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Abstract    

 

Extensive photochemical and spectroscopic properties of the VB− defect in hexagonal boron nitride 

are calculated, concluding that the observed photoemission associated with recently observed 

optically-detected magnetic resonance is most likely of (1)3𝐸𝐸′′ → (1)3𝐴𝐴2′  origin.  Rapid intersystem 

crossing from the defect’s triplet to singlet manifolds explains the observed short excited-state 

lifetime and very low quantum yield.  New experimental results reveal smaller intrinsic spectral 

bandwidths than previously recognized, interpreted in terms spectral narrowing and zero-phonon-line 

shifting induced by the Jahn-Teller effect.  Different types of computational methods are applied to 

map out the complex triplet and singlet defect manifolds, including the doubly ionised formulation 

of the equation-of-motion coupled-cluster theory that is designed to deal with the open-shell nature 

of defect states, and mixed quantum-mechanics/molecular-mechanics schemes enabling 5763-atom 

simulations.  Two other energetically feasible spectral assignments from amongst the singlet and 

triplet manifolds are considered, but ruled out based on inappropriate photochemical properties. 
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I. INTRODUCTION 

 

Hexagonal boron nitride (h-BN) has become of great interest following the 2016 discovery of single-

photon emission from atom-like defects in the material [1-4].  Of significance is the recent 

observation of optically detected magnetic resonance (ODMR) associated with (at least) two types of 

h-BN defects [5, 6].  This could enhance the use of h-BN defects in nanophotonic applications [7-

10].  Much effort has been devoted to determining the chemical nature of different defects [11], 

including broad-based scans of possibilities [4] and detailed studies [12-14].  Prior to the detection of 

ODMR, no defect displaying photoluminescence had been assigned, only defects with observed 

magnetic properties [15, 16]; defects exhibiting ODMR facilitate measurement of both the magnetic 

and photoluminescence properties. For one defect displaying ODMR [5], comparison of the observed 

magnetic properties to expectations [12] strongly suggested that the ODMR arises from the VB− defect 

(a charged boron vacancy), an interpretation that was quickly supported quantitatively [17, 18].  

Calculations have predicted that VB− has a triplet ground state [12, 19], with a variety of low-energy 

triplet excited states predicted, within likely error limits, to have energies consistent with the observed 

photoemission energy [17, 18]. 

The low-energy triplet manifold of VB− is very complex, and subtle changes in its capture by 

different computational methods can have profound consequences on the predicted spectra.  A 

significant issue is that spectra predicted for the lowest-energy transitions are very broad and 

inconsistent with the experimental observations [18].  Further, the observed spectrum corresponds to 

an ensemble of emitters at high temperature and could therefore be considerably broader than that for 

a single emitter, as modelled in the calculations.  A key unexplained property of the observed emission 

is that it is very weak, indicating that some, currently unknown, photochemical process(es) must act 

to reduce the quantum yield upon photoexcitation.  Intersystem crossing to the singlet manifold is a 

possible mechanism for this reduction in quantum yield, raising the possibility that the observed 

emission occurs from within the singlet manifold.  We also note that previous estimates of spectral 

bandwidth based on calculations have assumed that the spectra obey simple relationships such as 

those expected based on Huang-Rhys factors depicting transitions between non-interacting, non-

degenerate electronic states.  We remark that, in contrast, VB− is intrinsically a Jahn-Teller system 

involving many doubly degenerate electronic states supporting multiple isomeric forms, with the 

lowest-energy excited states also involving unmapped avoided crossings in the Franck-Condon 

region [18].  To understand how VB− sustains ODMR, in this work we address a series of outstanding 

challenges [18]: 

• Improved measurements of spectral bandshape are obtained, including measurements of its 

temperature dependence. 



3 
 

• Accurate transition-energy calculations are obtained, with boundable error estimates, for both the 

singlet and triplet manifolds. 

• Accurate calculations of photoluminescence band shapes and intensities are performed, taking 

into effect long-range acoustic phonons, the Jahn-Teller effect, and the Herzberg-Teller effect. 

• Useful estimates of many photochemical reaction rates are obtained, taking into account 

isomerization and other reaction transition states, as well as the influence of Jahn-Teller and other 

conical intersections.   

• Verification of the consistency of our computational predictions against experimental 

spectroscopy measurement from samples showing the ODMR photo-dynamics, focusing on 

transition energies, bandwidths, emission lifetimes, quantum yields, and their temperature 

dependencies. 

 

 The VB− defect has intrinsic 𝐷𝐷3ℎ local point-group symmetry, when isolated within the bulk of 

an h-BN sheet [12, 19-21].  All modelling reported herein is applied to the model compounds shown 

in Fig. 1 that can all display this symmetry. The observed ODMR properties are suggestive of 𝐷𝐷3ℎ 

symmetry, although some observed properties require slight symmetry lowering [5].  Note that VB− 

defects are created by neutron/ion irradiation of h-BN, which can lead to damage in the crystalline 

structure and thus to lowering of symmetry.  To date, symmetry lowering induced by local strain, 

[17] or by the defect being located at the edge [11, 22, 23] of a h-BN sheet [18], have been considered.  

Whereas some calculated properties may change dramatically based on these variations, the basic 

spectral properties are insensitive to such effects—which at any rate tend to generally broaden the 

spectra rather than to narrow them [18].   

 We have previously considered other defects in h-BN, seeking calibrated computational 

quantum chemistry methods and the conditions in which these methods can deliver accurate results 

[24].  We identified a number of issues, summarised in Table I, that must be addressed in any 

computational work to model reliably the defect and its properties.  A critical aspect is that many of 

the states of interest are open-shell in nature.  We remark that none of the widely-used density 

functional theory (DFT) and ab initio wavefunction methods in traditional software packages are 

capable of accurately characterizing all defect properties of interest.  The development of a reliable 

computational protocol for the prediction of defect properties should thus stem from the thorough, 

comparative analysis of a wider variety of feasible approaches than that considered in our previous 

work [24], including newer generations of ab initio quantum chemistry methods.   

 The electronic-structure computational methods used are listed in the Methods section, with 

their strengths and limits of applicability being discussed in the Supplemental Material (SM) [25] 
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Section S1 and summarised in Table II.  Most methods are well known, but we add one new approach 

that is particularly well-suited to address defect spectroscopy and the singlet manifold of VB− 

specifically.  This is a coupled-cluster (CC) method utilising the equation-of-motion (EOM) 

formalism (EOMCC) in its double-ionisation-potential (DIP) version, [26-31] which involves 

removing two electrons from a reference wavefunction in order to create the electronic states of 

interest.  The DIP-EOMCC approach provides an accurate description of open-shell character, 

assuming that the reference wavefunction is predominantly closed-shell in nature. We find it to be 

more suitable than traditional ways of treating open-shell systems such as complete-active-space self-

consistent field (CASSCF) [32-34] and its extension, multi-reference configuration interaction 

(MRCI) [35], for it is more conducive to expansion towards the exact answer and hence the estimation 

of likely error bounds.  For the triplet manifold, its ground state appears mostly single-reference in 

nature and so we apply traditional particle conserving EOMCC singles and doubles [36] 

(EOMCCSD) and time-dependent density-functional theory [37] (TDDFT) approaches.  Another 

significant aspect of the Methods, applied to model 10-ring and larger compounds, is the use of mixed 

quantum-mechanics/molecular-mechanics (QM/MM) approaches utilizing, in the MM part, an 

AMBER [38] force field fitted to reproduce DFT-calculated properties of h-BN [39].   

 Simulation of spectra of defects in h-BN is usually made based on the Huang-Rhys 

approximation [40] or its variants.  The basic model involves five core approximations, any or all of 

which are likely to fail when applied to defect spectroscopy [11].  Notably, this approach is 

inapplicable at conical intersections.  General simulation codes pertinent to the Jahn-Teller effect are 

not available.  We herein apply standard methods to model systems developed to mimic the key 

features of the triplet and singlet manifolds revealed by the electronic structure calculations.  A key 

quantity of interest is the emission reorganisation energy 𝜆𝜆𝐸𝐸, which we determine through the 

measurement and interpretation of experimental photoluminescence spectra.  In semiclassical models 

such as the Huang-Rhys model, 𝜆𝜆𝐸𝐸 equals the difference in energy on the final electronic state after a 

vertical transition (i.e., transition without change in defect geometry induced by interactions with 

phonons) from the adiabatic minimum of the state has taken place.  Perception of the observed 

photoluminescence spectra as being too narrow compared to expectations have been based on this 

assumption. By directly simulating spectra using a Jahn-Teller model, we investigate the dramatic 

effects possible, including spectral narrowing. 

 We also calculate emission lifetimes and competitive photochemical reaction rates.  These 

include: rates for intersystem crossing reactions between the triplet and singlet manifolds, as well as 

rates for internal-conversion involving both avoided crossings (forming traditional transition states) 

and symmetry-forbidden processes at conical intersections.  Only simple model calculations are 

reported, accurate to about an order of magnitude, but these are sufficient to capture processes 
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occurring from sub-ps to ms or longer timescales that are relevant to the experimental observations 

and estimated photoemission lifetimes.   

 The results show how detailed knowledge of both the singlet and triplet manifolds, as well as 

the operation of the Jahn-Teller effect, is required to interpret the observed photoluminescence of VB−.  

In particular, three transitions, one in the singlet manifold and two in the triplet manifold, are pursued 

in detail concerning the likelihood that they could be responsible for the observed emission.  We also 

measure improved defect spectra for comparison. 

 

II. METHODS  

 

A. Material fabrication 

The analysed samples were hBN flakes, neutron irradiated in the Triga Mark I IPR-R1 nuclear reactor 

(CDTN, Brazil), with a thermal flux of 4 × 1012 n cm−2 s−1 for 16 h, with a resulting integrated dose 

of approximately 2.3 × 1018 n cm−2.  All the samples were irradiated in cadmium capsules to block 

thermal neutrons and let the most energetic neutrons irradiate the sample [5].  

 

B. Spectroscopy measurements 

Spectroscopy measurements were carried out on a lab-built confocal microscope.  A 532-nm, 

continuous-wave, solid-state laser (Gem 532TM; Laser Quantum Ltd.) was used as the excitation 

source.  Light was focused onto the sample via a high numerical aperture (NA 0.9) air objective (Plan 

Fluor Epi P 100 ×; Nikon).  Emission from the sample was collected in reflection, filtered through a 

long pass filter (transmission >560 nm) to suppress the excitation laser and sent into a multimode 

fibre.  The collected  signal could then be sent either to an avalanche photodiode (SPCM-AQRH-W4-

FC; Excelitas Technologies) or a spectrometer with a 300 g/mm grating (SpectraPro Monochromator 

Acton SP2300), mounting a thermoelectric cooled (75 oC) CCD camera (Pixis Camera 256; Princeton 

Instruments).  Spectra were acquired both at liquid nitrogen (77 K) and at room temperature (295 K). 

 

C. Electronic structure computations 

We utilise a wide range of computational methods, for which strengths and weaknesses are discussed 

in SM Section S1 and summarised in Table II [26-31, 35, 36, 41-70].  These methods include:   

(1) CAM-B3LYP [57-59], as an example of an appropriate entry-level DFT methodology [24, 70], 

as well as the commonly used HSE06 functional [55, 56], both relying on the time-dependent 

formulation of DFT (TDDFT) [37] to determine excited electronic states.  The D3(BJ) dispersion 

correction [71] is applied to all systems involving multiple h-BN layers. 
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(2) the standard single-reference coupled-cluster (CC) theory [61-63, 65] with singly and doubly 

excited clusters (CCSD) [64] combined with a quasi-perturbative non-iterative correction due to 

connected triply excited clusters defining the widely used CCSD(T) approximation [66], along with 

the equation-of-motion (EOM) extension of CCSD to excited states abbreviated as EOMCCSD [36]. 

(3) The double-ionisation-potential (DIP) extension of the EOMCC formalism [26-31], abbreviated 

as DIP-EOMCC, using both the basic 3-hole–1-particle (3h-1p) [28-31] truncation and the highest 

currently implemented [30, 31] 4h-2p level, which belong to a broader category of particle non-

conserving EOMCC theories [30, 31, 65].  In the case of the 4h-2p truncation, we use active orbitals 

to select the dominant 4h-2p components to reduce computational costs [30, 31].  These approaches 

allow one to determine singlet and triplet manifolds of open-shell systems that can formally be 

obtained by removing two electrons from the parent closed-shell cores (an operation generating the 

appropriate multi-configurational reference space within a single-reference framework), while 

relaxing the remaining electrons to capture dynamic electron correlations.   

(4) The CASSCF approach [32-34], which is a conventional multi-reference technique for capturing 

static electron correlation effects, and 

(5) Two different ways of correcting CASSCF calculations for dynamic correlations missing in 

CASSCF, including (CASPT2) [67, 68], which uses the second-order multi-reference perturbation 

theory, and one of the variants of MRCI [35], which incorporates singly and doubly excited 

configuration state functions from a CASSCF reference, followed by the internal contraction and 

adding quasi-degenerate, relaxed-reference, Davidson corrections.   

(6) Application of the ONIOM [72, 73] approach to QM/MM to extend model sizes.  This uses an 

AMBER [38] force field for the MM part, parameterised to mimic CAM-B3LYP/D3 results [39].  

Two rings are retained in the QM part only, leading to very computationally efficient calculations. 

All DFT and EOMCCSD calculations and CCSD geometry optimizations were performed using 

Gaussian-16 [74].  All CASSCF, CASPT2, CCSD(T) and MRCI calculations were performed using 

MOLPRO [75].  All DIP-EOMCC calculations were carried out using standalone in-house codes [30, 

31] interfaced with the integral and SCF routines in GAMESS [76, 77].  In the initial CC stages prior 

to DIP-EOMCC diagonalizations, these codes rely upon the spin-integrated CCSD routines available 

in GAMESS as well [78].  In all correlated calculations, the core orbitals correlating with the 1s shells 

of the B and N atoms were kept frozen and the spherical components of d and f basis functions, if 

present in the basis set, were employed throughout.  The basis sets used were STO-3G [79], 6-31G 

[80], 6-31G* [80], and cc-pVTZ [81].  Self-consistent reaction field calculations, modelling a defect 

embedded deep within the h-BN bulk, are performed using the polarizable continuum model [82] 
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using Gaussian-16, with the low-frequency bulk dielectric constant of h-BN is taken to be 5.87, whilst 

the high-frequency value is taken as 4.32. 

 

D. Observed spectral fitting 

Observed spectra were fitted to a thermal Huang-Rhys model using the THRUP programme [83, 

84].  This allows spectra to be simulated for multiple electronic states interacting through multiple 

vibrational modes using either diabatic or adiabatic representations.  It is often used to model the 

complex scenarios that arise during natural [85, 86] and artificial [87] photosynthetic systems.  In this 

application, it is used simply to model spectra within the Huang-Rhys model.  Full details are given 

in SM Section S2. 

 

E. Spectral simulation 

Absorption and emission spectra for assumed non-degenerate states are evaluated using Huang-

Rhys-type schemes, perhaps extended to include curvilinear coordinates, Herzberg-Teller effects, 

and/or approximate inclusion of the Duschinsky matrix relating the initial-state and final-state normal 

modes using the DUSHIN software [88].  For systems of 10 rings or more, only the basic Huang-

Rhys model is used, driven using analytical Hessian matrices written by Gaussian-16 into its 

formatted checkpoint files (use instead of the associated listed normal modes as their use was found 

to lead to significant errors).  Methods beyond the above such Huang-Rhys-type approaches that 

include the Jahn-Teller effect are described in detail in SM Sect S8. 

F. Photophysical and photochemical rate simulations 

All methods used are traditional applications of either transition-state theory or adiabatic electron-

transfer theory and are described in detail in SM Section S9 [89-97]. 

     

III. RESULTS 

 

A. Measurement and interpretation of h-BN photoluminescence 

 

Fig. 2 shows the original [5] photoemission spectrum observed from h-BN defects that display 

ODMR with a zero-field splitting parameter in the ground state Dgs of 3.5 GHz, along with two newly 

recorded spectra.  All new spectra are corrected for the response functions of the diffraction grating 

and detector, and were obtained at either 295 K or 77 K.  As previously observed [5], such spectra 
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show weak intensity, indicating low quantum yield, subsequent to photo-absorption.  Also, the spectra 

arise from multiple emitters, distinct from the single-photon emitters commonly studied in h-BN [1-

4].  The spectra are presented as the bandshape function 𝐸𝐸(𝜈𝜈)/𝜈𝜈3 ∝ 𝜆𝜆5𝐸𝐸(𝜆𝜆)  that display the intrinsic 

properties of the defect, allowing the shapes and bandwidths of photoemitters at different wavelengths 

to be directly compared.  Maximum emission occurs at vertical transition energies Δ𝐸𝐸𝑣𝑣𝐸𝐸 of 1.5–1.6 

eV (830–770 nm).  The quantitative analysis of the effect of site inhomogeneity on the observed 

spectral bandshapes is not currently possible.   

In SM, these and more spectra are presented and crudely analysed based on the assumption 

that each spectrum arises only from a single emitter. This assumption is known not be applicable to 

the present spectra as they comprise an ensemble of emissions observed from different defects.  Each 

defect could have slightly different character in terms of its emission energy and/or spectral 

distribution, and hence the observed spectra become broadened and could have their shapes changed 

in unpredictable ways.  Hence the analyses presented depict upper bounds for the reorganisation 

energy 𝜆𝜆𝐸𝐸 associated with photoemission, and the associated estimates of the energies 𝐸𝐸00 of the 

associated zero-phonon lines (ZPL) may also be significantly in error, especially if the ZPL lies in 

the high-frequency tail of a spectrum rather than near its maxima.  Nevertheless, a traditional 

approach is taken in which each spectrum is represented using a set of Huang-Rhys factors depicting 

transitions between non-degenerate electronic states.  This results in the spectral interpretation: 𝐸𝐸00 =

(1.61 ± 0.03) eV and 𝜆𝜆𝐸𝐸 < 0.05 eV.  Weaker emitters are apparent in the spectra, and in principle 

these could range in energy from 1.3 to 2.0 eV, based on the available information.  The 

reorganisation energy could also be significantly smaller than the upper bound of 0.05 eV; indeed, 

the new spectra reported herein are significantly narrower than that originally reported (Fig. 2), 

reflecting more the intrinsic properties of single defects.  For comparison, traditional bright h-BN 

single-photon emitters have been categorised into “Group-1”  emitters with reorganisation energies 

of 0.06–0.16 eV and “Group-2” emitters with 0.015–0.030 eV [11].   

Two features of this analysis are important.  First, the determined reorganisation energies do 

not include contributions from the acoustic phonons that determine the width of the ZPL, whereas the 

calculations presented later include all contributions.  Second, the VB− defect has inherent 3-fold 

symmetry and hence many of its electronic states will be doubly degenerate and therefore subject to 

the Jahn-Teller effect.  In SM Section S2, we show that this effect can considerably reduce calculated 

spectral bandwidths, masking the effect of the reorganisation energy.  Indeed, both effects can place 

the ZPL in the far blue-region of the observed spectral tail, as illustrated in Fig. 2.  As a result of both 

effects, the above traditional analysis could significantly underestimate the actual reorganisation 

energy. 
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  B.  Overview of key orbital energy levels, electronic states, and the Jahn-Teller effect 

 

If a boron atom is removed from a pristine h-BN layer to make VB−, “dangling bonds” appear at each 

neighbouring nitrogen atom in both the σ and π electronic systems, making for six intrinsic orbital 

levels associated with the defect. We employ many different computational methods, all of which 

indicate that these six levels sit in the band gap of the h-BN, as sketched in Fig. 3, that are occupied 

by 10 electrons, consistent with other calculations [12, 17, 18]. Varying occupancy, as depicted in 

Fig. 4, results in many low-energy singlet and triplet defect states, most of which are open-shell in 

nature.  States always arise as mixtures of such configurations, but nevertheless we name them based 

on the configuration that is the most dominant; this labelling is therefore diabatic in nature and hence 

not subject to the discontinuities that occur at Jahn-Teller and other conical intersections, or the 

anharmonic effects that give rise to transition states.   

We optimize the geometries of identified excited states, seeking potential-energy minima.  

Mostly, these optimizations are constrained to depict 𝐶𝐶2𝑣𝑣 symmetry; sometimes optimized geometries 

with 𝐷𝐷3ℎ symmetry result, and sometimes vibrational analyses (or other means) indicate that the 𝐶𝐶2𝑣𝑣 

structures are transition states rather than minima on the complete potential-energy surface. At 𝐷𝐷3ℎ 

geometries, states are usually labelled using labels appropriate to 𝐷𝐷3ℎ, with structures at 𝐶𝐶2𝑣𝑣 

geometries similarly named. State names based on these two labelling schemes are defined in Fig. 4 

for the configurations of greatest interest. 

Four relevant, doubly degenerate states at 𝐷𝐷3ℎ geometries are: (1)1𝐸𝐸′,  (1)1𝐸𝐸", (1)3𝐸𝐸′, and 

(1)3𝐸𝐸".  These must undergo Jahn-Teller distortions that reduce their symmetry to 𝐶𝐶2𝑣𝑣.  Each 

component of a doubly degenerate state has the same label in 𝐷𝐷3ℎ symmetry, but individual labels in 

𝐶𝐶2𝑣𝑣, e.g., (1)3𝐸𝐸" splits into (1)3𝐴𝐴2 and (1)3𝐵𝐵1, whilst (1)3𝐸𝐸′ splits into (1)3𝐴𝐴1 and (1)3𝐵𝐵2.  Note 

that we use 𝐶𝐶2𝑣𝑣 standard axis conventions for planar molecules throughout [98, 99] (otherwise “𝐵𝐵1” 

and “𝐵𝐵2” would be interchanged).  Physically, this effect produces “tricorn Mexican hat” shaped 

potential-energy surfaces as a function of some 𝑒𝑒′ doubly degenerate vibrational coordinate, as 

sketched in Fig. 5.  A conical intersection appears at the central undistorted 𝐷𝐷3ℎ geometry, with three 

equivalent local minima, defining symmetrically equivalent isomers of the defect, separated by three 

symmetrically equivalent transition states, all of 𝐶𝐶2𝑣𝑣 symmetry, appearing on axes separated from 

each other by 120°.  Away from these axes, the symmetry is reduced to 𝐶𝐶𝑠𝑠.  The example shown in 

Fig. 5 pertains to (1)1𝐸𝐸′; its components in 𝐶𝐶2𝑣𝑣 symmetry are (1)1𝐴𝐴1 and (1)1𝐵𝐵2, with calculations 

predicting that (1)1𝐵𝐵2 forms the local minima (in this case, defining the singlet ground state), whilst 

(1)1𝐴𝐴1 provides transition states that are unstable to distortion in a 𝑏𝑏2 vibrational mode.  As the figure 

shows, the three isomers support short N–N interaction distances within the defect, located along each 



10 
 

of the three crystallographic axes, whilst the analogous distances are lengthened in their 

interconnecting transition states.  Note that the derivative discontinuity manifested at the conical 

intersection causes the symmetry to change abruptly as it is crossed along one of the three 𝐶𝐶2𝑣𝑣 

orientations.   

The basic tricorn Mexican hat depicted in Fig. 5 may be distorted symmetrically, through 

avoided crossings or other interactions with nearby states, as well as distorted asymmetrically through 

strain effects.  Although only briefly discussed herein, out-of-plane distortions may be introduced as 

well as the in-plane distortions manifested in the figure.  The shortening of neighbouring N–N 

distances apparent in the figure highlights that defects rearrange their structure to maximise strong 

chemical bonding effects, and that this is state-dependent, for it relies on the electron occupancy and 

overall spin.  Model compounds containing only a single ring (Fig. 1) may over-accentuate this [24].   

If the transition-state barrier displayed in Fig. 5 is large compared to the associated vibrational 

energy spacings—or if distortions induced by interactions with other states or external forces are 

large—then just one single well (isomer) of the tricorn structure needs to be considered in calculating 

spectroscopic and other properties, known as the static Jahn-Teller effect.  Huang-Rhys-type models 

may provide realistic predictions of spectral bandshapes in this scenario.  Alternatively, if the 

transition-state is of low energy, then quantum interference occurs between the vibronic energy levels 

in each of the three wells, possibly controlling spectral lineshapes.  This is known as the dynamic 

Jahn-Teller effect and has the consequence that the properties of the defect cannot be described purely 

in terms of those of just one of its isomeric forms.  Note that all spectroscopic simulations reported 

herein pertaining to the Jahn-Teller effect are performed using a diabatic basis.  They include both 

lower and upper adiabatic surfaces, never introducing Born-Oppenheimer approximation shown in 

Fig. 5 and the isomeric forms that it reveals. 

   

C.  Electronic-structure calculations for the triplet manifold 

 

Key calculated properties of the triplet-state manifold for the VB− defect of h-BN are presented in 

Table III, evaluated for the model systems shown in Fig. 1.  Extended results, including more excited 

states up to 5.5 eV at vertical excitation, all ring sizes, various basis sets, and additional computational 

methods, are provided in SM TABLE S1–TABLE S4.  Predictions made by the CAM-B3LYP, 

HSE06, MRCI, CCSD, CCSD(T), and EOMCCSD methods are mostly in good agreement, 

suggesting that the evaluated properties are reliable.  Results from CASSCF are qualitatively similar 

but not of quantitative accuracy owing to its neglect of dynamics electron correlation, with CASPT2 

results being unreliable owing to low-energy-denominator effects.  The results presented for the 5-

ring model obtained using both full CAM-B3LYP and that incorporated into a QM/MM scheme are 
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very similar, with only the QM/MM scheme applied to 10- to 30-ring models.  The presented results 

are:  the vertical absorption energies Δ𝐸𝐸𝑣𝑣𝐴𝐴 at the ground-state optimised geometries, the adiabatic 

transition energies Δ𝐸𝐸0 evaluated at individually optimised geometries, and the reorganisation 

energies associated with absorption (𝜆𝜆𝐴𝐴) and emission (𝜆𝜆𝐸𝐸).  The adiabatic transition energies Δ𝐸𝐸0 

may be directly compared to observed ZPL energies Δ𝐸𝐸00 by neglecting the (usually small, but at 

most 0.25 eV) [24] changes in zero-point energy Δ𝐸𝐸𝑧𝑧𝑧𝑧𝑧𝑧 that can occur.  Also, the emission 

reorganisation energies 𝜆𝜆𝐸𝐸 can be directly compared to the observed data in Fig. 2 if non-degenerate 

states are assumed and allowed Franck-Condon intensity [100] rather than vibronically-borrowed 

Herzberg-Teller intensity [101] dominates.   

 That so many different methods predict similar results for the triplet manifold is unusual for 

defect spectroscopy [24].  The reason for this is that the ground state is predicted to be (1)3𝐴𝐴2′ , a state 

that contains seemingly full shells of both spin-up and spin-down electrons (Fig. 4) and hence can be 

treated using conventional DFT and CC techniques; the important (1)3𝐸𝐸′′ excited state has similar 

properties.  As the ground state (1)3𝐴𝐴2′  is well represented, TDDFT and EOMCCSD approaches are 

expected to provide good descriptions of all states that can be produced from it by single excitation.  

Prediction of this (1)3𝐴𝐴2′  ground state agrees with previous calculations that are in accord with 

observed ODMR magnetic properties [17, 18]. 

 Convergence of the CAM-B3LYP calculations with respect to expansion of the model 

compound from 1-ring to 30-ring compounds, extension to a 3-layer model, and further extension to 

include implicit treatment of the surrounding h-BN crystal, as well as basis-set expansion, is described 

in SM Section S3.  In summary, the 1-ring model is only qualitatively indicative, the 2-ring model is 

adequate for most purposes, and the 3-ring model is quantitatively reliable.  The correction needed to 

apply to 2-ring 6-31G* calculations to mimic 6-ring cc-pVTZ calculations in solid h-BN is (–0.01 ± 

0.07) eV, and at most 0.15 eV in magnitude.   Hence 2-ring 6-31G* calculations are identified as a 

computationally efficient approach of sufficient accuracy to support the comparison of calculated and 

observed data; later, mostly only calculations at this level are applied to the singlet manifold.  In 

general, convergence of basic energetics calculations on model-compounds pertaining to localized-

defect transitions have been found to converge rapidly to the same results as obtained from (much 

larger) converged periodic-defect calculations [102]. 

 In 𝐷𝐷3ℎ symmetry, the low-lying triplet excited states are predicted to be (1)3𝐸𝐸′′ (forbidden 

Franck-Condon emission), (1)3𝐴𝐴1′′ (allowed Franck-Condon emission, lone lifetime, out-of-plane 

polarised), and (1)3𝐸𝐸′ (allowed Franck-Condon emission, short lifetime, in-plane polarised).  Also, 

whilst (1)3𝐸𝐸′ is predicted to dominate absorption at the excitation wavelength used in the 

experiments (532 nm, 2.33 eV, see SM TABLE S16 and FIG. S12), it appears to be too high in energy 
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and its spectrum too broad to account for the emission process, so attention is focused onto the (1)3𝐸𝐸′′ 

and (1)3𝐴𝐴1′′ states. 

 The (1)3𝐸𝐸′′ first excited triplet state must undergo Jahn-Teller distortion, hence manifesting 

a tricorn Mexican hat potential-energy surface (see, e.g., Fig. 5), leading to state components with 

𝐶𝐶2𝑣𝑣 symmetry that are labelled (1)3𝐴𝐴2 and (1)3𝐵𝐵1.  The relative ordering of these components is 

critical to understanding spectroscopic properties.  CAM-B3LYP calculations on the 2-ring model 

compound predict that (1)3𝐴𝐴2 is lower in energy by 0.18 eV, defining the available stable isomers, 

with correction to embed the defect in a 3D h-BN crystal changing this to 0.19 eV (Table III).  

Similarly, EOMCCSD calculations predict an isomerization barrier of 0.15 eV.  Also, CCSD/6-31G 

predicts a barrier of 0.43 eV, but this result is unreliable as this method incorrectly splits the energy 

of these state components by 0.23 eV at the 𝐷𝐷3ℎ ground-state geometry.  In contrast, MRCI predicts 

no barrier and CASSCF predicts that (1)3𝐵𝐵1 is lower in energy by 0.49 eV. Other reported 

calculations for this splitting based on DFT and CASSCF approaches have also reported (1)3𝐵𝐵1 as 

being of lower energy [17], but as these methods sometimes predict results similar to higher-level 

approaches and sometimes results that are very different, we are unable to estimate their reliability.  

The proper treatment of dynamical electron correlation is critical.  We find that the MRCI Davidson 

correction is also significant.  Hence the CAM-B3LYP and EOMCCSD results that embody more of 

the basic physics without inherent unreliability issues are taken as to be the most indicative.  Note 

that the CAM-B3LYP and EOMCCSD calculations indicate that an avoided crossing between 

(1)3𝐸𝐸′′ and (1)𝐴𝐴1′′ upon 𝐶𝐶2𝑣𝑣 distortion is more significant than the Jahn-Teller effect and generates 

an extremely complex low-energy excited-state manifold, see e.g. SM Section S8, especially FIG. 

S10 and TABLE S14.   

 Table III shows that most calculation methods predict that the adiabatic transition energy for 

(1)3𝐴𝐴2 → (1)3𝐴𝐴2′  photoluminescence is in the range Δ𝐸𝐸0 = 1.6–1.8 eV.  This is in good agreement 

with the emission origin energies of Δ𝐸𝐸00 ~ 1.6 eV (SM FIG. S1) obtained using Huang-Rhys models 

to interpret the spectra as if they arise from single emission sources. Alternatively, the 

calculated emission reorganisation energies (Table III) are 𝜆𝜆𝐸𝐸 = 0.33 eV (CAM-B3LYP) and 0.27 eV 

(EOMCCSD) for the 2-ring model. The calculated correction to obtain CAM-B3LYP results for large 

rings with the cc-pVTZ basis embedded in 3D h-BN is –0.08 eV, reducing this to 0.25 eV.  If the 

same correction is applied to the EOMCCSD results (Table III), the value becomes 0.19 eV.  As 

shown in Fig. 2, the associated CAM-B3LYP spectrum is broader than that originally reported [5] 

and much broader than those reported herein.  In SM Section S8, a Jahn-Teller spectral model is 

developed that simultaneously includes both the (1)3𝐴𝐴2 and (1)3𝐵𝐵1 components of the (1)3𝐸𝐸′′ state.  

The best-estimate spectrum obtained from the CAM-B3LYP 2-ring model is shown in Fig. 2.  It 



13 
 

displays apparent spectral narrowing and is much more reminiscent of the observed spectra. A crudely 

estimated EOMCCSD spectrum is also mooted in the figure, obtained by scaling the CAM-B3LYP 

spectrum by the estimated 𝜆𝜆𝐸𝐸 difference, that is similar to our newly observed spectra.  Note that, 

within the Jahn-Teller model, interchange of the ordering of (1)3𝐴𝐴2 and (1)3𝐵𝐵1 does not greatly 

perturb the spectral width as the critical lower-energy component always has the larger reorganisation 

energy (see SM Section S8). 

 It is possible that the CAM-B3LYP, EOMCCSD, and MRCI calculations misrepresents state 

ordering and that in fact (1)3𝐴𝐴1′′ lies lower than (1)3𝐸𝐸′.  The calculations indicate that (1)3𝐴𝐴1′′ has a 

minimum of 𝐷𝐷3ℎ symmetry plus also an associated set of 𝐶𝐶2𝑣𝑣 symmetry that we label (2)3𝐴𝐴2 resulting 

from avoided crossings with higher-energy states, but the later appears to become unviable as ring-

size increases. Considering the high-symmetry geometry, the calculated emission reorganisation 

energies (Table III) for (1)3𝐴𝐴1′′ → (1)3𝐴𝐴2′  vary over the range 0.03–0.09 eV and are consistent with 

our new observed spectra, as demonstrated by the simulated spectrum shown in Fig. 2.   

 

D.  Electronic-structure calculations for the singlet manifold 

 

Based on the highly open-shell nature of the low-energy singlet states of VB− as depicted in Fig. 4, the 

methods properties listed in Table II indicate that standard particle-conserving single-reference 

methods, such as DFT, CCSD, or CCSD(T), should not provide qualitatively useful spectroscopic 

descriptions.  The results presented in SM Section S6 indeed do indicate that this is the case.  

Alternatively, the particle-non-conserving DIP-EOMCC methodology is ideally-suited to this 

application, and mostly we focus on these results, seeking reliable error estimates for the calculated 

quantities.  We also provide MRCI results, which, like those presented for the triplet manifold, are 

expected to be realistic, but nevertheless difficult to estimate error bounds for.  All geometry 

optimisations are performed using CASSCF, as DFT methods are extremely unreliable for the singlet 

manifold.  As for the triplet manifold, CASSCF typically predicts that the singlet states of interest are 

unstable to out of plane distortions, but likewise we also find that MRCI prefers high-symmetry 

structures instead.  Even though there is no formal proof that MRCI (and more importantly DIP-

EOMCC) predicts high symmetry structures, mostly, we confine discussion to their consideration 

only. 

Details of the DIP-EOMCC calculations, emphasising convergence with respect to higher-

order electron correlation effects and basis set size, are presented in SM Section S7.  A full set of 

DIP-EOMCC results obtained using the 3-hole–1-particle 3h-1p approximation and a 6-31G basis 

set, abbreviated as DIP-EOMCC(3h-1p)/6-31G or DIP(3h-1p)/6-31G for short, is reported.  

Corrections to the raw DIP(3h-1p)/6-31G data to include the leading high-order 4h-2p correlations 
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outside the CCSD core, as well as the replacement of the 6-31G basis set by its larger 6-31G* 

counterpart, lead to extrapolated DIP(4h-2p)/6-31G* values seen in Tables 4, S9, and S11.  These 

corrections are mostly less than 0.1 eV in magnitude (see SM Section S7 for further details). 

Calculated adiabatic transition energies and emission reorganisation energies within the 

singlet manifold are listed in Table IV, with vertical and adiabatic energy differences to (1)3𝐴𝐴2′  listed 

in SM TABLE S11 and the vertical and adiabatic transition energies and reorganisation energies 

between all states considered listed in TABLE S10. The lowest-energy singlet state is predicted to be 

(1)1𝐸𝐸′, which undergoes a large Jahn-Teller distortion to form (1)1𝐵𝐵2 minima and (1)1𝐴𝐴1 transition 

states, as indicated in Fig. 5. The next singlet state is predicted to be (1)1𝐴𝐴1′′, which distorts to (1)1𝐴𝐴2.  

This is very close in energy to (1)1𝐸𝐸′′, a state that undergoes a Jahn-Teller distortion to (2)1𝐴𝐴2 

(minima) and (1)1𝐵𝐵1 (transition states), but the distortion is weak and the avoided crossing between 

(1)1𝐴𝐴2 and (2)1𝐴𝐴2 is important and taken to dominate the excited-state properties.  A variety of states 

are apparent at energies ca. 0.5 eV higher, but we briefly consider only one of these, (2)1𝐴𝐴1 owing 

to its close relationship to (1)1𝐸𝐸′ that is apparent from considering the diabatic state descriptions 

given in Fig. 4. The properties of the singlet-state manifold are complex and best understood globally 

through the state-energy-minimum depiction provided in SM FIG. S2. 

Quantitatively, the lowest-energy singlet component (1)1𝐵𝐵2 for the 2-ring model is predicted 

to lie adiabatically 0.56 eV above the triplet ground state (1)3𝐴𝐴2′  (SM TABLE S11); applying the 

QM/MM procedure to expand the ring size to a 5-ring model (see SM Section S7) increases this to 

0.84 eV.  The lowest energy photoemission within the singlet manifold is similarly predicted to be 

(1)1𝐴𝐴2 → (1)1𝐵𝐵2 at Δ𝐸𝐸0 = 1.25 eV (Table IV).  Next follows (2)1𝐴𝐴2 → (1)1𝐵𝐵2 at Δ𝐸𝐸0 = 1.44 eV, 

close to the observed emission energy.  Of greatest note, the emission reorganisation energy for this 

is calculated to be 𝜆𝜆𝐸𝐸 = 0.10 eV, something possibly consistent with the very narrow observed 

photoluminescence spectra.  That this transition could account for the observed photoluminescence 

peaks at 1.5−1.6 eV (Fig. 2) therefore requires further consideration. 

 

E.  State dipole moments:  possible Stark shifts and long-range dielectric spectral shifts 

 

The calculated dipole moment changes for the excited states of the VB− of h-BN are described in SM 

Section S5. Even though these changes can be quite large and indicate substantial charge transfer 

within the inner ring of the defect, associated Stark effects are predicted to be small, with spectral 

shifts as large as 0.1 eV requiring nearby charges or ion pairs. 

 

F.  Photoluminescence assignment possibilities. 
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The most likely origins of the observed photoluminescence analysed within the Huang-Rhys model 

to have Δ𝐸𝐸00 ~ 1.6 eV and 𝜆𝜆𝐸𝐸 < 0.05 eV is either the triplet transition (1)3𝐸𝐸′′ → (1)3𝐴𝐴2′ , with 

dominant (1)3𝐴𝐴2 → (1)3𝐴𝐴2′  component for which the best calculations predict Δ𝐸𝐸0 = 1.78−1.83 eV 

and 𝜆𝜆𝐸𝐸 = 0.19−0.25 eV, and/or the singlet transition (1)1𝐸𝐸′′ → (1)1𝐸𝐸′, with dominant (2)1𝐴𝐴2 →

(1)1𝐵𝐵2 component for which calculations predict Δ𝐸𝐸0 = 1.44 eV and 𝜆𝜆𝐸𝐸 = 0.10 eV. Another 

possibility is also (1)3𝐴𝐴1′′ → (1)3𝐴𝐴2′  emission as this is predicted at Δ𝐸𝐸0 = 2.00−2.13 eV and to be 

very narrow with 𝜆𝜆𝐸𝐸 = 0.03−0.07 eV. 

If (1)3𝐸𝐸′′ → (1)3𝐴𝐴2′  is responsible, then either the calculation methods all significantly 

misrepresent the reorganisation energy, or else the apparent spectral width must be narrower than 

what is trivially expected owing to the Jahn-Teller effect. If either (1)1𝐸𝐸′′ → (1)1𝐸𝐸′ or (1)3𝐴𝐴1′′ →

(1)3𝐴𝐴2′  are involved, then the operative photochemical processes need to be of a type that would 

facilitate population buildup on the initial states for a sufficiently long period. This is in-principle 

possible as the observed quantum yield is very low.   

In the following two subsections, to examine these possibilities, we consider sophisticated 

spectral simulation approaches followed by photochemical reaction-rate estimations. 

 

G.  Spectral simulations 

  

A variety of Huang-Rhys and Jahn-Teller spectral simulations are performed, as described in SM 

Section S8, with the principle results shown in Fig. 2.  Details including the form and displacement 

of the critical normal modes, their ring-size dependence, symmetry, contributions from Franck-

Condon (allowed) and Herzberg-Teller (forbidden) intensity, and model dependences, are discussed 

therein.  Full details including excited-state frequencies and the associated Duschinsky rotation 

matrices are also provided in SM data files.  The absorption spectra predicted using individually 

determined vibrational modes for each excited state are also presented in SM FIG. S12. 

For the (1)3𝐸𝐸′′ → (1)3𝐴𝐴2′  emission, a major result is that the Jahn-Teller effect is capable of 

narrowing apparent spectral widths, as shown in Fig. 2, whilst maintaining the adiabatic transition 

energy Δ𝐸𝐸0 and reorganisation energy 𝜆𝜆𝐸𝐸.  The Jahn-Teller effect withdraws intensity from the 

spectral wings to concentrate it around the vertical emission energy Δ𝐸𝐸𝑣𝑣𝐸𝐸 = Δ𝐸𝐸0 − 𝜆𝜆𝐸𝐸.  Note that, 

within the Jahn-Teller analysis, the ZPL is forbidden; all intensity is therefore associated with 

vibronic origins.  As the Jahn-Teller distortion intrinsically permits allowed out-of-plane polarised 

emission, a vibronic origin results from the 𝑒𝑒′ distortion.  In addition, the (1)3𝐸𝐸′′ state may couple 

vibronically with the nearby (1)3𝐸𝐸′ state, facilitating additional vibronic origins with 𝑒𝑒′′ symmetry.  



16 
 

The intensity of such transitions has been calculated using Herzberg-Teller theory (see SM TABLE 

S15).  These results indicate that the borrowed in-plane polarised intensity should be 7 times stronger 

than the intrinsic out-of-plane polarised contribution.   

Concerning the possibility of (1)3𝐴𝐴1′′ → (1)3𝐴𝐴2′  emission, the predicted spectrum (Fig. 2) is 

indeed very narrow and fully consistent with the observed narrow bandshape.  Minimal Herzberg-

Teller intensity is predicted for this transition, making it purely out-of-plane polarized.  The spectral 

bandshape calculated for the (2)1𝐴𝐴2 → (1)1𝐵𝐵2 (dominant) component of the (1)1𝐸𝐸′′ → (1)1𝐸𝐸′ 

emission is also in good agreement with experiments (Fig. 2).   

 

H.  Rates for photochemical reactions and photoemission 

 

The low quantum yield of photoemission requires explanation.  The rates of many photophysical and 

photochemical processes are determined from the calculated triplet and singlet potential energy 

surfaces in SM Section S9.  Basically, this involves the use of traditional adiabatic electron-transfer 

theory [89-97] to estimate the activation energies for the reactions involved, based on calculated 

adiabatic transition energies and the associated reorganization energies, as well as the associated 

calculated electronic couplings needed to drive intersystem crossing reactions.  Key results 

summarised in Fig. 6 (77 K) and SM FIG. S14 (295 K).  Overviewing Fig. 6, vertical absorption is 

predicted to be 2000 times stronger to (1)3𝐸𝐸′ than to (1)3𝐴𝐴1′′, with absorption to (1)3𝐸𝐸′ being Franck-

Condon forbidden.  After allowing for geometry relaxation, Jahn-Teller and avoided crossing 

interactions, and vibronic (Herzberg-Teller) borrowing, these ratios become 2000:1:8.  Fast relaxation 

from (1)3𝐸𝐸′ quickly transfers the absorbed energy to either (1)3𝐴𝐴2 or (2)3𝐴𝐴2. 

 The (1)3𝐸𝐸′′ → (1)3𝐴𝐴2′   photoemission is predicted to have a lifetime of 11 µs, much slower 

than the intersystem crossing to (1)1𝐵𝐵2 which has a predicted lifetime of 3.8 ns at 77 K and 1.7 ns at 

295 K.  Calculated rates for this process are insensitive to details of the calculations such as the use 

of EOM-CCSD, or MRCI as the (1)1𝐵𝐵2 surface crosses (1)3𝐸𝐸′′ close to its (1)3𝐴𝐴2 minimum. It is 

therefore a robust prediction of the calculations that intersystem crossing to the singlet manifold 

consumes most of the quantum yield, with the quantum yield for photoluminescence from within the 

triplet manifold being very low, ~0.03 %, and temperature insensitive, in qualitative agreement with 

the experimental data.  The quantum yield is small but needs to be large enough to produce the 

observed ODMR contrast, which is suggestive of values of this order.  Of the other possible scenarios 

considered for the photoemission, for the (1)3𝐴𝐴1′′ → (1)3𝐴𝐴2′  transition, the predicted emission 

lifetime, quantum yield, and temperature dependence are inconsistent with the experimental 

observations.  For (2)1𝐴𝐴2 → (1)1𝐵𝐵2, most predicted photochemical properties are highly inconsistent 
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with those required.  A feature of interest, however, is the long ground-rate recovery times of 1023 s 

at 77 K and 1.8 s at 295 K.  These rates are sensitive to calculation details, with a 0.3 eV reduction in 

the calculated energy differences leading to times of 3 s and 2 µs, respectively.  Hence the calculations 

cannot rule out the possibility that initial excitation converts most of the defects in the h-BN to their 

singlet state, with subsequent absorption and emission happening within the singlet manifold.  

Nevertheless, the photochemical data strongly suggests that the photoemission is (1)3𝐸𝐸′′ → (1)3𝐴𝐴2′ . 

 

IV.  CONCLUSIONS  

 

The reliable prediction of defect spectroscopic properties remains a severe challenge for both 

electronic-structure computation and spectral/photochemical simulation.  Our conclusion for VB− is 

that, to within likely errors in the calculations, only the (1)3𝐸𝐸′′ → (1)3𝐴𝐴2′  emission is capable of 

explaining the observed emission associated with ODMR.  This is despite all high-level 

computational methods used predicting the spectrum to be broader than those observed.  Indeed, our 

new experimental measurements, presenting bands much narrower than previously observed, 

accentuate this effect.  Issues such as the critical role of the Jahn-Teller effect in driving apparent 

spectral narrowing, and the role of acoustic phonons, demand further attention.  Central to this is the 

loss of the generally accepted qualitative scenario that the ZPL is apparent in spectra, whereas our 

calculations perceive it as forbidden, but otherwise located in the far high-energy tail of the spectrum.  

One alternate assignment possibility cannot be eliminated, however, and that is that initial irradiation 

converts the defects into a long-lived singlet state, with subsequent absorption end emission 

pertaining to this manifold.  

Concerning electronic-structure calculations, we see the need for reliable high-level methods 

with useful worst-case scenario error expectations. One of the key findings of this work is the 

demonstration of the ability of the DIP-EOMCC methodology to provide a reliable description of the 

complex singlet manifold of the VB− defect in h-BN.  Even basic DIP-EOMCC(3h-1p)-level truncation 

opens up new possibilities for reliable modelling defects in h-BN and similar 2D materials.  It could 

also be applied to less-difficult scenarios such as the triplet manifold of VB−.  Associated with this is 

the coupling of such high-level methods with QM/MM schemes, allowing the QM part of this to 

accurately describe electronic effects and the MM part to simultaneously describe long-range nuclear 

structural effects. Such approaches should become the norm for defect spectroscopic modelling. 
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TABLE I.  Key aspects of h-BN defects and their consequences for high-level spectroscopic 
modelling [24].   

Aspects of h-BN defects Consequences 

Mostly open-shell in 
character 

Static electron correlation often critical, posing problems for DFT 
and CC calculations that focus on single-reference configurations, 
demanding MRCI or, when appropriate, TDDFT, EOMCCSD, 
EOM-CC etc. methods. 

Dynamically correlated 
Methods such as Hartree-Fock theory, CASSCF (and DMRG) 
give poor results, establishing approaches such as DFT, CC, 
QMC, and MRCI as entry-level methods. 

Strong electron-hole 
interactions 

The ordering of electronic states can be very different to that 
suggested by considering only one-particle orbital energy levels, 
demanding extensive state searching. 

Electronic 
arrangements modulate 
chemical bonding 

Very large structural rearrangements can accompany electronic 
transitions, often leading to very large reorganisation energies, 
e.g., 2.5 eV, so that state energy ordering at adiabatically relaxed 
geometries can be very different to that perceived vertically at the 
ground-state geometry. 

Charge transfer can 
occur 

DFT methods such as PBE and HSE06 can, without warning, 
deliver very poor results, identifying range-corrected functionals 
such as CAM-B3LYP [60] as the entry level for DFT calculations. 

Are embedded in 3D 
materials 

Dielectric effects can be critical, but as h-BN is essentially a 2D 
material, such effects are minimised [103].  
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TABLE II.  The electronic-structure computational methods used, their key properties and 
applicability.a 

 
Method Properties Applicability 

DFT includes dynamic electron correlation 
but fails for open-shell systems the critical triplet ground state (1)3𝐴𝐴2′   

TDDFT 
excited-state open-shell systems are 
well described if the ground-state is 
closed shell 

triplet excited states e.g., (1)3𝐸𝐸′′, 
(1)3𝐴𝐴1′′, (1)3𝐸𝐸′, including depiction of 
the normal vibrational modes of phonons 

CCSD 
very good for closed-shell systems, 
treats static electron correlation 
asymmetrically 

the critical triplet ground state (1)3𝐴𝐴2′ , 
perhaps other triplet states 

CCSD(T) 

typically improves on CCSD using 
perturbative corrections for triple 
excitations, but often degrades 
performance for open-shell systems 

the critical triplet ground state (1)3𝐴𝐴2′  

DIP-
EOMCC 

works well for open-shell systems for 
which a suitable closed-shell reference 
is available  containing two additional 
electrons 

all states of interest, but no analytical 
gradients for geometry optimisation  

CASSCFb 
good description of static electron 
correlation, poor description of 
dynamic electron correlationc 

all states qualitatively described 
correctly, poor quantitative accuracy and 
therefore below entry level 

CASPT2 CASSCF plus perturbative treatment of 
dynamic electron correlationc 

all states, may give poor results if low-
energy coupled states are nearby 

MRCI 
CASSCF plus treatment of dynamic 
electron correlation up to double 
excitations, but size inconsistentc 

all lowest-energy states of each spin and 
spatial symmetry, no analytical gradients 
for geometry optimisation  

  
a: see SM Section S1 for discussion and explanations. 
b: Enhanced treatment of static electron correlation using large active spaces is warranted and can be 
achieved using density-matrix renormalisation group (DMRG) approaches, and can also be 
empirically parameterised using DFT orbitals; these features have been applied [17] to VB− but are not 
incorporated herein. 
c: All approaches based on CASSCF suffer from the limitations of the need to choose an active space 
and the possible use of state averaging.  The active space used herein is shown in Fig. 2; with state 
averaging used where possible to establish overall symmetry and energy relativity.  Even though 
calculation errors may be relatively low, these issues make error bounds difficult to estimate as it is 
impractical to demonstrate convergence.   
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TABLE III.  Calculated spectroscopic properties for absorption and emission transitions within the 
triplet manifold of the VB− defect in h-BN, in eV, involving the (1)3𝐴𝐴2′  triplet ground state. 

METHOD CAM- 
B3LYP QM/MM CAM- 

B3LYP CASSCFf CASPT2b MRCIb CCSD CCSD(T)d EOM- 
CCSDc 

EOM- 
CCSD Otherk 

BASIS cc-pVTZa 6-31G* 6-31G* 6-31G* 6-31G* 6-31G* 6-31G 6-31G 6-31G* cc-pVTZa  
RINGS 6a 30 2 2 2 2 2 2 2 6a 2D 

LAYERS crystala 1 1 1 1 1 1 1 1 crystala 1 
 Vertical absorption energies Δ𝐸𝐸𝑣𝑣𝐴𝐴 

(1)3𝐸𝐸′′ - (1)3𝐴𝐴2 2.04  1.99 1.45ehi 1.84o 1.98eh 2.18m 2.12 2.16 2.21 1.92 
(1)3𝐸𝐸′′ - (1)3𝐵𝐵1 2.04  1.99 1.37ehi  1.93ehi 2.41 2.25 2.16 2.21 1.92 

(1)3𝐴𝐴1′′ 2.03  2.08 2.25io 2.17io 2.13o   2.27 2.22  
(1)3𝐸𝐸′ - (1)3𝐴𝐴1 2.65  2.76 3.01h 2.94h 2.98h 2.82 2.70 2.76 2.66 2.29 
(1)3𝐸𝐸′ - (1)3𝐵𝐵2 2.65  2.76      2.76 2.66 2.29 

 (1)3𝐴𝐴2′′   3.70      3.93  1.8 
 Adiabatic transition energies Δ𝐸𝐸0 

(1)3𝐴𝐴2 1.78g 1.74 1.67 1.34h 1.83h 1.51h 1.60c  1.72 1.83 > 1.72 
(1)3𝐵𝐵1j 1.97  1.85 0.85hi  1.51h 2.03c  1.87 1.99 1.72 
(1)3𝐴𝐴1′′ 2.00  2.04 2.18n 1.54n 2.12n   2.17 2.13  
(2)3𝐴𝐴2 1.99  1.92 2.02io 2.08io 2.18o   1.94 2.01  
(1)3𝐴𝐴1l 2.22  2.21 2.32 2.33 2.37 2.06c  2.19 2.20  
(2)3𝐵𝐵2 l 2.25  2.21      2.22 2.26  

 Absorption reorganisation energies 𝜆𝜆𝐴𝐴 
(1)3𝐴𝐴2 0.26  0.32 0.11  0.47   0.44 0.37  
(1)3𝐵𝐵1 0.08  0.14 0.52  0.42   0.29 0.22 0.20 
(1)3𝐴𝐴1′′ 0.03  0.04      0.09 0.07  
(2)3𝐴𝐴2 0.04  0.16 0.24 0.09    0.33 0.20  
(1)3𝐴𝐴1 0.43  0.55 0.69 0.61 0.61   0.57 0.45  
(2)3𝐵𝐵2 0.40  0.55      0.54 0.39  

 Emission reorganisation energies 𝜆𝜆𝐸𝐸 
(1)3𝐴𝐴2 0.25 0.26 0.33 0.20h 0.49h 0.31h   0.27 0.19  
(1)3𝐵𝐵1 0.12  0.13 -0.42h  0.20h   0.11 0.10  
(1)3𝐴𝐴1′′ 0.06  0.05      0.02 0.03  
(2)3𝐴𝐴2 0.15  0.12      0.09 0.12  
(1)3𝐴𝐴1 0.48  0.42 0.41h 0.52h 0.51h   0.44 0.50  
(2)3𝐵𝐵2 0.46  0.41      0.47 0.52  

a:  After addition of CAM-B3LYP corrections to mimic calculations on the h-BN crystal for the cc-pVTZ basis set, see 
SM TABLE S3. 
b:  At CASSCF optimised geometries. 
c:  CCSD/6-31G at CAM-B3LYP/6-31G* optimised geometries. 
d:  At CCSD optimised geometries. 
e:  CASSCF calculations can break the degeneracy of degeneracy of 𝐸𝐸′ and 𝐸𝐸′′ states owing to asymmetric representation 
of the active space and orbital optimisation.  This effect can be minimised using state-averaged approaches, and is usually 
reduced by MRCI. 
f:  CASSCF predicts symmetry lowering of (1)3𝐴𝐴2′  to (at least) C2v, influencing 𝜆𝜆𝐸𝐸 , but this symmetry lowering is not 
supported by single-point energy MRCI calculations; CCSD can also predict (much smaller) distortions not supported at 
the CCSD(T) level. 
g:  Leads to a ZPL energy of Δ𝐸𝐸0 = 1.76 eV after addition of the calculated zero-point energy correction of Δ𝐸𝐸𝑧𝑧𝑧𝑧𝑧𝑧= -0.02 
eV obtained for the 2-ring compound using CAM-B3LYP/6-31G*.   
h: single-state calculation. 
i: two-state calculation using 50:50 weighting; both h and i flags indicate that each approach gives this result. 
j: transition state on the tricorn Mexican hat, see e.g. Fig. 5. 
k: By Ivády et al. [17].    
l: CAM-B3LYP 2-ring calculations indicate (1)3𝐸𝐸′ undergoes barrierless out-of-plane relaxation from (1)3𝐴𝐴1 to (1)3𝐴𝐴2 
and from (2)3𝐵𝐵2 to (2)3𝐴𝐴2. 
m: 2.02 eV by CCSD/6-31G*. 
n: at CAM-B3LYP/6-31G* geometry. 
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o: three-state calculations weighted 40:30:30 predict (CASSCF, CASPT2, MRCI) energies Δ𝐸𝐸𝑣𝑣𝐴𝐴= (2.17, 1.63, 2.13) eV 
and Δ𝐸𝐸0 = (2.22, 1.67, 2.18) eV; the CASPT2 results, which predict that (1)3𝐴𝐴1′′ is the lowest-energy triplet excited state, 
are believed unreliable. 
 
 
TABLE IV.  Calculated spectroscopic properties for emission transitions within the singlet manifold 
of the VB− defect in h-BN, in eV, involving the (1)1𝐸𝐸′ lowest-energy singlet statea of the 2-ring model 
compound and that as embedded in a 5-ring model. 

initial state 
to (1)1𝐵𝐵2  to (1)1𝐴𝐴1 

MRCI DIP(3h-1p)b DIP(4h-2p)b QM/MMc 

DIP(4h-2p)b Otherd  MRCI DIP(3h-1p)b DIP(4h-2p)b QM/MMc 

DIP(4h-2p)b 
 Adiabatic transition energies Δ𝐸𝐸0  

(1)1𝐴𝐴2 1.15 1.01 0.98 1.25   0.98 0.94 0.86 1.09 

(2)1𝐴𝐴2 1.18 1.31 1.35 1.44 1.33  1.01 1.24 1.23 1.28 

(1)1𝐵𝐵1 1.23 1.35 1.41 1.50   1.06 1.28 1.29 1.34 

 Emission reorganisation energies 𝜆𝜆𝐸𝐸   

(1)1𝐴𝐴2 0.29 0.24      0.19e   

(2)1𝐴𝐴2 0.26 0.10e     0.15 0.03   

(1)1𝐵𝐵1 0.26 0.10e     0.15 0.03   

a: the minimum of the lowest-energy singlet state (1)1𝐸𝐸′ is predicted to be its (1)1𝐵𝐵2 component, 
0.4 - 0.7 eV higher in energy than the triplet ground state (1)3𝐴𝐴2′  (see SM TABLE S9).   
b: Δ𝐸𝐸0 values calculated using the raw DIP(3h-1p)/6-31G and extrapolated DIP(4h-2p)/6-31G* data 
(see SM Table S9). 
c: 5-ring total, 2-ring in QM part, frozen 2-ring structure with the outer 3 rings optimised. 
d: by Ivády et al. [17].  
e: to lower Born-Oppenheimer surface, as is relevant to high-energy emission; for data pertinent to 
the native upper Born-Oppenheimer surface, see SM TABLE S11 and FIG. S2 as they provide 
broader perspectives. 
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FIG. 1.  Model compounds used to study the electronic states of the VB− defect: one layer- 1-, 2-, 3- 
and 30-ring shown (also 4-, 5-, 6-, 10-, 15-, 20- and 25-ring models not shown), as well as a 2-ring 
3-layer model and that plus a dielectric continuum to model bulk h-BN. Blue, peach, and grey spheres 
represent nitrogen, boron, and hydrogen atoms, respectively. 

 

FIG. 2.  Observed ensemble photoemission bandshapes of h-BN defects reported [5] as displaying 
ODMR with ground state zero field splitting Dgs = 3.5 GHz are compared to calculated bandshapes 
for three possible emissions. Observed spectra: at 295 K (brown) and 77 K (black) from current 
measurements, and at 300 K from previous ones [5] (green).  Calculated spectra are for the transitions 
(1)1𝐸𝐸′′ → (1)1𝐸𝐸′ (red), (1)3𝐸𝐸′′ → (1)3𝐴𝐴2′  (blue), and (1)3𝐴𝐴1′′ → (1)3𝐴𝐴2′  (purple), obtained using 
DIP-EOMCC Huang-Rhys (red), CAM-B3LYP Huang-Rhys (purple and blue solid), CAM-B3LYP 
Jahn-Teller (blue dashed), and CAM-B3LYP Jahn-Teller crudely adjusted to match the EOMCCSD 
Δ𝐸𝐸0 and 𝜆𝜆𝐸𝐸 (blue dots).  Arrows indicate CAM-B3LYP or DIP-EOMCC ZPE locations Δ𝐸𝐸0 and 
spectral widths 𝜆𝜆𝐸𝐸. 
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FIG. 3.  The six 3-ring CAM-B3LYP/6-31G* mid-gap defect orbital energy levels (spin restricted) 
lying between the h-BN valence band (VB) and conduction band (CB), represented as circles 
depicting the atomic electron density, for the VB− defect in h-BN.  Symmetries are indicated for both 
the 𝐷𝐷3ℎ (red) and 𝐶𝐶2𝑣𝑣 (blue) point groups.  The electronic configuration of the (1)3𝐴𝐴2′  ground state is 
shown, with excited states depicted in Fig. 4 using variants of the inserted symbol.  
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FIG. 4.  Key diabatic configurations of orbital energy levels contributing to the low-energy states of 
the VB− defect in h-BN, showing symmetry labels depicting both 𝐷𝐷3ℎ (red) and 𝐶𝐶2𝑣𝑣 (blue) local point-
group symmetry.  Adiabatic wavefunctions obtained from the electronic structure calculations are 
depicted throughout the text in terms of their dominant diabatic configurations, with often 
considerable mixing apparent that is method dependent.  The inset shows the best-estimate adiabatic 
energy minima: triplets EOMCCSD, see Table III, singlets: DIP-EOMCC except (2)1𝐴𝐴1 from MRCI, 
see Table S11; (nb., singlet-triplet splittings appear to be overestimated). 
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FIG. 5. Contour plot (black- low energy minima, white- energy of the conical intersection and above) 
depicting generic tricorn Mexican-hat Born-Oppenheimer potential-energy surface associated with 
Jahn-Teller conical intersections.  The energy is shown as a function of displacements in the 𝑎𝑎1 and 
𝑏𝑏2 components of some generalised 𝑒𝑒′ vibrational mode, with indicated the ground-state normal-
mode displacement vectors for the dominant mode involved in most transitions, 34𝑒𝑒′ at 183 cm-1 
(0.023 eV) varying to 163–192 cm-1 in the triplet excited states. The conical intersection in the centre 
has 𝐷𝐷3ℎ local-point group symmetry, whereas the three lines passing through the stationary points 
have C2v symmetry and all other points have Cs symmetry. The six indicated chemical structures were 
optimised using CASSCF(10,6)/6-31G* for the (1)1𝐸𝐸′ surface and depict three (1)1𝐵𝐵2 isomers 
(black) and their interconnecting (1)1𝐴𝐴1 transition-state (cyan) structures for the (1)1𝐸𝐸′ surface. The 
dashed lines indicate B-B separations that differ from those involving the analogous inner-ring B 
atom.  The key shows the calculated energies of the conical intersections and transition states with 
respect to the minima for different VB− states, in eV. For (1)3𝐸𝐸′ and (1)1𝐸𝐸′, avoided crossings at 𝐶𝐶2𝑣𝑣 
geometries with (1)3𝐴𝐴1′′ and (1)1𝐴𝐴1′′, respectively, significantly distort the Jahn-Teller surfaces. For 
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more details, see SM FIG. S3 - FIG. S7 and FIG. S11, as well as TABLE S12 - TABLE S14, and 
TABLE S17. 

 

FIG. 6. Calculated photochemical and photoemission processes for the VB− defect of h-BN at 77 K, 
obtained using EOMCCSD calculations on the triplet manifold, DIP-EOMCC calculations on the 
singlet manifold, and MRCI-calculated transition dipole moments and spin-orbit couplings.  Thicker 
arrows indicate the critically perceived processes during the photocycle.  The indicated processes are: 
blue- vertical absorption (related absorption at lower energies down to the shown ZPLs and also at 
higher energies will also occur, see SM Fig. S12), with Franck-Condon (Herzberg-Teller) allowed 
oscillator strengths in the ratio f:vw:s of 0(8):1:2000; orange- barrierless ultrafast relaxation to ZPLs; 
green- internal conversion (IC); red- intersystem crossing (ISC), purple- photoluminescence (PL).  
Marked percentages indicate quantum yields. The energy levels and internal rate processes the doubly 
degenerate states that form transition states in 𝐶𝐶2𝑣𝑣 symmetry are not shown, for clarity (see instead 
Fig. 4).  States denoted with a solid line indicate that a local minima is established (triplet manifold) 
or believed (singlet manifold) to be involved, dashed lines indicate saddle structures that are unstable 
to out-of-plane distortion leading directly to (1)3𝐴𝐴2.  The use of different computational methods for 
the singlet and triplet manifolds results in overestimation of the singlet-triplet splittings.  Some rates 
like the primary 3.8 ns ISC are insensitive to calculation details and temperature, whereas others re 
extremely sensitive to both, e.g., the shown 1023 s singlet recovery time can be reduced to the seconds 
timescale within possible computational uncertainties.   Analogous results for 295 K are shown in 
SM FIG. S14. 
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S1.  PROPERTIES OF THE COMPUTATIONAL METHODS USED. 
 

A. DFT methods 
 

Choice of computational methods to employ in calculations of defect spectroscopy is rarely 
straightforward.  As dynamic electron correlations originating from short-range electron-electron 
repulsion are identified as a key element in defect properties, the use of methods based on DFT [41-
43], especially those employing its popular Kohn-Sham formulation [42], is favoured, since it allows 
one to treat such effects at a generally useful level for minimal computational cost.  Unfortunately, 
basic DFT approaches in wide use today continue facing enormous challenges and, in fact, usually 
fail when static electron correlation effects characterizing quasi-degenerate low-spin states that 
involve entanglement of many electrons at larger electron-electron separations, which formally 
requires a multi-configurational description, become prominent.  Long-range dispersion interactions, 
which contribute to various properties of materials, remain a challenge too.  Even if we put aside 
empiricism characterizing the majority of the existing DFT functionals, fundamental problems facing 
conventional DFT methods in calculations for low-spin electronic states, including the singlet states 
of the VB− defect considered in this work, result in spin contamination and other types of symmetry 
breaking, leading to uncontrollable accuracy loss that make results difficult to interpret. 

Time-dependent DFT (TDDFT) [37] provides the most transparent and practical way to 
extend the ground-state DFT calculations to excited electronic states, assuming that the reference 
states employed are themselves not of multi-configurational open-shell character [24].  Otherwise 
TDDFT can lead to catastrophic failures too [44], especially when two- and other many-electron 
excitations and charge transfer are involved, and so great care is needed in any application of TDDFT.  
This includes defects in materials, such as h-BN, that are open-shell in nature, involving perhaps a 
mix of high-spin and low-spin states with varying degrees of dynamic and static correlations. 

Modern extensions to Kohn-Sham DFT that treat multiple electronic configurations involved 
in low-spin open-shell states on equal footing provide a useful alternative [45-53, 69], but the issues 
of unphysical spin- and spatial-symmetry breaking and empiricism often remain.  A recent calculation 
[17] for VB− provides an example of this type of approach, but the way in which DFT is mixed with 
CASSCF therein is empirical rather than derived from first-principles DFT.  Its predictions are 
sometimes within 0.02 eV of those presented herein, and sometimes different by over 2 eV (see Tables 
3 and 4). 

Also, as defect states can involve charge transfer, DFT functionals popular in materials 
science, such as PBE [54] and HSE06 [55, 56], which do not embody asymptotic correction of the 
potential, can show dramatic failures for systems closely related to h-BN defects [60], although the 
appropriately corrected DFT approaches that display an improved long-range behaviour, including 
the CAM-B3LYP method [57-59] used in this study, exist.  Nevertheless, they do not address the 
aforementioned issues facing DFT in cases involving strong static electron correlation effects, or 
problems with the use of TDDFT in describing many-electron excitations.  In general, we have to 
keep in mind that in the case of DFT and TDDFT calculations, which are undoubtedly very appealing 
due to low computational costs and capable of delivering useful results for some defects, it is usually 
very difficult to estimate their reliability, with, e.g, HSE06 shown to undergo catastrophic failure for 
the VN− defect in h-BN, predicting low-energy charge-transfer bands with excitation energies that scale 
with sample size [70]. 

The current state of play for defects embedded in extended systems, whether in 2 or 3 
dimensions, is particularly problematic: implementations of advanced wavefunction based ab initio 
methods in periodic boundary conditions are very rare, but by contrast there are a number of 
implementations of DFT/TDDFT with various functionals including HSE06.  Hence wavefunction-
based  approaches are usually applied to model compounds and mostly ignore long-range effects such 
as dielectric screening, something that is more problematic for defects embedded in 3D crystals 
compared with 2D ones for which dielectric-screening effects saturate at relatively short distance.  
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The recent report on multi-reference DFT applied to the NV defect in diamond represent promising 
paths forward [69].  

 
B. Coupled-cluster methods 

 
 For defect spectroscopy, there is also no universally reliable, computationally feasible, 
method that is ab initio in nature, i.e., forms part of a hierarchy of methods that converges, in well-
identified limits, to the exact answer.  Coupled-cluster singles and doubles (CCSD) [61-65] theory, 
with perhaps perturbative correction for triples (CCSD(T)) [66], is very reliable for closed-shell 
systems, a situation which may or may not apply to defect states of interest, and these approaches 
therefore suffer from the same problems as do DFT approaches.  Inclusion of triples excitations often 
appears necessary for accuracy beyond ca.  0.3 eV, but if this is performed perturbatively, as in 
CCSD(T), then possible low-energy denominators, as often arise in open-shell systems, can lead to 
catastrophic failure of the method.  Methods analogous to TDDFT that expand excited states in terms 
of some reference can adequately deal with open-shell states, provided that the reference state is 
properly represented.  The most commonly available approach of this type is equation-of-motion 
CCSD (EOMCCSD) [36].   

In this work, the name “EOMCCSD” is reserved for approaches that preserve the number of 
electrons associated with excitation, but other types of EOMCC approaches that add electrons to or 
subtract electrons from the underlying closed-shell core are available as well.  These particle-non-
conserving EOMCC models are especially useful in calculations of ionisation potentials, electron 
affinities, and electronic spectra of radicals, biradicals, and other open-shell systems having one or 
two electrons or holes outside the closed-shell core.  In particular, one can design the double-
ionisation-potential EOMCC methods [26-31], including those used in the present work, abbreviated 
as DIP-EOMCC or DIP, for short, which allow one to remove two electrons from the closed-shell 
core, described in our calculations by the single-reference CCSD theory, while relaxing the remaining 
electrons through suitably defined operators acting on the CCSD reference state.  The basic 
approximation in this category, abbreviated as DIP-EOMCC(3h-1p) or DIP(3h-1p), which is also a 
workhorse method for this study, is obtained by diagonalizing the effective Hamiltonian of CCSD in 
the space spanned by 2-hole and 3-hole–1-particle configurations relative to the reference determinant 
defining the closed-shell core [28-31].   In the case of the VB− defect in h-BN, the closed-shell core is 
defined by the VB3− system; see Section S7.  The next level, abbreviated as DIP-EOMCC(4h-2p) or 
DIP(4h-2p) is the highest level implemented so far and used in this work.  In it, one diagonalizes the 
effective Hamiltonian of CCSD in the space spanned by 2-hole, 3-hole–1-particle, and 4-hole–2-
particle configurations [30, 31].  The DIP-EOMCC methods, which are directly applicable to the 
singlet and triplet manifolds of VB−, are particularly useful in this study, since an appropriate single-
determinant closed-shell reference for the singlet manifold of the VB− defect in h-BN does not exist, 
rendering the conventional particle-conserving EOMCCSD approach inapplicable.  Herein we focus 
on applying the DIP-EOMCC methods to the singlet manifold as other reliable methods are available 
for the triplet states.  Unfortunately, no gradient code for geometry optimisation is currently available.  

 
C. CASSCF-based methods 

 
Other types of calculations that are applicable to both the triplet and singlet manifolds of VB− defect 

in h-BN are multi-reference technologies bases on CASSCF [32-34] approaches, including CASPT2 
[67, 68] and MRCI [35] calculations.  Unfortunately, various technical difficulties hamper these 
approaches, with the result that useful, indicative, results can typically be readily obtained, whereas 
accurate results with boundable error limits are troublesome. 

  First, an active space must be defined that is continuous over all scenarios of interest and includes 
all orbitals involved in static electron correlation.  In our calculations, calculations using 10 electrons 
placed in 6 orbitals, as described in Fig. 3 and known as “CAS(10,6)”, encompass the most critical 
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effects in a way that is insensitive to both basis set and sample size, achieving this goal.  Nevertheless, 
strongly coupled orbitals in both the occupied and unoccupied spaces also contribute, with 
CAS(10,28) being needed at the next level.  Approaches to CASSCF such as density matrix 
renormalisation group (DMRG) theory can make such approaches feasible and have been applied 
[17] to VB−, but nevertheless misrepresent the dynamic electron correlation that, in general, is believed 
to be important in defects. 

Another technical issue is the need to perform state-averaged calculations, optimised to provide 
the best simultaneous description of multiple states rather than just the best description of the state of 
present interest.  We perform geometry optimisations for single states, but use state averaging 
whenever possible to provide a more equal description of degenerate state pairs.  Unfortunately, 
CASSCF-based approaches are not guaranteed to predict equal energies for degenerate-state 
components at 𝐷𝐷3ℎ symmetry, as are properly conceived TDDFT and EOMCC/EOMCCSD 
approaches. 

In boundable CASSCF-based approaches, convergence of results with respect to active-space 
choice and weightings choice needs to be demonstrated, something that often proves difficult.  
CASSCF usually does not adequately include dynamic electron correlation.  The simplest improved 
method is CASPT2 [68] include it perturbatively, a potentially hazardous procedure for defects as 
low-energy states are often strongly coupled.  Beyond this, MRCI approaches [35] properly include 
low-energy states but do so in a manner that is not size consistent, meaning that results can degrade 
as the sample size increases.  We use the Davidson correction throughout to correct for this.  Mostly, 
MRCI results are less sensitive to variations in active space and state weightings than are the original 
CASSCF calculations, but determination of meaningful likely error bounds is still problematic.   
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S2.  OBSERVED PHOTOLUMINESCENCE SPECTRA AND THEIR 
INTERPRETATION USING A HUANG-RHYS-MODEL 
 
 Spectra observed from three h-BN samples are shown in FIG. S1 where they are analysed for 
their spectral properties.  Clearly, emission occurs from a large ensemble of defects and is dissimilar 
to the single-photon emission often seen from h-BN samples.  The emission is also unusual in that it 
is very weak in intensity.  A critical question of interest concerns the intrinsic bandshape of each 
individual emitter, specified here by the emission reorganisation energy 𝜆𝜆𝐸𝐸 defined as the energy of 
the zero-phonon line (or vibronic origin) 𝐸𝐸00, less the average energy of emission [11].   

Upper bounds for 𝜆𝜆𝐸𝐸 can be obtained by fitting the observed spectra to a thermal Huang-Rhys 
model specified by various vibration frequencies and their degree of excitation (see TABLE S1 for 
details).  This approach assumes that all observed emission can be attributed to a single pair of non-
degenerate electronic states on a single emitter, ignoring the inhomogeneous broadening that would 
arise from the known ensemble of emitters, as well as possible multiple emission processes within 
the one defect.  Further, as detailed elsewhere [11], this approach embodies five key approximations: 
the Born-Oppenheimer approximation, the harmonic-oscillator approximation, the assumption that 
the vibration frequencies are the same on the initial and final electronic states, the neglect of 
Duschinsky rotation, and the Condon approximation.  All of these approximations are likely to fail 
for defects in general and for VB− in particular owing to the possible operation of the Jahn-Teller effect. 

The observed emission spectra shown in FIG. S1 present primary emission maxima near 1.6 
eV, with small tails to low energy and significant and variable tails to high energy.  The high-energy 
emission could not arise from the same spectral system on the same defect as does the other emission 
and is not included in this analysis.  The spectrum analysed in FIG. S1(c) was taken at 77 K and its 
central and low-energy components can readily be interpreted as emission from a single state of a 
single defect with  𝜆𝜆𝐸𝐸 up to 0.046 eV.  The 295 K spectrum in FIG. S1(b) can also be fitted in this 
manner by values of 𝜆𝜆𝐸𝐸 up to 0.058 eV, although emission details do suggest emission from defects 
with varying environments.  FIG. S1(a) shows features of its low-energy tail that are strongly 
suggestive of multiple emission sites, with fitting of the band to a 1-site model yielding 𝜆𝜆𝐸𝐸 up to 0.093 
eV.   

Combining all data, the largest conceivable reorganisation energy at 0 K consistent with a 
Huang-Rhys model is 0.05 eV, with interpretations for which 𝜆𝜆𝐸𝐸 is an order of magnitude smaller 
also being possible.  Such values within the range of traditional “Group-1” (0.06 – 0.16 eV) and 
“Group-2” (0.015 – 0.030 eV) h-BN single-photon emitters [11].  The significance of these results 
comes from computational modelling studies of proposed defects, for which calculated values range 
from 0.2 to 2.5 eV; [11, 24] envisaging defects with reorganisation energies consistent with 
experiment is a difficult task, making this properties very important when it comes to defect 
identification. 

Considering the observed data for what range of origin energies 𝐸𝐸00 it depicts, values from 
1.3 to 2.0 eV appear feasible.  This range could depict local site variations inducted by strain or Stark 
fields, and/or emission from multiple states within the same defect.  Alternative explanations of the 
emission are also possible. 

A major limitation of the presented analysis is that it follows the basic predictions of the 
Huang-Rhys model that the ZPL is intense and located within the main observed band.  Later, we 
show that this expectation does not follow if a Jahn-Teller model is used to interpret the spectra.  The 
Jahn-Teller model instead sees the ZPL as a forbidden transition located in the high-energy tail of the 
emission.  Another limitation of this analysis is that the contributions from acoustic phonons are 
implicitly treated within the inhomogeneous broadening.  If the inherent Lorentzian lineshape was 
apparent, then the extracted reorganisation energy corresponds only to the contribution from the 
optical phonons, with analysis of the lineshape needed to determine the contribution of acoustic 
phonons to the reorganisation energy.   
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FIG. S1.  Three sets of observed photoluminescence band contours 𝐸𝐸(𝜈𝜈)/𝜈𝜈3 ∝ 𝜆𝜆5𝐸𝐸(𝜆𝜆) (blue) of the 
VB− defect of h-BN, interpreted in terms of Huang-Rhys models (red) that manifest the largest possible 
values of the emission reorganisation energies 𝜆𝜆𝐸𝐸. 

 
 

 
TABLE S1.  Parameters in the Huang-Rhys models used to fit the observed photoluminescence 
spectra shown in FIG. S1: σ- Gaussian inhomogeneous broadening, δ- dimensionless displacement, 
S- Huang Rhys factor, λE- contribution to the emission reorganisation energy, DW- Debye-Waller 
factor. 

(a) T = 295 K, σ = 250 cm-1 (b) T = 295 K, σ = 250 cm-1 (c) T = 77 K, σ = 275 cm-1 
ν / cm-1 δ 𝜆𝜆𝐸𝐸 / eV S ν / cm-1 δ 𝜆𝜆𝐸𝐸 / eV S ν / cm-1 δ 𝜆𝜆𝐸𝐸 / eV S 

400 0.3 0.002 0.05 1200 0.2 0.003 0.02 1300 0.28 0.006 0.04 
200 2.7 0.090 3.65 200 2.1 0.055 2.21 200 1.8 0.040 1.62 
total  0.093 3.69 total  0.058 2.23 total  0.046 1.66 
DW   2 %    11 %    19 % 
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S3.  CONVERGENCE OF DFT CALCULATIONS 
 

The relative energies of 10 triplet states and 3 singlet states of the VB− defect in h-BN, at both 
the optimised geometry of (1)3𝐴𝐴2′  and their individual optimised geometries, are compared subject 
to changes in computational procedure, with results summarised in TABLE S2 and listed in detail in 
TABLE S3 and TABLE S4.  First, calculations are performed using the CAM-B3LYP density 
functional [57-59] and the 6-31G* basis set [80] on the 1 - 6 ring model systems shown in Fig. 1.  
Also, in a variant of the 3D structure, long range dielectric effects are included using a self-consistent 
reaction field model.  The conclusion reached is that the 2-ring 1-layer model compound is useful for 
the consideration of relative state energies.  For the triplet states, on average, the correction needed 
to be applied to correct state energies for expansion to 6 rings and the inclusion of nearby bulk h-BN 
is -0.01±0.07 eV.  Henceforth calculations on the 2-ring model compound are taken to provide an 
adequate description of electronic energies, with corrections (TABLE S2) applied to mimic the 
crystalline material.  The convergence of the reorganisation energy, and with it vibrational properties, 
with sample size is much slower and is discussed in detail later. 

The smaller 1-ring model compound is found to predict energies to within 0.1 eV in many 
instances, but in others changes of several eV are found.  This occurs as the 1-ring compound is able 
to undergo large-scale structural rearrangements to facilitate bond making and hence defect healing.  
If the geometry used is indicative of structures feasible in h-BN flakes, then the energetics of the key 
transitions are predicted to usable accuracy, however.  In this work, QM/MM approaches using 1-
ring only in the QM part are not used, but such an approach may indeed provide a computationally 
efficient and widely applicable approach for considering defect spectroscopy. 

 
TABLE S2.  Average and standard-deviation corrections for the energy difference to the (1)3𝐴𝐴2′  
minimum to add to lower-level approaches to simulate higher-level ones, in eV, averaged over the 
(1)3𝐸𝐸′′ 𝑖𝑖. 𝑒𝑒. (1)3𝐴𝐴2 and (1)3𝐵𝐵1 , (1)3𝐴𝐴1′′ 𝑖𝑖. 𝑒𝑒. (2)3𝐴𝐴2, (1)3𝐸𝐸′ 𝑖𝑖. 𝑒𝑒.  (1)3𝐴𝐴1 and (2)3𝐵𝐵2, 
(1)1𝐸𝐸′ 𝑖𝑖. 𝑒𝑒.  (1)1𝐴𝐴1 and (1)1𝐵𝐵2, and (1)1𝐴𝐴1′  𝑖𝑖. 𝑒𝑒.  (2)1𝐴𝐴1 states.a 

 
from to vertical, all data  adiabatic, all 

data 
 adiabatic, no 

(1)1𝐴𝐴1 
  ave stdev  ave stdev  ave stdev 
1 ring 2 ring 0.17 0.40  0.14 1.02  -0.89  
2 ring 6 ring (triplets), 3 ring (singlets) 0.02 0.04  0.06 0.05  0.06 0.05 
1 layer 3 layers -0.02 0.03  0.00 0.04  -0.03 0.01 
3 layers crystal -0.03 0.03  -0.04 0.14  0.03 0.01 
6-31G* cc-pVTZ 0.00 0.04  -0.03 0.13  -0.03 0.06 
6-31G cc-pVTZ -0.08 0.06  -0.11 0.06  -0.13 0.04 
STO-3G cc-pVTZ -0.24 0.19  0.04 0.22  -0.12 0.03 
HSE06 CAM-B3LYP 0.13 0.10  0.08 0.11  -0.08 0.01 
CAM-B3LYP/6-31G*/1-ring CAM-B3LYP/cc-pVTZ/crystal 0.15 0.39  0.61 0.69  0.92 0.02 
CAM-B3LYP/6-31G*/2-ring CAM-B3LYP/cc-pVTZ/crystal -0.02 0.07  0.03 0.17  0.04 0.03 
CAM-B3LYP/6-31G/2-ring CAM-B3LYP/cc-pVTZ/crystal -0.10 0.10  -0.05 0.14  -0.06 0.07 
HSE06/6-31G*/2-ring CAM-B3LYP/cc-pVTZ/crystal 0.10 0.14  0.10 0.20  -0.05 0.03 

a: In these DFT calculations, the (1)1𝐴𝐴1 state is taken to have a doubly occupied 𝑎𝑎1 orbital, the (2)1𝐴𝐴1 state is taken to 
have a doubly occupied 𝑏𝑏2 orbital, and the energy of the (1)1𝐵𝐵2 state is taken to be twice the energy of the determinant 
with singly occupied 𝑎𝑎1 and 𝑏𝑏2 orbitals less that of the corresponding triplet state. 
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TABLE S3.  Triplet excited state energies relative to (1)3𝐴𝐴2′  for the VB− defect of h-BN, and 
corrections intended to correct CAM-B3LYP (CAM) 6-31G* calculations on the 2-ring model 
compound to cc-pVTZ calculations on a 4 or 6 ring defect imbedded in h-BN crystal, in eV.   

METHOD CAM 
QM/MM 

CAM 
QM/MM 

CAM 
QM/MM 

CAM 
QM/MM CAM CAM CAM CAM CAM CAM CAM CAM CAM CAM CAM HSE06 CAM 

BASIS 6-31G* 6-31G* 6-31G* 6-31G* 6-31G* 6-31G* 6-31G* 6-31G* 6-31G* cc-pVTZ 6-31G* 6-31G* 6-31G STO-3G 6-31G* 6-31G* corr. 

RINGS 30 20 10 5 6 5 4 3 2 2 2 2 2 2 1 2  

LAYERS 1 1 1 1 1 1 1 1 1 1 3 3 SCRF 1 1 1 1  

 Vertical absorption energies Δ𝐸𝐸𝑣𝑣𝐴𝐴 at D3h-symmetric geometry of the to (1)3𝐴𝐴2′  state 

(1)3𝐸𝐸′′     2.00 1.99 1.99 2.00 1.99 2.04 2.01 1.98 2.14 2.05 1.92 1.90 0.05 

(1)3𝐴𝐴1′′     2.04 2.03 2.03 2.05 2.08 2.10 2.05 2.05 2.28 2.43 2.52 2.02 -0.05 

(1)3𝐸𝐸′     2.83 2.83 2.83 2.82 2.76 2.69 2.75 2.66 2.78 3.14 1.94 2.74 -0.10 

 Adiabatic transition energies Δ𝐸𝐸0 

(1)3𝐴𝐴2 1.743 1.743 1.743 1.740 1.73 1.73 1.72 1.71 1.67 1.72 1.67 1.67 1.84 1.63 1.55 1.64 0.11 

(1)3𝐵𝐵1     1.89 1.89 1.88 1.87 1.85 1.90 1.87 1.88 2.01 1.84 1.63 1.75 0.12 

(1)3𝐴𝐴1′′     2.02 2.00 2.00 2.01 2.04 2.06 2.00 2.00 2.24 2.37 2.42 1.97 -0.04 

(2)3𝐴𝐴2     1.93 1.93 1.92 1.92 1.92 1.96 1.91 1.94 2.13 -b -b  0.07 

(1)3𝐴𝐴1       2.31 2.29 2.21 2.14 2.17 2.21 2.25 2.28 1.32 2.29 0.01 

(2)3𝐵𝐵2       2.33 2.31 2.21 2.15 2.18 2.21 2.25 2.25 1.32 2.28 0.04 

 Absorption reorganisation energies 𝜆𝜆𝐴𝐴 

(1)3𝐴𝐴2     0.27 0.26 0.27 0.29 0.32 0.32 0.34 0.31 0.30 0.42 0.37 0.26 -0.07 

(1)3𝐵𝐵1     0.11 0.10 0.11 0.13 0.14 0.14 0.14 0.11 0.13 0.21 0.29 0.15 -0.07 

(1)3𝐴𝐴1′′     0.01 0.03 0.03 0.04 0.04 0.04 0.05 0.05 0.04 0.06 0.10 0.05 -0.02 

(2)3𝐴𝐴2     0.10 0.10 0.11 0.13 0.16 0.14 0.14 0.11 0.15  -  -0.13 

(1)3𝐴𝐴1       0.52 0.53 0.55 0.55 0.58 0.45 0.53 0.86 0.62 0.45 -0.12 

(2)3𝐵𝐵2       0.14 0.51 0.55 0.54 0.57 0.45 0.53 0.89 0.62 0.46 -0.15 

 Emission reorganisation energies 𝜆𝜆𝐸𝐸 

(1)3𝐴𝐴2 0.257 0.257 0.260 0.269 0.27 0.27 0.28 0.29 0.33 0.32 0.32 0.33 0.32 0.40 0.34 0.30 -0.08 

(1)3𝐵𝐵1     0.10 0.10 0.11 0.11 0.13 0.13 0.13 0.15 0.13 0.18 0.30 0.18 -0.01 

(1)3𝐴𝐴1′′     0.04 0.04 0.04 0.04 0.05 0.07 0.05 0.05 0.04 0.06 0.10 0.05 0.01 

(2)3𝐴𝐴2     0.10 0.10 0.11 0.11 0.12 0.12 0.12 0.17 0.14  -  0.03 

(1)3𝐴𝐴1       0.40 0.40 0.42 0.41 0.44 0.51 0.40 0.58 0.39 0.33 0.06 

(2)3𝐵𝐵2       0.38 0.38 0.41 0.39 0.42 0.51 0.40 0.60 0.39 0.34 0.05 

  a: Two minima pertaining to (2)3𝐴𝐴2 have been found, differing by mixing with a state barely 
considered in this work, (3)3𝐴𝐴2.  This table shows results for the higher-energy one whereas Table 
III shows the lower energy one, for which the absorption-emission symmetry is enhanced. 
b: collapses to (1)3𝐴𝐴2.   
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TABLE S4.  Extended CAM-B3LYP/6-31G* vertical excitation energies Δ𝐸𝐸𝑣𝑣𝐴𝐴 from the (1)3𝐴𝐴2′  
ground state for 1-6 ring compounds.a 

state 1 2 3 4 5 6 

(1)3𝐸𝐸′′ 1.92 1.99 2.00 1.99 1.99 2.00 

(1)3𝐴𝐴1′′ 2.52 2.08 2.05 2.03 2.03 2.04 

(1)3𝐸𝐸′ 1.94 2.76 2.81 2.83 2.83 2.83 

(1)3𝐴𝐴2′′ 3.98 3.70 3.67 3.65 3.65 3.67 

(2)3𝐸𝐸′′ 3.84 3.67 3.67 3.66 3.66 3.68 

(2)3𝐴𝐴2′′ 4.17 5.08 4.95 4.91 4.91 4.94 

(3)3𝐸𝐸′′ 5.17 4.94 4.97 4.94 4.94 4.97 

(4)3𝐸𝐸′′ 5.60 5.74 5.46 5.43 5.43 5.47 

(1)3𝐴𝐴1′  5.38 5.56 5.57 5.55   

(2)3𝐴𝐴1′′ 5.60 5.49 5.63 5.57   
a:  For 1 – 4 ring compounds, 25 roots were obtained and the lowest 13 listed in this table; only 13 roots were obtained 
for the 5 and 6 ring compounds.   
 
 
 

TABLE S5.  Singlet excited state energies relative to (1)3𝐴𝐴2′  for the VB− defect of h-BN, and 
corrections intended to adjust CAM-B3LYP (CAM) 6-31G* calculations on the 2-ring model 
compound to mimic cc-pVTZ calculations on the defect imbedded in h-BN crystal, in eV. 

METHOD  CAM CAM CAM CAM CAM CAM CAM CAM HSE06 
BASIS  6-31G* 6-31G* cc-pVTZ 6-31G* 6-31G* 6-31G STO-3G 6-31G* 6-31g* 
RINGS  3 2 2 2 2 2 2 1 2 

LAYERS  1 1 1 3 3 SCRF 1 1 1 1 
Vertical absorption energies Δ𝐸𝐸𝑣𝑣𝐴𝐴 

(1)1𝐸𝐸 
(1)1𝐴𝐴1 2.75 2.74 2.72 2.67 2.64 2.79 3.17 2.57 2.53 
(1)1𝐵𝐵2 1.07 1.06 1.05 1.05 1.05 1.07 1.15 0.85 0.97 

(1)1𝐴𝐴1′  (2)1𝐴𝐴1 2.24 2.21 2.23 2.20 2.19 2.23 2.34 2.02 1.93 
Adiabatic transition energies Δ𝐸𝐸0 

 (1)1𝐴𝐴1 1.21 1.05 0.70 1.10 0.71 0.84 0.30 -1.27 0.85 
 (1)1𝐵𝐵2 0.67 0.63 0.63 0.67 0.61 0.68 0.51 0.18 0.47 
 (2)1𝐴𝐴1 1.64 1.54 1.57 1.56 1.58 1.56 1.36 1.40 1.34 

Absorption reorganisation energies 𝜆𝜆𝐴𝐴 
 (1)1𝐴𝐴1 1.54 1.69 2.03 1.56 1.94 1.95 2.87 3.84 1.68 
 (1)1𝐵𝐵2 0.40 0.42 0.42 0.38 0.44 0.38 0.63 0.66 0.50 
 (2)1𝐴𝐴1 0.60 0.67 0.66 0.65 0.61 0.67 0.99 0.62 0.59 
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S4.  DETAILED CALCULATED PROPERTIES OF THE TRIPLET 
MANIFOLD 
 
 More computed energetics of the triplet manifold are listed in Table S6.  Calculated zero-
point energy corrections are less than 0.03 eV; these are not significant in the present context and so 
not discussed for brevity.  Hence observed values for Δ𝐸𝐸00 are compared to computed values for Δ𝐸𝐸0.   
 A noteworthy difference between the CAM-B3LYP results and those from CASSCF and 
CCSD as these methods predict that the ground state (1)3𝐴𝐴2′  distorts to (1)3𝐵𝐵2 in C2v symmetry, with 
the effect decreasing in expanding from the 1-ring compound to the 2-ring one.  Single-point energy 
calculations performed using MRCI and CCSD(T) at the related low-symmetry geometries indicate 
increases in energy compared to (1)3𝐴𝐴2′ , however, suggesting that these more advanced methods 
prefer high-symmetry instead.  Regardless, it is clear that the defect can undergo certain large-scale 
changes in geometry at little energy cost, an important qualitative feature.   
 
 
TABLE S6.  Additional energy differences of the triplet states with respect to the (1)3𝐴𝐴2′  D3h-
symmetric minimum, in eV.a  

METHOD CCSD CCSD CCSD(T) 
CASSCF 

(10,6) 
MRCI 
(10,6) CCSD CCSD(T) EOMCCSD 

EOM- 
CCSD 

EOM- 
CCSD 

CASSCF 
(10,6) 

MRCI 
(10,12) 

MRCI 
(10,6) 

BASIS 6-31G* STO-3G STO-3G 6-31G* 6-31G* 6-31G* 6-31G* 6-31G* 6-31G* 6-31G STO-3G STO-3G STO-3G 

RINGS 2 2 2 1 1 1 1 1 1 1 1 1 1 

LAYERS 1 1 1 1 1 1 1 1 1 1 1 1 1 

GEOMETRY CASSCF CASSCF CASSCF CASSCF CASSCF CASSCF CASSCF CAM-B3LYP CCSD CCSD CASSCF CASSCF CASSCF 
Vertical absorption energies Δ𝐸𝐸𝑣𝑣𝐴𝐴 

(1)3𝐸𝐸′′(𝐷𝐷3ℎ) 
(1)3𝐴𝐴2(𝐶𝐶2𝑣𝑣) 2.02 2.11 2.09 1.86 2.03 2.06 2.05 2.06 1.94 2.11 2.32 2.20 2.45 
(1)3𝐵𝐵1(𝐶𝐶2𝑣𝑣)  2.19 2.16 1.35 2.19 2.12 2.08 2.06 1.94 2.11 2.39 2.18 2.29 

(1)3𝐴𝐴1′′(𝐷𝐷3ℎ) (2)3𝐴𝐴2(𝐶𝐶2𝑣𝑣)    2.49    2.71 2.55 2.88    

(1)3𝐸𝐸′(𝐷𝐷3ℎ) 
(1)3𝐴𝐴1(𝐶𝐶2𝑣𝑣)  2.44 2.38 2.20 2.17 2.22 2.19 1.93 1.91 2.01    
(2)3𝐵𝐵2(𝐶𝐶2𝑣𝑣)        1.93 1.91 2.01    

Adiabatic transition energies Δ𝐸𝐸0 

(1)3𝐴𝐴2    1.16 1.38 1.43 1.48   1.74 0.95 1.31 1.12 
(1)3𝐵𝐵1    0.67 1.63 1.50 1.47   1.80 1.45 1.49 1.42 
(2)3𝐴𝐴2    2.10      2.78    
(1)3𝐴𝐴1    1.34 1.42 1.41 1.38   1.40    
(2)3𝐵𝐵2          1.42    

Absorption reorganisation energies 𝜆𝜆𝐴𝐴 

(1)3𝐴𝐴2    0.70 0.65 0.63 0.57   0.37 1.37 0.88 1.32 
(1)3𝐵𝐵1    0.69 0.56 0.62 0.61   0.31 0.95 0.69 0.87 
(2)3𝐴𝐴2    0.39      0.10    
(1)3𝐴𝐴1    0.86 0.75 0.80 0.81   0.61    
(2)3𝐵𝐵2          0.59    

Emission reorganisation energies 𝜆𝜆𝐸𝐸 

(1)3𝐴𝐴2          0.36 0.27   
(1)3𝐵𝐵1          0.32    
(2)3𝐴𝐴2          0.10    
(1)3𝐴𝐴1              
(2)3𝐵𝐵2          0.36    

a:  All CASSCF and MRCI results are for individually weighted states, except for (2)3𝐴𝐴2 and (2)3𝐵𝐵2 for which 50:50 
weighting is used with the lower-energy state of that symmetry.
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S5.  DIPOLE MOMENT CHANGES ON EXCITATION AND THE STARK 
EFFECT 
 

TABLE S7 lists the dipole moments of the primary electronic states considered, 
calculated using CASSCF(10,6)/6-31G*, relative to that for (1)3𝐴𝐴2′  which is taken to be zero 
(the dipole-moment is origin dependent as the defect is charged).  Dipole moment changes of 
up to 7 D are predicted, indicating that spectral energies will be influenced by Stark shifts and 
by long-range dielectric interactions.  For a Stark shift of 0.1 eV and a dipole change of 5 D, 
the required electric field strength would be 0.002 au = 0.09 VÅ-1, a very substantial value.  
Field strengths of this order would require either ordered arrays of charges, which would seem 
to be unlikely, or else to have the VB− defect ion-paired with an adjacent counterion.   

Also, the change in dipole moment that occurs during a transition can interact with the 
long-range dielectric material in the h-BN to shift transition energies.  The self-consistent 
reaction-field calculations reported in TABLE S3 directly model this effect, yet yield no 
noticeable influence.  Those calculations pertain to emission to the symmetric (1)3𝐴𝐴2′  state, 
and hence may underestimate the effect.  Calculation performed at other geometries that do 
involve large initial-state and final-state dipoles also show little effect.  If the defect was 
neutral, then such dipole changes would result in large solvent shifts induced by the 
environment, but for VB− the dielectric response is always dominated by the net charge, 
nullifying the effect of the charge redistribution.   
  
TABLE S7.  State dipole moment changes from (1)3𝐴𝐴2′  at individually optimised geometries 
calculated using CASSCF(10,6/6-31G*) on the 2-ring model compound of the VB− defect in h-
BN. 

State Dipole moment / D 
(1)3𝐴𝐴2′  [0] 
(1)3𝐴𝐴2 -3.7 
(1)3𝐵𝐵1 5.9 
(1)3𝐴𝐴1′′ 0 
(2)3𝐴𝐴2 -1.6 
(1)3𝐴𝐴1 -2.7 
(2)3𝐵𝐵2 6.5 
(1)1𝐵𝐵2 -2.5 
(1)1𝐴𝐴1 5.1 
(1)1𝐴𝐴2 -3.7 
(1)1𝐵𝐵1 5.8 
(2)1𝐴𝐴2 5.8 
(2)1𝐴𝐴1 6.7 
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S6.  FAILURE OF SINGLE-REFERENCE METHODS FOR TREATING 
SINGLET STATES 

 
Calculated energies for the singlet states obtained using DFT are listed in TABLE S5, 

whilst those obtained using ab initio approaches are listed in TABLE S8.  These results indicate 
errors of up to 2 eV in establishing the degeneracy of the two components ((1)1𝐴𝐴1 and (1)1𝐵𝐵2) 
of the (1)1𝐸𝐸′ state at the 𝐷𝐷3ℎ ground-state geometry, as well as failure to establish the large 
energy splitting between the (1)1𝐴𝐴1 and (2)1𝐴𝐴1 states.  DFT geometry optimisations on (1)1𝐴𝐴1 
lead to B-B bond formation within the defect, whereas CASSCF calculations lead to increased 
B-B separations, an effect confirmed by MRCI and EOMCC calculations.  Indeed, the ability 
to reform bonds often leads to substantial differences between results for the 1-ring and 2-ring 
model compounds, but 2-ring results are found to be in good agreement with 3-ring ones.  
Methods based on TDDFT or EOMCCSD descriptions of states in terms of excitations from a 
closed-shell reference are also expected to perform poorly as no suitable reference determinant 
is obvious, although the DFT results for (1)1𝐵𝐵2 singlet-biradical state are qualitatively 
indicative and empirical schemes based on this feature could be envisaged.   
 
    
TABLE S8.  Failure of single-reference ab initio methods to depict key qualitative properties 
of the low-energy singlet manifold of VB−, as evidenced from calculated energy differences with 
respect to the (1)3𝐴𝐴2′  D3h-symmetric minimum, in eV. 

state Δ𝐸𝐸𝑣𝑣𝐴𝐴 Δ𝐸𝐸0 𝜆𝜆𝐴𝐴 
 CCSD CCSD CCSD(T) CCSD CCSD CCSD(T) CCSD CCSD CCSD(T) 
 6-31G* 6-31G* 6-31G* 6-31G* 6-31G* 6-31G* 6-31G* 6-31G* 6-31G* 
 2 rings 1 ring 1 ring 2 rings 1 ring 1 ring 2 rings 1 ring 1 ring 

(1)1𝐴𝐴1 2.03 1.80 0.96 1.59 1.41 0.23 0.44 0.39 0.73 
(2)1𝐴𝐴1 2.12 1.91 1.00 2.17 1.77 0.35 -0.05 0.14 0.64 
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S7.  DIP-EOMCC calculations for the singlet manifold 
  
In this section, we provide details pertinent to the calculations of singlet states evaluated using 
the particle-non-conserving DIP-EOMCC methodology.  This approach is specifically 
designed to handle multiconfigurational states that can formally be obtained by removing two 
electrons from a parent closed-shell core.  This expands on the information provided in Table 
IV and also encompasses many more singlet states. 

To model states of VB− using DIP-EOMCC, a reference wavefunction pertaining to VB3− 
must be generated.  From Fig. 3, this reference wavefunction is seen to occupy all defect orbital 
levels within the h-BN band gap.  It is therefore expected to be mostly closed-shell in character 
and hence provide a good starting point for the description of the states of VB−.  High-level 
dynamical correlations are modelled in an accurate manner through the CC and EOMCC 
ansätze.  This provides a size extensive description of the CC reference state (we use CCSD to 
describe it), as well as a size intensive description of the EOMCC double ionisation and 
excitation energies. The extent of correlation captured by the DIP-EOMCC calculations is 
indicated through the nh-mp notation that indicates that all possible states with up to n holes 
(electrons removed from the VB3− reference) and m = n−2 particles (electrons added to orbitals 
not occupied in the VB3− reference) are included on top of the CCSD description of the closed-
shell core. The simplest level of approximation, 2h-0p, provides information about the leading 
electron configurations responsible for the relevant non-dynamical correlations, such as those 
seen in Fig. 4, and some core correlation effects. The information about dynamical correlation 
effects, especially those dominated by one-electron excitations from a multi-configurational 
reference space and those outside the CCSD core correlations, is captured by the next, more 
quantitative, 3h-1p level, which is the main workhorse of this study.  In order to confirm the 
reliability of the corresponding DIP-EOMCC(3h-1p) calculations, we also examined the 
highest currently implemented [30, 31] 4h-2p theory level, with 4h-2p correlations outside the 
CCSD core treated using active orbitals to reduce computational costs, which captures the 
single as well as double excitations from a multi-configurational reference space and various 
higher-order terms resulting from the use of the CC exponential ansatz.  The active space used 
in the DIP-EOMCC(4h-2p) calculations to identify the leading 4h-2p terms consisted of the 6 
highest orbitals occupied in the VB3− reference configuration. 

Whereas it is difficult to estimate intrinsic errors characterizing the otherwise high-level 
MRCI calculations owing to their sensitivity to state averaging, active space selection, and size-
inextensivity effects, the state-of-the-art DIP-EOMCC calculations reported in Table IV and 
TABLE S9 - TABLE S11 (cf., also, FIG. S2) seem to be offering a smooth and systematic 
convergence path towards the exact answers, with error bounds, as further elaborated on below, 
under reasonable control, allowing us to draw important conclusions regarding the role of 
singlet-singlet transitions in the observed photoemission spectra displaying ODMR.  We 
should, of course, keep in mind that all calculations were performed at CASSCF-optimised 
geometries.  DFT geometries were found to be unreliable, and MRCI or DIP-EOMCC 
approaches for geometry optimisations involving the 21-atom 1-ring and the 51-atom 2-ring 
model systems to which DIP-EOMCC is applied are prohibitively expensive.  We believe that 
the geometries resulting from our CASSCF optimisations correctly capture the key structural 
features of the various electronic states of the VB− defect, which means that it is reasonable to 
adopt them in single-point calculations using higher MRCI and DIP-EOMCC levels (a 
common practice in quantum chemistry).  With all of this mind, in the discussion below we  
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TABLE S9.  Convergence of DIP-EOMCC calculations for singlet states of VB−, showing 
energies relative to (1)3𝐴𝐴2′  D3h-symmetric minimum, in eV.a  

EOMCC 
method Basis Rings 

Vertical (D3h)  Adiabatic (C2v) 
(1)1𝐸𝐸′ (1)1𝐴𝐴1′′ (1)1𝐸𝐸′′ (1)1𝐴𝐴1′   (1)1𝐵𝐵2 (1)1𝐴𝐴1 (1)1𝐴𝐴2 (2)1𝐴𝐴2 (1)1𝐵𝐵1 

DIP(3h-1p)b 6-31G 1 0.60 2.75 1.96 2.23  0.18 0.20 1.60 1.81 1.87 
DIP(4h-2p)c 6-31G 1 0.58 2.87 2.13 2.17  0.27 0.32 1.73 1.98 2.06 
DIP(3h-1p)b 6-31G* 1 0.57 2.47 1.79 2.15  0.12 0.16 1.45 1.71 1.78 
DIP(4h-2p)c 6-31G* 1 0.56 2.58 1.95 2.10  0.20 0.27 1.58 1.87 1.95 
DIP(3h-1p) b 6-31G 2 0.79 2.08 1.92 2.81  0.54 0.61 1.56 1.85 1.89 
DIP(4h-2p)d 6-31G* 2 0.75 1.91 1.91 2.68  0.56 0.68 1.54 1.91 1.97 

a: All calculations are performed at CASSCF/6-31G* optimised geometries for unweighted single states in 
either D3h or C2v symmetry. 
b: Raw DIP-EOMCC(3h-1p) data. 
c: Raw DIP-EOMCC(4h-2p) data. 
d: Extrapolated DIP-EOMCC results to account for 4h-2p correlations and the effect of replacing the 6-31G 
basis set by 6-31G*, see text. 
 
 

 
FIG. S2.  Ordering of the diabatic states, in eV, relative to the (1)3𝐴𝐴2′  minimum, resulting from 
the DIP-EOMCC(3h-1p)/6-31G calculations for the 2-ring system along a fictitious nuclear 
coordinate that connects the geometries of the triplet ground state and the low-lying singlet 
excited states optimised with the CASSCF/6-31G* approach.  Whereas a rigorous description 
of the Jahn-Teller distortions characterizing the (1)1𝐸𝐸′ and (1)1𝐸𝐸′′ states would require a 
minimum of four nuclear coordinates, by projecting all state energies onto the fictitious one-
dimensional nuclear coordinate we can highlight both the Jahn-Teller conical intersections and 
the (1)1𝐴𝐴2 − (2)1𝐴𝐴2 diabatic crossing.  Of note is the small Jahn-Teller distortion 
characterizing the (1)1𝐸𝐸′′ state, especially when compared to its (1)1𝐸𝐸′ counterpart.  The 
numerical data used to construct the Fig. are based on TABLE S10.  State labels in 𝐷𝐷3ℎ 
symmetry are presented in blue, those at 𝐶𝐶2𝑣𝑣 geometries in black. 
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TABLE S10.  DIP-EOMCC(3h-1p)/6-31G energy differences for the 2-ring model compound 
determined at CASSCF/6-31G* optimised geometries, for various states of VB−, in eV.a 

Geometry Vertical excitation energies from this geometry 

 (1)3𝐵𝐵2  (1)1𝐵𝐵2  (1)1𝐴𝐴1 (1)1𝐴𝐴2 (2)1𝐴𝐴2 (1)1𝐵𝐵1  (2)1𝐴𝐴1 
Vertical excitation energies 

 (1)3𝐴𝐴2′   [0] 0.79 0.79 2.08 1.92 1.92 2.81 
 (1)1𝐵𝐵2  -0.33 [0] 1.16 1.33 2.05 1.93 2.63 
 (1)1𝐴𝐴1 -0.31 0.99 [0] 2.03 1.41 1.46 2.60 
(1)1𝐴𝐴2 -1.20 -0.76 -0.01 [0] 1.15 1.09 1.79 
(2)1𝐴𝐴2 -1.59 -0.43 -1.22 0.68 [0] 0.04 1.27 
(1)1𝐵𝐵1  -1.63 -0.47 -1.26 0.64 -0.04 [0] 1.23 

Adiabatic transition energies Δ𝐸𝐸0 
 (1)3𝐴𝐴2′   [0] 0.54 0.61 1.56 1.85 1.89  
 (1)1𝐵𝐵2  -0.54 [0] 0.07 1.01 1.31 1.35  
 (1)1𝐴𝐴1 -0.61 -0.07 [0] 0.94 1.24 1.28  
(1)1𝐴𝐴2 -1.56 -1.01 -0.94 [0] 0.30 0.34  
(2)1𝐴𝐴2 -1.85 -1.31 -1.24 -0.30 [0] 0.04  
(1)1𝐵𝐵1  -1.89 -1.35 -1.28 -0.34 -0.04 [0]  

Reorganisation energies λ 
 (1)3𝐴𝐴2′   [0] 0.25 0.18 0.52 0.06 0.02  
 (1)1𝐵𝐵2  0.21 [0] 1.09 0.31 0.74 0.58  
 (1)1𝐴𝐴1 0.30 1.06 [0] 1.08 0.17 0.18  
(1)1𝐴𝐴2 0.36 0.26 0.93 [0] 0.86 0.75  
(2)1𝐴𝐴2 0.26 0.88 0.03 0.98 [0] 0.00  
(1)1𝐵𝐵1  0.26 0.88 0.03 0.98 0.00 [0]  

a: The matrix depicting the adiabatic transition energies is antisymmetric, with negative energies 
representing emission and positive energies representing absorption; as a result, the corresponding 
elements of the reorganisation energy matrix are emission reorganisation energies, 𝜆𝜆𝐸𝐸, and absorption 
reorganisation energies, 𝜆𝜆𝐴𝐴, respectively.  Based on the reflection approximation, the reorganisation 
energy matrix is expected to be symmetric, with deviations from symmetry most likely indicative of 
the effects of Duschinsky rotation of the form of the normal coordinates of vibration between the two 
states [11].  The closeness of the reorganisation matrix to symmetric form is indicative of the accuracy 
in the use of diabatic labels to describe the adiabatic states produced by the electronic-structure 
calculations.  The adiabatic transition energies, expressed relative to the (1)3𝐴𝐴2′  D3h minimum, are 
depicted in FIG. S2. 
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TABLE S11.  Energy differences characterising singlet states of the VB− defect in h-BN with 
respect to the (1)3𝐴𝐴2′  D3h-symmetric minimum, in eV,a for the 2-ring model compound, with 
also a crude estimate at the correction energy appropriate for a 5-ring compound using 
QM/MM.   

State 
CASSCF MRCI DIP(3h-1p)b DIP(4h-2p)c QM/MM 

corr. 
DIP(4h-2p)c after 

QM/MM corr. 
6-31G* 6-31G* 6-31G 6-31G* 6-31G* 6-31G* 

Vertical absorption energies Δ𝐸𝐸𝑣𝑣𝐴𝐴   

(1)1𝐸𝐸′(𝐷𝐷3ℎ)  
(1)1𝐴𝐴1(𝐶𝐶2𝑣𝑣)  1.14de  0.79 0.75   
(1)1𝐵𝐵2(𝐶𝐶2𝑣𝑣) 1.14de 0.95e 0.79 0.75   

(1)1𝐴𝐴1′′(𝐷𝐷3ℎ) (1)1𝐴𝐴2(𝐶𝐶2𝑣𝑣)   2.08 1.91   

(1)1𝐸𝐸′′(𝐷𝐷3ℎ) 
(2)1𝐴𝐴2(𝐶𝐶2𝑣𝑣) 1.47de  1.92 1.91   
(1)1𝐵𝐵1(𝐶𝐶2𝑣𝑣) 1.41de  1.92 1.91   

(1)1𝐴𝐴1′ (𝐷𝐷3ℎ) (2)1𝐴𝐴1(𝐶𝐶2𝑣𝑣) 1.42f 1.95f 2.81 2.68   

Adiabatic transition energies Δ𝐸𝐸0   
(1)1𝐴𝐴1g 0.46e 0.53eh 0.61 0.68 0.32 1.00 
(1)1𝐵𝐵2  0.25e 0.36eh 0.54 0.56 0.28 0.84 
(1)1𝐴𝐴2  1.35f 1.51f 1.56 1.54 0.55 2.09 
(2)1𝐴𝐴2  0.89e 1.54e 1.85 1.91 0.37 2.28 
(1)1𝐵𝐵1g 0.94e 1.59f 1.89 1.97 0.37 2.34 
(2)1𝐴𝐴1  0.88f 2.44f   0.63  

a: All calculations are performed at CASSCF/6-31G* optimised geometries for unweighted single states in either 
D3h or C2v symmetry.  CASSCF predicts symmetry lowering to planar Cs for (1)1𝐸𝐸′′, but this is not supported by 
MRCI or DIP-EOMCC(3h-1p) calculations. 
b: Raw DIP-EOMCC(3h-1p)/6-31G data. 
c: Extrapolated DIP-EOMCC results to account for 4h-2p correlations and the effect of replacing the 6-31G basis 
set by 6-31G* using Eq.  (1). 
d: CASSCF calculations can break the degeneracy of degeneracy of 𝐸𝐸′ and 𝐸𝐸′′ states owing to asymmetric 
representation of the active space and orbital optimisation, an effect that is reduced here using state averaging. 
e: Two-state calculation using 50:50 weighting. 
f: Single-state calculation. 
g: transition state on the tricorn Mexican hat, see e.g. Fig. 5. 
h: in this case there is a large difference to single-state MRCI calculations which predict the reverse ordering: 
(1)1𝐴𝐴1 at 0.03 eV, (1)1𝐵𝐵2 at 0.33 eV. 

 

focus on our highest-accuracy DIP-EOMCC data, comparing them with MRCI whenever 
relevant and appropriate. 

 We begin with the TABLE S9, which examines the convergence of the DIP-EOMCC 
calculations as the basis set is extended from 6-31G to 6-31G*, the ring size is extended from 
1 to 2, and the truncation level in the electron removing operator of the DIP-EOMCC 
wavefunction ansatz is extended from 3h-1p to 4h-2p.  Although the most desirable DIP-
EOMCC/6-31G* calculations for the 51-atom 2-ring system turned out to be prohibitively 
expensive, it is clear from TABLE S9 that the convergence of the DIP-EOMCC vertical and  
adiabatic excitation energies with respect to the wavefunction truncation level and basis set is 
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very fast.  It is, therefore, appropriate to extrapolate the desired DIP-EOMCC(4h-2p)/6-31G* 
information for the 2-ring system by adopting the formula:  

(2-ring) (2-ring) (1-ring) (1-ring)
DIP-EOMCC(4 -2 )/6-31G* DIP-EOMCC(3 -1 )/6-31G DIP-EOMCC(4 -2 )/6-31G* DIP-EOMCC(3 -1 )/6-31G[ ]h p h p h p h pE E E E≈ + − .     (1) 

In this formula, we use the difference between the DIP-EOMCC(4h-2p)/6-31G* and DIP-
EOMCC(3h-1p)/6-31G energies determined for the smaller 1-ring model to correct the DIP-
EOMCC(3h-1p)/6-31G data obtained for the target 2-ring system for the effects of high-order 
4h-2p correlations, as well as for replacing the 6-31G basis set by its larger 6-31G* counterpart.  
The resulting DIP-EOMCC-based modelling procedure, as defined by Eq. (1), along with the 
underlying DIP-EOMCC(3h-1p)/6-31G approach, are regarded in this study as the major 
working methods, especially in characterizing the highly complex manifold of singlet 
electronic states (see Table IV, TABLE S9 - TABLE S11, and FIG. S2).  Based on the results 
compiled in TABLE S9, the mean and maximum unsigned errors characterizing the raw DIP-
EOMCC(3h-1p)/6-31G and extrapolated DIP-EOMCC(4h-2p)/6-31G* vertical and adiabatic 
excitation energies, estimated by comparing the DIP-EOMCC(3h-1p)/6-31G and DIP-
EOMCC(4h-2p)/6-31G* data for the 1-ring model, are 0.07 and 0.17 eV, respectively.  
Naturally, relative errors characterizing energy differences that correspond to different 
structures on the same potential energy surface (e.g., barriers separating minima on the same 
potential) are expected to be even smaller. 

 Our best DIP-EOMCC-based estimates of the properties of the singlet states 
summarised in Table IV and TABLE S11, relying on the extrapolated DIP-EOMCC(4h-2p)/6-
31G* energetics.  These indicate that the lowest-energy (1)1𝐸𝐸′ singlet, which is located 0.75 
eV above the triplet ground state at the (1)3𝐴𝐴2′  minimum, undergoes a strong Jahn-Teller 
distortion resulting in the C2v-symmetric (1)1𝐵𝐵2 minima that lie 0.56 eV above the (1)3𝐴𝐴2′  
minimum.  These (1)1𝐵𝐵2 minima are interconnected by the C2v-symmetric (1)1𝐴𝐴1 transition 
states, which are located 0.68 eV above the (1)3𝐴𝐴2′  minimum.  In other words, according to 
the extrapolated DIP-EOMCC(4h-2p)/6-31G* data, the (1)1𝐵𝐵2 minima resulting from the 
Jahn-Teller distortion of the (1)1𝐸𝐸′ state are 0.12 eV below the (1)1𝐴𝐴1 transition states that 
connect them.  The underlying DIP-EOMCC(3h-1p)/6-31G calculations for the 2-ring system 
place the same (1)1𝐵𝐵2 minima 0.07 eV below the interconnecting (1)1𝐴𝐴1 transition states, in 
good agreement with the extrapolated DIP-EOMCC(4h-2p)/6-31G* energetics, confirming our 
earlier remarks about the reasonably fast convergence of the DIP-EOMCC hierarchy.   

In summary, the topology of the potential energy surfaces around the Jahn-Teller 
conical intersection corresponding to the doubly degenerate (1)1𝐸𝐸′ singlet, which distorts into 
the (1)1𝐵𝐵2 minima separated by the (1)1𝐴𝐴1 transition states about 0.1 eV above them, resulting 
from the DIP-EOMCC(3h-1p)/6-31G calculations, can be seen in Fig. 5 and FIG. S2.  Of note, 
the prediction that the lowest single state component lies 0.56 eV above the (1)3𝐴𝐴2′  triplet 
provides a robust prediction of a triplet ground state for VB−, confirming previous predictions 
[12, 17].  This conclusion is further supported by our MRCI/6-31G* calculations, which place 
the (1)3𝐴𝐴2′  triplet ground-state at 0.36 eV below the lowest singlet, but note that single-state 
MRCI calculations reduce this value.  Also, QM/MM corrections for larger ring sizes act only 
to increase the perceived instability of the singlet states (Table IV). 

As shown in Table 5 and FIG. S2, the next two singlet states above (1)1𝐸𝐸′, i.e., (1)1𝐸𝐸′′ 
and (1)1𝐴𝐴1′′, are predicted to be nearly degenerate at the 𝐷𝐷3ℎ geometry of the (1)3𝐴𝐴2′  ground 
state, with the latter one undergoing a large distortion to (1)1𝐴𝐴2 upon geometrical relaxation. 

 A broad diabatic-based picture of all of the singlet states and how they cross each is 
provided in TABLE S11 and FIG. S2.  In particular, TABLE S11 compiles the vertical and 
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adiabatic energy differences between all the singlet states, as well as the reorganisation energies 
associated with conceivable absorption and emission processes, obtained in the DIP-
EOMCC/6-31G calculations for the 2-ring system.  The extrapolated DIP-EOMCC(4h-2p)/6-
31G* adiabatic transition energies using Eq. (1), which can be found in TABLE S11 and in 
simpler form in Table IV, indicate that emission from the (1)1𝐸𝐸′′ component minimum (2)1𝐴𝐴2 
to the (1)1𝐵𝐵2 lower well on the (1)1𝐸𝐸′ Jahn-Teller surface would be at an energy Δ𝐸𝐸0 = 1.35 
eV, which is consistent with the value of 1.18 eV predicted by MRCI/6-31G*.  These energies 
are increased slightly by considering the QM/MM correction for larger ring sizes, but 
nevertheless the DIP-EOMCC value remains 0.2 eV below the observed photoemission energy. 
This difference is small enough to warrant further consideration as the source of photoemission 
from VB−.  Indeed, the most significant feature of the calculations is that the predicted 
reorganisation energy for (2)1𝐴𝐴2 → (1)1𝐵𝐵2 is 0.10 eV, an extremely low value that approaches 
the observed value of < 0.05 eV based on Huang-Rhys spectral fitting.   

 Methods such as DIP-EOMCC may be included in the QM part of QM/MM 
calculations, allowing the MM aspect to treat the effect of nuclear distortion whilst 2-ring, or 
even 1-ring, QM calculations could be performed to understand the key electronic properties.  
Complete calculations of this type are not performed herein, but instead an indication of likely 
effects is obtained by the calculation of one of its energy components, the h-BN external strain 
energy needed to make the optimised 2-ring structures used in the DIP-EOMCC calculations.  
This is done using a 5-ring MM model, with the outer 3 rings relaxed about frozen inner-ring 
structures using Gaussian-16.  The corrections generated for the adiabatic transition energies 
are listed in TABLE S11, as well as those after correction.  Energies are pushed up to 0.3 – 0.6 
eV, a feature attributed to the larger change in the structures predicted for the singlet states than 
of interest compared to the triplet ground state, but still remain within range of the excitation 
energy used in the experiments.  For example, the critical adiabatic transition energy for 
(2)1𝐴𝐴2 → (1)1𝐵𝐵2  increases for 1.35 eV to 1.44 eV, much nearer the observed value of ~ 1.6 
eV.  Full QM/MM optimisation should reduce the magnitude of the effects reported, however.   

 A feature of the calculations that reduces the likelihood of the observed 
photoluminescence arising from (2)1𝐴𝐴2 → (1)1𝐵𝐵2 emission is that the lowest-energy singlet 
excited state is predicted by DIP-EOMCC to be (1)1𝐴𝐴2, not (2)1𝐴𝐴2.  Hence the operative 
photochemical processes would need to facilitate (1)1𝐴𝐴2 being stable for long enough to 
generate photoemission before internal conversion occurs to the lower-energy state.   
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S8.  HUANG-RHYS AND JAHN-TELLER SPECTRAL SIMULATIONS 
 

A. Ring-size dependence of Huang-Rhys-type simulations of triplet emission 
 

The Huang-Rhys model assumes that the initial and final states can be represented using 
harmonic Born-Oppenheimer potential-energy surfaces, with all intensity arising within the 
Franck-Condon approximation, ignoring vibrational frequency changes between the initial and 
final states and all effects of the Duschinsky rotation matrix.  We simulate similar spectra, 
except that the average frequency change is included, a small effect.  The primary quantities 
required in the simulation are the vibrational displacements 𝛿𝛿𝑖𝑖 in final-state vibrational mode 
i, expressed as dimensionless quantities in terms of the zero-point vibrational length.  Related 
quantities are the Huang-Rhys factors 𝑆𝑆𝑖𝑖 = 𝛿𝛿𝑖𝑖2/2 and the mode reorganisation energy 𝜆𝜆𝑖𝑖 =
ℎ𝜈𝜈𝑖𝑖𝛿𝛿𝑖𝑖2/2.  These we determine from normal-mode analyses, using curvilinear coordinates for 
1 – 5 ring models to minimise the effects of anharmonicity associated with large-amplitude 
bending and torsional motions of the defect centre.  For this defect, such effects are small, 
however, and do diminish with increasing ring size, so traditional rectilinear coordinates are 
used with all QM/MM analyses.  Also, full summations over individual lines are used for the 
pure QM calculations, but this is approximated by a spectral density representation for the 
QM/MM calculations.  Full details, including the (mostly ignored) Duschinsky matrices for the 
QM calculations are given in Supporting Data.  This includes the ground-state normal modes 
and vibration frequencies for the 1-ring, 2-ring, 3-ring, 4-ring, and 5-ring model compounds, 
all triplet excited-state normal modes and displacements for the 2-ring compound, and some 
excited-state data for the 3-ring compound. 

TABLE S12 shows results for all 𝑎𝑎1′  and 𝑒𝑒′ modes of the 2-ring compound for the two 
components of the (1)3𝐸𝐸′ → (1)3𝐴𝐴2′  emission, labelled conventionally; there is no 
displacement in any mode of alternate symmetry and hence no contribution to spectral 
broadening within the Huang-Rhys model.  The table includes results for both the Jahn-Teller 
minima (1)3𝐴𝐴2 and transition state (1)3𝐵𝐵1, even though only data for the minima are actually 
utilised in Huang-Rhys simulations.  A wide variety of modes are predicted to be 
spectroscopically active.   

As a function of ring size, FIG. S3 - FIG. S7 show the three most important modes (i.e., 
those with largest reorganization energy) for 1 - 5 ring compounds, respectively.  Vibrations 
are not localized to the defect centre, but instead depict phonons delocalised throughout the 
model compounds.  The most important modes of both 𝑎𝑎1′  and 𝑒𝑒′ symmetry for compounds in 
this size range are predicted to be the ones of lowest frequency.  This is traced in TABLE S13 
where the frequencies of the most important modes of each ring size are listed.  Note, however, 
that as ring-size increases so does the number of modes that are important, making this analysis 
less meaningful.  A significant feature nevertheless is that increasing the ring size results in a 
significant decrease in the frequency of the lowest 𝑎𝑎1′  and 𝑒𝑒′, and as these are strongly coupled, 
this effect will perturb calculated spectra.  Nevertheless, the splitting of the dominant mode 
into multiple components with increasing ring size (e.g, 17𝑎𝑎1′  splits into two active modes at 
161 cm-1 and 389 cm-1 in the 5-ring compound) negates this effect on low-resolution spectra.  
Fig. S8 shows the variation in the total ground-state vibrational density of states, as well as 
Huang-Rhys spectral density 𝑆𝑆(𝜈𝜈) (with the total Huang-Rhys factor given by 𝑆𝑆 =  ∫ 𝑆𝑆(𝜈𝜈)𝑑𝑑𝜈𝜈∞

0  
and reorganisation energy 𝜆𝜆𝐸𝐸 =  ∫ 𝑆𝑆(𝜈𝜈)𝜈𝜈𝑑𝑑𝜈𝜈∞

0 , showing that this pattern continues to large ring 
sizes, with the properties of the low-frequency acoustic phonons converging slowly.  TABLE 
S13 show that there is no analogous systematic splitting of the critical vibration frequencies for 
high-frequency modes excited by the transition. 



23 
 

TABLE S12.  Projections of the 2-ring CAM-B3LYP/6-31G* displacements for the (1)3𝐴𝐴2 
and (1)3𝐵𝐵1 components of the (1)3𝐸𝐸′′ state onto the normal vibrational modes of the (1)3𝐴𝐴2′  
ground state. 

mode h𝜈𝜈i (1)3𝐴𝐴2 (1)3𝐵𝐵1 
cm-1 eV 𝛿𝛿i Si 𝜆𝜆𝑖𝑖𝐸𝐸  𝛿𝛿i Si 𝜆𝜆𝑖𝑖𝐸𝐸  

17𝑎𝑎1′  285 0.035 -0.76 0.289 0.010 -1.147 0.658 0.023 
16𝑎𝑎1′  403 0.050 0.307 0.047 0.002 0.468 0.110 0.005 
15𝑎𝑎1′  525 0.065 0.121 0.007 0.000 0.124 0.008 0.001 
14𝑎𝑎1′  623 0.077 0.345 0.060 0.005 0.157 0.012 0.001 
13𝑎𝑎1′  706 0.088 -0.432 0.093 0.008 -0.333 0.055 0.005 
12𝑎𝑎1′  913 0.113 -0.013 0.000 0.000 -0.083 0.003 0.000 
11𝑎𝑎1′  1064 0.132 -0.367 0.067 0.009 -0.339 0.057 0.008 
10𝑎𝑎1′  1121 0.139 0.362 0.066 0.009 0.276 0.038 0.005 
9𝑎𝑎1′  1191 0.148 0.067 0.002 0.000 0.066 0.002 0.000 
8𝑎𝑎1′  1280 0.159 0.035 0.001 0.000 -0.032 0.001 0.000 
7𝑎𝑎1′  1390 0.172 0.174 0.015 0.003 0.221 0.024 0.004 
6𝑎𝑎1′  1401 0.174 -0.279 0.039 0.007 -0.283 0.040 0.007 
5𝑎𝑎1′  1441 0.179 0.17 0.014 0.003 0.158 0.012 0.002 
4𝑎𝑎1′  1563 0.194 -0.07 0.002 0.000 -0.087 0.004 0.001 

34𝑒𝑒′ 183 0.023 3.435 5.900 0.134 -1.842 1.696 0.038 
33𝑒𝑒′ 264 0.033 -0.492 0.121 0.004 0.324 0.052 0.002 
32𝑒𝑒′ 396 0.049 -0.378 0.071 0.004 0.198 0.020 0.001 
31𝑒𝑒′ 469 0.058 -0.272 0.037 0.002 0.255 0.033 0.002 
30𝑒𝑒′ 479 0.059 0.407 0.083 0.005 -0.089 0.004 0.000 
29𝑒𝑒′ 532 0.066 0.119 0.007 0.000 -0.106 0.006 0.000 
28𝑒𝑒′ 630 0.078 0.617 0.190 0.015 -0.312 0.049 0.004 
27𝑒𝑒′ 679 0.084 0.235 0.028 0.002 -0.142 0.010 0.001 
26𝑒𝑒′ 731 0.091 -0.021 0.000 0.000 -0.005 0.000 0.000 
25𝑒𝑒′ 814 0.101 0.453 0.103 0.010 -0.261 0.034 0.003 
24𝑒𝑒′ 967 0.120 -0.356 0.063 0.008 0.12 0.007 0.001 
23𝑒𝑒′ 1025 0.127 -0.186 0.017 0.002 0.132 0.009 0.001 
22𝑒𝑒′ 1051 0.130 0.081 0.003 0.000 -0.039 0.001 0.000 
21𝑒𝑒′ 1112 0.138 -0.104 0.005 0.001 0.046 0.001 0.000 
20𝑒𝑒′ 1122 0.139 -0.412 0.085 0.012 0.182 0.017 0.002 
19𝑒𝑒′ 1155 0.143 -0.209 0.022 0.003 0.074 0.003 0.000 
18𝑒𝑒′ 1189 0.147 -0.155 0.012 0.002 0.071 0.003 0.000 
17𝑒𝑒′ 1232 0.153 0.126 0.008 0.001 -0.043 0.001 0.000 
16𝑒𝑒′ 1262 0.156 -0.128 0.008 0.001 0.014 0.000 0.000 
15𝑒𝑒′ 1282 0.159 -0.141 0.010 0.002 0.038 0.001 0.000 
14𝑒𝑒′ 1322 0.164 -0.631 0.199 0.033 0.2 0.020 0.003 
13𝑒𝑒′ 1340 0.166 -0.591 0.175 0.029 0.268 0.036 0.006 
12𝑒𝑒′ 1359 0.168 0.326 0.053 0.009 -0.163 0.013 0.002 
11𝑒𝑒′ 1416 0.176 0.093 0.004 0.001 -0.097 0.005 0.001 
10𝑒𝑒′ 1422 0.176 -0.19 0.018 0.003 0.12 0.007 0.001 
9𝑒𝑒′ 1509 0.187 -0.071 0.003 0.000 0.044 0.001 0.000 
8𝑒𝑒′ 1514 0.188 0.077 0.003 0.001 -0.056 0.002 0.000 
7𝑒𝑒′ 1581 0.196 -0.017 0.000 0.000 -0.026 0.000 0.000 

𝑎𝑎1′  sum    0.703 0.057  1.025 0.063 
𝑒𝑒′ sum    7.229 0.284  2.029 0.071 
total    7.932 0.340  3.054 0.134 
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FIG. S3.  Some key normal vibrational modes for (1)3𝐴𝐴2′  state of the 1-ring model, calculated CAM-
B3LYP/6-31G*, labelled in 𝐶𝐶2𝑣𝑣 symmetry.  The top row shows 𝑎𝑎1′  modes whilst the middle and bottom 
rows show the two components of some 𝑒𝑒′ modes.   

 
FIG. S4.  Some key normal vibrational modes for (1)3𝐴𝐴2′  state of the 2-ring model, calculated CAM-
B3LYP/6-31G*, labelled in 𝐶𝐶2𝑣𝑣 symmetry.  The top row shows modes 17𝑎𝑎1′ , 11𝑎𝑎1′ ,  and 10𝑎𝑎1′  whilst 
the middle and bottom rows show the two components of the 34𝑒𝑒′, 14𝑒𝑒′,  and 13𝑒𝑒′ modes.   
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FIG. S5.  Some key normal vibrational modes for (1)3𝐴𝐴2′  state of the 3-ring model, calculated CAM-
B3LYP/6-31G*, labelled in 𝐶𝐶2𝑣𝑣 symmetry.  The top row shows 𝑎𝑎1′  modes whilst the middle and bottom 
rows show the two components of some 𝑒𝑒′ modes.   
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FIG. S6.  Some key normal vibrational modes for (1)3𝐴𝐴2′  state of the 4-ring model, calculated CAM-
B3LYP/6-31G*, labelled in 𝐶𝐶2𝑣𝑣 symmetry.  The top row shows 𝑎𝑎1′  modes whilst the middle and bottom 
rows show the two components of some 𝑒𝑒′ modes.   
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FIG. S7.  Some key normal vibrational modes for (1)3𝐴𝐴2′  state of the 5-ring model, calculated CAM-
B3LYP/6-31G*, labelled in 𝐶𝐶2𝑣𝑣 symmetry.  The top row shows 𝑎𝑎1′  modes whilst the middle and bottom 
rows show the two components of some 𝑒𝑒′ modes.   
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TABLE S13.  The most important vibrational modes excited as a result of the (1)3𝐴𝐴2 →
(1)3𝐴𝐴2′  emission, in cm-1, as a function of model size. 

2-ring label 1 ring 2 ring 3 ring 4 ring 5 ring 

17𝑎𝑎1′  610 285 233 191 161, 389 

11𝑎𝑎1′  924 1064 830 939 1006 

10𝑎𝑎1′  1077 1121 1152 1359 1211 

34𝑒𝑒′ 333 183 160 135, 435 115, 310 

14𝑒𝑒′ 1156 1322 1309 1303 1329 

13𝑒𝑒′ 1282 1340 1348 1335 1348 

 

 
 

 
FIG. S8.  Convergence of (1)3𝐴𝐴2 → (1)3𝐴𝐴2′  photoemission spectra as a function of ring size from 1 to 
20 rings, calculated using Huang-Rhys-type approximations.  (a) ground-state density of vibrational 
states, (b) Huang-Rhys spectral density, (c) calculated emission spectra.  Dashed lines: curvilinear 
analysis with frequency shifts from CAM-B3LYP data; Solid lines- standard rectilinear Huang-Rhys 
analysis from QM/MM data.   

Huang-Rhys simulated (1)3𝐴𝐴2 → (1)3𝐴𝐴2′  photoluminescence spectra at 0 K are shown in 
FIG. S8c as a function of ring size.  The 1-ring model compound yields spectra that are usefully 
indicative, the 2-ring model gives a realistic bandshape, the 3-ring model is accurate except for 
a 0.05 eV energy shift, the differences between full QM simulation and QM/MM simulation 
for the 5-ring model are small, are there appears to be only little change in spectra after 10 
rings.  Effects on spectra of size expansion appear to be significantly less than those on the 
spectral density (Fig. S8b) from which they are derived.    



29 
 

B. Hamiltonian model for the Jahn-Teller effect  
 

Simulation of the Jahn-Teller effect is commonly performed by assuming that one 
vibrational mode of 𝑒𝑒′ symmetry controls all spectroscopic properties, with all other such 
modes remaining as bystanders.  In terms of the Huang-Rhys model often used to interpret 
spectra involving only non-degenerate electronic states, all modes of 𝑒𝑒′ symmetry do not affect 
the spectral bandshape.  Including only a single 𝑒𝑒′ mode provides an approximation depicting 
the overall shape of the potential-energy surface.  Absorption or emission will always be 
accompanied by a large displacement in this mode.  The major shortcoming of the use of a 
single-mode model is that Duschinsky rotation will almost certainly have a profound impact 
on the nature of this mode in the initial and final states, a feature that cannot be included in a 
1-mode model.  Hence results obtained using this approach are more indicative than 
quantitative. 

 The one-𝑒𝑒′-mode model, including linear and quadratic coupling, can be expressed in 
terms of two diabatic electronic-state components named 1 and 2 and displacements 𝑑𝑑𝑎𝑎 (in 
symmetric modes 𝑎𝑎1) and 𝑑𝑑𝑏𝑏 (in antisymmetric modes 𝑏𝑏2) in each component of the 𝑒𝑒′ mode 
using the Hamiltonian: 

𝐻𝐻 = �𝐻𝐻11 𝐻𝐻12
𝐻𝐻21 𝐻𝐻22

�  
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2
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2
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𝐻𝐻12 = 𝐻𝐻21 = ℎ𝜈𝜈[𝛼𝛼𝑑𝑑𝑏𝑏 + 𝛽𝛽𝑑𝑑𝑎𝑎𝑑𝑑𝑏𝑏]  

where 𝜈𝜈 is the vibration frequency of the 𝑒𝑒′ mode, 𝛼𝛼 is its linear vibronic coupling constant, 
and 𝛽𝛽 the corresponding quadratic coupling.  The lower eigenvalue of this matrix, depicting 
the lower Born-Oppenheimer adiabatic potential-energy surface, is indicated in Fig. 5 as a 
function of 𝑑𝑑𝑏𝑏 (𝑏𝑏2 symmetry, horizontal to page) and 𝑑𝑑𝑎𝑎 (𝑎𝑎1 symmetry, vertical to page); this 
is depicted quantitatively later in FIG. S11, along with the associated upper adiabatic surface.  
Taking 𝑑𝑑𝑎𝑎 > 0, the geometry of the stationary point on the + axis (𝑑𝑑𝑏𝑏 = 0) of the lower surface 
is:   

𝑑𝑑+𝑎𝑎 = 𝛼𝛼
1+𝛽𝛽

  with energy 𝐸𝐸+𝑎𝑎 = −ℎ𝜈𝜈
2

𝛼𝛼2

1+𝛽𝛽
 

relative to that of the conical intersection.  The other stationary point on the –𝑑𝑑𝑎𝑎 axis is:  

𝑑𝑑−𝑎𝑎 = −𝛼𝛼
1−𝛽𝛽

 with energy 𝐸𝐸−𝑎𝑎 = −ℎ𝜈𝜈
2

𝛼𝛼2

1−𝛽𝛽
. 

The minimum is at 𝑑𝑑+𝑎𝑎 and the transition state is at 𝑑𝑑−𝑎𝑎 if 𝛽𝛽 < 0, and vice-versa.  The height 
of the transition state above the minimum is 

 Δ𝐸𝐸‡ = −ℎ𝜈𝜈𝛼𝛼2𝛽𝛽
1−𝛽𝛽2

 . 

 Relevant quantities that are readily calculable using electronic-structure computational 
approaches include: 
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• The energies of the transition state and the conical intersection, by geometry 
optimisation. 

• The vibration frequency 𝜈𝜈 and the coordinates 𝑑𝑑+𝑎𝑎 and 𝑑𝑑−𝑎𝑎, by projecting (perhaps 
using curvilinear coordinates) of the Cartesian displacement vector between the final 
and initial states onto the normal modes of the final state [88]. 

• The energy differences between the upper and lower Born-Oppenheimer surfaces at the 
geometries of the local minima and the transition states. 

All tasks are easy to complete for the triplet manifold as 2-ring CAM-B3LYP/6-31G* normal 
modes are available for the ground state and all excited states.  For the singlet manifold, we 
project calculated displacement vectors onto the normal modes for the triplet ground state.  If 
the vibration frequency is known, then the linear and quadratic coupling parameters can be 
determined using the above equations from the calculated energies of the conical intersection 
and transition state at geometries fully optimised in the appropriate point-group symmetry; the 
data needed to do this is presented in Fig. 5 for all electronic states of interest. 

However, this procedure does not guarantee that the geometries are correctly perceived.  
This is a critical feature as the emission reorganisation energy contribution from the 𝑒𝑒′ modes, 
ignoring Duschinsky rotation effects, is 

𝜆𝜆𝐸𝐸 = ℎ𝜈𝜈
2
𝑑𝑑+𝑎𝑎2   

and is critical to the prediction of emission spectra that adequately reflect the primary 
electronic-structure calculations.  From the displacements, the diabatic-model coupling 
parameters can be given by: 

𝛽𝛽 =  
1 − 𝑥𝑥
1 + 𝑥𝑥

, 𝛼𝛼 =
2

1 + 𝑥𝑥
𝑑𝑑+𝑎𝑎, where 𝑥𝑥 =

−𝑑𝑑+𝑎𝑎
𝑑𝑑−𝑎𝑎

 

and inturn the displacements evaluated from the emission reorganisation energies at the minima 
and the transition state 

𝑑𝑑+𝑎𝑎 = �𝜆𝜆min
E

2ℎ𝜈𝜈
�
1/2 

 ,   𝑑𝑑−𝑎𝑎 = �𝜆𝜆TS
E

2ℎ𝜈𝜈
�
1/2 

. 

Specifically, for the (1)3𝐸𝐸′′ → (1)3𝐴𝐴2′  emission, TABLE S12 lists the CAM-B3LYP 
calculated normal modes of 𝑒𝑒′ and 𝑎𝑎1′  symmetry for the 2-ring model compound.  The totally 
symmetric modes are used in a Huang-Rhys type scheme to calculate broadening for the each 
line calculated owing to the Jahn-Teller effect, including the effect of the Duschinsky matrix 
in determining the average change in vibration frequency for the initial to the final state [11, 
88].  The lowest-frequency totally symmetric vibration, 17𝑎𝑎1′  at 285 cm-1, dominates the 
displacements that occur within the 𝐷𝐷3ℎ point group, aided by in-plane torsional and bending 
modes at 706 and 1064/1121 cm-1, respectively, and then the BN stretch mode 6𝑎𝑎1′  at 1401 cm-

1; all modes delocalise over the sample and are not just restricted to the defect atoms. 

We also see that the 𝑒𝑒′ modes that drive the Jahn-Teller distortion are dominated by the 
lowest frequency mode, 34𝑒𝑒′ at 183 cm-1, which carries half of the reorganisation energy 
associated with the Jahn-Teller effect.  Two other modes, 14𝑒𝑒′ and 13𝑒𝑒′ at 1322 and 1340 cm-

1, respectively, are also important and dominate the imaginary mode at the Jahn-Teller 
transition state.  Mostly, the low-frequency mode is all that is required to provide a reasonable 
description of the displacements, conical intersection and transition-state heights, and the 
energy splittings between the two Born-Oppenheimer surfaces at the stationary points, etc.  
Calculated spectra are sensitive to the mode frequency, however, and as the Duschinsky matrix 
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is being ignored, the most appropriate value for the frequency is desired.  Hence the average 
frequency is determined from the data in TABLE S12 and found to be 300.3 cm-1.   

In the Jahn-Teller model, the total emission reorganisation energy is partitioned into 
contributions from the 𝑎𝑎1′  modes, that simply generate standard Franck-Condon progressions, 
and the 𝑒𝑒′ modes, associated with the tricorn Mexican-hat surface.  For the 2-ring model, the 
total of 0.33 eV splits into 0.08 eV from the 𝑎𝑎1′  modes and 0.25 eV from the 𝑒𝑒′ modes.  For the 
20-ring model, 0.26 eV becomes analogously split into 0.03 eV and 0.23 eV. 

 The parameters in the 1-mode Jahn-Teller model are obtained from the 2-ring model 
by optimizing 𝛼𝛼 and 𝛽𝛽, but with with constraint that the 𝑒𝑒′ contribution to the emission 
reorganisation energy is 0.25 eV, constraining the simulations to reproduce this is critical 
property determining from the emission spectrum.  Hence the fit has only one free parameter.  
Three models are considered, as listed in TABLE S14, in each case setting the vibration 
frequency to 200 cm-1 (dominant single mode), 300 cm-1 (average mode) and 500 cm-1 (to map 
the parameter space).  The optimisation fits the Jahn-Teller surfaces to calculated energetic 
properties, as listed in the table.  Model #2 utilizing the average frequency fits the data best.  
This model is also the natural one suggested by the large-ring calculations reported in FIG. S8 
as the peak in the optical-phonon band of the spectral density that pertains to the Jahn-Teller 
effect occurs at this frequency.  However, in the Jahn-Teller model that results, the energies of 
the conical intersection (CI) and transition state (TS) are less than they should be.  The 
associated minimum geometry 𝑑𝑑+𝑎𝑎 = 3.666 is correct by design, but 𝑑𝑑−𝑎𝑎 = -1.952 should be -
2.64.  Actually, the energy gap between the CI and TS is well reproduced, the poorly 
reproduced energies are all associated with the avoided crossing of the (1)2𝐴𝐴2 and (2)3𝐴𝐴2 
surfaces.  It would seem that the best way to improve the spectral simulations is to explicitly 
include the effect of this crossing rather than to expand the complexity of the Jahn-Teller 
model.  The effects of model variation on calculated emission spectra are shown in FIG. S9 
and are significant.  As the Jahn-Teller frequency is lowered, the contraction of the emission 
band towards its centre is enhanced.  This effect is also shown in Fig. 2 where the Model #2 
Jahn-Teller spectrum is compared to its much broader Huang-Rhys counterpart. 

 Evaluation of the (1)3𝐸𝐸′′ → (1)3𝐴𝐴2′  emission assuming just a Huang-Rhys type 
approximation (Fig. 2) is done using all of the 𝑎𝑎1′  and 𝑒𝑒′ displacement and frequencies for 
(1)3𝐴𝐴2 from TABLE S12. 
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FIG. S9.  Comparison of photoluminescence bandshapes for the (1)3𝐸𝐸′′ →  (1)3𝐴𝐴2′  transition 
evaluated for weak out-of-plane polarised intensity native to the Jahn-Teller distortion for 
Models #1, #2, and #3, and for the stronger in-plane perpendicular polarised intensity (Model 
#2 only) induced by 𝑏𝑏1 modes (TABLE S15).  The out-of-plane Model #2 intensity is also 
shown in Fig. 2.  All spectra share the same adiabatic transition energy 𝐸𝐸0 = 1.72 eV and 
emission reorganisation energy 𝜆𝜆𝐸𝐸 = 0.33 eV. 

 

 

TABLE S14.  Fitting of the Jahn-Teller model for the (1)3𝐸𝐸′′ surface.a 

fit ℎ𝜈𝜈       

/ cm-1 

𝛼𝛼 𝛽𝛽 𝜆𝜆𝐸𝐸((1)3𝐵𝐵1) 

/ eV 

𝐸𝐸𝐶𝐶𝐶𝐶  

/ eV 

𝐸𝐸𝑇𝑇𝑇𝑇 

/ eV 

adiabatic energy 
gap at (1)1𝐴𝐴2 

geom. 

/ eV 

adiabatic energy 
gap at (1)1𝐵𝐵1 

geom. 

/ eV 

CAM-B3LYP    0.13 0.25 0.16 0.90 0.16 

#1 200 3.413 -0.240 0.09 0.19 0.07 0.88 0.43 

#2 300 2.548 -0.305 0.10 0.17 0.08 0.85 0.33 

#3 500 2.102 -0.260 0.09 0.19 0.08 0.87 0.39 

  a: 𝛼𝛼 and 𝛽𝛽 are constrained to yield the CAM-B3LYP value of 𝜆𝜆𝐸𝐸 = 0.25 eV for emission 
from (1)3𝐴𝐴2, hence there is only one free parameter fitted to five energies at each specified 
vibration frequency. 
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C. Transition-moment profile 
 

All spectral simulations require the specification of a transition moment profile.  The 
default one for a Jahn-Teller situation like (1)3𝐸𝐸′′ → (1)3𝐴𝐴2′  involving a forbidden transition 
allows for intensification of the transition through the Hertzberg-Teller mechanism as a 
function of the 𝑒𝑒′ normal mode that induces the geometrical distortion.  In this case, the 
transition-moment operator connecting the initial diabatic state pair used to describe (1)3𝐸𝐸′′ 
(rows) interacting with (1)3𝐴𝐴2′  (column) is 

𝐌𝐌 =  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝑑𝑑𝑎𝑎 
𝑑𝑑𝑏𝑏

� . 

where 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 is the rate of change of the transition moment as a function of nuclear displacement 
away from the conical intersection, assumed to be a constant.   

 The accuracy of this approximation is considered in FIG. S10 where the transition 
moment is linearly interpolated along paths leading from the equilibrium structure of (1)3𝐵𝐵1 
to (1)3𝐴𝐴2′  to (1)3𝐴𝐴2.  Also shown in the figure are the associated energy profiles.  Whereas the 
energy profiles depicts those expected for a tricorn Mexican hat, the transition moment profile 
becomes non-linear and approaches constant values as the 𝐶𝐶2𝑣𝑣 structures are approached, 
indicative that (1)3𝐸𝐸′′ strongly interacts with other nearby states(s).  Indeed, examination of 
the wavefunctions indicates in particular an avoided crossing with (2)3𝐴𝐴2.  The accuracy of 
the linear model depicting the transition-moment profile is therefore questionable.  The value 
of the transition moment at the (1)3𝐴𝐴2 geometry is 0.045 au, only one third of that expected 
from the value of the derivative 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 = 0.037 obtained at the conical intersection.  Indeed, at the 

(1)3𝐴𝐴2 geometry, the intensity is nearly evenly shared between (1)3𝐴𝐴2 and 
(2)3𝐴𝐴2.  Nevertheless, the simulated spectra (Fig. 2) embodying the Jahn-Teller effect use the 
traditional linear model.  Alternatively, the spectrum in Fig. 2 calculated using the Huang-Rhys 
type approach, motivated by FIG. S10, assumes a constant transition moment profile.  
Explicitly adding the transition moment derivatives to include both Franck-Condon and 
Herzberg-Teller intensity indeed produces little change to the calculated spectrum, something 
unintuitive for a system displaying the Jahn-Teller effect.   

 
FIG. S10.  Energy and transition moment profiles along lines interpolated between the 2-ring 
CAM-B3LYP optimised geometries of (1)3𝐵𝐵1, (1)3𝐸𝐸′′, and then (1)3𝐴𝐴2. 
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D. The (𝟏𝟏)𝟏𝟏𝑬𝑬′′ → (𝟏𝟏)𝟏𝟏𝑨𝑨𝟐𝟐′  transition 
 

We briefly consider the Jahn-Teller effect on the (1)3𝐸𝐸′′ state and the (1)3𝐸𝐸′′ →
(1)3𝐴𝐴2′  transition in FIG. S11.  This shows as a function of displacements 𝑑𝑑𝑎𝑎 and 𝑑𝑑𝑏𝑏 the 
utilised Born-Oppenheimer surface for (1)3𝐴𝐴2′ , the lower and upper surfaces for (1)3𝐸𝐸′′, and 
the transition-moment profile assuming the linear model.  Of note, the lower and upper 
components of (1)3𝐸𝐸′′ manifest a derivative discontinuity at the conical intersection, whilst 
the transition moment displays a phase jump of π along a line (Berry phase).  To avoid these 
problems, the Born-Oppenheimer approximation is not used in this analysis, with all spectra 
determined directly by solving the full electron-vibration Hamiltonian H in the basis of the 
coupled diabatic states. 

E.  In-plane polarised intensity through the Herzberg-Teller mechanism 
 

For the (1)3𝐸𝐸′′ → (1)3𝐴𝐴2′  transition, intensity can be borrowed from the nearby intense 
(1)3𝐸𝐸′ → (1)3𝐴𝐴2′  transition, through vibronic coupling in out-of-plane modes of 𝑒𝑒′ symmetry.  
This would facilitate dipole-allowed emission polarised within the plane of the h-BN, adding 
to the out-of-plane polarised emission intrinsically associated with the Jahn-Teller distortion.  
To model this, we displace the (1)3𝐴𝐴2 state using the ground-state out-of-plane normal modes, 
evaluating the derivatives of the calculated in-plane intensity with respect to these 
displacements.  The results are given in TABLE S15.  Borrowed intensity polarised parallel to 
the 𝐶𝐶2𝑣𝑣 axis of one of the (1)3𝐴𝐴2 wells gains 0.3 times the intensity of the native out-of-plane 
polarisation, whilst borrowed intensity polarised perpendicular to that axis is 7.0 times stronger.  
Averaging over all three (1)3𝐴𝐴2 wells will equally distribute the intensity within the h-BN 
plane. 

The spectral bandshapes associated with native out-of-plane intensity and borrowed in-
plane intensity are naively expected to be quite different as the out-of-plane intensity demands 
that the change in quanta in mode 𝑑𝑑𝑎𝑎 be odd whereas this change must be even for the in-plane 
polarisation.  Also, each vibrational mode listed in TABLE S15 produces a false origin upon 
which the Huang-Rhys and other spectral progressions are based, each mimicking a ZPL in 
terms of its effect on spectral intensity.  Net spectral broadening involves the summation of the 
effects in each mode, representable as an effective reorganisation energy listed in the table, 
which will differ from the analogous quantity demanded by odd-quanta excitation in 𝑑𝑑𝑎𝑎 in the 
Jahn-Teller case.  The calculated Jahn-Teller spectral profiles for the native out-of-plane 
emission and the intense perpendicular-polarised emission are compared in FIG. S12.  The 
calculated oscillator strengths for each band and polarisation are listed in TABLE S16.   

 The (1)3A1
′′ → (1)3𝐴𝐴2′  transition can be intensified by similar means.  Analogous 

calculations, predict a negligible effect, however. 
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FIG. S11.  Born-Oppenheimer potential energy surfaces (in eV relative to the conical 
intersection) and transition moment profile (in a.u.) pertaining to the (1)3𝐸𝐸′′ →  (1)3𝐴𝐴2′  
transition, from fits to 2-ring CAM-B3LYP/6-31G* data.  Nuclear displacement are shown 
relative to that at the (1)3𝐴𝐴2 minima of 𝛿𝛿 = 3.666.  The lower and upper surfaces of (1)3𝐸𝐸′′ 
display derivative discontinuities at the conical intersection whilst the transition moment 
profile manifests a line along which the phase jumps by π (Berry phase).  Note that the height 
of the transition state in the (1)3𝐸𝐸′′ from the model potential is 0.08 eV, less than the CAM-
B3LYP calculated value of 0.16 eV, with key energy differences between the lower and 
upper surfaces also by varying by up to 0.2 eV.  The lower surface for (1)3𝐸𝐸′′ is also shown 
in Fig. 2.  Born-Oppenheimer surfaces are not used in the Jahn-Teller spectral simulations. 
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TABLE S15.  Herzberg-Teller transition-moment derivatives 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 for the (1)3𝐴𝐴2 state, in 
a.u., polarised in-plane and either parallel or perpendicular to the 𝐶𝐶2𝑣𝑣 axis.  For emission at 0 
K, the total borrowed intensity is listed relative to that for the Jahn-Teller allowed out-of-plane 
intensity, as well as the effective reorganisation energy associated with the nuclear motion.   

𝑎𝑎2 modes, polarised parallel  𝑏𝑏1 modes, polarised perpendicular 
ℎ𝜈𝜈 / cm-1 ℎ𝜈𝜈 / eV 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑  ℎ𝜈𝜈 / cm-1 ℎ𝜈𝜈 / eV 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 

36 0.004 -0.0024  221 0.027 0.0202 
82 0.010 -0.001  682 0.085 -0.0188 

108 0.013 -0.0048  173 0.021 0.0141 
148 0.018 -0.0033  757 0.094 0.0129 
173 0.021 -0.003  655 0.081 0.011 
208 0.026 -0.0017  618 0.077 -0.0098 
231 0.029 -0.0014  108 0.013 0.0088 
327 0.041 0.0012  36 0.004 -0.0086 
333 0.041 0.0011  748 0.093 -0.0086 
337 0.042 -0.0009  52 0.006 0.0078 
371 0.046 -0.0044  337 0.042 0.0062 
610 0.076 0.0004  208 0.026 -0.006 
618 0.077 0.0004  643 0.080 0.0055 
643 0.080 -0.0011  148 0.018 -0.0045 
668 0.083 0.0001  327 0.041 -0.0034 
682 0.085 0.0001  909 0.113 -0.0019 
699 0.087 -0.0001  306 0.038 0.0017 
748 0.093 0.0019  380 0.047 -0.0015 
909 0.113 -0.0001  699 0.087 -0.0014 
936 0.116 -0.0001  910 0.113 -0.0012 
937 0.116 0.0003  699 0.087 0.0007 
955 0.118 -0.0001  371 0.046 -0.0005 

    937 0.116 0.0003 
    957 0.119 -0.0002 
    955 0.118 0 

relative intensity 0.3    7.0 
effective 𝜆𝜆𝐸𝐸 (eV) 0.03    0.05 

 

TABLE S16.  Summary of 2-ring CAM-B3LYP/6-31G* (triplet) and EOM-CC/CASSCF(10,6)/6-
31G* (singlet) calculated absorption and emission oscillator strengths and radiative lifetimes, including 
both Franck-Condon and Herzberg-Teller contributions, for different electric-dipole polarisation 
directions, for transitions of the VB− defect of h-BN. 

 transition polarisation mechanism 𝑓𝑓𝑜𝑜𝑠𝑠𝑜𝑜 Emission 
lifetime / µs 

(1)3𝐸𝐸′′ ←  (1)3𝐴𝐴2′  normal Franck-Condon 0 - 
 normal Herzberg-Teller 0.00010 - 
 in-plane Herzberg-Teller ~ 0.0007b - 

(1)3𝐴𝐴1′′ ←  (1)3𝐴𝐴2′  normala Franck-Condon 0.00023 - 
(1)3𝐸𝐸′ ←  (1)3𝐴𝐴2′  in-plane Franck-Condon 0.39 - 
(1)3𝐸𝐸′′ → (1)3𝐴𝐴2′  normal Herzberg-Teller 0.00007 172 

 in-plane Herzberg-Teller 0.00049 24 
(1)1𝐸𝐸′′ → (1)1𝐸𝐸′ normal Herzberg-Teller 0.00059 25 

 in-plane Herzberg-Teller ~ 0.004b ~4b 

a: other components not evaluated. 
b: estimate using calculated factor for triplet emission for analogous states. 
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F. Simulated absorption spectra 
 
 The calculations also permit the evaluation of absorption spectra.  To date, there is no 
experimental data to which this can be compared.  Spectra are calculated for the (1)3𝐸𝐸′′ ←
 (1)3𝐴𝐴2′   absorption using the same Jahn-Teller surface as used in the calculations of emission.  
For the (1)3𝐴𝐴1′′ ←  (1)3𝐴𝐴2′   absorption, symmetry lowering to 𝐶𝐶2𝑣𝑣 occurs, but the way in which 
such lowering remains compatible with the global 3-fold defect symmetry has not been 
investigated.  Hence a Huang-Rhys type model is used.  For the (1)3𝐸𝐸′ ←  (1)3𝐴𝐴2′   absorption, 
a very large Jahn-Teller distortion occurs, but the transition state in the tricorn surface is very 
shallow (Fig. 2) and it is clear that other perturbations control details.  Hence we again use a 
Huang-Rhys type model, simulating spectra for both (1)3𝐴𝐴1 ←  (1)3𝐴𝐴2′  and (2)3𝐵𝐵2 ←
 (1)3𝐴𝐴2′ ; inclusion of the Jahn-Teller effect is predicted to slightly narrow the absorption about 
the band centres, akin to the effect seen in Fig. 2 for (1)3𝐸𝐸′ →  (1)3𝐴𝐴2′  photoemission.  
Calculated spectra are shown in FIG. S12.  The data used in these simulations is obtained by 
projecting the displacement vector depicting the change in geometry upon photoabsorption 
onto the normal modes of the appropriate excited state.  The excited-state frequencies and 
projections are listed in TABLE S17. 

 
FIG. S12.  Calculated absorption band shapes within the triplet manifold; only the (1)3𝐸𝐸′ ←
 (1)3𝐴𝐴2′  transitions exciting (1)3𝐴𝐴1 and (2)3𝐵𝐵2 is predicted to have significant intensity, see 
TABLE S16. 
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TABLE S17.  Calculated excited-state vibration frequencies 𝜈𝜈𝑖𝑖 (in cm-1) and the dimensionless 
displacement 𝛿𝛿𝑖𝑖 obtained by projecting the change in geometry upon excitation onto the normal modes 
of the excited state; the associated vibrational contributions to the reorganisation energy 𝜆𝜆𝑖𝑖𝐴𝐴 are also 
listed (in cm-1). 

(1)3𝐴𝐴2 ←  (1)3𝐴𝐴2′  (1)3𝐵𝐵1 ←  (1)3𝐴𝐴2′  (2)3𝐴𝐴2 ←  (1)3𝐴𝐴2′  (1)3𝐴𝐴1 ←  (1)3𝐴𝐴2′  (2)3𝐵𝐵2 ←  (1)3𝐴𝐴2′  

𝜈𝜈𝑖𝑖 𝛿𝛿𝑖𝑖 𝜆𝜆𝑖𝑖𝐴𝐴 𝜈𝜈𝑖𝑖 𝛿𝛿𝑖𝑖 𝜆𝜆𝑖𝑖𝐴𝐴 𝜈𝜈𝑖𝑖 𝛿𝛿𝑖𝑖 𝜆𝜆𝑖𝑖𝐴𝐴 𝜈𝜈𝑖𝑖 𝛿𝛿𝑖𝑖 𝜆𝜆𝑖𝑖𝐴𝐴 𝜈𝜈𝑖𝑖 𝛿𝛿𝑖𝑖 𝜆𝜆𝑖𝑖𝐴𝐴 

192 -3.469 1158 188 -1.835 317 163 0.406 14 192 -3.469 1158 187 -2.273 483 
268 0.045 0 259 0.115 2 262 0.291 11 268 0.045 0 269 -0.166 4 
294 -1.223 220 295 1.264 236 288 -1.262 230 294 -1.223 220 292 3.425 1713 
397 -0.530 56 394 0.380 28 392 0.222 10 397 -0.530 56 392 0.759 113 
399 0.328 22 399 0.278 15 399 0.311 19 399 0.328 22 394 -0.309 19 
480 -0.484 56 454 -0.492 55 457 -0.146 5 480 -0.484 56 464 -0.365 31 
511 -0.226 13 479 0.284 19 486 -0.430 45 511 -0.226 13 513 0.028 0 
522 0.096 2 522 -0.131 5 521 0.147 6 522 0.096 2 518 0.093 2 
560 -0.427 51 535 0.106 3 541 0.200 11 560 -0.427 51 591 -0.044 1 
624 0.297 28 615 0.240 18 611 -0.148 7 624 0.297 28 629 -1.353 575 
635 -0.318 32 628 0.035 0 628 0.052 1 635 -0.318 32 656 -0.352 41 
678 0.194 13 676 -0.093 3 675 -0.035 0 678 0.194 13 677 0.233 18 
710 0.390 54 712 0.299 32 710 -0.315 35 710 0.390 54 711 1.002 357 
739 -0.027 0 739 -0.078 2 738 -0.089 3 739 -0.027 0 754 0.343 44 
817 0.352 51 793 -0.114 5 790 0.074 2 817 0.352 51 832 0.292 36 
905 -0.022 0 906 0.081 3 903 -0.004 0 905 -0.022 0 904 0.235 25 
959 -0.312 47 960 0.152 11 961 0.161 13 959 -0.312 47 958 -0.140 9 
1016 -0.244 30 1009 0.007 0 1017 0.144 11 1016 -0.244 30 1019 -0.031 1 
1046 0.133 9 1046 -0.124 8 1046 -0.065 2 1046 0.133 9 1042 0.088 4 
1056 -0.259 35 1055 0.327 56 1053 -0.385 78 1056 -0.259 35 1051 0.160 14 
1092 0.448 110 1100 -0.305 51 1092 0.461 116 1092 0.448 110 1093 0.199 22 
1114 0.277 43 1109 0.077 3 1107 -0.052 2 1114 0.277 43 1108 0.051 2 
1116 -0.249 34 1115 0.005 0 1113 0.033 1 1116 -0.249 34 1113 0.032 1 
1146 -0.011 0 1149 0.004 0 1144 -0.309 55 1146 -0.011 0 1148 0.070 3 
1182 -0.143 12 1175 0.234 32 1154 0.198 23 1182 -0.143 12 1171 0.039 1 
1186 0.121 9 1185 0.158 15 1181 0.161 15 1186 0.121 9 1179 -0.103 6 
1218 -0.182 20 1188 -0.229 31 1184 0.088 5 1218 -0.182 20 1222 -0.045 1 
1229 -0.075 3 1224 0.056 2 1225 -0.113 8 1229 -0.075 3 1227 0.051 2 
1265 -0.199 25 1247 0.125 10 1251 0.057 2 1265 -0.199 25 1241 -0.081 4 
1280 0.104 7 1264 0.120 9 1260 0.191 23 1280 0.104 7 1267 -0.081 4 
1321 0.158 16 1270 0.051 2 1264 0.039 1 1321 0.158 16 1320 0.149 15 
1345 0.308 64 1328 -0.194 25 1323 0.024 0 1345 0.308 64 1345 0.001 0 
1363 0.458 143 1345 0.185 23 1345 0.045 1 1363 0.458 143 1372 -0.049 2 
1375 0.557 213 1363 0.214 31 1362 0.205 29 1375 0.557 213 1386 0.062 3 
1403 -0.193 26 1401 -0.268 50 1399 0.233 38 1403 -0.193 26 1399 0.251 44 
1420 0.166 20 1406 -0.103 7 1412 -0.003 0 1420 0.166 20 1414 0.026 1 
1438 0.253 46 1417 0.003 0 1418 -0.021 0 1438 0.253 46 1427 -0.056 2 
1449 0.038 1 1438 0.142 15 1440 0.129 12 1449 0.038 1 1487 -0.079 5 
1505 0.088 6 1488 0.001 0 1480 -0.077 4 1505 0.088 6 1505 -0.004 0 
1526 0.166 21 1509 -0.009 0 1510 0.006 0 1526 0.166 21 1546 -0.018 0 
1551 -0.111 10 1539 -0.076 4 1539 0.078 5 1551 -0.111 10 1579 -0.220 38 
1583 -0.047 2 1550 -0.062 3 1549 -0.083 5 1583 -0.047 2 1688 0.826 575 
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G. The (𝟏𝟏)𝟏𝟏𝑬𝑬′′ → (𝟏𝟏)𝟏𝟏𝟏𝟏′ transition 
 

Simulation of the emission spectrum within the singlet manifold is complicated by the 
initial and final states both being doubly degenerate (1)1𝐸𝐸′′ → (1)1𝐸𝐸′, with the Jahn-Teller 
effect on the initial state being small but its interaction with (1)1𝐴𝐴1′′  large, as highlighted in 
FIG. S2.  The global qualitative nature of the surfaces pertaining to the initial state are therefore 
difficult to reproduce using simple models.  Hence the approach taken is to consider that 
emission only occurs from isolated (2)1𝐴𝐴2 wells.  The final state undergoes a strong Jahn-
Teller distortion that is readily modelled using the single 𝑒𝑒′ mode approximation.  Another 
difficulty is that the normal modes of vibration are not available for any singlet state.  As a 
result, we project displacement vectors pertaining to differences in 2-ring singlet-state 
CASSCF(10,6)/6-31G* geometries onto the normal modes of (1)3𝐴𝐴2′ .  This is a crude 
approximation, but one that will capture the broad qualitative features of the spectra.  The 
results are given in TABLE S18. 

 Table IV and TABLE S10 indicate that the geometries of (2)1𝐴𝐴2 and (1)1𝐴𝐴1 are very 
similar, leading to the very small emission reorganisation energy of 0.03 eV.  Nevertheless, 
(1)1𝐴𝐴1 is predicted to form the transition states on the tricorn Mexican hat surface, with the 
(1)1𝐵𝐵2 minima lying 0.07 eV deeper so that the total reorganisation energy is 0.10 eV.  The 
normal-mode projections listed in TABLE S18 depict a reorganisation energy to (1)1𝐴𝐴1 of 
0.07 eV, made up 0.03 eV from 𝑎𝑎1′  modes and 0.04 eV from 𝑒𝑒′ modes, which is larger than the 
expected value of 0.03 eV.  TABLE S10, however, indicates a that a large Duschinsky rotation 
effect contributes to the reorganisation energy as that for the corresponding absorption is 0.17 
eV, and hence the value projected onto the (1)3𝐴𝐴2′  modes appears reasonable.  To re-establish 
parameters suitable for simulating the emission spectrum, we neglect altogether the 
displacements in the Jahn-Teller-active (𝑒𝑒′) modes and just use the totally symmetric (𝑎𝑎1′ ) 
ones. 

 No means is available for determining the vibration frequency responsible for the Jahn-
Teller distortion in (1)1𝐸𝐸′, but useful choices would appear to be the dominant mode revealed 
in TABLE S18 at 469 cm-1, and the average mode frequency calculated for (1)3𝐸𝐸′, 300 cm-1.  
The available data for fitting the Jahn-Teller parameters 𝛼𝛼 and 𝛽𝛽 are the heights of the conical 
intersection and transition state (Fig. 5) and the vertical excitation energies between 
components (TABLE S10).  Two realistic models are presented in TABLE S19, named #1 and 
#2, with the resulting emission spectra shown in FIG. S13(a).  The spectrum for Model #2 is 
also reproduced in Fig. 2.  Both spectra are in accord with the basic shapes observed for VB− 
photoluminescence, predicting much narrower spectra than those simulated for emission within 
the triplet manifold. 

 In FIG. S13(b) and (c), the calculated spectrum in FIG. S13(a) for Model #2 is 
differently represented.  First, the spectrum is continued down to zero frequency.  The main 
part of the emission corresponds to the (2)1𝐴𝐴2 → (1)1𝐵𝐵2 is predicted to occur at an energy of 
0.43 eV or 2900 nm (TABLE S10).  This is a feature well reproduced by the model that was 
not involved in its fitting (TABLE S19), indicating that the model does indeed provide a robust 
description of the potential-energy surfaces involved.  Hence little emission occurs in the high-
energy region associated with (2)1𝐴𝐴2 → (1)1𝐴𝐴1 as this is vibronic intensity only.  In FIG. 
S13(c), the emission is shown at high resolution to indicate that spectra associated with the  
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TABLE S18.  Projections of the 2-ring CAM-B3LYP/6-31G* displacements for the (1)3𝐴𝐴2 
and (1)3𝐵𝐵1 components of the (1)3𝐸𝐸′′ state onto the normal vibrational modes of the (1)3𝐴𝐴2′  
ground state, determining the reorganisation energies in each mode. 

mode 
h𝜈𝜈i  (1)3𝐴𝐴2 

cm-1 eV  𝛿𝛿i Si 𝜆𝜆𝑖𝑖𝐸𝐸  
17𝑎𝑎1′  285 0.035  -0.373 0.070 0.002 
16𝑎𝑎1′  403 0.050  0.051 0.001 0.000 
15𝑎𝑎1′  525 0.065  0.096 0.005 0.000 
14𝑎𝑎1′  623 0.077  0.334 0.056 0.004 
13𝑎𝑎1′  706 0.088  -0.388 0.075 0.007 
12𝑎𝑎1′  913 0.113  0.076 0.003 0.000 
11𝑎𝑎1′  1064 0.132  -0.219 0.024 0.003 
10𝑎𝑎1′  1121 0.139  0.315 0.050 0.007 
9𝑎𝑎1′  1191 0.148  0.070 0.002 0.000 
8𝑎𝑎1′  1280 0.159  0.090 0.004 0.001 
7𝑎𝑎1′  1390 0.172  0.004 0.000 0.000 
6𝑎𝑎1′  1401 0.174  -0.180 0.016 0.003 
5𝑎𝑎1′  1441 0.179  0.152 0.012 0.002 
4𝑎𝑎1′  1563 0.194  -0.002 0.000 0.000 

34𝑒𝑒′ 183 0.023  -0.180 0.0162 0.000 
33𝑒𝑒′ 264 0.033  0.350 0.0613 0.002 
32𝑒𝑒′ 396 0.049  -0.054 0.0015 0.000 
31𝑒𝑒′ 469 0.058  0.535 0.1431 0.008 
30𝑒𝑒′ 479 0.059  -0.085 0.0036 0.000 
29𝑒𝑒′ 532 0.066  -0.223 0.0249 0.002 
28𝑒𝑒′ 630 0.078  -0.281 0.0395 0.003 
27𝑒𝑒′ 679 0.084  -0.083 0.0034 0.000 
26𝑒𝑒′ 731 0.091  -0.154 0.0119 0.001 
25𝑒𝑒′ 814 0.101  -0.191 0.0182 0.002 
24𝑒𝑒′ 967 0.120  0.116 0.0067 0.001 
23𝑒𝑒′ 1025 0.127  0.083 0.0034 0.000 
22𝑒𝑒′ 1051 0.130  -0.032 0.0005 0.000 
21𝑒𝑒′ 1112 0.138  0.031 0.0005 0.000 
20𝑒𝑒′ 1122 0.139  0.231 0.0267 0.004 
19𝑒𝑒′ 1155 0.143  0.047 0.0011 0.000 
18𝑒𝑒′ 1189 0.147  0.076 0.0029 0.000 
17𝑒𝑒′ 1232 0.153  -0.105 0.0055 0.001 
16𝑒𝑒′ 1262 0.156  0.017 0.0001 0.000 
15𝑒𝑒′ 1282 0.159  0.089 0.0040 0.001 
14𝑒𝑒′ 1322 0.164  0.301 0.0453 0.007 
13𝑒𝑒′ 1340 0.166  0.238 0.0283 0.005 
12𝑒𝑒′ 1359 0.168  -0.132 0.0087 0.001 
11𝑒𝑒′ 1416 0.176  -0.065 0.0021 0.000 
10𝑒𝑒′ 1422 0.176  0.090 0.0041 0.001 
9𝑒𝑒′ 1509 0.187  0.035 0.0006 0.000 
8𝑒𝑒′ 1514 0.188  -0.051 0.0013 0.000 
7𝑒𝑒′ 1581 0.196  -0.026 0.0003 0.000 

𝑎𝑎1′  sum     0.32 0.030 
𝑒𝑒′ sum     0.47 0.041 
total     0.79 0.071 
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TABLE S19.  Fitting Jahn-Teller parameters to the DIP-EOMCC data for the (1)1𝐸𝐸′ surface. 

fit ℎ𝜈𝜈      
/ cm-1 

𝛼𝛼 𝛽𝛽 𝐸𝐸𝐶𝐶𝐶𝐶 

/ eV 

𝐸𝐸𝑇𝑇𝑇𝑇 

/ eV 

adiabatic energy gap 
at (1)1𝐵𝐵2 geom. 

/ eV 

adiabatic energy 
gap at (1)1𝐴𝐴 geom. 

/ eV 

DIP-EOMCC    0.20 0.07 1.16 0.99 

#1 469 3.163 -0.115 0.33 0.07 1.38 0.99 

#2 300 3.588 -0.138 0.28 0.07 1.18 0.79 

  

 

 

 
FIG. S13.  Variants of calculated emission spectra in the singlet manifold at 77 K.  (a) Models 
#1 and #2 from TABLE S19 in the spectral region observed experimentally.  (b) The emission 
predicted by Model #2 extended down to zero energy.  (c) The emission predicted by Model 
#2 shown in higher resolution, emphasising that Jahn-Teller spectra can appear very different 
from the form progression-based form anticipated by the Huang-Rhys model.  (d) Model #2 
varied by interchanging the ordering of the (2)1𝐴𝐴2 and (1)1𝐵𝐵1 components of the (1)1𝐸𝐸′′ state. 
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Jahn-Teller effect need not show patterns at all reminiscent of the simple progressions 
envisaged by the Huang-Rhys model, there being no simple pattern between the energies of 
the ZPl and the phonon side bands.  This is because the potential-energy surface is extremely 
anharmonic (FIG. S11) and facilitates quantum tunnelling between its three wells.  Finally, 
FIG. S13(d) shows the emission predicted by a variation of Model #2 in which the ordering of 
the (2)1𝐴𝐴2 and (1)1𝐵𝐵1 components of the (1)1𝐸𝐸′′ state is reversed.  This makes the high-
energy transition allowed and the low-energy one forbidden, reversing the pattern from FIG. 
S13(b).  The emission then becomes extremely sharp.  This goes to show just how sensitive 
spectra can be to the details of the Jahn-Teller surface.  Whilst the Huang-Rhys approximation 
to the Jahn-Teller model for emission in the triplet manifold (Fig. 2) are somewhat similar, this 
is not a universally expected result. 

 Similarly, the simulated spectra are for the native out-of-plane intensity induced by the 
Jahn-Teller distortion.  The selection rules change for Hertzberg-Teller transitions associated 
with vibronic mixing of the (1)1𝐸𝐸′ state into (1)1𝐸𝐸′′, which, like that seen in the triplet 
manifold, is expected to be significant or even dominant.  Again, whilst the change in selection 
rules manifested little consequence for the overall bandshape in FIG. S12 for the triplet 
manifold, this result would not necessarily apply to the singlet manifold.   
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S9.  PHOTOCHEMICAL AND OPTICAL RATE PROCESSES 
 

 The accurate prediction of photoluminescence and photochemical rate processes is a 
challenging task, but order-of-magnitude estimates can readily be obtained using simple 
diabatic models for the potential-energy surfaces.  Ignoring spectral bandwidth, photoemission 
lifetimes 𝜏𝜏 can be estimated from the associated rate constants 𝑘𝑘 knowing the vertical emission 
frequency 𝜈𝜈 = 𝐸𝐸𝑣𝑣𝐸𝐸/ℎ and associated oscillator strength 𝑓𝑓𝑜𝑜𝑠𝑠𝑜𝑜 using the Einstein equation 

1
𝜏𝜏

= 𝑘𝑘 = 2𝜋𝜋𝑒𝑒2

𝜖𝜖0𝑚𝑚𝑒𝑒𝑜𝑜3
𝜈𝜈2𝑓𝑓𝑜𝑜𝑠𝑠𝑜𝑜  where 𝑓𝑓𝑜𝑜𝑠𝑠𝑜𝑜 = 2𝑚𝑚𝑒𝑒𝑑𝑑2𝜈𝜈

3ℏ2
 

and 𝑑𝑑 is the electric transition dipole moment.  The vertical emission energies are 𝐸𝐸𝑣𝑣𝐸𝐸 = Δ𝐸𝐸0 −
𝜆𝜆𝐸𝐸 = 1.39 eV and 1.21 eV for the triplet and singlet manifolds, respectively, (Tables 3 and 4) 
with the calculated out-of-plane oscillator strengths being 6.9×10-5 and 5.8×10-4, respectively 
(TABLE S16).  This leads to triplet and singlet radiative lifetimes of 170 µs and 27 µs, 
respectively.  However, emission can also occur through Herzberg-Teller allowed in-plane 
emission, including which calculations predict a revised triplet lifetime of 20 µs.  Assuming 
the same enhancement, the singlet radiative lifetime is then estimated to be 3 µs.  These values 
are shown on Fig. 6 and FIG. S14. 

 For intersystem crossing (ISC) processes involving transfer between the triplet and 
singlet manifolds, reaction rates at high temperature can be obtained from the Levich-
Dogonadze equation [89] for non-adiabatic rate process 

1
𝜏𝜏

= 𝑘𝑘 = 2𝜋𝜋𝑉𝑉𝑆𝑆𝑆𝑆
2

ℏ�4𝜋𝜋𝜆𝜆𝑘𝑘𝛽𝛽𝑇𝑇�
1/2  exp −Δ𝐸𝐸

‡

𝑘𝑘𝛽𝛽𝑇𝑇
   where   Δ𝐸𝐸‡ = (Δ𝐸𝐸0+𝜆𝜆)

4𝜆𝜆
 

is the activation energy needed to reach the conical intersection, as determined by Kubo and 
Towozawa [90] and by Hush [91], and 𝑉𝑉𝑇𝑇𝑆𝑆 is the spin-orbit coupling, here evaluated at the 
available geometry closest to the conical intersection.  The high-temperature limit applies when 
all important vibrational motions with frequencies have frequencies < 205 cm-1 at 295 K or < 
54 cm-1 at 77 K.  Based on the results presented in TABLE S17 and TABLE S18, such a limit 
clearly does not apply to the defects of concern.  Whilst improved semiclassical approaches 
are available for which the required data is mostly already available, [92-96] cancellation of 
errors is known to render the more primitive approach to be widely applicable to room-
temperature processes throughout chemistry, physics, and biochemistry (see e.g. [97]).  Values 
of the parameters involved for the processes of interest herein are listed in TABLE S20, with 
the resulting lifetimes displayed in Fig. 6 for 77 K, whilst those calculated at 295 K are shown 
in FIG. S14.  The spin-orbit couplings are evaluated using 1-ring MRCI(10,6)/6-31G*. 

Finally, we consider internal conversion (IC) processes in which excitation is 
transferred between states within the same spin manifold.  If there is no barrier to the reaction, 
then ultrafast relaxation will occur similar to energy relaxation within the one electronic state.  
Processes for which there is no barrier include relaxation from the optically allowed (1)3𝐸𝐸′ 
state excited by the incoming radiation.  Excited-state vibrational analyses indicate that this 
state is not a local minimum but undergoes barrierless out-of-plane relaxation from (1)3𝐴𝐴1 to 
(1)3𝐴𝐴2 and from (2)3𝐵𝐵2 to (2)3𝐴𝐴2 (Table III, Fig. 6). 
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TABLE S20.  Estimation of intersystem crossing lifetimes.  

from to Δ𝐸𝐸0 / eV 𝜆𝜆 / eV 𝑉𝑉𝑇𝑇𝑆𝑆 / cm-1 𝜏𝜏 at 77 K 𝜏𝜏 at 295 K 

(1)1𝐵𝐵1 (1)3𝐴𝐴1 -0.14 0.20 4.1 150 ms 30 ns 

(1)1𝐵𝐵1 (1)3𝐴𝐴2 -0.51 1.15 0.96 1.5 ms 150 ns 

(1)3𝐴𝐴2 (1)1𝐵𝐵2 -0.99 1.25 2.1 4 ns 1.7 ns 

(1)3𝐴𝐴1′′ (1)1𝐵𝐵2 -1.29 0.21 0.068 1084 s 1017 s 

(2)3𝐴𝐴2 (1)1𝐵𝐵2 -1.17 0.21 0.041 1065 s 1013 s 

(1)1𝐵𝐵1 (2)3𝐴𝐴2 -0.33 0.72 0.012 33 ms 180 µs 
(1)1𝐴𝐴1 (1)3𝐴𝐴2′  -1.00 0.30 0.42 1018 s 110 ms 

(1)1𝐵𝐵2 (1)3𝐴𝐴2′  proceeds via (1)1𝐴𝐴1 1023 s 1.8 s 

 
 Internal conversion between states that are both local minima on the potential energy 
surface is modelled using transition-state theory  

1
𝜏𝜏

= 𝑘𝑘 = 𝑘𝑘𝛽𝛽𝑇𝑇
ℎ

 exp −Δ𝐸𝐸
‡

𝑘𝑘𝛽𝛽𝑇𝑇
, 

estimating the activation energy Δ𝐸𝐸‡ as before.  Data and calculated lifetimes are summarised 
in TABLE S21 and displayed on Fig. 6 for 77 K, whilst those calculated at 295 K are shown 
in FIG. S14.  For avoided crossings, this expression ignores the lowering of the transition-state 
energy associated with resonance between the reactants and products and hence underestimates 
reaction rates, in a way that is temperature dependent.  For conical intersections, this expression 
overestimates reaction rates as it does not take into account the additional energy required for 
the reaction to circumvent the conical intersection.  Test calculations indicate that this 
additional energy is likely to be small as strong mixing of wavefunctions is typically predicted 
as symmetry is lowered from that of the conical intersection. 

TABLE S21.  Estimation of internal conversion lifetimes. 

from to pathway Δ𝐸𝐸0 / eV 𝜆𝜆 / eV 𝜏𝜏 at 77 K 𝜏𝜏 at 295 K 

(2)1𝐴𝐴2 (1)1𝐴𝐴2 TS -0.19 0.98 16 ms 85 ps 
(2)1𝐴𝐴2 (1)1𝐵𝐵2 CI -1.44 0.88 400 ns 5 ps 
(1)1𝐴𝐴2 (1)1𝐴𝐴1 CI -1.09 0.93 1.8 ps 0.2 ps 
(1)1𝐴𝐴2 (1)1𝐵𝐵2 CI -1.25 0.26 1049 s 30 m 
(1)3𝐴𝐴2 (1)3𝐴𝐴2′  CI -1.83 0.33 1099 s 1016 s 
(2)3𝐴𝐴2 (1)3𝐴𝐴2 TS -0.23 0.53 400 ps 0.9 ps 
(2)3𝐴𝐴2 (1)3𝐵𝐵1 CI -0.04 0.05 0.7 ps 0.2 ps 
(1)3𝐴𝐴1′′ (2)3𝐴𝐴2 TS -0.13 0.06 14 ps 0.4 ps 
(1)3𝐴𝐴1′′ (1)3𝐴𝐴2 TS -0.30 0.29 0.6 ps 0.2 ps 
(1)3𝐴𝐴1′′ (1)3𝐵𝐵1 CI -0.14 0.09 1.8 ps 0.2 ps 
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FIG. S14.  Calculated photochemical and photoemission processes for the VB− defect of h-BN 
at 295 K, obtained using EOMCCSD calculations on the triplet manifold, DIP-EOMCC 
calculations on the singlet manifold, and MRCI-calculated transition dipole moments and spin-
orbit couplings.  Thicker arrows indicate the critically perceived processes during the 
photocycle.  The indicated processes are: blue- vertical absorption (related absorption at lower 
energies down to the shown ZPLs and at higher energies will also occur, see Fig. S12), with 
Franck-Condon (Herzberg-Teller) allowed oscillator strengths in the ratio f:vw:s of 
0(8):1:2000; orange- barrierless ultrafast relaxation to ZPLs; red- intersystem crossing (ISC), 
purple- photoluminescence (PL).  Marked percentages indicate quantum yields.  The energy 
levels and internal rate processes the doubly degenerate states that form transition states in 𝐶𝐶2𝑣𝑣 
symmetry are not shown, for clarity (see instead Fig. 4).  States denoted with a solid line 
indicate that a local minima is established (triplet manifold) or believed (singlet manifold) to 
be involved, dashed lines indicate saddle structures that are unstable to out-of-plane distortion 
leading directly to (1)3𝐴𝐴2.  The use of different computational methods for the singlet and 
triplet manifolds appears to overestimate singlet-triplet splittings. 
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S10.  ADDITIONAL SUPPORTING DATA AS ASCII TEXT 
 

This data is located in file supporting_data.zip 

A. Files ready to be read by spectroscopic simulation packages 
These contain the initial state and final state nuclear coordinates, normal modes, 
Duschinsky matrices, and displacement vectors (hence Huang-Rhys factors and 
reorganisation energies) need to simulate spectra [88] using the Born-Oppenheimer, 
harmonic oscillator, and Franck-Condon approximations.  All data is CAM-B3LYP/6-
31G* 
 
For the 2-ring compound: 
dushin_13A2_13B1_curvi.log 
dushin_13B2_11A1_recti.log 
dushin_13B2_11A2_recti.log 
dushin_13B2_11B1_recti.log 
dushin_13B2_11B2_recti.log 
dushin_13B2_13A1_curvi.log 
dushin_13B2_13A2_recti.log 
dushin_13B2_13B1_curvi.log 
dushin_13B2_13B1_recti.log 
dushin_13B2_21A2_recti.log 
dushin_13B2_23A2_curvi.log 
dushin_13B2_23B2_curvi.log 
dushin_VB1-_13B2_13A2-recti.log 
dushin_VB3-_13B2_13A2-recti.log 
 
and for 1-ring and 3-ring compounds: 
dushin_VB1-_13B2_13A2-recti.log 
dushin_VB3-_13B2_13A2-recti.log 
 

B. Single file containing optimized coordinates, energies, and free energies if available 
optimized_coordinates.txt 
containing data for: 
 
 
3-ring D3h CAM-B3LYP/6-31G* (1)3A2' ground state 
3-ring C2v CAM-B3LYP/6-31G* (1)3A2 
3-ring C2v CAM-B3LYP/6-31G* (1)3B1 
3-ring D3h CAM-B3LYP/6-31G* (1)3A1" 
3-ring C2v CAM-B3LYP/6-31G* (2)3A2 
3-ring C2v CAM-B3LYP/6-31G* (1)3A1 
3-ring C2v CAM-B3LYP/6-31G* (2)3B2 
 
2-ring D3h CAM-B3LYP/6-31G* (1)3A2' ground state 
2-ring C2v CAM-B3LYP/6-31G* (1)3A2 
2-ring C2v CAM-B3LYP/6-31G* (1)3B1 
2-ring D3h CAM-B3LYP/6-31G* (1)3A1" 
2-ring C2v CAM-B3LYP/6-31G* (2)3A2 
2-ring C2v CAM-B3LYP/6-31G* (1)3A1 
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2-ring C2v CAM-B3LYP/6-31G* (2)3B2 
 
2-ring C2v CAS(10,6)/6-31G* (1)3A2' ground state 
2-ring C2v CAS(10,6)/6-31G* (1)1A1 
2-ring C2v CAS(10,6)/6-31G* (1)1A2 
2-ring C2v CAS(10,6)/6-31G* (1)1B1 
2-ring C2v CAS(10,6)/6-31G* (1)1B2 
2-ring C2v CAS(10,6)/6-31G* (2)1A1 
2-ring C2v CAS(10,6)/6-31G* (2)1A2 
 
10-ring D3h QM/MM CAM-B3LYP/6-31G*/AMBER (1)3A2' ground state 
10-ring C2v QM/MM CAM-B3LYP/6-31G*/AMBER (1)3A2 
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