers, the neural decision forest, and the gra-
dient boost modules. The computational complexity of in-
put processing layers varies according to different network
options. In this case, the computational complexity for the
convolutional autoencoder is around O(k2n), where k here
is the kernel size, and n here is the number of neurons
in a layer. Notice that the computational complexity of a
fully connected layer is about O(n2) and k << n, using
convolutional layers will take less computing time than
fully connected layers. The computational complexity of the
neural decision forest is O(2dnt), where d is the depth of
a tree, 2d is the number of decision nodes in the tree, n is
the number of neurons in the output of the input processing
layer, and t is the number of trees. The neural decision forest
takes less computation time than fully connected layers
with shallow (small d) and few (small t) trees. As for m
gradient boost modules, the computational complexity is
(m+ 1)×O(2dnt). In our default settings, there are t = 50
trees in a forest each with depth d = 3, and there is only
m = 1 gradient boost module, where the computational
complexity is same as of a fully connected layer with hun-
dreds of neurons. According to our experiments, we can
achieve outstanding performance with the default settings.
Overall, the proposed framework takes no more computing
time than traditional neural networks in most scenarios.

4 EXPERIMENTS

In this section, we explore the efficiency of the proposed
framework on a wide variety of tasks and evaluate the
flexibility of our framework on several datasets. our ex-
perimental results show the effectiveness of our proposed
framework, which outperforms a series of baselines. We also
evaluate the performance of the proposed framework under
different parameter settings.

4.1 Dataset description
We test our model over different scopes of datasets, includ-
ing a seizure recognition dataset, an activity recognition
dataset, a fake review dataset, and a public image recog-
nition dataset (the last row in Table 2).

Fig. 4. Example for fashion MNIST. Each class is represented by nine
cases.

Epileptic Seizure Recognition Dataset [37] is a pre-
processed and re-structured version of a commonly used
dataset for epileptic seizure detection. The original dataset
has 500 individuals with each has 4097 data points for
23.5 seconds. Each data point contains the value of the
EEG recording at a different point in time. The reshaped
one shuffled every 4097 data points into 23 chunks. Each
chunk contains 178 data points for 1 second. Thus there are
11,500 pieces of information (row) in total. Each piece of
information includes 178 data points for 1 second (column).
Each instance will be given one of the following labels: “eyes
open”, “eyes closed”, “they identify where the region of the
tumor was in the brain and recording the EEG activity from
the healthy brain area”, “they recorded the EEG from the
area where the tumor was located”, or “recording of seizure
activity”.

Amazon review dataset is a benchmark dataset for fake
review detection. The raw dataset contains over 100 million
reviews covering 24 product categories. Each review con-
tains the textual information, user’s ratings, received helpful
votes, and review time. Here, we used a subset with 7951
samples and obtained the labels from [38].

MHEALTH dataset [39] comprises recordings of the
body motions and vital signs of 10 volunteers performing
12 physical activities (e.g., standing, walking, and running).
Each subject carried three sensors on the chest, right wrist
and left ankle. There are 23 channels for recording and about
3,000 data instances for each activity (except for the 12th
activity), where each instance corresponds to a data point
recorded at a sampling rate of 50 Hz (i.e., 50 samples per
second). We slice the original data with half-seconds and
get 13635 instances, each corresponding to 25 time points
times 23 recording channels.

Fashion-MNIST [40] is a dataset of Zalando’s article
images. This dataset consists of a training set of 60,000
samples and a test set of 10,000 samples. Each sample is
associated with a label from 10 classes: t-shirt/top(label 0),
trouser(1), pullover(2), dress(3), coat(4), sandal(5), shirt(6),
sneaker(7), bag(8), ankle boot(9). Each image is 28 pixels in
height and 28 pixels in width. Each pixel has an integer
pixel-value between 0 and 255, indicating the lightness or
darkness of that pixel. An example of the images is shown
in Figure 4.

4.2 Settings
4.2.1 Parameter Settings
For the Epileptic Seizure Recognition dataset, we randomly
separate the dataset into 8,000 training samples and 3,500
testing samples and then transform the label into the one-
hot format. For the MHEALTH and the Amazon review
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TABLE 2
Dataset Description

Dataset Name #Classes #Instances #Attributes Attribute Type

Epileptic Seizure Recognition dataset 5 11,500 178 Integer, Real
Amazon Review 2 7,951 48 Integer, Real
MHEALTH dataset 12 13,635 25×23 Real
Fashion MNIST 10 70,000 784 (28×28) Integer(Pixel)

dataset, we randomly separate the datasets into 80% train-
ing data and 20% test data. For Fashion MNIST, which
contains 60,000 training samples and 10,000 test samples,
we transform the label into the one-hot format as well. Each
image is in the shape of 28 pixels high and 28 pixels wide.
We tile each image into a vector of 784 nodes if not using the
convolutional layers. For the input processing layer, we use
two convolutional layers in the autoencoder, followed by
one fully-connected layer. For the neural decision forest, we
set the depth of the tree as 3 and add only one gradient boost
module on the base learner. The batch size is around 10% of
the whole dataset. The number of neurons in a layer varies
according to the dimension of the feature vectors, which
will not greater than four times the number of features. All
weights and bias are initialized with randomly distributed
values. Each training model is iterated 200 times.

The model’s performance under different parameter set-
tings can be found in Section 4.4.

4.2.2 Comparison Methods

We compare with three baseline methods and four state-
of-the-arts for evaluating the efficiency of the proposed
framework. We first compare our model with three related
baseline methods, namely gradient boost decision trees
(GBDT), random forest, and convolutional neural networks
(CNN):

• Gradient Boost Decision Trees (GBDT) [4]: is the
boost version of decision trees. We use GBDT that fol-
lows Friedman’s design for the comparison. Specifi-
cally, we set the number of estimators (decision trees)
as 100 and the max depth of a tree as 10.

• Random Forest [21]: is known as the bagging ver-
sion of decision trees. Here, we set the number of
estimators (trees) as 100, the max depth as 100 and
the criterion as entropy.

• Convolutional Neural Networks (CNN) [3]: has
been widely used in various tasks these years. The
convolution emulates the response of an individual
neuron to visual stimuli. Each convolutional neuron
processes data only for its receptive field. Here, the
model includes two convolutional neural with max-
pooling followed by two fully-connected layers. We
control the number of nodes of each layer according
to the dimension of the input space.

Also, we compare our work with several state-of-the-
arts: neural decision forest, gradient boost convolutional
neural networks, autoencoder based method, and a model
that uses both convolutional neural networks and convolu-
tional autoencoders:

• Peter et al. [15]: proposed deep neural decision
forests similar to our model. The original work com-
bined deep neural decision forests with convolu-
tional neural networks to deal with image recog-
nition tasks. In our experiment, we also follow the
original design and set around 50 trees in a forest.

• Zhang et al. [17]: proposed gradient boost convo-
lutional neural networks, which used the convolu-
tional neural network as the base learner. The base
learner and the ‘boosts’ are two convolutional layers
followed by a fully-connected layer.

• Li et al. [?]: proposed an autoencoder and a special
prototype layer, where each unit of that layer stores
a weight vector that resembles an encoded training
input followed by a fully-connected layer.

• Dennis et al. [41]: designed a two-channel convo-
lutional neural network, where one channel uses
traditional CNN filters, and another one uses con-
volutional autoencoders as filters. They further con-
catenated the outputs from the two channels and fed
them into several fully-connected layers.

• Zhou et al. [10]: constructed cascade random forests
that follow the structure like deep neural networks.
They firstly fed the features into random forests and
then used the outputs of random forests for the
further random forests. The above was repeated for
several steps.

To compare with these methods, we either use the orig-
inal codes or rewrite them following the original structure.
Some models are sensitive to the normalization methods
of inputs. Therefore, we feed the same inputs that are
not normalized to all models (including ours). Besides, we
compare the proposed gradient boost neural decision forest
(GrNDF) with the one only has the base learner, i.e., neural
decision forest (NDF) with convolutional autoencoder as the
input processing layer.

4.2.3 Evaluation metrics
For a binary classification problem, the predicted value
could be either true positive (TP), false positive (FP), false
negative (FN), and true negative (TN). The four criteria for
classification are defined as: accuracy = TP+TN

TP+TN+FP+FN ,
precision = TP

TP+FP , recall = TP
TP+FN , F1 − score =

2 · precision·recallprecision+recall . Among them, TP is the number of cor-
rectly predicted positive objectives, TN is the number of
accurately predicted negative objectives, FP is the number
of falsely predicted positive objectives and FN is the number
of incorrectly predicted negative objectives. For a multi-
classification problem, we take the one-vs-rest strategy,
which regards one label as positive and the others are
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TABLE 3
Comparison with Baseline Methods on Four Datasets

Epileptic

Method GBDT Random Forest CNN Peter et al. Zhang et al.
Accuracy 0.4961 0.5684 0.7531 0.7493 0.7485
Precision 0.4937 0.5695 0.7496 0.7456 0.7468

Recall 0.4992 0.5668 0.7673 0.7473 0.7481
F1 score 0.4847 0.5679 0.7510 0.7462 0.7464
Method Li et al. Dennis et al. Zhou et al. NDF GrNDF

Accuracy 0.7232 0.7479 0.6049 0.7570 0.7650
Precision 0.7241 0.7464 0.5933 0.7546 0.7611

Recall 0.7262 0.7461 0.6014 0.7549 0.7611
F1 score 0.7244 0.7460 0.5925 0.7544 0.7602

Fashion MNIST

Method GBDT Random Forest CNN Peter et al. Zhang et al.
Accuracy 0.8837 0.8790 0.8994 0.8564 0.9164
Precision 0.8820 0.8764 0.8994 0.8566 0.9163

Recall 0.8840 0.8787 0.8987 0.8589 0.9173
F1 score 0.8824 0.8764 0.8985 0.8564 0.9149
Method Li et al. Dennis et al. Zhou et al. NDF GrNDF

Accuracy 0.8860 0.9159 0.8972 0.9150 0.9201
Precision 0.8860 0.9159 0.8923 0.9072 0.9201

Recall 0.8912 0.9178 0.8986 0.9083 0.9203
F1 score 0.8870 0.9159 0.8954 0.9075 0.9201

MHEALTH

Method GBDT Random Forest CNN Peter et al. Zhang et al.
Accuracy 0.9414 0.5759 0.9799 0.9758 0.9809
Precision 0.9422 0.6112 0.9810 0.9741 0.9809

Recall 0.9352 0.5399 0.9811 0.9762 0.9810
F1 score 0.9383 0.4979 0.9810 0.9751 0.9809
Method Li et al. Dennis et al. Zhou et al. NDF GrNDF

Accuracy 0.9232 0.9797 0.7278 0.9563 0.9820
Precision 0.9110 0.9796 0.7189 0.9543 0.9824

Recall 0.9243 0.9811 0.7262 0.9583 0.9825
F1 score 0.9157 0.9801 0.7233 0.9589 0.9825

Amazon Review

Method GBDT Random Forest CNN Peter et al. Zhang et al.
Accuracy 0.9220 0.7703 0.9025 0.9799 0.9538
Precision 0.9301 0.7780 0.8898 0.9791 0.9527

Recall 0.9118 0.7470 0.9126 0.9798 0.9524
F1 score 0.9184 0.7529 0.8975 0.9794 0.9526
Method Li et al. Dennis et al. Zhou et al. NDF GrNDF

Accuracy 0.7937 0.9610 0.8441 0.9828 0.9880
Precision 0.7691 0.9596 0.8633 0.9828 0.9883

Recall 0.8095 0.9602 0.8228 0.9819 0.9871
F1 score 0.7767 0.9599 0.8324 0.9824 0.9877

negative ones, by averaging the corresponding criteria for
all the results.

4.3 Evaluation
Here, we report the comparison of the proposed model
with related work on four datasets: the Epileptic Seizure
Recognition dataset, the Fashion MNIST, the MHEALTH
dataset, and the Amazon Review dataset. Table 3 shows the
comparison results. For each dataset, the first three methods
are baseline methods followed by five state-of-the-arts, NDF
is a base learner of our method, and GrNDF is the proposed
framework.

We could see that neural network-based methods gener-
ally outperform the boosting or bagging of decision trees
(i.e., GBDT and Random Forest). The above observation
may result from the capability of neural networks for
capturing the complex non-linear combination of features.
The advantage is more evident on the Epileptic dataset,
which contains sequential information that may not show
significant patterns. Models that contain a CNN module
(Peter et al., Zhang et al., Dennis et al., and our designs)

perform better than the models without CNN modules.
This is because of CNN’s capability in capturing the neigh-
borhood information, especially when dealing with images.
The performance of the work by Li et al. is unwell on three
datasets except for the Fashion MNIST. This may attribute
to the structure of their proposed framework that: the proto-
type layer contains ‘memorized’ patterns for the past inputs,
which requires similar patterns for new incoming inputs to
provide accurate predictions. Then, for the dataset that the
input distribution is diverse, the prototype layer may fail in
capturing all the input patterns. When comparing our base
learner NDF with the boosted version GrNDF, we could
see that adding gradient boost module does improve the
accuracy of the base learner. And in general, our proposed
model, which combined neural decision forest with gradient
boosting ideas, performs better than most of the comparison
methods. Summarizing the above, we conclude that the
proposed gradient boost neural decision forest model is a
competitive, if not the best, classification model for various
tasks.

Figure 5 gives a confusion matrix about the details about



10

(a) (b)

(c) (d)

Fig. 5. Confusion Matrix on the prediction of (a) Epileptic Dataset, (b)
Fashion MNIST dataset, (c) MHEALTH dataset, and (d) Amazon review
dataset.

the prediction for four datasets. Notice that for the Fashion
MNIST dataset, see Figure 5 (b), that instances that labeled
as T-shirt, Pullover, Coat or Shirt are most difficult to dis-
criminate. The predictor performs well in detecting sandal,
sneaker and ankle boot, but sometimes these three also
confuse the predictor. It fits the common sense that those
four types of clothes and three types of shoes mentioned
above sometimes are looking similar to each other.

4.4 Parameter Tuning
As mentioned above, we mainly have parameters in the
input processing layers, the neural decision forest, and the
gradient boost module. The input processing layer, in this
case, is convolutional autoencoders. Here, we consider the
model’s performance under different numbers of autoen-
coder layers and numbers of fully connected layers that
follow the latent representation of the autoencoder. The
parameters of the neural decision forest include the depth of
a neural decision tree and the number of trees in a forest. As
for the gradient boost module, we consider the performance
under the model without gradient boost, with one gradient
boost module, or with two gradient boost modules. We also
consider the activation function of each layer that may affect
the model’s efficiency (e.g., the Relu activation function
ignores negative values). Table 4 summarizes the settings
we used in experiments.

We tune the parameters on the Fashion-MNIST dataset,
which delivers similar results as on other datasets. As a
default setting, the input processing layer includes two con-
volutional layers and one fully-connected layer; the neural
decision forest is with 20 trees and depth of 3; the number of
gradient boost module is 1; the number of neurons in each
neural layer is controlled under a certain scope (e.g., four
times of the number of features).

The results are shown in Figure 6. As for the option
for the number of convolutional layers in the autoencoder,
we can see that (in figure 6(a)) a model with two convolu-
tional layers performs better than the model with only one

TABLE 4
Parameter options

Parameter Options

# autoencoder layers {1, 2, 3}
# fully connected layers {0, 1, 2}
Depth of a tree {2, 4, 6, 8}
Number of trees in a forest {5, 10, 20, 50, 100}
# GB modules {0, 1, 2}
Activation function {sigmoid, ReLU, ReLU6,

LeakyReLU, Tanh}

0 100 200 300 400

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Number of epoch

A
c
c
u

ra
c
y

Line type

One AE layer
Two AE layers
Three AE layers

(a)

0 100 200 300 400

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Number of epoch

A
c
c
u

ra
c
y

Line type

Without FC
One FC layer
Two FC layers

(b)

0 100 200 300 400

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Number of epoch

A
c
c
u

ra
c
y

Line type

Depth 2
Depth 4
Depth 6
Depth 8

(c)

0 100 200 300 400

0
.2

0
.4

0
.6

0
.8

1
.0

Number of epoch

A
c
c
u

ra
c
y

Line type

5 Trees
10 Trees
20 Trees
50 Trees
100 Trees

(d)

0 100 200 300 400

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Number of epoch

A
c
c
u

ra
c
y

Line type

Without GB
One GB
Two GBs

(e)

0 100 200 300 400

0
.2

0
.4

0
.6

0
.8

1
.0

Number of epoch

A
c
c
u

ra
c
y

Line type

Sigmoid
Leaky Relu
Relu
Relu6
Tanh

(f)

Fig. 6. The accuracy of different parameter settings on: (a) the number
of autoencoder layers, (b) the number of fully-connected layers, (c) the
depth of a neural decision tree, (d) the number of trees in a forest, (e)
the number of gradient boost modules, (f) the activation function type.

convolutional layer, but the one-layer-model can quickly
capture the feature pattern and get acceptable performance.
Besides, it is hard for a three-layer-model to learn from the
inputs. A similar conclusion can be drawn from figure 6 (b),
where a model without fully-connected layers can rapidly
converge to an acceptable accuracy level. Meanwhile, with
the increase in the number of layers, it takes more epochs
for a model to obtain convergence. As for the settings
towards the neural decision trees, we can see that deeper
trees obtain good performance faster than the shallow trees
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(c)MHEALTH dataset
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(d)Amazon Review dataset

Fig. 7. The accuracy of different settings of hyper parameter ρ on dataset: (a)Epileptic dataset, (b) Fashion MNIST, (c) MHEALTH dataset and (d)
Amazon Review dataset.

(shown in figure 6 (c)). According to figure 6 (d), a large
forest (with many trees) learns faster than a small forest
(with few trees). As for the settings of the gradient boost
module, we can see that adding gradient boost modules
does improve the model’s performance, and model with two
gradient boost modules performs better than the one with
only one gradient boost module. Besides, the performance
with two gradient boost modules is more stable during the
training process. Lastly, for the settings of the activation
function, we can see that different options have limited
impact on the final results, where the model’s performance
fluctuates during the training process when using ReLU
and LeakyReLU function. Overall, the above experiments
show the importance of adding gradient boost module to
the base model, which further supports the effectiveness of
the proposed framework.

We further discuss the model’s performance under dif-
ferent settings of hyper-parameter ρ, which stands for the
step size when adding gradient boost modules. We present
the results on four larger datasets in Figure 7. We can ob-
serve that ρ has slight differences in the impacts on different
datasets, where Epileptic dataset is more sensitive to the
ρ value, and a bigger ρ provides more stable prediction
performance. For example, when ρ = 1.0, we can see from
Figure 7 (a) that the model shows worse performance in the
first few iterations than other settings, but then increases fast
in the latter iterations and achieves the best performance.
In a general case, a bigger ρ provides better performance
while requiring more training iterations for the model to
converge. This phenomenon also suggests the importance
of the gradient boost module.

4.5 Ablation Study

Here, we discuss the performance of several variants of the
proposed framework. Specifically, we consider the option
for the input processing layer, the efficacy of the gradient
boost module and the explainability of the proposed frame-
work.

4.5.1 The option for the input processing layer
We show the model’s performance with different input
processing layers. In particular, we consider four modules:
the fully-connected layers (NDF), the autoencoders (ANDF),
the convolutional layers (CNDF), and the mentioned convo-
lutional autoencoders (CAN). Notice that the abbreviations
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Fig. 8. Ablation study on (a)the way of learning the inputs and (b)the
efficacy of gradient boost.

here are different from the ones in comparison results (sec-
tion 4.3). For a fair comparison, the dimension of the neural
layers and the settings for the base-learner and the gradient
boost modules are the same for all methods. The results
are shown in Figure 8 (a), which are based on the Fashion
MNIST dataset. We could observe that the way of processing
the inputs does affect the prediction results. In this case,
CNN-based methods perform better than the others, which
may attribute to the advantages of CNN-based methods in
dealing with images information. Comparing CNDF and
CAN, we can see that adding autoencoders can slightly
improve model’s performance. So generally, we can choose
different input processing layers for different tasks, e.g.,
CNN-based modules for images and RNN-based modules
for sequential inputs. The proposed framework is flexible in
targeting different tasks.

4.5.2 The efficacy of the gradient boost module.

Our previous experiments have shown the effectiveness
of adding the gradient boost modules in improving the
model’s performance over different tasks. Here, we verify
such improvements when using different base learners to
check whether the gradient boosting idea is also suitable
for other base learners. We consider two base learners, i.e.,
the fully-connected layers (FC) and the proposed neural
decision forest (NDF), and their according boosted versions
(GrFC and GrNDF). The results in Figure 8 (b) show that
adding gradient boost module improves the model’s per-
formance for different settings of the base learners, while
such improvement is marginal when using fully-connected
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Fig. 9. Example for the three classes in Iris dataset.

Tree 1 Tree 2

Fig. 10. An example of the prediction process of the neural decision
forest when taking a Iris Versicolor as the input. The colored nodes are
leaf nodes and have different distribution over the three classes (blue for
Iris Setosa, yellow for Iris Versicolor, and green for Iris Virginica). The
white nodes are decision nodes with different probabilities delivering the
inputs to the leaf nodes.

layers as the base learner. This suggests that the proposed
gradient boosting neural decision forest is efficient.

4.5.3 The explainability of the proposed framework
Here, we present a toy example of the explainability of the
neural decision forest and show the model’s performance
on Iris dataset. Figure 9 gives examples of the three classes
of iris plant. Figure 10 shows the prediction process of a
neural decision forest (the base learner) that takes an Iris
Versicolor as the input, where we set both the depth of a tree
and the number of trees in a forest to 2. We can see that the
model will deliver the inputs to the yellow nodes (for Iris
Versicolor) with higher probability than two other classes.
The model also shows noticeable probability of delivering
the inputs to green nodes, i.e. Iris Virginica, which consist
to the observation in Figure 9 that Iris Versicolor and Iris
Virginica are similar in shape of the sepal and the petal but
with different sizes. The neural decision forest enables the
explainability and the flexibility of the prediction process:
the prediction flow can be clearly presented; the prediction
is made by all trees in a forest, where some trees may
make errors in decisions but the prediction result can still
be satisfactory contribute to other accurate trees.

5 CONCLUSION

Tree-based methods and deep neural networks are two
scopes of machine learning methods that have been applied
to various tasks. The traditional decision tree has both
bagging and boosting versions: random forest and gradient
boost decision tree; and the traditional idea of generalizing
a tree is based on rules, making the learned tree sensitive
to new inputs. In this work, we leverage the advantages
of both tree-based methods and deep learning methods by
combining the idea of bagging and boosting of trees on
the level of neural networks. Specifically, we take neural
decision forest as the base learner and add gradient boost
modules to improve the model’s performance. The resulting
framework is both flexible and explainable: we can choose

different input processing layers for different tasks; the di-
mension of the neural trees and the gradient boost modules
can be modified for different scale of datasets; and the
neural decision trees can show a probabilistic distribution
of the prediction. We also demonstrated that the proposed
framework does not take more computational power than
traditional neural networks. Our extensive experiments
demonstrate the advantages of the proposed framework.
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