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Abstract. Multivariate time series inherently involve missing values for
various reasons, such as incomplete data entry, equipment malfunctions,
and package loss in data transmission. Filling missing values is important
for ensuring the performance of subsequent analysis tasks. Most existing
methods for missing value imputation neglect inter-variable relations in
time series. Although graph-based methods can capture such relations,
the design of graph structures commonly requires domain knowledge.
In this paper, we propose an adaptive graph recurrent network (AGRN)
that combines graph and recurrent neural networks for multivariate time
series imputation. Our model can learn variable- and time-specific de-
pendencies effectively without extra information such as domain knowl-
edge. Our extensive experiments on real-world datasets demonstrate our
model’s superior performance to state-of-the-art methods.

Keywords: Graph neural network · Multivariate time series imputation
· Spatio-temporal graph learning

1 Introduction

Multivariate time series data is ubiquitous and has many applications in dif-
ferent fields, such as financial market [14], traffic flow [11] and industrial sys-
tems [25]. Due to some inevitable reasons, missing values likely appear in time
series datasets. Taking the industrial environment as an example, accidents such
as connection loss and hardware damage make missing values commonly seen in
the collected data [20]. A direct and well-known method is to delete observations
with missing values and just analyze the remaining part of the data. However, in
some scenarios, the proportion of missing observations exceeds 80% [9]. Simply
dropping missing values could cause serious information loss, which will harm
the downstream data analysis task, such as classification and forecasting [7].
Different from time series forecasting, which aims to predict the future time
steps based on previously recorded data, the position of the missing values is
unpredictable, requiring the imputation model to harness known time steps to
fill missing values (illustrated in Figure 1).

Existing research has employed statistics [22], machine learning- [2], and
deep learning-based [16] methods to solve the imputation problem. Yet, they
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Fig. 1. An illustration of the difference between time series imputation and forecasting.

still face significant challenges in capturing dynamic spatio-temporal dependen-
cies. Specifically, statistic and machine learning methods require time series data
to be high-structured and follow their model assumptions. Deep learning-based
methods [3, 4] simply apply Recurrent Neural Networks (RNNs) without con-
sidering variable dependencies for imputation tasks. Graph-based methods [6,
12] can capture spatial relations at the variable level, but they generally use
pre-defined graph structures and thus cannot generalize well to more datasets.

In this paper, we propose an adaptive graph recurrent network (AGRN) for
multivariate time series imputation. Instead of relying on pre-defined graphs [6,
12], our model can learn and refine variables relations only from data and use
the learned graph to obtain variable- and time-specific dependencies, support-
ing filling missing values. Our contributions are summarized as follows: (1) We
propose an adaptive graph recurrent network that combines graph convolution
network and recurrent neural network for multivariate time series imputation;
(2) Our graph learning module can automatically learn inter-variable relations
without requiring domain knowledge. It improves the model’s generality by dy-
namically adjusting graph edges during training; (3) Our extensive experiments
on real-world datasets (air quality and traffic) show our model outperforms state-
of-the-art models in multivariate time series imputation.

2 Related Work

Missing values have been a standing challenge in time series analysis, attracting
lots of effort to solving this problem [7, 21]. Traditional approaches to time series
imputation include statistical and machine learning-based methods. Autoregres-
sive methods, such as Autoregressive Moving Average (ARMA) and Autoregres-
sive Integrated Moving Average (ARIMA), can automatically fit their models
to known data and generally obtain better results [22]. More advanced methods
include Multivariate Imputation by Chained Equations (MICE) [1] and Varia-
tional Autoencoder (VAE)-based methods. The former uses chained equations
to iteratively estimate each missing variable. GP-VAE [8], an example of the lat-
ter, conducts missing value imputation by mapping time series data to a latent
space. Typical machine learning methods for time series imputation include k-
nearest neighbors (kNN) [2], Expectation Maximization (EM) [19], and Matrix
Factorization (MF) [5]. Such methods generally make strong assumptions (e.g.,
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low-rankness and hypothetical distribution) about time series data, which limit
their generalization ability.

Deep learning methods have been introduced to multivariate time series im-
putation, given their proven success in multiple applications, such as computer
vision, speech processing, and natural language processing. Most existing meth-
ods are based on RNNs, Generative Adversarial Networks (GANs), and their
variants. For example, GRU-D [4] applies a decay controller to the hidden states
of Gated Recurrent Units (GRUs) for imputation. BRITS [3] employs a bidirec-
tional RNN-based model to predict multiple correlated missing values in time
series. In particular, adversarial network-based methods are generally good at
reconstructing sequential data [15, 16, 18, 24]. SSGAN [18] uses a semi-supervised
classifier and the temporal reminder matrix to learn data distribution to impute
unlabeled time series data. While bearing their own advantages, those methods
commonly lack the capability to take into account both spatio-temporal depen-
dencies when filling missing values. Graph Neural Networks (GNNs) have re-
cently been applied to multivariate time series imputation to overcome the above
limitations [6, 12]. As an example, STGNN-DAE [12] leverages the power grid
topology and time series data obtained from each meter in the grid to account
for both spatial and temporal correlations. Another recent work is GRIN [6],
which designs a spatial-temporal encoder to combine variable relations and time
dependencies. Despite promising, all the above GNN-based methods require do-
main knowledge and explicit variable relations to generate the graph structure,
thus introducing extra inductive bias and making their models less transferable.
All the above-unresolved challenges motivate this paper.

3 Methodology

A multivariate time series imputation task takes as the input time series data
X ∈ RN×T , where N , T denote the number of variables and the number of
time steps, respectively. A mask matrix M ∈ {0, 1}N×T

indicates the locations
of missing values in the time series, where mn,t = 0 indicates xn,t is missing;

otherwise, mn,t = 1. The task’s output Ŷ ∈ RN×T bears the same dimensions as
the input, with all the missing values filled up. As such, the task of multivariate
time series imputation aims to determine the closest values to the underlying
ground truth to fill the missing values in X.

Our proposed framework (Figure 2) comprises four components: graph learn-
ing, graph convolution, spatio-temporal fusion, and prediction. It works as fol-
lows. First, the graph learning module uses the input signals to generate a graph
representing variables relations. Then, the graph convolution module generates
aggregated node representations with neighbor information by combining the
raw input and the graph’s adjacency matrix. Following that, the spatio-temporal
fusion module employs Gated Recurrent Units (GRUs) for temporal information
passing. Lastly, the prediction module fuses the outputs of the forward and back-
ward branches to finally accomplish the missing value imputation.
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Fig. 2. The architecture of our proposed model.

3.1 Graph Learning Module

Graph Structure We denote the relations among all variables via a graph
G = (V, E), where V and E are the set of nodes and edges respectively. For an edge
eij ∈ E , it could be represented as an ordered tuple (vi, vj) which means the edge
from node vi to vj . The mathematics representation of the connectivity among
the whole graph is the adjacency matrix A ∈ RN×N , where N is the number of
nodes, which equals the number of variables in the datasets. If (vi, vj) ∈ E then
aij ̸= 0, and if (vi, vj) /∈ E then aij = 0. From the graph perspective, we describe
the relations among nodes using the adjacency matrix A. And the matrix will
be learned and iterated through training.

Graph Learning The graph learning module uses input signals to generate an
adjacency matrix to extract relations between variables. Unlike previous work [6]
using pre-defined graphs to define the variable relationship with the physical
distance of sensors, our module only relies on input data and does not require
domain knowledge. As a result, such a self-learning graph will become a more
common paradigm in graph neural network applications. The learned graph is
generated in the following steps.

Φ1 = tanh (W1E1)

Φ2 = tanh (W2E2)

A = ReLU
(
tanh

(
Φ1Φ

T
2 −Φ2Φ

T
1

))
A = topk (A)

(1)

where E1 and E2 represent two different variable embeddings, W1 and W2

are corresponding learnable model parameters, and A is the adjacency matrix.
Two separate embeddings make the A asymmetrical, which can introduce more
information. The topk(·) operation improves the sparsity of the adjacency matrix
to help the graph convolution module focus on k nearest neighbors and reduce
the calculation complexity in the following modules.
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3.2 Graph Convolution Module

Given the input data with the corresponding mask matrix and the variable rela-
tionship graph from the graph learning module, our model merges the inputs xt

with their neighbors’ information to generate an aggregated node representation
st at time t. Specifically, the graph convolution module is constructed with D
layers, which is formulated as

s
(0)
t = F (xt∥mt∥ht−1)

s
(d)
t = As

(d−1)
t

st = F
(
s
(0)
t ∥s(1)t ∥ · · · ∥s(D)

t

) (2)

where xt and mt are input sequences and mask matrix at time t, ht−1 is the

hidden state at time t−1, A is the graph adjacency matrix, and s
(d)
t is the aggre-

gated node representation in layer d at time t. ∥ is the concatenation operation.
F(·) is a feature fusion function implemented by a 1×1 convolution layer in our
experiments.

3.3 Spatio-Temporal Fusion Module

The spatio-temporal fusion module receives the hidden state ht−1 from the pre-
vious time step and its aggregated nodes representation st at the current time
step from the graph convolution module. Combining two information flows, this
module generates current hidden state ht at time t. Following previous work [13],
we apply Gated Recurrent Unit (GRU) to control the proportion of information
from previous time steps. The process of updating hidden states can be formu-
lated as

rt = σ (Wr(st∥mt∥ht−1) + br)

ut = σ (Wu(st∥mt∥ht−1) + bu)

ct = tanh (Wc(st∥mt∥rt ⊙ ht−1) + bc)

ht = ct ⊙ ut + ht−1 ⊙ (1− ut)

(3)

where rt and ut are reset and update gates, ⊙ is element-wise multiplication.
σ(·) and tanh(·) are sigmoid and hyperbolic tangent activation functions. Thus,
the hidden state ht at time t can be updated and used for calculation at the
next time step. After finishing all computation of T time steps, we fuse st and
ht to generate the final imputation of a branch.

3.4 Prediction Module

We introduce a bidirectional structure to combine forward and backward infor-
mation. Compared to the unidirectional model, adding the backward branch can
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utilize future information, making the imputed values more accurate. The final
imputation Ŷ is obtained by combining the outputs from forward and backward
branches, which is formulated as

ŷt = F (st∥ht−1)

Ŷ = F
(
ReLU

(
Ŷf∥Ŷb∥M

)) (4)

where ŷt is the reconstructed vector for xt at time t, Ŷf , Ŷb ∈ RN×T are
imputed sequences from forward and backward branches separately, M is the
mask matrix indicating the missing values location, and Ŷ ∈ RN×T is the final
imputation result. F(·) is the feature fusion function, consistent with the Eq. (2),
implemented by a 1× 1 convolution layer in our experiment.

We define the loss for multivariate time series imputation as follows:

L(Y, Ŷ,M) =

N∑
n=1

T∑
t=1

⟨mn,t, l(yn,t, ŷn,t)⟩
⟨mn,t,mn,t⟩

, (5)

where M and mn,t are logical binary complement of M and mn,t; Ŷ and ŷn,t are
reconstructed data of missing values in X; Y and yn,t are ground truth values
at missing points in X. ⟨ · , · ⟩ is the stand dot product. l( · , · ) is an element-wise
error function, implemented by Mean Absolute Error (MAE) in our experiment.

4 Experiments

4.1 Datasets

We conducted experiments on four public time series datasets, which have vari-
ous sizes and are representative of different application domains. The air quality
datasets (AQI and AQI-36) [23, 26] are commonly used as a benchmark for time
series imputation, which has high rates of missing values (about 26% in AQI
and 13% in AQI-36). The traffic datasets (PEMS-BAY and METR-LA) [13] are
originally used for time series forecasting tasks. To make them suitable for im-
putation tasks, we randomly masked 25% of the values in the traffic datasets to
simulate missing values.

4.2 Baselines and Evaluation

We selected representative methods from three categories as baselines for our
experiments: statistical methods (Mean, VAR), machine learning-based methods
(kNN, MICE), and deep learning-based methods (GAIN, BRITS, and GRIN).

– Mean: Replace missing values with variable-level average.
– kNN [10]: Use k-nearest neighbor to impute missing values by averaging

values of the k = 10 neighboring variables.
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– MICE [1]: Multiple Imputation by Chained Equations setting a maximum
number of iterations to 100 and the number of nearest features to 10.

– VAR [17]: Vector Autoregressive model with a one-step-ahead predictor.
– GAIN [24]: Generative Adversarial Imputation Nets with bidirectional re-

current encoder and decoder.
– BRITS [3]: Bidirectional Recurrent Imputation for Time Series, learning

missing values in a recurrent dynamical system based on observed data.
– GRIN [6]: Graph Recurrent Imputation Network, using pre-defined graph

and bidirectional 2-stage imputation.

To ensure a fair comparison, we used disjoint sequences to train and evaluate
all the models, i.e., we trained the models with some sequences while testing them
using other sequences for each dataset. For air quality datasets, we followed the
prior work [23] and used 3rd, 6th, 9th and 12th months’ data for testing and
the rest for training. For traffic datasets, we followed [6] and split the data into
three parts chronologically, using 70% for training, 10% for validation, and 20%
for testing. We evaluate the models with three most commonly used metrics
for time series forecasting and imputation tasks: Mean Absolute Error (MAE),
Mean Square Error (MSE), and Mean Relative Error (MRE).

4.3 Results

Comparison with Baselines Our experimental comparison results (Table 1)
show that our model outperforms all the compared models in all three metrics
on the four datasets. In particular, for the AQI-36 dataset, our model improved
the state-of-the-art method, GRIN, by a large margin, achieving a 30% decrease
in MAE. In comparison, our model only achieved a slight improvement over
the best-performing baseline, GRIN, on the traffic datasets. A possible reason
is that the traffic datasets contain significantly more sensors that are geograph-
ically close to each other, making the sequences strongly correlated. As such,
GRIN uses the geographic distances among sensors as domain knowledge to cal-
culate the adjacency matrix to boost its performance. However, GRIN’s excellent
performance heavily relies on such prior knowledge and thus may not transfer
to other datasets that have no such strong geospatial correlations.

Parameter Study We conducted parameter studies with respect to the number
of neighbors k in Eq. (1) and the number of convolution layers D in Eq. (2).
We selectively show some representative results (Figure 3), due to the limited
space. The results on other datasets lead to similar conclusions. The parameter k
controls the number of neighbors for each node, thus determining the density of
the adjacency matrix in the graph learning module. Our experimental results on
the parameter k (Figure 3a) shows the MAE remains relatively stable when k ∈
{2, 3, · · · , 6} but increases drastically when k goes under or beyond this range. It
implies that an excessively small value of k causes the loss of important references
from close neighbors for the imputation task, whereas a larger value of k (≥ 7)
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Table 1. Performance comparisons on four real-world datasets. The best results are
in boldface. The second-best results are underlined.

Datasets
Air Quality Traffic

AQI-36 AQI PEMS-BAY METR-LA

Methods MAE MSE MRE(%) MAE MSE MRE(%) MAE MSE MRE(%) MAE MSE MRE(%)

Mean 53.48 4578.08 76.77 39.60 3231.04 59.25 5.42 86.59 8.67 7.56 142.22 13.10
kNN 30.21 2892.31 43.36 34.10 3471.14 51.02 4.30 49.80 6.88 7.88 129.29 13.65
MICE 30.37 2594.06 43.59 26.98 1930.92 40.37 3.09 31.43 4.95 4.42 55.07 7.65
VAR 15.64 833.46 22.02 22.95 1402.84 33.99 1.30 6.52 2.07 2.69 21.10 4.66
GAIN 15.37 641.92 21.63 21.78 1274.93 32.26 1.88 10.37 3.01 2.83 20.03 4.91
BRITS 14.50 662.36 20.41 20.21 1157.89 29.94 1.47 7.94 2.36 2.34 16.46 4.05
GRIN 12.08 523.14 17.00 14.73 775.91 21.82 0.67 1.56 1.08 1.91 10.41 3.30

AGRN 11.05 343.93 15.86 14.08 686.52 21.07 0.66 1.44 1.07 1.90 10.10 3.28

(a) (b) (c)

Fig. 3. Impact of parameters: (a) MAE under varying numbers of neighbors k on traffic
datasets; (b) MAE and (c) MRE under varying numbers of convolution layers D on
AQI dataset.

causes the model to consider irrelevant and distant neighbors, introducing extra
noises and reducing the model’s robustness.

The parameter D represents the number of layers used in the graph convo-
lution module to aggregate representations of each node and its neighbors. Our
experimental results on the parameter D (Figure 3b and Figure 3c) show our
model’s MAE and MRE consistently decrease as D increases on the AQI dataset.
It aligns with our intuition that too many layers will cause over-smoothing and
gradient vanishing issues with the graph convolution module, limiting the effec-
tiveness of feature extraction in the subsequent spatio-temporal fusion module.
We admit the above conclusion may not generalize to other datasets, as the
optimal numbers of layers are dependent on the specific applications.

Ablation Study To test the impact of different modules on our model’s perfor-
mance reliably, we selected the AQI dataset, with the largest number of sensors
among our experimental datasets, to conduct the ablation study. We compare
our model with two variants of it: a) w/o graph: we remove the graph learn-
ing module and use the input xt to replace the aggregated representation st in
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Table 2. Ablation study on the AQI dataset.

AQI MAE MSE MRE(%)

AGRN 14.08 686.53 21.07

w/o graph 19.70 1131.56 29.48
w/o bidirection 22.77 1365.25 34.06

Eq. (3); b) w/o bidirection: we remove the backward branch from the overall ar-

chitecture and use the output of the forward branch Ŷf as the final imputation.
Our results (Table 2) show both modules contribute to the model’s performance
significantly, indicated by a notable increase in three metrics after removing ei-
ther of them. Among the two modules, the overall bidirectional structural design
plays a greater part in securing our model’s superior performance, evidenced by
a more drastic performance drop resulting from removing the backward branch.

5 Conclusion

In this paper, we propose a novel adaptive graph recurrent network (AGRN)
to explore latent spatio-temporal dependencies for multivariate time series im-
putation. Instead of relying on pre-defined graphs, our graph learning module
can generate an inter-variable graph adaptive to represent spatial dependencies,
which improves our model’s generality. Our extensive experiments demonstrate
our model’s superior performance to state-of-the-art baselines on several real-
world datasets.
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