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Abstract 

One of the significant objects among urban features is the road network.  Automatic road 

network extraction and vectorization from high-resolution remote sensing imagery (HRSI) 

is a major application in the field of remote sensing and geospatial information systems 

(GIS), which has a significant role in various purposes such as GIS maps updating, urban 

cover change detection, emergency tasks, navigation and so on. Nowadays, obtaining 

accurate information of road networks using various supervised and unsupervised 

segmentation and classification approaches from HRSI is a challenging task as they are 

changing very swiftly. In addition, various types of barriers like vehicles, trees, shadows, 

building roofs exist in the images with having the same spectral values and transparency 

as the class of road. Moreover, the structure of the road network is complicated and 

irregular. Traditional and manual methods for road network segmentation and 

vectorization that human operators manage are time-consuming and expensive. Recently, 

deep learning (DL) techniques have obtained efficient performance in the field of remote 

sensing images processing and features semantic segmentation. Therefore, in this research, 

the state-of-the-art deep convolutional neural networks (DCNNs) are applied for automatic 

and simultaneous road network surface segmentation and vectorization from different 

HRSI. The proposed models are capable of extracting road surface and vectorizing road 

networks simultaneously and efficiently as well as alleviating the shortcomings of the 

traditional machine learning (ML) and pre-existing deep learning methods for the given 

task.  
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Firstly, in objective 1, I solve the issues of conventional ML methods by implementing 

robust DCNN approaches for road surface segmentation from different HRSI. The 

presented networks are implemented to the various remote sensing datasets for road surface 

segmentation and compared with other state-of-the-art deep learning-based networks, 

which the results prove the superiority of the proposed networks in the road segmentation 

task.  

Secondly, in objective 2, I propose a shape and connectivity-preserving road identification 

deep learning-based architecture called SC-RoadDeepNet to overcome the discontinuous 

results and road shape and connectivity quality of most of the existing road extraction 

techniques. The proposed model comprises a new measure based on the intersection of 

segmentation masks and their (morphological) skeleton called connectivity-preserving 

centerline Dice (CP_clDice) that aids the model in maintaining road connectivity. The 

qualitative and quantitative assessments demonstrate that the proposed SC-RoadDeepNet 

can improve road extraction by tackling shadow and occlusion-related interruptions and 

produce high-resolution results, particularly in the area of road network completeness. 

Thirdly, in objective 3, I present a new automatic deep learning-based network named road 

vectorization network (RoadVecNet), which comprises interlinked UNet networks to 

simultaneously perform road segmentation and road vectorization with achieving 

important information such as width/length and location of the road network. Particularly, 

RoadVecNet contains two UNet networks. The first network can obtain more coherent road 

segmentation maps and the second network is linked to the first network to vectorize road 

networks. Classification results indicate that the RoadVecNet outperforms the state-of-the-

art deep learning-based networks for road surface segmentation and road vectorization. In 

short, the proposed methods and the outcomes (high quality and accurate road network 

data) of the study has high potential in environmental applications such as land use 

change detection in urban areas, and emergency tasks and also commercial value 

in navigation and road maps updating. 

Keywords: Deep convolutional neural networks; machine learning; remote sensing; road 

segmentation; road vectorization; road maps verification; road database updating
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