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ABSTRACT

Human activity recognition has become an important challenge
yet to resolve while also having promising benefits in various ap-
plications for years. Existing approaches have made great progress
by applying deep learning and attention-based methods. However,
the deep learning-based approaches may not fully exploit the fea-
tures to resolve multimodal human activity recognition tasks. Also,
the potential of attention-based methods still has not been fully
explored to better extract the multimodal spatial-temporal relation-
ship and produce robust results. In this work, we propose Multi-
agent Transformer Network (MATN), a multi-agent attention-based
deep learning algorithm, to address the above issues in multimodal
human activity recognition. We first design a unified representation
learning layer to encode the multimodal data, which preprocesses
the data in a generalized and efficient way. Then we develop a
multimodal spatial-temporal transformer module that applies the
attention mechanism to extract the salient spatial-temporal features.
Finally, we use a multi-agent training module to collaboratively
select the informative modalities and predict the activity labels.
We have extensively conducted experiments to evaluate MATN’s
performance on two public multimodal human activity recognition
datasets. The results show that our model has achieved competitive
performance compared to the state-of-the-art approaches, which
also demonstrates scalability, effectiveness, and robustness.

CCS CONCEPTS

« Computing methodologies — Neural networks; « Informa-
tion systems — Data mining; Multimedia and multimodal
retrieval.
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1 INTRODUCTION

Human activity recognition is a significant step towards human-
computer interaction and enables a series of promising applications
such as assisted living, skills training, health monitoring, and robot-
ics [11]. The multimodal human activity recognition task involves
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processing multi-variant data modalities and correctly predicting
the label of the activity.

Many existing approaches resolve the human activity recogni-
tion task by using uni-modal data, such as RGB, skeleton, and iner-
tial data. Traditional machine learning approaches process hand-
crafted features to predict the activity labels. The performance of
these methods heavily relies on feature engineering, which cannot
generalize well when a new task is introduced or the data quality is
bad. Recent studies focus on resolving the human activity recogni-
tion task by applying deep learning methods, such as Convolution
Neural Network (CNN) and Long-Short Term Memory (LSTM) Net-
works. These approaches are able to learn the representation of the
features and predict activity labels automatically without involving
human effort. However, by processing the input data as 2-D images,
the CNN-based models treat the temporal dimension and the spatial
dimension equally, so that they cannot fully exploit the order infor-
mation, which is important in human activity recognition. While
sequential models, such as LSTM networks, treat the input data
as temporal sequences and extract the temporal information, they
cannot exploit the spatial channel information into account. For
some modalities, such as inertial and skeleton data, each channel
dimension may contain salient spatial information, which is useful
for identifying similar activities. Also, uni-modal approaches may
not be robust enough and cannot generalize well if the input data
has low quality. As a result, they cannot be widely deployed in
real-world situations.

Multimodal approaches have been explored to mitigate the dis-
advantage of uni-modal methods. As the multimodal data can pro-
vide complementary information in the prediction-making process,
these approaches are able to achieve more robust performance.
However, while multimodal human activity recognition approaches
can better extract the informative spatial and temporal features
from multimodal data and produce better results, there remains sev-
eral challenges when processing multimodal data to produce more
robust and better results. First, current approaches apply modality-
specific data engineering methods, such as CNN and LSTM net-
works, to generate embeddings of the input data. Such methods
result in high complexity and cannot preserve the original struc-
tural information in the data. Second, current approaches design
complex architectures to extract spatial and temporal features and
generate high-level representations by using deep learning-based



frameworks. When they try to resolve the human activity recog-
nition task in a multimodal scenario, this further increases the
computation cost. Thus, these approaches cannot work efficiently
when they are deployed in the real-world environment. Third, while
the multimodal data can provide comprehensive and complemen-
tary information, how to effectively extract the salient features
and fuse them still need further exploration. Hence, it is essential
to develop human activity recognition methods that are scalable,
robust and accurate enough so that they can be widely deployed in
real-life circumstances.

To address the challenges above, in this work, we propose Multi-
agent Transformer Networks (MATN), a novel multimodal human
activity learning approach which can extract the salient spatial
and temporal features. The model is scalable, robust, and can be
generalized to variant modalities as well as new subjects. MATN
first separates the multimodal input data into segments and en-
codes them into a unified representation. Instead of using CNN or
LSTM-based approaches to generate embeddings of the features,
our representation learning layer preserves the original informa-
tion, which can be processed in the feature learning module ef-
fectively. Also, the unified representation learning layer does not
require modality-specific data engineering methods, which reduces
the model complexity, thus leading to improved efficiency. MATN
then applies a multimodal spatial-temporal transformer module
to extract the salient spatial-temporal features of each modality
and generates the high-level representation of the input data. Un-
like LSTM networks, which suffer from the sequence processing
problem and cannot be trained in parallel, the transformer is more
scalable as it applies the self-attention mechanism, which mitigates
the problem by treating the sequence as a whole. Also, the spatial-
temporal transformer module is able to extract both the salient
spatial and temporal features, thus preserving more information
and producing more accurate results. Finally, in order to fuse the
output of the multimodal streams, MATN uses a multi-agent collab-
oration module to select the informative modalities and generate
the final prediction. While lots of existing fusion approaches simply
concatenate or add the multimodal information, we use this multi-
agent collaboration approach, which is a joint optimization process
that can adaptively update the learning parameters and adjust the
weight of each modality.

We conducted extensive experiments to evaluate MATN’s per-
formance on two public multimodal human activity recognition
datasets, UTD-MHAD [9] and MMAct [29], using two subject inde-
pendent evaluation protocols. The results show that our model has
achieved competitive performance compared to the state-of-the-art
approaches.

The key contributions in this paper are summarized as follows:

e We proposed the Multi-agent Transformer Networks for
the multimodal human activity recognition task, which
achieved better performance and scalability.

e We presented a unified sequence-to-sequence model that
can be generalized to various modalities without requir-
ing modality-specific encoder architecture and extra data
engineering.
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Figure 1: The illustrating scenario of how the Multi-agent
Transformer Networks performs multimodal human activity
recognition to the basketball shooting activity from the UTD-
MHAD dataset [9]. Here, the skeleton modality and the depth
modality contribute more than the RGB modality and the
inertial modality when generating predictions.

o We used a multi-agent reinforcement learning based method
to fuse the multimodal features and resolve the human ac-
tivity recognition task.

The rest of this paper is organized as follows: Section 2 introduces
the related work; Section 3 formulates the problem of multimodal
human activity recognition; Section 4 presents the details of the
proposed MATN model; Section 5 introduces the datasets and ex-
perimental settings; Section 6 reports the evaluation results; finally,
we conclude the paper in Section 7.

2 RELATED WORK

Human Activity Recognition. Human activity recognition is a
significant step towards human-computer interaction and enables a
series of promising applications such as assisted living, skills train-
ing, health monitoring, and robotics [11]. Generally, the procedure
of resolving the human activity recognition task can be separated
into three main pathways, vision-based approaches, sensor-based
approaches, and multimodal approaches.

The vision-based approaches take images or videos as the input
and then perform an analysis of human behaviors. Early approaches
focus on traditional machine learning models [1, 6, 40, 42, 44, 45,
47]. Those models heavily rely on the input features, and become
less generalized when they are applied to different tasks. Recent
methods mainly focus on further extracting the spatial-temporal
relationship by utilizing deep learning approaches such as CNN,
LSTM networks, and Graph Neural Networks [17, 19, 21, 30, 36, 48,
49].

Sensor-based approaches utilize on-body or ambient sensors to
dead reckon people’s motion details or log their activity tracks
[11]. Traditional machine learning approaches [8, 15, 16, 27, 39, 52]
were also explored in the early stage. Recent approaches utilized
deep neural networks, such as CNN [2, 10, 26, 41, 50, 51, 54] and
LSTM Networks [5, 18, 35, 38, 53], as feature extractors to learn the
representation of the input sensory segments automatically, then
map the representation to labels using another neural network [3].
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However, approaches using single modality data may not be ro-
bust enough and usually suffers from noise or even data loss. If data
quality is poor, the performance will drop significantly, prohibiting
them from being widely used in real-world circumstances.

Multimodal human activity recognition approaches aim to re-
solve the task by extracting features from data of different modali-
ties. Common modalities explored include RGB videos, depth videos,
skeleton positions, inertial sensor signals, Wi-Fi signals, and pres-
sure signals. In recent years, multimodal frameworks [9, 20, 24, 25,
37] have been explored to resolve the human activity recognition
problem, as they can observe the same phenomenon and capture
the complementary information, thus producing more robust re-
sults [4]. Chen et al. [9] developed a hybrid model which combines
depth motion maps and partitioned temporal windows to perform
human activity recognition on depth and inertial data. While they
used different approaches for each modality, which makes feature
extraction more complex, visual modalities were not considered.
Memmesheimer et al. [37] proposed a novel discriminative encod-
ing method that first transferred the skeleton and inertial data into
signal images, then used EfficientNet [43] as a backbone to perform
image classification. While they presented a novel way of fusing
the multimodal data and achieved significant performance with lite
architecture, the approach can only be applied to data that can be
represented as 1-D signals, and it still lacks a way to transfer video
data into the corresponding format.

The Attention Mechanism. In recent years, many works have
started to explore the potential of the attention mechanism in the hu-
man activity recognition area. Recently, the proposed transformer
model [46] has been widely studied and applied in many different
areas. While LSTM networks can handle the long-range depen-
dencies, the sequences must be processed token by token so that
they cannot be trained in parallel. Transformers can process the
sequence as a whole and integrate the information, which miti-
gates the long-range dependency issues and improves the scalabil-
ity. However, transformers cannot capture the order information
within the feature sequence, making the addition of position em-
beddings a necessary step to process the positional information of
each token in a sequence. With the inspiration of transformer, many
approaches utilized the multi-head self-attention mechanism and
received SOTA results [12, 24, 25, 31, 32]. Islam and Igbal [24] also
explored the potential of the attention mechanism in the human
activity recognition area by developing a multimodal hierarchical
attention approach to sequentially extract the spatial and tempo-
ral features for each modality, and then fusing and passing them
through a multimodal attention unit to generate predictions for
human activity recognition. Their later work [25] extended [24]
by adding an additional mixture-of-experts model to extract the
salient features and using a cross-modal graphical attention method
to fuse the features. While their work performed better in terms
of extracting the salient features and pushed the state-of-the-art
performance to a new level, the approach may need to use sepa-
rate pre-processing methods for each modality which result in a
complex architecture.

The multimodal data are able to provide complementary infor-
mation, which contributes to generating more robust and accurate
results. However, how to fuse the multimodal features in an ef-
ficient and effective way remains a challenge yet to resolve. For

example, many existing approaches can extract salient features
from specific varieties of modalities, which could perform poorly if
different modalities were used, or the data contains noises. Hence,
these approaches cannot be generalized to new modalities and are
not robust enough. Also, many approaches mainly focus on de-
veloping more complex frameworks to extract features from each
modality and use LSTM networks to generate the prediction. While
this may require high time complexity, how to perform multimodal
fusion is still a problem worth exploring. There still lacks a generic
and scalable way to thoroughly leverage and effectively fuse the
multimodal information. Moreover, in both research and real-world
circumstances, it is hard to collect and annotate enough training
data with high quality and diversity. The data collection step may
focus on quite diverse requirements, such as high data quality, large
numbers of modalities or sensors, long-term recordings, or large
numbers of participants [7]. As the amount of training data can
be limited, they are also easily affected by the noises. As a result,
when there are only a few training examples of the activities that
have not been seen before, these approaches cannot generalize well
to provide suitable output. This is known as the problem of data
scarcity. Currently, there are only a small number of multimodal
benchmark datasets available.

Hence, to mitigate the problems above, we proposed a unified
sequence-to-sequence model that can be generalized to different
varieties of modalities. Also, we developed a multi-agent reinforce-
ment learning-based method to fuse the multimodal features and
resolve the human activity recognition task.

3 PROBLEM DEFINITION

Multimodal Human activity Recognition involves multiple data
modalities recorded using different devices, such as Inertial Mea-
surement Units (IMU), smartphones, smartwatches, RGB cameras
and depth cameras, etc. Meanwhile, each device may record dif-
ferent kinds of data and each kind of data may contain multiple
dimensions. Similar to the human activity recognition procedure
proposed by [7], we define the multimodal human activity recogni-
tion problem as follows: Let M be the number of modalities involved
and c;; be the data of modality i (1 < i < M), then for each modal-
ity the time sequence wouldbe ¢; = [¢i1,¢i2,...,¢Cit, ... ], t denotes
the timestep. For each modality, we divide each data stream into
segments with a fixed-length sliding window. So the segments of
modality m can be represented as Segm = [Xm,1,Xm,2, - -, Xm,L]
where L denotes the segment length. Then given the input X =
[Segi, Sega, . . ., Segar], our objective is to learn a function F (Seg; ©)
to correctly predict the label of the activity y, where © represents
all the parameters to be learned during the training step.

4 PROPOSED MODEL

We propose our Multi-agent Transformer Networks (MATN) for
multimodal human activity recognition. The overall framework is
shown in Figure 2. Our model contains three components:

(i) a generalized representation learning layer that receives
the raw data and conducts data preprocessing for further
extraction.



Prediction

Centralized Multi-Agent
Critic Module Collaboration

MSTT
Module

Spatial
Stream

Temporal
Stream

Add & Norm
Feed
Forward

Multi-Head
Attention

s

Spatial
Stream

Temporal
Stream

Add & Norm
Feed
Forward

Add & Norm

Multi-Head
Atention

s

Px

Add & Norm
Feed
Forward

‘Multi-Head
Attention

Add & Norm
Feed
Forward

Multi-Head
Atention

Positional ®_€ Positional
Class Class Class Class
Token Token Token Token

Preprocessed
Features

Learning

Layer

&
Encoding

Modality M

&
Encoding

Modality |

Figure 2: The Multi-agent Transformer Networks Module

(if) a multimodal spatial-temporal transformer (MSTT) module
that extracts the salient features for each modality and
generates the representation of class tokens.

(iii) a multi-agent collaboration module that learns to select the
informative modalities and produce the final output.

At first, the representation learning layer will preprocess and
transfer the input data of each modality into a unified representa-
tion. Then in the MSTT module, we concatenate the input features
with a class token for both the spatial and temporal streams. For
the temporal stream, we add position encoding to the input fea-
tures. The transformer encoder module then extracts the salient
spatial and temporal features and outputs the representations of
class tokens. In the multi-agent collaboration module, we assign
an agent for each modality and aggregate the results. The model
is incrementally trained with a centralized policy to predict the
activity label.

In the following, we will elaborate on the preprocessing method
(Section 4.1), the MSTT module (Section 4.2), the multi-agent col-
laboration module (Section 4.3), and the training and optimization
process.

4.1 Unified Representation Learning

MATN first takes the raw multimodal data and transfers each modal-
ity into a unified representation to be fed into the MSTT module.
The dataset D is a set of data records of all the modalities, where
d" is the n'h record of modality m.

1 1
dl dM
D=|: ;
aN an
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For record n, dj}, , denotes the record at timestep ¢. It is worth
noting that d?, , could either be a one-dimensional vector (sensor or
skeleton data) ‘or a two-dimensional matrix (visual data, excluding
the channel dimension) depending on the input data format.

n _ |gn n
dm - dm,l dm,T

Our method has two advantages. First, we use a common method
to generate unified representations for all the modalities, which
can be easily generalized to a new modality. This would not require
complex encoder architecture and extra data engineering. Second,
our approach could utilize a pre-trained model and be completed
offline. As it does not require a sequential Neural Networks module,
the computation can be done in parallel and easily scale when a
new modality is introduced, which improves the computation cost
during both training and testing.

As some modalities may contain high-frequency data, the ad-
jacent frames may contain similar information, which means ex-
tracting features at the frame level would be both memory and
computationally inefficient. Also, there can be fluctuation during
a short period of time and the noisy data would affect the perfor-
mance. Thus, we divide each data stream into segments with a
fixed-length sliding window and conduct average pooling on the
data within the time window. As the time to complete an activity
may vary, for each modality, we keep the transferred records with
the same length L,, over time to better support batch processing.

While this method works on modalities that are one-dimensional
over time, it cannot be directly applied to visual data. Recently, sev-
eral approaches [14, 33] developed visual transformers that can re-
solve image classification problems. However, they mainly work un-
der a more static scenario and require high computation costs, thus
cannot be utilized in human activity recognition tasks yet. Hence,
we use an extra step to encode visual data into one-dimensional
vectors over time. To resolve this problem, we apply a pre-trained
ResNet50 [22] model to generate encodings for RGB and depth
video data. Then, the encoded sequence of modality m can be rep-
resented as Xj,, with a size of B X L,;; X Cp,,, where B denotes the
batch size and C;, denotes the feature dimension.

1 ... 1
xm,l xm,L
Xm=| : :
N N
xm,l xm,L

4.2 Multimodal Spatial-Temporal Transformer

The multimodal spatial-temporal transformer (MSTT) module exe-
cutes in a parallel stream to separately extract the salient spatial
and temporal features of each modality. Unlike LSTM, which may
suffer from the long-range dependency problem, self-attention-
based methods can pay attention to the entire feature sequence,
thus producing a more informative and robust representation of
the input data. While each modality of the input data has a different
representation, the spatial series and the temporal series also reveal
unique information. Then we apply a multi-head transformer en-
coder [46] on both the spatial series and temporal series features, so
the module can fully distinguish and extract the salient unimodal
features over spatiality and time.
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Both the spatial stream and the temporal stream contain a stack
of P-layer transformers, where each layer has two sequentially con-
nected sub-layers, a multi-head self-attention layer and a position-
wise feed-forward network. A residual connection is employed
around each sub-layer, followed by a layer normalization.

Taking the inspiration from BERT [13] and ViT [14], For each
modality m, we add a learnable class token xjs to the input se-
quence of each stream and use it to generate the final prediction as
it can serve as an overall representation of the input features. Also,
unlike CNN or RNN, the transformer model cannot take the order
information of the input sequence. So, for the temporal stream, we
add sinusoidal positional encoding to the input features to inject
the absolute positional information of the tokens in the sequence.

We also experimented with the performance of using learned
positional encoding, and just as [46] mentioned, it did not improve
the overall performance. Hence, we use the absolute positional
encoding to reduce the computation cost.

PE (pos 2i) = sin(pos/10000%/dmodet o
PE (pos,2i41) = cos(pos/lOOOOZi/d'""de’)

For each modality m, we have the input segments X with a size of

L x C, which can be directly fed as the input of the temporal stream
Xm,T = [x1,%2,...,x]. A transpose operation is conducted on X
to be used as the input of the spatial stream X, s = [x1,x2,...,xc].
Then the input features of the transformer HS (spatial stream)
and HT (temporal stream) can be constructed as follows, where S
denotes the spatial stream, T denotes the temporal stream, Epos €

RIADXC denotes the positional encoding.

Hps = X' = [Xse16s X1, - -, XC] + Epos (2)

Hpy1 = [xT,cls’ X1, ..., %L] (3)

For a single transformer, to extract the salient features from the

input data, the queries Qy,, keys K;;, and values V;,, are constructed
by linear projections on the input Hp,.

Om = HuWS  Kp = HnoWK V= HuwY o

Where projections parameters W,% € Rimodetm>dkm W,I,f €
RémodelmXdkm and WY, € RAmodetm*dum gy . denotes the queries
and keys dimension, dy ,, denotes the spatial-temporal values di-
mension. The self-attention function computes the scaled dot prod-
ucts of the query with all keys to obtain the weights on the values.
dy. m is a scaling factor to smooth the gradients in the function.

QmKom

k,m

Attention, (Qm, Km, Vim) = Softmax( VWin (5)

Multi-head attention conducts linear projects on the queries,
keys and values by h times to jointly attend to information from
different representation subspaces. Different projections parameters
are used at each time and the outputs are then concatenated and
projected to output the final values.

MultiHead (Qm, Km, Vi) = [headm1, . .., headp, ,1W,S

6)
where headp,; = Attention(Qm,i, Km,i, Vin,i) (

Where W9 € RhdomXdmodeLm denotes the projection parameters
used in the end. To reduce the computation cost, for all the sub-
layers we use di p, = dom = dmodel,m/h-

The output of the multi-head self-attention layer is then passed
through a position-wise feed-forward network with two linear
layers and ReLu activation in between. Then for each transformer
layer, the output would be H; , and the final output would be Hp .

FFEN(x) = max(0,xW; + b1)Ws + by (7)

For both the spatial and temporal stream, we extract the repre-
sentation of the corresponding class tokens hg p and ht p, then
pass them through a linear layer. A Softmax function is applied to
produce the aggregated results.

Ym = Softmax(LNs(hm,sp0)) + Softmax (LNt (hm,1.p0)) (8)

4.3 Multi-agent Collaborative Training and
Optimization

In our work, we use a multi-agent decentralized actor and central-
ized critic approach to predict the activity class of each input. For
each MSTT module’s output Yy, we assign an agent ap, to each
modality. In each episode, the model aggregates the predictions of
all the modalities. Thus, the model is able to select the informative
agents and maximize the reward over the episodes. The agents
individually make observations o, based on each input segment
Xm and outputs an action A,, to select the class label /;.

Am ~ P (| fin (X, 0m)) ©)
To align the selection policy, we set a common goal for the
centralized critic, which is to correctly predict the activity class
after each observation and selection. Unlike recurrent networks
such as LSTM, where a reward is given at each timestep ¢, we only
consider the final outputs of the MSTT modules and assign the
reward at the end of each training episode. A reward function R is
used where a positive reward is assigned if a correct prediction is
made, and no reward is assigned if an incorrect prediction is made.
As this is a classification problem, we add the cross-entropy
loss into the loss function during the training step. Then for each
modality m, the loss function is:

Z Y4
L =—a ) r(D)log(Fm(0:Xm)) + . yilog(Fm(6; X)) (10)
i=1 i=1

Where Fy, denotes the general function that generates the output
based on each input X, @ is a constant multiplication factor to
adjust the balance between the reward and the cross-entropy loss,
Z denotes the number of activity classes, y; is the ground truth label
and r(i) = p(i) (the probability of §;) if the prediction is correct
and 0 otherwise. Also, instead of simply integrating the multimodal
information with the same weight, inspired by the uncertainty
weighted loss [28], we also assign a weight parameter to jointly
weight the loss of each agent. As a result, this joint optimization
process is able to adjust the weight of each modality and select
the informative representation by adaptively updating the learning
parameters. The overall loss function is:



M 1 M
L= L+ ), log(om) (1)
m=19m m=1
Therefore, the overall training and optimization process can be
summarized as maximizing the reward R while minimizing the loss.
During the testing step, the model assembles each MSTT module’s
output of modality m and outputs the prediction Y.

Y= i Y (12)
m=1

5 DATASETS AND EXPERIMENTS

This section reports our experimental setup on two multimodal
datasets for human activity recognition. We first introduce the
datasets to be used and then explain the experimental protocol and
evaluation metrics to test our model’s performance. Finally, we de-
scribe the experimental settings when conducting the experiments.

5.1 Datasets

We evaluate MATN’s performance and compare it with multiple
contemporary multimodal human activity recognition approaches
on two public benchmark datasets, UTD-MHAD and MMAct. It is
worth mentioning that currently, these are the only two mainstream
multimodal human activity recognition datasets available.

The UTD-MHAD dataset [9] contains 27 activities performed by
eight subjects, where each subject repeated the activity four times.
After removing the corrupted sequences, the dataset contains 861
clips. For each activity, the modalities available are RGB, depth,
skeleton and inertial sensors. The Kinect camera is used to record
the RGB-D information. A wearable inertial sensor is placed on
either the subject’s wrist or leg, depending on which part is mostly
used to perform the action. The 3-axis acceleration, the 3-axis gyro-
scope and the 3-axis magnetic strength information were recorded.
The MMAct dataset [29] contains 35 daily life activities performed
by 20 subjects, where each subject repeated the activity five times.
After removing the corrupted sequences, the dataset contains 36 K
clips. The dataset consists of 7 modalities, including RGB, skeleton,
acceleration, gyroscope, orientation, Wi-Fi, and pressure. 4 surveil-
lance cameras and a smart glass were used to record the RGB data
from 5 different views. A smartphone was put into the pocket of
the subjects’ pants to record acceleration, gyroscope, orientation,
Wi-Fi and pressure data. A smartwatch was also used to record
additional acceleration data. We used RGB, skeleton, acceleration,
gyroscope, and orientation data to conduct the experiments. It is
also worth mentioning that previously, the number of activities
was mistakenly reported as 37.

5.2 Evaluation Protocol

The evaluation protocol is important for developing discriminative
human activity recognition approaches, especially to the models’
generalization ability. While the subject-dependent protocols ran-
domly split all the data into the training and testing sets, which leads
to a selection bias where the common information of each subject is
shared through the training set and the testing set. However, subject-
dependent settings are unsuitable for real-life deployment because
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the task focuses on new users in the real-world scenario. Hence, we
conduct our experiments by applying the subject-independent pro-
tocols where the data of different subjects are used in the training
and testing sets.

For the UTD-MHAD dataset, we used two subject-independent
protocols to conduct the experiments. First, we applied a 50-50
evaluation, where the first half of the subjects (1-4) were used for
training the model and the other half (5-8) were used for testing.
Also, we used a leave-one-subject-out (LOSO) protocol, where a
subject’s data was used for testing and the rest of the data was
used for training. Instead of testing on only one selected subject,
we performed a comprehensive evaluation by iteratively applying
the LOSO protocol to each subject and taking the average result to
reduce the bias. For the MMACct dataset, we followed the evaluation
protocols proposed by the authors [29], cross-subject and cross-
session. For the cross-subject setting, we used data of the first 80%
of the subjects (1 to 16) as the training set and used the rest as the
testing set. For the cross-session setting, we used data from the first
80% of the sessions for training and the rest as the testing set.

5.3 Experimental Settings

Each kind of data may contain multiple dimensions. For example,
the IMU data may contain the accelerometer data, the gyroscope
data and the magnetometer data. Each of them has three dimen-
sions: x, y and z. In this work, we treated each main category as a
single modality, e.g., the IMU data would contain 9 dimensions for
the UTD-MHAD dataset. For each modality, we divided each data
stream into segments with a fixed-length sliding window. For the
RGB and depth data, we passed the segments through ResNet50 to
generate the encodings. For the rest modalities, we directly passed
them into the network without using extra feature extraction meth-
ods. We transposed the segments to get the input features for the
spatial stream. A class token was concatenated with the spatial
and temporal segments. We added sinusoidal positional encoding
to the spatial stream. We initialized the parameters with uniform
initialization and optimized them by using Adam optimizer with a
learning rate of 0.001 for the two datasets. We applied RELU activa-
tion and dropout after each layer. We implemented the model using
PyTorch and ran the experiments on an NVIDIA Titan RTX GPU.
We used accuracy for experiments on the UTD-MHAD dataset and
F1-score for experiments on the MMACct dataset as the evaluation
metrics to measure the model’s performance as suggested by the
original authors.

6 RESULTS AND COMPARISONS

6.1 Overall Comparison

We evaluated the performance of MATN by conducting experiments
on two multimodal HAR datasets: UTD-MHAD and MMAct. The
confusion matrices are presented in Figure 3.

For the UTD-MHAD dataset, we apply both the 50-50 evaluation
protocol and the LOSO evaluation protocol, and top-1 accuracy
is used as the evaluation metric. The experimental results on the
UTD-MHAD dataset are shown in Table 1 and Table 2. We compare
our approach to the baseline approach as well as more recent multi-
modal approaches. Under the 50-50 protocol, the results show that
MATN outperforms the other multimodal approaches by achieving
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(a) 50-50 subject (UTD-MHAD)

(b) RSDI LOSO (UTD-MHAD)

Table 2: LOSO performance comparison on the UTD-MHAD
dataset. R: RGB, S: Skeleton, D: Depth, I: Inertial.

Modality Combination
Method S+I | D+I | R+S |R+S+I | R+S+D+1I
Keyless [34] - - 90.20 92.67 83.87
HAMLET [24] - =951z | 9116 90.09
Multi-GAT [25] - - 9627 | 96.75 97.56
MATN (Our method) | 98.48 | 93.19 | 90.37 97.62 97.46

Table 3: Cross-subject performance comparison on the
MMACct dataset. Acc: Acceleration, Gyo: Gyroscope, Ori: Ori-
entation.

(c) Cross-subject (MMAct) (d) Cross-session (MMAct)

Figure 3: Confusion matrices for the overall experiments on
the UTD-MHAD dataset and the MMAct dataset

Table 1: 50-50 subject performance comparison on the UTD-
MHAD dataset. S: Skeleton, D: Depth, I: Inertial.

Method Modality Combination | F1-Score (%)
SMD [23] Acc + RGB 63.89
Student [29] RGB 64.44
Multi-teachers [29] Acc + Gyo + Ori 62.67
MMD [29] Acc + Gyo + Ori + RGB 64.33
MMAD [29] Acc + Gyo + Ori + RGB 66.45
HAMLET [24] Acc + Gyo + Ori + RGB 69.35
Keyless [34] Acc + Gyo + Ori + RGB 71.83
Multi-GAT [25] Acc + Gyo + Ori + RGB 75.24
MATN (Our method) | Acc + Gyo + Ori + RGB 83.67

Method Modality Combination | Accuracy (%)
MHAD [9] I+D 79.10
Gimme Signals [37] 1+S 76.13
Gimme Signals [37] | I + S (data augmentation) 86.53
MATN (Our method) I+D 81.86
MATN (Our method) 1+S 92.72

92.72% accuracy with skeleton and inertial data. Also, MATN out-
performs the MHAD baseline with 81.86% using inertial and depth
data. For the LOSO experimental setting, MATN outperforms the
other multimodal approaches by achieving 98.48% with skeleton
and inertial data. We also evaluate MATN’s performance with iner-
tial and depth data, which achieves 93.19%. Multi-GAT performs
slightly better than our method when RGB, depth, skeleton, and
inertial data are used.

For the MMAct dataset, we apply the cross-subject and cross-
session evaluation protocol and use the F1-Score as the evaluation
metric as suggested by the original paper [29]. The experimental
results on the MMAct dataset are shown in Table 3 and Table 4.
The results suggest that MATN outperforms the other multimodal
approaches by achieving 83.67% under the cross-subject protocol
and 91.85% under the cross-session protocol. MATN improves the
results by 8.43% and 0.37% over the state-of-the-art multimodal
human activity recognition approaches, respectively, under the
cross-subject and cross-session protocol.

Many existing human activity recognition approaches aim to
achieve high performance by using only one modality, while the
multimodal approaches are not fully explored. MATN has shown
good performance on the two datasets with different modality
combinations. With the attention-based MSTT module, MATN is
able to extract the salient spatial and temporal features and achieves
improved results compared to the non-attention approaches. When

Table 4: Cross-session performance comparison on the
MMACct dataset. Acc: Acceleration, Gyo: Gyroscope, Ori: Ori-
entation.

Method Modality Combination | F1-Score (%)
MMAD [29] Acc+Gyo+Ori+RGB 74.58
MMAD(Fusion) [29] Acc+Gyo+Ori+RGB 78.82
Keyless [34] Acc+Gyo+Ori+RGB 81.11
HAMLET [24] Acc+Gyo+Ori+RGB 83.89
Multi-GAT [25] Acc+Gyo+Ori+RGB 91.48
MATN (Our method) Acc+Gyo+Ori+RGB 91.85

compared to the attention-based approaches, such as HAMLET and
Multi-GAT, MATN still achieves similar results with a simple and
general architecture. It is worth mentioning that MATN achieves
an accuracy of 98.48% by just using the skeleton and inertial data.
While this significantly improves the computational efficiency. Also,
one of the advantages of using non-RGB data is to mitigate the
concern of privacy.

The results on the MMAct dataset show that for all the methods
listed, there is a gap in performance between the cross-subject and
cross-session experimental protocols. It is reasonable that MATN
achieves better performance under the cross-session protocol. As
both the training and testing share the same set of subjects, thus
the inter-subject variation is not fully considered. However, when
new subjects are completely used in the testing set, even if MATN
outperforms the other multimodal approaches, the result is still
8.18% lower. This is in accordance with our discussion about the
evaluation protocol above. In the real-world scenario, the human
activity recognition model will be deployed to serve new users
instead of the experiment participants only. If the cross-session
experimental protocol was used, then it can be inappropriate and



misleading, and the model would perform poorly after deployment.
Hence, the future focus should be on developing robust models that
can still perform well under the subject-independent scenario.

6.2 Contribution of Modalities

Multimodal human activity recognition approaches aim to resolve
the problem by using data of different modalities, where the same
phenomenon and complementary information are beneficial to
produce more robust results. In this part, we perform further ex-
periments to examine the contributions of different modalities to
the prediction performance. The experiments are conducted on
the UTD-MHAD dataset and the MMAct dataset, under the LOSO
protocol and cross-subject protocol, where the RGB, depth, skeleton
and inertial data are used. The results show that MATN is able to
capture the common salient features as well as the complementary
information, thus achieving better performance.

When MATN generates the prediction, except for the aggregated
results, we also record the prediction of each agent representing
a single modality. The overall performance and modality-specific
performance are then evaluated across each activity class. The re-
sults in Figure 4 and Figure 5 show that, in general, the inertial
stream and skeleton stream outperforms both the RGB stream and
depth stream. One possible reason may be that it is easier to ex-
tract the salient features from the inertial data and skeleton data,
as they have fewer dimensions and each dimension records the
representative information of human activities. Also, as the RGB
data and depth data are two-dimensional vectors over time, they
may contain more uninformative information and the encoding
step may further intensify the information loss. Further approaches
are worth exploring to directly make use of the RGB and depth
data.

Also, while the performance of each modality stream may vary,
after collaboratively aggregating the outputs of the modalities, the
overall performance is improved and becomes more robust. For
example, in Figure 4, while the skeleton stream performs better than
the other three modalities for class 1 (swipe left), the inertial stream
outperforms the other modalities for class 3 (wave). However, after
aggregating the information of all the modality streams, the overall
prediction outperforms each modality stream. This shows that each
modality stream may contain some modality-specific information
that is not included in the other modality streams. As a result, each
modality contributes some salient information that helps to produce
better and more robust performance.

Table 5: Performance comparison of different self-attention
architectures on the UTD-MHAD dataset

Experimental Setting Accuracy (%)
Spatial Attention Only 77.01
Temporal Attention Only 86.08
Stacked Spatial-temporal Attention 83.46
Parallel Spatial-temporal Attention (MSTN) 92.72

6.3 Spatial-temporal attention architectures

The salient information in the spatial and temporal features plays
an important role in human activity recognition. In this section, we
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conduct experiments to further investigate different architectures’
ability to extract salient spatial and temporal features. As shown
in the experiments, the proposed MSTN architecture can achieve a
more effective and efficient performance.

We compare our MSTN module with three different self-attention
architectures, spatial attention, temporal attention and stacked
spatial-temporal attention in Table 5. For the spatial attention and
temporal attention architectures, each block consists of either a
spatial attention module or a temporal attention module, followed
by an MLP layer. For the stacked spatial-temporal attention archi-
tecture, the input features are first passed through the spatial block,
followed by the temporal block. We conducted the experiments on
the UTD-MHAD dataset under the 50-50 subject protocol. The ex-
perimental results are shown in Table 6, demonstrating that MATN,
where spatial attention and temporal attention are separately ap-
plied in a parallel way, outperforms the other three architectures.
Also, while MATN achieves higher accuracy, by separating the
spatial and temporal attention architecture, it could better support
parallel computing, which improves efficiency.

Table 6: Performance comparison of position encoding on
the UTD-MHAD dataset

Experimental Setting Accuracy (%)
No Position Encoding 89.11
Position Encoding on Temporal Stream 86.12
Position Encoding on Spatial Stream 92.72
Position Encoding on Both Streams 88.35

6.4 Impact of Position Encoding

Vaswani et al. [46] introduced position encoding to mitigate the
problem that transformers cannot make use of the order infor-
mation of the input sequence. As our approach involves both the
spatial and temporal streams, to investigate the influence of po-
sition encoding on MATN, we conduct experiments with various
experimental settings on the UTD-MHAD dataset under the 50-50
subject evaluation protocol, where the inertial and skeleton data
are used. The results are shown in Table 6, indicating that adding
spatial position encoding can benefit MATN the most.

A common operation is to add position encoding on the temporal
sequence, which is considered to be helpful for improving perfor-
mance. However, this does not seem to improve the accuracy but
negatively biases the prediction. This can be because dividing the
data into segments would result in the loss of temporal information;
thus, the position encoding cannot contribute much. Moreover, the
results show that adding position encoding to the spatial stream
can benefit the model a lot, which seems to be uncommon. We
believe that as some dimensions are related, for example, each body
joint in the skeleton data and each type of inertial data have three
dimensions, there are strong connections between each other. As
a result, the order information is kept and thus model can extract
the salient spatial features and produce better results.
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Table 7: Ablation Study on the representation Learning Layer
on the UTD-MHAD dataset

Experimental Setting | Accuracy (%) | Time per Epoch (s)
1-D CNN 91.48 1.761
2-Layer LSTM 75.28 1.771
MATN (Ours) 92.72 1.706

6.5 Effect and Efficiency of the Representation
Learning Layer

We conduct an ablation study to evaluate the effectiveness and effi-
ciency of the unified representation learning layer via comparing
its performance with two other deep learning-based encoding ap-
proaches: 1-D CNN and LSTM. We use UTD-MHAD dataset and the
50-50 subject evaluation protocol, utilizing the inertial and skeleton
data. Results in Table 7 show classification accuracy (Top-1 accu-
racy) for each variation and the time cost (second) per epoch during
the training step.

We compare the proposed module with 1-D CNN and LSTM. 1-D
CNN is a well-used approach to perform convolution and feature
extraction on time series data. LSTM is suitable for processing data
sequences and extracting temporal information. We use the same
input data, with the only difference in experimental setting being
the feature encoding method. Our experimental results show that
MATN outperforms the 1-D CNN module and the LSTM module
despite the simplicity of the unified representation learning layer.
The representation learning layer also takes less time than 1-D CNN
and LSTM. MATN’s representation learning layer is effective and
efficient when encoding data to a unified representation. This aligns
with our motive that the design of a representation learning layer
is to preserve spatial and temporal information without complex
encoder architecture or extra data engineering.

7 CONCLUSION

Our main objective is to develop an effective and robust novel
multimodal human activity recognition method which can be gen-
eralized to different varieties of modalities as well as new subjects.
We present MATN, a multi-agent attention-based learning approach
for multimodal human activity recognition. MATN first encodes
the multimodal data through the unified representation learning
layer. Then the MSTT module extracts the salient spatial-temporal
features of each modality and generates the high-level representa-
tion of the input data. Finally, the multi-agent collaboration module
aggregates the outputs of each agent and learns to select the in-
formative modalities. We conduct experiments on two public mul-
timodal datasets, UTD-MHAD and MMAct, to evaluate MATN’s
performance. The experimental results show that the model can
extracting the salient spatial-temporal features with multimodal
data streams, validating its generalization ability. We plan to ad-
vance MATN so that it can better make use of the visual data and
perform well in a live human-robot interaction environment.
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