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ABSTRACT

Neural Multi-task Learning has been widely used in various learn-
ing tasks. Existing approaches have limitations in (i) generalizing
and migrating the shared features of multiple tasks across differ-
ent domains; and (ii) capturing robust task dependencies to avoid
negative transfer. In this work, we present a domain-free neural
multi-task learning framework, i.e., Hierarchical Task-aware Multi-
head attention network (HTMN), to bridge the above gaps. Our
model consists of two building blocks: a Multi-level Task-aware
Expert Neural Network for learning global and local features adap-
tively both within and across tasks, and a Hierarchical Multi-head
Attention Network for profiling tasks with expressive hybrid local
features. Extensive experiments on real datasets show that HTMN
consistently outperforms the compared methods on a variety of
prediction tasks.

CCS CONCEPTS

« Computing methodologies — Multi-task learning; Neural
networks; « Human-centered computing — Social recommenda-
tion.
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1 INTRODUCTION

Multi-task Learning is an effective technique for discovering use-
ful patterns from large data [16]. It facilitates intelligent services,
such as optimizing user engagement (e.g. watching movies) and
promoting satisfaction (e.g. movie rating). Early multi-task learning
models quantifies task differences based on the assumption that
each task aligns with a specific data generation process. Such ap-
proaches have difficulty in measuring task correlations that cannot
be described accurately, thus leading to poor generalization. Caru-
ana et al. [2] propose a shared-bottom model, where some bottom
hidden layers are shared across tasks. This model can capture task
correlations through the shared bottom layers and obtain accept-
able predictions with a small number of parameters. Although it
cannot well handle negative transfer caused by task conflicts under
weak correlations among tasks, it demonstrates the possibility of
predicting multiple tasks in one single model via parameter sharing.
To capture task correlations efficiently, Ma et al. [17] propose a
Multi-gate mixture-of-expert (MMOoE) structure, which describes
task correlations and learns task-specific functions based on shared
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representations. MMoE avoids the significant increase in the num-
ber of parameters but focuses on capturing loose or even conflicting
task, leading to high dependence on the dataset. For this reason,
MMOoE has unstable performance when applied to different datasets,
resulting in poor migrability and generalizability. Meanwhile, tasks
usually have local features, i.e., features that can be changed inde-
pendently when global features are constant. Traditional neural
MTL models usually neglect the commonality and characteristics
of tasks, making it difficult to obtain a stable and unified multi-task
model.

To address the challenges, we propose a Hierarchical Task-aware
Multi-head attention Network (HTMN) based on MoE to capture
local features and global features of tasks, aiming to avoids a sig-
nificant increase in the number of parameters while mitigating
dataset dependency. We first separate the feature extraction expert
network into a shared global feature extraction and a task-specific
local feature extraction. Then, we use hierarchical multi-head at-
tention network to extract and fuse local feature of each task at
multiple levels to obtain task representation. Finally, deeper hybrid
representation of each task is input into a specific task tower for
prediction. Notably, our network differs from MMOoE in explicitly
classifying experts to obtain commonality and characteristics of
tasks.

In summary, our contributions in this paper are as follows:

e we propose a unified multi-task learning model which sep-
arates global features and local features, dynamically cap-
tures semantic information of the task, and characterizes
deep interactive features at different levels of tasks to im-
prove prediction performance.

e We propose hierarchical multi-head attention mechanism
for feature extraction at both unified level and task-specific
level to capture the deeper semantic information from dif-
ferent scales. This contributes to a hybrid representation
with global features based on capturing dependent and
independent local features of tasks respectively.

e We evaluate our model in four task groups on two real
datasets: census income data and MovieLens data. Our ex-
perimental results show that the model outperforms all
compared methods with better robustness and generaliza-
tion ability, indicated by better ROC-AUC, MSE and F1 score
across different task groups. Besides, our model converge
quickly while maintaining state-of-the-art results with a
smaller amount of data.



2 RELATED WORK

Multi-task learning has been widely used in an increasing number
of fields, such as Computer Vision [10, 15, 24], Natural Language
Processing [24, 26], Speech Recognition [11, 21], and Recommen-
dation system [20, 27]. Multi-task learning is a training paradigm
where machine learning models are trained with data from multi-
ple tasks simultaneously, using shared representations to learn the
common ideas between a collection of related tasks. The sharing of
parameters can mitigate overfitting while reducing the computation
amount with large-scale data. Multitask learning includes cross-
talk multitask learning and shared-trunk multitask learning [5],
according to the way in which parameters are shared. Traditionally,
multi-task models extract common features between different tasks
through hard parameter sharing, which enhances the efficiency
and model performance on each task. However, it may suffer from
optimization conflicts due to task differences. Designing indepen-
dent perception networks for each task can partially resolve the
issue; this is done by designing the base unit structure and different
connections rather than sharing all bottom parameters.

Cross-stitch network [18] linearly combines the output of each
layer of each task as the input of the next layer. Sluice network [25]
generalizes this concept by dividing the task independent network
into shared and task-specific subspaces and only combining them
linearly at the next layer of the network. The use of both shared and
task-specific subspaces allows each layer of the network to choose
the aspects of concern. Instead of manually connecting layers for
different tasks, Neural Discriminative dimension Reduction(NDDR-
CNN) [6] passes the output of each layer through 1*1 convolutional
layers to achieve nonlinear feature fusion. In summary, in all the
above approaches, all representations in cross-task multi-task learn-
ing are fused using the same static weights. Moreover, the large
number of task-specific parameters make the models difficult to
train and transform.

Shared-Trunk multi-task learning, especially, multi-gate mixture-
of-experts model (MMoE) [17], the most well-known shared-Trunk
multi-task learning model, is proposed to overcome the limita-
tion. The shared multi-gate mixture-of-expert structure can capture
shared task representation—by passing all task data through the
same structure, which avoids parameter burst. The Mixture of Ex-
pert (MoE) layer aims to implement conditional computation. With
gating network calculating linear weights, each task tower get the
linear combination of MoE as task-specific representation. Based on
MMOoE, Z. Zhao et.al. [32] introduce a large-scale multi-target rank-
ing system for recommending videos. In combination with the wide
& deep framework [3], the work uses MMOoE for the deep part and
an position bias module for the wide part to correct web location
bias. To analyze the users’ behavior sequences efficiently, multitask
Mixture of Sequential Experts (MoSE) [20] designs a shared bottom
LSTM module and a sequential expert layer, where each expert
models different aspects for each task. The MoE layer also incorpo-
rates LSTM instead of fully connected networks to better handle
sequence data. Progressive Layered Extraction (PLE) model [27]
further refines the modules by deepening the expert network and
dividing it into shared expert and task-specific expert.
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Figure 1: Our proposed Model.

Overall, existing models extract task interactions implicitly and
statically while ignoring the dynamic exploitation of task com-
monalities and differences. In this regards, we design a Multi-level
task-aware expert network that combines cross-talk and single-
trunk multi-task learning to extracts deep global and local features
of tasks explicitly in a hierarchical manner. We introduce a hier-
archical multi-head attention network to better capture the local
features of the task at different levels. The hybrid representation
formed by the global features and local features will be used for
downstream prediction tasks.

3 OVERVIEW

Figure 1 shows our proposed multi-tasking learning model. Our
model aims to derive mixed representations of tasks based on both
general and task-specific features extracted from multiple sources
of heterogeneous data. Our model consists of four parts: Embedding
layer, Multi-level task-aware expert network, Hierarchical multi-
head attention network and Task tower.

First, we use a fully connected shared-bottom layer to embed the
input in a low dimension. Then, the Multi-level task-aware expert
network uses a global feature expert network and a local feature
expert network, each consisting of different numbers of experts
with gating networks, to learn higher-order global and local feature
representations, respectively. Global experts (blue rectangles in
Figure 1) and local experts (e.g, purple and green rectangles) extract
features separately. The shared expert gating network (blue circles)
takes features from all experts while local gating networks (purple
circles and green circles) only take features form global experts
and local features for each task. The same network structures and
connections are applied to multiple layers, which stack into the
Multi-level task-aware expert network.
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The hierarchical multi-head attention network has two levels of
attention networks at the general level and task-specific level. The
general level uses a multi-head self-attention network to obtain
independent local features from different aspects. The head with the
highest attention score is extracted from the structure and used in
task-specific level attention network to further explore the influence
of correlative local features on the prediction results. Finally, the
hybrid representation of tasks is obtained and fed into task tower.

Overall, our model differs from most existing multi-task lear-
ing models in modularizing the network structure of each task in
the Multi-level task-aware expert network, which can be easily
extended to handle more tasks.

3.1 Embedding layer and task tower

Traditional multi-task models apply a hard parameter sharing mech-
anism based on a multi-layer shared-bottom structure, which sabo-
tage the training efficiency under weak task correlation. However,
the number of parameters will surge if MoE is connected after the
input layer directly.

We adopt the shared-bottom structure [23] and add experts net-
work on top of it to simplify the model and avoid exploded training
time. The one-layer shared-bottom layer has lower dimensionality
than multi-layer; it can better learn modularized information and
model multi-aspect features when compared to being used directly
on top of input layer.

Since real-world scenarios may involve various prediction goals,
we design a unified model to support different types of prediction
tasks. We design the task tower by referring to two papers [27,
32]. In each task branch, the task tower applies a two-layer fully-
connected network and uses ReLU and softmax as activation func-
tions to make the network robust to noisy data.

3.2 Multi-level Task-aware Expert Network

We divide the network into global feature expert network and lo-
cal feature expert network to acquire knowledge about different
aspects of tasks, in light of that most existing models rely on the
correlation of tasks [17] without being optimized for feature extrac-
tion. Separating the global and local features enables each feature
network to focus on specific knowledge, thus avoiding negative
transfer [28] caused by the correlation between tasks.

3.2.1 Global and Local Feature Extraction. The global features are
extracted by multiple experts, each represented by e; (i = 1,2, ..., m).
The feature selection matrix f9(x) for the features is as follows:

fI(x) = [e(Tg’I), e(Tg,m), . e(Tll’nl), e(Tl,-,n,-)’ e(le!nw] (1)
where m and n; are the numbers of global experts and local experts
for task /;(1 < i < |K]), respectively.

Gating networks are added to expert feature matrix to differenti-
ate weights of experts for different tasks. A gate’s output represents
the probability of selecting the experts. we use a linear transfor-
mation and softmax layer in the gating network to obtain deeper
semantic representation of global features. The final output of the
global gate is:

09 (x) = softmax(wIx) 2)

¥ (x) = 09 (x)f9(x) ®)
where f9(x) is the global features extracted by different experts
and wY is the linear parameter of gating network.
Alocal feature expert network has a similar structure but it only
uses its local features and shared global features. The representa-
tions of task i is:

1 _1.T T T T
FHE) = ey Clgmy €ty = Cltpny] )
and the final output of a local gate is:
Wl (x) = softmax(wlix) (5)
¥ (x) = 0" (0) " (x) (©)

3.2.2  Multi-level Task-aware Expert Network. Instead of feeding
the extracted features directly to the next layer, we use overlaying
expert networks to generate deeper semantics by connecting vari-
ous kinds of features before gating networks to form a multi-level
task-aware expert. As shown in the Figure 1, multi-level task-aware
expert network enables the gating networks to exchange high-level
information between their outputs, fuse all the knowledge of expert
and achieve another level of separation. The design of parameter
formulation, model structure and gating network in multi-level
task-aware expert networks is a superposition of global expert
network and local expert network. And we use different stacking
methods for different kinds of features.

The output of all local gate are fused with high-level global
features to form higher-order global interaction features of tasks
as follows:

Y9(x) = W9(y9(x))G*! (x) (7)

Go (x) = [y (x), y" (x), y2 (x), .o y* ()] T ®)

High-level local features only interact with the output of the
global features:

Y (x) = Wl (5! (x)) G (x) ©)
G (x) = [y (x), " ()17 (10)

3.3 Hierarchical Multi-head Attention Network

We implement a hierarchical multi-head attention network (shown
in Figure 2) to capture local correlation between tasks, in light
of success of attention mechanisms in Image Processing [30, 33],
Speech Recognition [14, 19], Dialog Systems [9, 31] and Semantic
Processing [13, 29].

Given task i(1 < i < |K]|) and its local features Y!(x), we first
calculate the weight of each feature wp (1 < h < |H|) under the self-
attention mechanism. The Scaled dot production attention (SDPA)
are defined as follows:

\/_

where Q, K, V represent query, key, and value in the attention net-
work, respectively, d; donates the feature dimension of local feature
of each task i, |[H| is the number of heads in multi-head attention
block. Then, we calculate the linear transformation of local features
Y!(x) and feed them into SDPA as Q, K, V:

wp, = SDPA(YY ()W, Yl (x)WK, Yh (x)ywV) (12)

oK™
wp, = SDPA(Q,K,V) = softmax(T)V(l <h<|H|) (1)
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Figure 2: Hierarchical Attention Mechanism.

To capture local features from different aspects of tasks, we
introduce the multi-head attention network into our model. The
multi-head repeats computation in parallel and then combines re-
sults to produce a final attention score. The multi-head attention is
calculated as follows:

MHj, = concat (w1, 0, ..., @) )W° 13
h |H|

where o = SDPA(Y! (x)W2, Vi () WK, Yi ()W), and W°,. W2,
Wé( R W}}/ are learnable parameters. To avoid gradient from vanish-
ing or explosion due to excessive depth of network layers, we apply
the residual network after multi-head self-attention network. Fi-
nally, the local representation p! is calculated from all previous
task features based on the multi-head self-attention.

R; = Resnet(MH; + Y> (x))(1 < i < |K]) (14)
IK| _
P =D R Y (x) (15)
i=1

We obtain the final representation of each task by using a Max-
pooling layer to extract features p%, (1 < i < |K]), i.e., the most
relevant features of the task representation which have the largest
weight in multi-head self-attention network.

m = argmax(Maxpoolingm(w)), wg = max(w1, ..., w|g|) (16)
Pl =Y (17)
We further feed features into the unified-level self-attention layer

to calculate the importance of these two partial preference features
for the task. The final local task features are calculated as follows:

51' — SDPA(pli"ViQ,pli‘/ViK,plimfiv) (18)
Pli — 51 'Pll +6i 'Pli (19)
where P! is the local feature representation of task i. Combining

it with the global feature representation Y9 (x), we finally get the
complete representation Y;(x) of task i:

Yi(x) = [Y9(x), PA]T (20)
The prediction process is described as Algorithm 1.
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Algorithm 1: Training process of our model.

input: training set Xy, 4in, label set Y = {Y!, Y2}, task number |K]|,
parameters w9, ©9(x), wh ol (x)(1 < i < [K]), WI(x), W5(x),
wp(1 < h < [H]), W, WK WY we, h;(x)
output: Prediction results R;(x),1 < i < [K]|
Preprocess the training set and label set, randomly initialize all
parameters.
Get embedding vectors f9(x) and fl" (x)
while not done do:

for f9(x) do:

Calculate global feature Y9(x) by Eq.(2 — 3)
end
for i in |K| do:
Calculate local feature Y (x) by Eq.(5 - 6)

end
end
Overlaying experts by Eq.(7 — 10)
while not done do:

Calculate task-specific attention result pl1 by Eq.(11 — 15)

Calculate best head m by Eq.(16 — 17)

Calculate unified attention result Y;(x) by Eq.(18 — 20)
end
Get prediction results: R;(x) = h;(Yi(x))

4 EXPERIMENTS
4.1 Datasets

We evaluate our model by conducting experiments on two real
datasets: census income dataset [1] and MovieLens dataset [8].
The MovieLens dataset is relatively much larger and suitable for
evaluating the model’s efficiency.

4.1.1 Census Income Dataset. We designed two sets of problems:
The first group:

- Predicting whether the income exceeds $50,000;
- Predicting whether the marital status is never married.

The second group:
- Predicting whether this person’s work is private;
- Predicting whether this person has a Bachelors degree.

4.1.2  Movielens Dataset. We design two groups of prediction tasks
for this dataset:
The third group:

- Predict the age of user;
- Predict his/her ratings of movies.

The forth group:

- Predict the job of user;
- Predict his/her ratings of movies.

4.2 Methods for comparison

To evaluate the effectiveness, we compare our model with 10 alter-
native approaches, covering both single-task models and multi-task
models.

4.2.1 Single-task models.
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Table 1: Different number of experts-Task group 1

Table 2: Different number of experts-Task group 2

Model Num Income Marital Model Num Education Work
ROC-AUC F1 ROC-AUC F1 ROC-AUC F1 ROC-AUC F1
4 0.8651 0.2151 0.9454 0.8828 4 0.7683 0.0444 0.7887 0.9769
ML-MMoE 8 0.9331 0.2223 0.903 0.7840 ML-MMoE 8 0.7267 0.0817 0.9343 0.9815
16 0.9371 0.2830 0.9589 0.8689 16 0.7361 0.0516 0.9345 0.9861
4 0.9237 0.3206 0.9613 0.8633 4 0.7816 0.0156 0.9635 0.8334
PLE 8 0.931 0.2593 0.9519 0.8689 PLE 8 0.8015 0.0322 0.9641 0.8091
16 0.9381 0.2121 0.9592 0.8732 16 0.8069 0.0588 0.9672 0.9200
4 0.835 0.4239 0.942 0.8618 4 0.8062 0.0208 0.8870 0.9803
PLE-AVG 8 0.8649 0.2795 0.9592 0.8732 PLE-AVG 8 0.8079 0.0024 0.9742 0.9177
16 0.9130 0.2747 0.908 0.7588 16 0.8017 0.0402 0.9744 0.9496
0.926 0.3165 0.9263 0.8225 0.7986 0.0024 0.9731 0.9904
PLE-MAX 8 0.9284 0.2893 0.908 0.7588 PLE-MAX 8 0.7339 0.0012 0.9677 0.9594
16 0.9254 0.3600 0.9366 0.8756 16 0.8490 0.0333 0.9691 0.9735
0.9216 0.2679 0.9505 0.8432 0.8135 0.0012 0.9546 0.8815
ML-MoSE 8 0.9315 0.2792 0.9441 0.8761 ML-MoSE 8 0.8311 0.0014 0.9788 0.9006
16 0.9320 0.3541 0.9241 0.7738 16 0.8595 0.0017 0.9718 0.8464
4 0.929 0.4827 0.9776 0.9134 4 0.8162 0.0024 0.9725 0.9266
TN 8 0.936 0.4200 0.9777 0.9122 TN 8 0.8226 0.0048 0.9742 0.9572
16 0.9348 0.4234 0.9776 0.9109 16 0.8481 0.0429 0.9752 0.8873
4 0.9364 0.2844 0.9464 0.8049 4 0.8298 0.3613 0.9759 0.8992
TMN 8 0.9353 0.3463 0.9636 0.8756 TMN 8 0.8520 0.4286 0.9793 0.9270
16 0.9402 0.4688 0.9706 0.8763 16 0.8638 0.5333 0.9899 0.9254
4 0.9312 0.3478 0.9749 0.9027 4 0.8619 0.6364 0.9788 0.9817
HTMN 8 0.939 0.3816 0.9701 0.8878 HTMN 8 0.8520 0.6613 0.9798 0.9870
16 0.9507 0.4248 0.9798 0.9162 16 0.8741 0.7864 0.9879 0.9936

(1) LR: Logistic regression/ Linear Regression

(2) FM [22]: Factorization Machine

(3) DeepFM [7]: Factorization-Machine based Deep Neural Net-
work.

4.2.2  Multi-task models.

(1) Multi-head Model: a fixed fully-connected layer to predict
different task objectives without any specific task towers.

(2) Sequential Multi-head Model: Multi-head model using LSTMs
layer.

(3) Shared-bottom Model [23]: one fully-connected layer as the
shared-bottom layer and two individual task towers for
each task objectives.

(4) Sequential Shared-bottom Model: Shared-bottom model us-
ing LSTMs layer.

(5) MMOE [17]: Multi-gate Mixture-of-Experts model.

(6) MOoSE [20]: Multitask Mixture of Sequential Experts model.

(7) PLE [27]: Progressive Layered Extraction model.

(8) TN: HTMN without hierarchical multi-head attention net-

work.

(9) TMN: HTMN with only task-specific level attention net-
work.

4.3 Experiement Setup

We use 80% of the samples were used for training, 10% for the
testing, and 10% for the validation. The prediction results take the

average of 50 runs for all models. We use ROC-AUC and F1 score
as evaluation metrics for census income dataset, and Mean Square
Error(MSE) for MovieLens dataset.

Since MMoE and MoSE are single level models, to ensure fair-
ness, we expand MMoE and MoSE to multiple levels to make them
have the same depth of network. We also use a three-layer deep
neural network activated by the RELU function in the task tower
of both models, named ML-MMOoE and ML-MoSE. For the mod-
els without mixture of experts module, We control the number of
model parameters to make them at the same magnitude. During
the training process, we used hyper-parameters tuning method [4]
and adam optimizer [12] for cross-validation. As the number of
parameters of PLE is higher than other models, we introduce weight
sharing in PLE and using average weight sharing and maximum
weight sharing in local expert network. In the experiments, they are
added as two independent models to be evaluated in the baseline
approaches.

4.4 Results

4.4.1 Evaluation on different number of experts. Table 1 and Table
2 show the results of 8 models under varying numbers of experts in
expert network. In particular, TN, TMN, and HTMN are designed for
ablation experiments, where TN is our model without hierarchical
multi-head attention network and TMN is our model with only
task-specific level attention network. The best scores are marked
in bold.



The results show that although the overall accuracy of almost all
models improves as the number of experts increases, most models
improve some tasks at the sacrifice of other tasks’ performance
when tasks have weak or conflicting relations. The accuracy of all
models except ML-MMoE and ML-MoSE gradually improved as the
number of experts increased, but F1 scores in INCOME and EDUCA-
TION do not increase significantly. TMN and HTMN significantly
outperform all baseline models in both tasks and both metrics, indi-
cating a more robust model when the number of experts increases.
When the number of experts = 16, our model achieves the best
results on both tasks.

4.4.2 Evaluation on MovielLens. We evaluate all models on two
tasks: gender prediction and rating prediction. We set expert num-
ber=16 for our model because the model is most stable under this
setting during validation.
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Figure 3: MSE of gender and ratings on MovieLens dataset

The results (shown in Figure 3) reveal most other models tend
to perform well on one task but poor on the other, due to failure
in capturing deep correlations between the two tasks. Sequential
Shared-bottom performs is the best performing multi-task model
without a multiple mixture-of-expert module. PLE reduces only the
MSE of RATINGS but not the MSE of GENDER. PLE-AVG and PLE-
MAX suffer from the seesaw phenomenon. Thanks to the Multiple
mixture-of-expert module, ML-MMoE and ML-MoSE reduce MSE
of both tasks. The reduction, however, is no greater than what is
achieved by TMN and HTMN. Our model significantly reduces the
MSE on gender prediction while ensuring the accuracy of rating
prediction. TMN and HTMN significantly outperform all baseline
models in both prediction tasks, even though there is no significant
correlation between gender and ratings.

4.4.3  Evaluation on Census income data. Table 3 and Table 4 com-
pares models’ performance at expert = 16 (best scores are marked
in bold with yellow). Positive and negative samples of INCOME
and EDUCATION are unevenly distributed, and the F1 score of
all models on INCOME and EDUCATION are lower than that on
MARITAL and WORK. Our model seems less affected by uneven
sample distribution and negative transfer. It performs best in almost
all metrics, especially in F1 score.

All multi-task models except ours are less effective than the
single-task models in INCOME and EDUCATION, suffering from
negative transfer and seesaw phenomenon. Our model outperforms
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all other models, including single-task models, in all tasks and
both metrics. Even without the hierarchical multi-head attention
network, TN is still more robust than the other models.

Experiment results on task group 1 (shown in Table 3) demon-
strate that our model consistently performs the best without being
affected by task correlations even when compared with LR, which
holds the best ROC-AUC score among single-task models. Other
models, like Sequential Shared-bottom models, are significantly
affected by negative transfer and imbalanced distribution.

When the dataset are balanced (MARITAL and WORK), multi-
task models perform no worse than the single-task model. When
the dataset are imbalanced (INCOME and EDUCATION), multi-task
models perform much worse than single-task models in F1 score,
even though they can achieve good ROC-AUC. On both balanced
and unbalanced datasets, our model is robust enough to achieve
a accuracy level that is comparable to that of single-task model.
Our model steadily improves MTL efficiency and performance,
achieving best overall benefits.

4.4.4  Evaluation on different datasets. To compare the convergence
speed of models, we fit our model on four task groups with the same
parameter level and same batch size (task group 1& 2: batch size=32,
task group 3& 4: batch size=1000). A point is taken every 100 batches
to evaluate their convergence speed. Because multi-task models
perform better than single-task models in overall performance in
experiments, we only show the results of multi-task models to
illustrate the advantages of our model over other models.

The results (Figure 4) show Shared-Bottom is the worst perform-
ing model even with constrained model parameters, as it hardly
captures the correlation between tasks. The performance of Sequen-
tial Shared-Bottom is unstable—it performs well on Task Group 1
but poorly on Task Groups 2, 3 and 4. Even with the Multi-gate Mix-
ture of Experts module, ML-MMoE and ML-MoSE cannot compete
our models in terms of convergence speed or final results, failing to
capture the relationship of task features at a deep semantic level. Al-
though achieving acceptable results, models only with MoE module
cannot work well when task features change or feature complexity
rises, as shown in Figure 4c, Figure 4e, Figure 4i and Figure 41.

Most multi-task model based on MoE structures achieve accept-
able results on the prediction of one task, such as JOB or GENDER,
but fail to perform well on the other even when facing the same
predictive tasks, as shown in Figure 4i and Figure 41. Our model
addresses the issue with the multi-level task-aware expert network
and hierarchical multi-head attention mechanism, and achieves
significant improvements in both convergence speed and model
accuracy within a small number of batches on all the 8 tasks (as
shown in Figure 4a, Figure 4d, Figure 4g and Figure 4;j). In all four
task groups, our model can achieve an acceptable range within the
minimum number of batches.

5 CONCLUSION

In this paper, we propose a unified multi-task learning model called
Hierarchical Task-aware Multi-head attention Network (HTMN),
which explicitly separates shared global features and task-specific
local feature and introduces a hierarchical multi-head attention
network to capture deep task-specific local features. Experiments on
real datasets with 12 methods validate its significant improvements
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Figure 4: Results of all task groups. Acc refers to Accuracy, MSE refers to Mean Squared Error.
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Table 3: Performance on Task Group 1-Income and Marital.

Model Income Difference Marital Difference
ROC-AUC F1 ROC-AUC F1 ROC-AUC F1 ROC-AUC F1
LR 0.9355 0.2459 - - 0.9640 0.8689 - -
M 0.8903 0.3975 -0.0452 0.1516 0.9485 0.913 -0.0155 0.0441
DeepFM 0.8651 0.3151 -0.0704 0.0692 0.8272 0.9115 -0.1368 0.0426
Multi-head 0.9242 0.2539 -0.0113 0.0080 0.9471 0.7839 -0.0169 -0.085
Shared-bottom 0.9222 0.0071 -0.0133 -0.2388 0.9158 0.8836 -0.0482 0.0147
Sequential MH 0.7242 0.0164 -0.2113 -0.2295 09112 0.8881 -0.0528 0.0192
Sequential SB 0.7842 0.0071 -0.1513 -0.2388 0.9088 0.7167 -0.0552 -0.1522
ML-MMOoE 0.9371 0.2830 0.0016 0.0371 0.9589 0.8689 -0.0051 0
ML-MoSE 0.9320 0.3541 -0.0035 0.1082 0.9241 0.7738 -0.0399 -0.0951
PLE 0.9381 0.2121 0.0026 -0.0338 0.9593 0.8732 -0.0047 -0.0398
PLE-AVG 0.9130 0.2747 -0.0225 0.0288 0.9080 0.7588 -0.056 -0.1101
PLE-MAX 0.9254 0.3600 -0.0101 0.1141 0.9366 0.8756 -0.0274 0.0067
TN 0.9348 0.4234 0.0007 0.1775 0.9776 0.9109 0.0136 -0.0420
TMN 0.9402 0.4688 0.0047 0.2229 0.9706 0.9028 0.0066 0.0339
HTMN 0.9507 0.4248 0.0152 0.1789 0.9798 0.9162 0.0158 0.0473
Table 4: Performance on Task Group 2-Work and Education.
Model Education Difference Work Difference
ROC-AUC F1 ROC-AUC F1 ROC-AUC F1 ROC-AUC F1
LR 0.8391 0.0671 - - 0.7895 0.9002 - -
M 0.9102 0.7874 0.0711 0.7203 0.7161 0.8831 -0.0734 -0.0171
DeepFM 0.8504 0.8459 0.0113 0.7788 0.5818 0.8936 -0.2077 -0.0066
Multi-head 0.4589 0.0475 -0.3802 -0.0196 0.9771 0.9808 0.1876 0.0806
Shared-bottom 0.8194 0.0665 -0.0197 -0.0006 0.9689 0.9781 0.1794 0.0779
Sequential MH 0.7915 0.1680 -0.0476 0.1009 0.9688 0.9847 0.1793 0.0845
Sequential SB 0.7868 0.4720 -0.0523 0.4049 0.9743 0.9712 0.1848 0.0710
ML-MMoE 0.7361 0.0516 -0.1030 -0.0155 0.9345 0.9861 0.1450 0.0859
ML-MoSE 0.8595 0.0017 0.0204 -0.0654 0.9718 0.8464 0.1823 -0.0538
PLE 0.8069 0.0588 0.1281 -0.0083 0.9672 0.9200 0.1777 0.0198
PLE-AVG 0.8017 0.0402 -0.0374 -0.0269 0.9744 0.9496 0.1849 0.0494
PLE-MAX 0.8490 0.0333 0.0099 -0.0338 0.9691 0.9735 0.1796 0.0733
TN 0.8481 0.0429 0.0090 -0.0242 0.9752 0.8873 0.1857 -0.0129
TMN 0.8638 0.5333 0.0247 0.4662 0.9899 0.9254 0.2004 0.0252
HTMN 0.8741 0.7864 0.0350 0.7193 0.9879 0.9936 0.1984 0.0934

in efficiency and generalization ability. HTMN also shows a high
convergence rate with a limited amount of data, which is the case
for many real-world large-scale scenarios. Combined with efficient
shared-bottom layer and mixture of experts structure, our model has
the potential to achieve multi-task few shot learning with limited
computational resources, which will be the focus of our future
work.
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