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Abstract 

One of the significant objects among urban features is the road network.  Automatic road 

network extraction and vectorization from high-resolution remote sensing imagery (HRSI) 

is a major application in the field of remote sensing and geospatial information systems 

(GIS), which has a significant role in various purposes such as GIS maps updating, urban 

cover change detection, emergency tasks, navigation and so on. Nowadays, obtaining 

accurate information of road networks using various supervised and unsupervised 

segmentation and classification approaches from HRSI is a challenging task as they are 

changing very swiftly. In addition, various types of barriers like vehicles, trees, shadows, 

building roofs exist in the images with having the same spectral values and transparency 

as the class of road. Moreover, the structure of the road network is complicated and 

irregular. Traditional and manual methods for road network segmentation and 

vectorization that human operators manage are time-consuming and expensive. Recently, 

deep learning (DL) techniques have obtained efficient performance in the field of remote 

sensing images processing and features semantic segmentation. Therefore, in this research, 

the state-of-the-art deep convolutional neural networks (DCNNs) are applied for automatic 

and simultaneous road network surface segmentation and vectorization from different 

HRSI. The proposed models are capable of extracting road surface and vectorizing road 

networks simultaneously and efficiently as well as alleviating the shortcomings of the 

traditional machine learning (ML) and pre-existing deep learning methods for the given 

task.  
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Firstly, in objective 1, I solve the issues of conventional ML methods by implementing 

robust DCNN approaches for road surface segmentation from different HRSI. The 

presented networks are implemented to the various remote sensing datasets for road surface 

segmentation and compared with other state-of-the-art deep learning-based networks, 

which the results prove the superiority of the proposed networks in the road segmentation 

task.  

Secondly, in objective 2, I propose a shape and connectivity-preserving road identification 

deep learning-based architecture called SC-RoadDeepNet to overcome the discontinuous 

results and road shape and connectivity quality of most of the existing road extraction 

techniques. The proposed model comprises a new measure based on the intersection of 

segmentation masks and their (morphological) skeleton called connectivity-preserving 

centerline Dice (CP_clDice) that aids the model in maintaining road connectivity. The 

qualitative and quantitative assessments demonstrate that the proposed SC-RoadDeepNet 

can improve road extraction by tackling shadow and occlusion-related interruptions and 

produce high-resolution results, particularly in the area of road network completeness. 

Thirdly, in objective 3, I present a new automatic deep learning-based network named road 

vectorization network (RoadVecNet), which comprises interlinked UNet networks to 

simultaneously perform road segmentation and road vectorization with achieving 

important information such as width/length and location of the road network. Particularly, 

RoadVecNet contains two UNet networks. The first network can obtain more coherent road 

segmentation maps and the second network is linked to the first network to vectorize road 

networks. Classification results indicate that the RoadVecNet outperforms the state-of-the-

art deep learning-based networks for road surface segmentation and road vectorization. In 

short, the proposed methods and the outcomes (high quality and accurate road network 

data) of the study has high potential in environmental applications such as land use 

change detection in urban areas, and emergency tasks and also commercial value 

in navigation and road maps updating. 

Keywords: Deep convolutional neural networks; machine learning; remote sensing; road 

segmentation; road vectorization; road maps verification; road database updating
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CHAPTER 1 

INTRODUCTION 

This chapter provides a broad overview and research background for employing high-

resolution remote sensing images (HRSI) to automatically update and verify road maps 

using advanced machine learning approaches. The major backdrop of the study, problem 

statement, indicated research objectives and aims, research plan, particular research 

questions, novelty and main contribution of the research, and thesis arrangement are also 

revealed in this chapter. It emphasizes the need to employ HRSI for automatic updating 

and verification of road maps. 

1.1. General introduction 

Spaceborne, airborne, and drone-based sensors using advanced Earth observation and 

remote sensing technologies have obtained large amounts and different types of high-

resolution remote sensing images (HRSI). Such images are extensively used in several 

applications, such as urban planning [1], disaster management [2], and emergency tasks 

[3]. Among topographic object classes, road objects are essential urban features. Therefore, 

the constant updating and verification of road maps is necessary to achieve several 

geospatial information systems (GIS) goals, such as emergency functions, automated 

means of navigation, urban planning, and traffic control. A road database can be created 

and updated using feature extraction from spatial high-resolution satellite imagery [4]. 

Consequently, generating automatic novel techniques for extracting road classes from 

high-resolution satellite images and keeping road networks up-to-date in GIS databases are 
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useful for a variety of applications [5]. High-resolution remote sensing imagery can 

produce a massive amount of data and has become the main data source for extracting road 

regions and updating geospatial databases in real time. Although road extraction from 

remote sensing imagery recently gained considerable attention, this task remains 

challenging owing to irregular and complex road sections and structures [6]. Other features, 

such as building roofs, pedestrian areas, and car parking appear similar in satellite images, 

thereby resulting in insufficient road contexts in images. Meanwhile, roadside buildings, 

tree shadows, and vehicles on roads can be identified from high-resolution remotely sensed 

imagery [7]. Given the aforementioned issues, road class extraction from high-resolution 

remotely sensed imagery is difficult. Manual and traditional approaches for road extraction 

from high-resolution remote sensing imagery are costly, time consuming, and fraught with 

errors owing to human operators [8]. Therefore, various road extraction approaches, such 

as supervised [9] and unsupervised [10] techniques, were suggested for extracting road 

regions from remotely sensed imagery. Such approaches use textural [11], geometric, and 

photometric [12] information to extract roads through classification [13]. Techniques for 

road extraction can be categorized into two categories: (1) automatic and semiautomatic 

approaches and (2) road area and centerline extraction methods. Automatic techniques are 

useful in real-time applications and do not require human collaboration, unlike 

semiautomatic approaches. Road area extraction techniques concentrate on road 

segmentation and classification, whereas road centerline extraction methods focus on road 

skeleton recognition [14]. Recently, artificial intelligence algorithms have shown 

considerable development in feature extraction and segmentation from remote sensing 

images, thereby persuading researchers to distinguish road sections from high-resolution 

remote sensing imagery owing to the considerable efficiency of deep learning approaches 
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in different applications [15-17]. Deep learning is a rapidly growing area in machine 

learning and has become an effective tool for expediting image processing and object 

detection. Moreover, deep learning has been widely implemented in remote sensing 

images, especially in mapping urban land cover with highly accurate results [18]. 

Therefore, as indicated in the objectives and novelty section, multiple types of deep 

learning approaches were developed for autonomous road extraction and vectorization 

from various HRSI in this study. It can be observed that all of the generated models 

outperformed several traditional machine learning (ML) and state-of-the-art deep learning 

(DL) models reported in the literature review in terms of both quantitative and qualitative

findings. 

1.2. Research background 

This section provides a summary of traditional road extraction methods. In addition, it 

discusses the development of deep learning methods in processing remotely sensed images 

and computer vision, specifically, road semantic segmentation from HRSI.  

At present, road extraction and monitoring operations are performed manually, which is 

ineffective and costly. Therefore, the automatic extraction and detection of roads from 

high-resolution images would be efficient and cost effective. Previously, remotely sensed 

imagery, such as multispectral and hyperspectral images, with high-spectral bandwidths 

was used for traditional remote sensing-based road extraction [19]. The present application 

of extracting road sections from remote sensing imagery at the macrolevel can be used in 

urban planning given the huge volume of available high-spectral resolution satellite and 

low-spatial resolution remotely sensed images [20]. Road extraction methods principally 

use the depth of spectral information to extract road sections from hyperspectral and 
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multispectral satellite images [21]. Within the last decade, extremely high-resolution 

remote sensing imagery, such as orthophoto and unmanned aerial vehicle (UAV) images 

obtained by advanced remote sensing technologies, was increasingly utilized for shadow 

classification, road extraction, and vehicle detection. Such fields confirmed the potential 

of images with high spatial resolutions [22]. 

Various studies have extracted road parts from high-resolution remotely sensed images 

using two main techniques, namely, data-driven and heuristic methods. Data-driven 

methods generally use the information of large data to conduct road extraction from 

satellite images. Recently, several data-driven approaches were considered for extracting 

road classes from remote sensing imagery containing conditional random fields (CRFs) 

[23], clustering [24], and Markov random fields (MRFs) [25]. By contrast, heuristic 

methods involve texture progressive analysis [26] and mathematical morphology [27], and 

often use certain information about road sections. Thus, these approaches are useless in 

handling different types of roads compared with data-driven techniques. However, 

traditional segmentation approaches fail to achieve high accuracy in road extraction and 

cannot handle multiscale roads, particularly narrow road sections with high width variance. 

The reason for this inability is that compared with normal images, high-resolution remote 

sensing images gain more detail. Thus, narrow road regions become apparent in such 

images, thereby introducing novel difficulties for road segmentation from high-resolution 

satellite images. Also, most of the preliminary studies for road extraction are on the basis 

of unsupervised learning like global optimization and graph cut methods [28] that rely on 

the color features and they have one general constraint, which is color sensitivity. 

Therefore, if the colors of roads in remote sensing imagery consist of more than one color, 

these segmentation algorithms will not attain good results and not perform well in road 
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extraction and classification. Therefore, new robust techniques, such as deep learning 

methods, are needed to extract road networks with various scales accurately from remote 

sensing imagery [28]. This is due to the fact that these approaches may easily encode 

spectral and spatial information from raw images without the need for any preprocessing. 

They are also a hierarchical structure of deep neural networks and include a number of 

interconnected layers that may learn a hierarchical feature representation from the data and 

extract the deep features of the input data. 

In different fields, such as image classification, scene recognition, object detection, and 

semantic segmentation, advanced cutting-edge convolutional neural networks (CNNs) 

presently exceed other methods [29]. Compared to the unsupervised approaches that rely 

on the color for segmentation, more than one feature other than color, such as texture, 

shape, and line can be extracted by deep learning methods, among others. One of the most 

well-known methods initially identified to generalize CNNs in computer vision is the 

AlexNet18 model, which won the ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) challenge in 2012 [30]. Recently, a CNN model called the fully convolutional 

network (FCN), which was suggested by [31], revealed promising results in dense semantic 

segmentation. In addition, remotely sensed image processing, such as object identification 

in high-resolution remote sensing images [32], semantic labeling of satellite images [33], 

and image classification [34], was conducted using modern CNN models. The FCN 

demonstrated satisfactory results in the semantic segmentation of high-resolution remote 

sensing imagery [35]. Specifically, CNNs and the FCN were also synthesized for road 

semantic segmentation from remotely sensed imagery to learn road features and extract 

road regions automatically [36, 37]. One of the initial efforts of implementing deep learning 

methods for road extraction from remote sensing images was made by [38]. For detecting 
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road parts from remote sensing data, they applied restricted Boltzmann machine (RBMs). 

Also, they used preprocessing and postprocessing steps for achieving better results. Saito, 

et al. [36] proposed a method for roads and buildings extraction from raw remotely sensed 

images that was different from [38]. This approach was applied on a Massachusetts road 

dataset that obtained better outcomes. In recent years, many studies proposed that a deeper 

neural framework showed better results [39]; however, training of such a model is 

challenging because of the gradient vanishing issue. To address this issue, a deep residual 

learning architecture is suggested by [40] to simplify training by using an identity mapping 

[41]. Because conventional road segmentation methods fail to obtain high accuracy results 

in road extraction and vectorization and are unable to handle multiscale roads, particularly 

tiny road sections with large width variations, we can argue that DL methods are more 

robust in automatic updating of road networks with various scales accurately. As a result, 

there is a need for this research, which aims to develop powerful diverse DL techniques to 

automatically update road networks from various types of HRSI. 

1.3. Problem statement 

A huge number of spatial data is now easily accessible on the Web by the fast progression 

of Internet development and spatial data acquisition methods. But a great number of 

available maps have been developed with poorly crafted approaches during the last years, 

whose geometry is not very accurate. In addition, because the focus is especially on 

updating road networks in urban areas, it can be seen that cities across the world are 

growing and developing every year on the basis of effective development planning. Also, 

natural calamities such as earthquakes, floods, and landslides have caused damage to most 

cities. Thus, achieving real-time information regarding urban features like road networks 

and updating the maps are required for better urban planning and disaster management 
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[42]. Poor performances of the conventional approaches as well as inadequate deployment 

of certain pre-existing methodology for automatic updating and verification of road maps 

are questionable. This is due to the presence of other features in satellite imagery, such as 

building roofs, pedestrian spaces, and car parking with similar spectral characteristics, 

which result in insufficient road contexts in the images. Furthermore, the structures of road 

networks are complicated and irregular [43]. Moreover, the HRSI has a lot of blended 

pixels, which makes it difficult to distinguish between other objects and road networks. As 

a result, urban road networks with rich spectral information in image data can provide false 

border information [6].  

Failure to develop a strong deep learning model that incorporates all relevant 

characteristics for updating and verifying urban road networks from various HRSI. 

However, as discussed in the Literature review part in Chapter 2, obtaining real-time 

information from urban road features and updating maps, one of the primary components 

of a city that plays a crucial role in its development and extension, is required [44]. To date, 

there has been no success in implementing an appropriate methodology for upgrading and 

vectorizing urban road networks [45]. Therefore, to assess the capability of HRSI in 

obtaining road information and up-to-date traffic maps, automatic road networks 

vectorization models are required to be developed. In addition, the applicability of these 

models in getting high-accurate findings must be examined in order to detect limitations, 

address gaps in the literature, and comprehend the model's strength. 

Unfortunately, no major research has been done in the development of a powerful model 

for obtaining accurate and complete results of road network updating and road map 

verification using DL models and HRSI. Manual approaches to update a variety of spatial 
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data sets as a target area anywhere in the world is very time-consuming and error-prone. 

Conventional approaches have difficulties when detecting roads obscured by trees or 

buildings. The context information modeling mechanisms of traditional methods cannot 

build topological links between road segments split by obstacles, resulting in fragmented 

and discontinuous results for road extraction. Modern methods have been produced to get 

high-precision geometric data, and it is feasible to enhance the accuracy of geometric 

mapping data by using modern techniques. Moreover, recent advances in remote sensing 

technologies make it possible to capture images with high precision and clarity. In this 

regard, combining high-resolution satellite imagery and robust advanced machine learning 

methods can be very effective for precisely extracting roads and updating GIS maps. 

Therefore, from the perspective outlined in the motivation, it is clear that more research is 

needed to develop advanced models for simultaneous road surface semantic segmentation 

and vectorization, as well as obtain real-time road information. 

1.4. Research gap 

Road networks form the majority of modern transportation infrastructure because they are 

significant man-made ground objects [46]. Previously, the most common method of 

extracting roads was through manual visual interpretation, which takes a long time and 

costs a lot of money, and the obtained outcomes may differ because of the interpreter’s 

discrepancies. The technology of automatic road extraction has been a popular topic in this 

field because it can increase the effectiveness of road extraction [45]. However, high-

resolution imagery can reveal the vehicles on the road and the shadows of buildings or trees 

on the roadside. Furthermore, the road segments are irregular, and the roads structures are 

complex [47]. The abovementioned challenges make extracting road networks and 

updating the road maps from high-resolution data more difficult [48]. Some scholars have 
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employed traditional methods or machine learning algorithms to overcome these 

difficulties, as evidenced by substantial studies in the literature [7, 49, 50]. Also, the deep 

learning techniques, characterized by convolutional neural networks (CNNs), have attained 

a milestone in the computer vision field, owing to the exponential development of 

accessible data and computational capacity [51],[39]. In recent years, researchers have 

preferred to use CNN-based algorithms to extract roads from remote sensing data because 

road extraction can be regarded as a binary segmentation issue. There are, however, some 

limits to the execution of these works. As a result, in this part, I highlight the major research 

gaps identified after a thorough literature review: 

1. Failure to establish a robust deep learning approach for updating and verifying urban

road networks from diverse HRSI that combines all essential properties. 

2. Given that threshold settings fluctuate between imagery, conventional approaches can

only perform with a limited set of data and cannot be tested in complex environments. 

Furthermore, most traditional machine learning approaches rely on color features and have 

one common constraint: color sensitivity. As a result, if the colors of roads in remote 

sensing data contain more than one color, these segmentation algorithms will not produce 

satisfactory results and will fail to extract and classify roads. 

3. The existing DL approaches in heterogeneous areas cannot efficiently detect the road

parts, specifically, where the roads in complex regions are covered by obstructions, such 

as cars, shadows, and trees. 

4. Conventional fully convolutional networks (FCN-based) approaches convey context

information through convolutional and down-sampling operations in the local receptive 

fields. Thus, they have difficulties when detecting roads obscured by trees or buildings. 
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The context information modeling mechanisms of traditional FCNs cannot build 

topological links between road segments split by obstacles, leading to fragmented and 

discontinuous results for road extraction. 

5. Most researchers have performed the DL method for road surface segmentation from 

HRSI without considering the issue of shape and road connectivity challenges.  

6. Most of the works were done on road surface segmentation and road centerline extraction 

from remote sensing data, not road vectorization.  

7. Developing new DL models that could address the issue of road discontinuity because 

of the obstacles is still a huge gap. Moreover, proposing DL models that could extract road 

surface and vectorize road networks along with achieving accurate and simultaneous road 

information such as road width and location is still the main research gap.  

1.5. Scope of the study 

It has been an open and active research issue in remote sensing to extract road from HRSI 

and automatically update road maps [52]. Studies on automatic and simultaneous road 

surface segmentation and vectorization using robust DL methods from HRSI are in 

demand. Therefore, automatic updating and verification of road maps that have evolved 

for urban planning and development, disaster management, navigation etc. through 

developing advanced machine learning models and high-resolution remote sensing images 

are the main scopes.  

Therefore, this research’s scope deal with: 

1. Road network maps updating and verification. 

2. Preparing various types of high-resolution remote sensing datasets. 
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3. Labelling the images and providing high-quality ground truth samples.  

4. Developing traditional classification and segmentation ML methods for road extraction.  

5. Investigating the significance of additional features such as textural, geometry, and 

spectral in improving the segmentation results.  

6. Analyzing the pre-processing steps like data augmentation, image enhancement, and 

applying filters in increasing the quality and the size of the dataset.   

7. The robust DCNN approaches for generating high-resolution road segmentation maps.  

8. Taking the advantages of boundary learning (BL) and connectivity-preserving 

techniques to address discontinuous results and connect broken road networks.  

9. The robust DCNN method for automatic road vectorization with obtaining accurate 

road’s width and location.  

Preparing high-quality datasets of HRSI, which include original images and ground truth 

images, is a key factor in updating road maps. Therefore, in this research, I used different 

types of remote sensing datasets, some of which are open-source benchmarks, and some 

were created manually. For creating the original images and corresponding ground truth 

images, I used ArcGIS 10.8 to label the images manually. The traditional ML classification 

and segmentation methods developed in this research are based on decision trees (DT), k-

nearest neighbors (KNN) and support vector machines (SVM), connected components 

labeling, multiresolution segmentation technique, Trainable Weka Segmentation method, 

and Level Set. These methods were applied on high-resolution unmanned aerial vehicles 

(UAV) and Orthophoto images for road extraction. More additional information like 

spectral, geometry, and texture information was also added to the methods for improving 
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the performance. However, since the achievements of the whole Ph.D. thesis contains the 

development of a robust model for generating high-resolution road segmentation maps and 

the scope is more toward the automatic road maps vectorization and updating in the 

complex urban areas, I also performed DL models to achieve high-accurate results and 

alleviate the limitation of conventional ML methods. Therefore, different types of deep 

convolutional neural networks (DCNNs) such as generative adversarial network (GAN) 

with a modified UNet generative model (GAN+MUNet), VNet, Multi-Level Context 

Gating UNet (MCG-UNet) Network, BConvLSTM with Dense Convolutions UNet (BCD-

UNet) Network and Convolutional Neural Network (CNN) with principal component 

analysis (PCA) and object-based image analysis (OBIA) were implemented to the various 

datasets for road surface segmentation, which achieved higher accuracy than traditional 

methods. In the next stage, I developed a shape and connectivity-preserving road detection 

deep learning-based architecture (SC-RoadDeepNet) to address shape-accuracy and 

connectivity challenges that occur with most of the pre-existing methods. In a later step, I 

developed a new automatic deep learning-based network named Road Vectorization 

Network (RoadVecNet), which comprises interlinked UNet networks to simultaneously 

perform road segmentation and road vectorization and achieve accurate information of 

road’s width and location.  

1.6. Research aim and objectives  

The aim of the research is to develop deep convolutional neural networks (DCNNs) to 

automatically and simultaneously extract road surfaces from various HRSI and then update 

road maps based on achieving accurate road’s width and location information.  
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To address the research gaps in the literature, the current study developed different types 

of DCNNs, which are comprehensive and sophisticated. The suggested models are 

implemented to the different remote sensing images for road surface segmentation and 

vectorization. The principal objectives of the current study are listed as below: 

1. To develop new robust deep convolutional neural networks (DCNNs) for road 

surface segmentation from various HRSI data.  

2. To integrate road shape and connectivity-preserving techniques into DCNNs for 

dealing with road shape-accuracy and connectivity challenges. 

3. To develop a new DCNN model for simultaneous and automatic road extraction 

and vectorization with achieving road’s location and width information from HRSI that 

is essential for road database updating. 

1.6.1. Objective 1 

The designed approach's primary objective is to develop new powerful DCNN approaches 

like GAN+MUNet, VNet, MCG-UNet, and BCD-UNet for road surface segmentation from 

multiple HRSI such as Aerial, Orthophoto, Google Earth, and UAV images. In the designed 

approaches, I also took advantage of some additional modules or loss functions to improve 

the performance of the models in road extraction. For example, I implemented a basic 

efficient loss function called boundary-aware loss (BAL) that allowed the networks to 

concentrate on hard semantic segmentation regions such as overlapping areas, small 

objects, sophisticated objects, and boundaries of objects and produce high-quality 

segmentation maps. Moreover, I used new loss functions called cross-entropy-dice-loss 

(CEDL) or Focal loss weighted by the median frequency balancing (MFB_FL) to decrease 

the class imbalance influence and improve the road extraction results. More details 
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regarding these modules and functions are explained in the Methodology part Chapter 3.  

In summary, the proposed DCNN models could achieve higher accuracy and produce high-

quality road segmentation maps compared to the traditional ML techniques and other 

comparative DL models.   

1.6.2. Objective 2 

This stage of the study involves addressing the issue of most of the conventional ML 

methods, and state-of-the-art DL approaches for road surface segmentation from remote 

sensing data. Most of the approaches have trouble identifying road networks hidden by 

trees or buildings, resulting in fragmented road extraction. Thus, in this stage of the 

research, I developed a new shape and connectivity-preserving road detection deep 

learning-based architecture (SC-RoadDeepNet) to build topological links between road 

segments split by obstacles, resulting in better and continuous results for road extraction. 

In the developed model, I offered a connectivity-preserving centerline Dice (CP_clDice), 

a new measure based on the intersection of segmentation masks and their (morphological) 

skeleton to preserve road connectivity and obtain accurate segmentations. I also utilized 

road boundaries to make road semantic features more proper for actual road form, solve 

irregular semantic features, and enhance the boundary of road semantic polygons. I 

leverage each road’s binary edge-map to penalize boundary misclassification and fine-tune 

the road shape.  

1.6.3. Objective 3 

This stage develops a novel DCNN approach named RoadVecNet to extract road surface 

and then vectorize the road network simultaneously. As we have seen in the Literature 

Review Chapter 2, most of the methods have been applied for road surface segmentation 
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and road centerline extraction from HRSI, which could not get accurate information about 

road width and location. Therefore, in this stage of the research, I addressed the road 

segmentation and vectorization issues with detecting consistent road parts and vectorizing 

the road network by determining and extracting road vector rather than road centerline to 

get accurate information about the road network's width and location. In fact, the proposed 

approach is comprised of two convolutional UNet networks that are interlinked into one 

architecture for automatic and simultaneous road surface segmentation and vectorization. 

The initial framework was used to identify road surfaces, while the second framework was 

used to vectorize roads with achieving the road location and width information. 

Furthermore, the current research's models include a variety of hyperparameters and 

modules, making them robust and effective. Moreover, the overall proposed models are 

innovative and were created by studying a variety of earlier and newer models for road 

surface segmentation and vectorization from HRSI. 

1.7. Research questions 

1.7.1. Questions related to the objective 1 

In the first objective of this study, some specific research questions were addressed such 

as: 

(i) Is it possible to classify and extract road features from remotely sensed images with 

high accuracy? 

(ii) What are the benefits of deep learning methods compared to conventional machine 

learning algorithms for road surface segmentation from HRSI? 

(iii) To what extend deep learning algorithms can extract roads from remote sensing images 

accurately? 
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According to the aforementioned research questions, the major goals of this study were set 

to extract road networks by (1) Presenting different types of high-resolution remote sensing 

data, (2) applying some conventional ML approaches for road surface segmentation, (3) 

Developing new robust DCNN techniques for road extraction, (4) Comparing the 

developed DCNN models with the traditional ML and pre-existing state-of-the-art DL 

models in road segmentation, (5) Adding additional hyperparameters, modules, and other 

functions to improve the road segmentation results, (6) and checking the efficiency of the 

proposed DCNN techniques in producing high-resolution road segmentation maps. 

Accurate road networks extraction from HRSI data is challenging and hard. However, in 

this research, I tried to develop effective DCNN methods for road network segmentation 

from different high-resolution remote sensing data more accurately than the traditional and 

other comparative DL methods.  

1.7.2. Questions related to the objective 2 

In the second objective of this study, some other research questions were also addressed, 

such as: 

(i) Is it possible to solve the issue of detecting roads obscured by other barriers such as 

vehicles, trees, shadows, or buildings in the images? 

(ii) Is it possible to address the road shape and connectivity-preserving challenges? 

(iii) To what extend DCNN models can build topological links between road segments split 

by obstructions?  

This research has three objectives to help reach this goal such as: (1) Develop a new robust 

DCNN model that accumulates important features and thus enables better feature 

representation for segmentation task, (2) Use boundary learning (BL) technique to leverage 
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each road’s binary edge-map, penalize boundary misclassification and fine-tune the road 

form, and (3) Use a new connectivity-preserving centerline Dice (CP clDice) technique to 

retain road connection and produce accurate segmentations.  

1.7.3. Questions related to the objective 3 

Other research issues were also addressed in the third objective of this study, such as: 

(i) Can we update road maps automatically using deep learning methods? 

(ii) What are the requirements for updating road datasets? 

(iii) Is it possible to simultaneously extract road network from HRSI and then vectorize? 

To achieve this goal, this study includes: (1) Developing new a DCNN model called 

RoadVecNet that simultaneously extracts road surface from HRSI and then vectorizes the 

road network, and (2) Obtaining precise information on the width/length and location of 

the road network, which are the main requirements for updating road datasets.  

1.8. The research's novelty and main contribution 

In this research, different types of robust DCNN models were developed for urban road 

network updating and verification from different HRSI. The purpose of this research is to 

deal with the lack of comprehensive, advanced machine learning techniques for road 

surface segmentation and vectorization. As a principal contribution, the new DCNN 

models were conducted to address the issue of achieving high-resolution road segmentation 

and vectorization maps from HRSI even under large and continuous areas of obstacles with 

traditional ML techniques and pre-existing DL methods. Thus, the detailed mapping of 

road segmentation and vectorization from HRSI was conducted to update urban road maps.  
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The present study is designed to develop new DCNN models with defining new 

parameters, modules, and functions for obtaining high-quality segmentation maps, 

proposing a new DL method with BL and connectivity-preserving ability to solve the issue 

of road discontinuous, and developing a new model for simultaneous road surface 

segmentation and vectorization. These models were implemented to the various types of 

remote sensing images with a high spatial resolution to test for the first time. For all 

objectives, the section "3. The methodology's implementation" provides a detailed 

description of how the developed models are implemented. All the methods are new and 

have not been implemented in the literature that provides more coherent and satisfactory 

road segmentation and vectorization maps. The developed models, maps, and quantitative 

results achieved in this study could be used by decision-makers and urban planners to 

efficiently model traffic information, help traffic management, and update city planning 

and development strategies. The findings of this study may reduce the need for planners 

and local surveying departments to undertake on-site investigations. 

1.9. Thesis organization 

The thesis is divided into five chapters. Below is a list of the contents carried out by the 

chapters in detail. 

The introduction to the topic and research background, the research problem, the research 

gap, the objectives and aim of the research, the research questions, the scope of the study, 

the novelty and key contribution of the research, and the thesis arrangement are all covered 

in detail in Chapter 1. 

The literature of urban road network updating and verification from HRSI is demonstrated 

in Chapter 2. The first section of the chapter goes through the previous studies on deep 
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learning approaches that have been used to extract road sections from remote sensing 

images. Based on the type of DL models employed, I divided the results into multiple 

subsections. In the second part, a comparison of the models' advantages and disadvantages, 

along with application variability, is given. The paper also offers descriptions of the main 

conclusions. 

The methodology and proposed DCNN models are discussed in Chapter 3 of the thesis. 

The different types of remote sensing data, overall methodology, and execution of the 

developed techniques for road segmentation and vectorization are all demonstrated and 

discussed in this chapter. 

Chapter 4 discusses the results of road surface segmentation and vectorization produced 

by the various proposed models in terms of both quantitative and qualitative findings. 

Chapter 5 summarizes the research with a detailed explanation of the study's 

shortcomings, significant findings, and future directions. 

In this thesis, all of the papers listed on the “LIST OF PUBLICATIONS” page were 

incorporated with appropriate citations as required by all the chapters. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1. Introduction 

This chapter elaborates on prior studies on deep learning methods that were applied to 

different remote sensing images road sections extraction and vectorization [53]. I split the 

results into several subsections based on the type of deep learning methods used (Figure 

2.1). The models, the data, the accuracy, and findings will be discussed in this section. In 

addition, I will provide the advantages and disadvantages of the models in analyzing 

remote sensing images for road network extraction, a brief summary, and the ideas for 

future research in this section. In summary, this chapter presents a broad overview of the 

many models used for road network extraction and vectorization from various HRSI. Based 

on previous studies, I categorized all the CNNs into four main models: the patched-based 

CNN model [38]; the FCN-based model [31]; the deconvolutional net-based models, and 

the GAN-based model [54]. Each type of model will be discussed in the following 

subsections in detail.  
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Figure 2.1. Road semantic segmentation using different deep learning models from 

remote sensing datasets. 

2.2. Road extraction based on the patch-based CNN model 

In the patch-based CNN model, the possibility of road dispensation is firstly predicted 

piece-by-piece with a particular stride and then the label map of the whole image is 

produced by assembling all of the label patches. Figure 2.2 illustrates a general architecture 

of the patch-level CNNs model. The initial section is convolutional and max pooling layers 

chased by fully connected layers acting as a linear discriminator. In this section, I describe 

the prior studies that used the CNN model for road extraction. 
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Figure 2.2. General architecture of the patch-level CNNs model. 

 
Zhong, et al. [37] provisionally implemented the newest CNN model to extract road and 

building objects from satellite imagery. The model fused low-level fine-grained features 

and high-level semantic meaning. In addition, further hyperparameters, such as the input 

image size, training epoch, and learning rate, were analyzed to specify the capability of the 

method in the context of high-resolution remote sensing images. The Massachusetts 

dataset, with a 1-meter spatial resolution and 1500×1500 pixel size, containing 1711 

images for the road and 151 images for the building datasets, was used for the evaluation. 

The Massachusetts dataset is related to the state of Massachusetts. The dataset covers over 

2600 square kilometers with diverse rural, suburban, and urban areas [43]. With the 

integration of the pretrained FCN method with a novel four-stride pooling layer output to 

the last score layer, as well as fine-tuned with high-resolution spatial data, the extraction 

accuracy of the adjusted model was upgraded significantly to over 78%. Wei, et al. [55] 

used a technique on aerial images for extracting road classes based on a road structure-

refined CNN model, which provided road geometric information and spatial correlation. 

The proposed model was merged with fusion and deconvolutional layers to obtain 

structured output. Furthermore, a novel road structure-based loss function was applied to 
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cross-entropy loss to yield a weight map by using the minimum Euclidean distance of every 

pixel to the road section and to model the road geometric structure. The Massachusetts road 

dataset, including 1172 images randomly divided into 49, 14, and 1108 images for testing, 

validation, and training, respectively, was used to calculate the proposed technique. 

Efficiency measures, namely, F1 score, recall, precision, and accuracy, were calculated for 

comparison, which were 66.2%, 72.9%, 60.6%, and 92.4%, respectively. The outcomes 

proved that the suggested model could extract roads effectively and achieve better accuracy 

compared with other existing road segmentation methods. However, postprocessing was 

needed to improve results. The link to download the public Massachusetts dataset and CNN 

code can be found in the online version, at https://www.cs.toronto.edu/~vmnih/data/, 

https://github.com/AhmedAhres/Satellite-Image-Classification. 

Alshehhi, et al. [56] implemented a patch-based CNN model for extracting road and 

building parts simultaneously from remote sensing imagery. Global average pooling was 

replaced with fully connected layers to consider a medium of feature maps from the final 

convolutional layer. Furthermore, the authors implemented a simple linear iterative 

clustering method during postprocessing to integrate CNN features with low-level features, 

such as the compactness and asymmetry of buildings and roads. This process integrated 

ungrouped areas of buildings and connected–disconnected road parts, as well as improved 

the performance of the proposed method. The Massachusetts dataset, including 10 images 

for testing, 137 images for training, and 4 images for validation, and the Abu Dhabi dataset 

with a 0.5 meter spatial resolution per pixel, including 30 images for testing, 150 images 

for training, and 30 images for validation, were used for the evaluation. The authors used 

prevalent measure correctness to calculate the performance of the suggested approach, 

which was 91.7% for the Massachusetts dataset and 80.9% for the Abu Dhabi dataset. The 

https://www.cs.toronto.edu/~vmnih/data/
https://github.com/AhmedAhres/Satellite-Image-Classification
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results showed that the approach was effective in road and building extraction. However, 

further processing was needed to determine boundaries precisely. Liu, et al. [57] presented 

an approach for road centerline extraction from high-resolution remote sensing imagery 

that comprised four major stages. First, a CNN model was used to classify aerial images 

and learn features from raw images. Second, edge-preserving filtering was applied to the 

classified images with the original images to exploit road edges. Third, multidirectional 

morphological and shape feature filtering was used during postprocessing to obtain 

trustworthy roads. Finally, an integrated Gabor filter model and multiple directional 

nonmaximum suppression were applied to extract road centerlines. The suggested method 

was applied to two datasets, namely, the EPFL dataset and the Massachusetts road dataset. 

Three accuracy measures, namely, completeness, which was 95.40%; correctness, which 

was 89.97%; and quality, which was 86.21%, were used to quantify the performance, 

which indicated the advantage of the proposed method for road centerline extraction. 

However, certain centerlines were not single-pixel wide in the proposed method. Li, et al. 

[58] employed a model based on a CNN to extract roads from high-resolution satellite 

imagery. First, a CNN model was applied to allocate labels to every pixel and anticipate 

the possibility of each pixel relating to road sections. Second, a line integral convolutional-

based method was executed to maintain edge information, conjoin tiny gaps, and soften a 

rough map. Finally, several image-processing operations were implemented to acquire road 

centerlines. The authors used images from the Pleiades-1A satellite, with a spatial 

resolution of 0.5 meters, and the GeoEye satellite to test their model. The completeness 

indicator was 80.57%, the correctness indicator was 96.57%, and the quality indicator was 

78.27%, which showed that the proposed model achieved high precision for road extraction 

in terms of correctness. However, completeness and quality percentages were low, which 
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was related to the complexity of the texture of various features in the images. Chen, et al. 

[59] combined the CNN model with Dirichlet mixture models (DMM) to extract road 

sections from the Shaoshan dataset. First, they filtered out most of the backgrounds with 

the DMM. Then, for more precise road area detection, a trained CNN model was used. The 

Shaoshan dataset is a 0.5m resolution Pleiades optical imagery of ShaoShan, China with 

the original size of 11125×7918. They cropped the original image into 49 images with the 

size of 1589×1131, which 29 and 20 images were selected as training and testing, 

respectively. They obtained the completeness, correctness and quality metrics with 

85.88%, 88.43%, and 77.21%, respectively. They showed that the suggested method 

produced good road extraction outcomes in the experiment. However, due to pixel-by-pixel 

computations, DMM has a significant computational complexity. Lian and Huang [60] 

presented a unique approach called DeepWindow for extracting the road part from remote 

sensing data. Without the prior road segmentation, DeepWindow tracks the road directly 

from the imagery using a sliding window that is guided by a CNN-based decision function. 

They conducted extensive tests using two datasets: Massachusetts and a Google Earth 

dataset with the size of 600×600 and spatial resolution of 1.2m. The experiments 

demonstrated that their technique can detect the road accurately with F1-score=82.5% for 

Massachusetts and F1-score=90.7% for Google Earth dataset, however, when the road 

parts are completely obscured by noise, the approach failed to extract them. 

2.3. Road extraction based on the FCNs model 

Compared to the CNN model that utilizes a dense layer to achieve a fixed-length feature 

vector and only accepts images with a fixed size, the FCNs model uses the interpolation 

layer after the final convolutional layer to upsample the feature map and restore the similar 

input size, as well as accepts input images of any size. In the FCNs, the final dense layers 
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are replaced with convolutional layers, and then the output is a label map. A general 

architecture of the FCNs model is presented in Figure 2.3. In the following, the previous 

research related to the FCNs model and road extraction are explained.  

Varia, et al. [61] applied a deep learning technique, namely, the FCN-32 for extracting road 

parts from extremely high-resolution UAV imagery. UAV-based imaging systems, which 

commonly use drones, can be used for the real-time assessment of several applications, 

monitoring tasks, and large-scale mapping, and are managed autonomously by onboard 

computers or remotely by human operators. UAV-based remote sensing systems are used 

in various remote sensing applications, such as object recognition [62] and digital elevation 

model (DEM) generation [63]. Compared with traditional remotely sensed systems, UAVs 

have multiple advantages, including improved security, high speed, low cost, and high 

flexibility. In addition, improved details can be provided by high-resolution images taken 

by drone systems for object extraction and detection. The suggested techniques were 

evaluated on a UAV image dataset with 189 training and 23 test images. The training time 

for the FCN-32 was approximately 370 seconds per image.  

 
Figure 2.3. General architecture of FCNs model. 
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The authors evaluated quality, correctness, and completeness assessment measures to show 

the models’ efficiency for road extraction and found that the proposed models achieved 

satisfactory results. Moreover, they are effective for road extraction from UAV images. 

However, the models misclassified nonroad areas as road areas in certain areas with high 

complexity, thereby resulting in a large number of false negatives (an outcome where the 

model incorrectly predicts the negative class) and reducing the percentage of completeness 

and quality in the final output. The suggested models were highly dependent on the number 

of images fed into them for training. Thus, they should be applied to many images with a 

large variety for better training and improved accuracy. 

Kestur, et al. [64] presented a novel architecture based on the FCN called the U-shaped 

FCN (UFCN) to extract roads from UAV images. The model was used on a UAV dataset 

with 109 images, approximately 70% of which were used for training and 30% for testing. 

The authors applied data augmentation during the training step to increase dataset size 

efficiently to improve training. The prediction took 1.95, 7.68, 43.87, and 1.09 seconds per 

image for UFCN, SVM, 1D-CNN, and 2D-CNN, respectively. The 1D-CNN model was 

slower than the UFCN model because of the computationally intensive architecture of the 

1D-CNN network. Metric indicators, namely, F1 score, recall, precision, and overall 

accuracy, were calculated to assess classification performance, which were 89.6%, 86.8%, 

92.5%, and 95.2%, respectively. The authors also compared their model with a two-

dimensional CNN model, a one-dimensional CNN model, and an SVM model. They found 

that the model outperformed all the aforementioned methods in terms of accuracy and 

prediction time. Although the result achieved by the proposed model was promising, the 

dataset could be extended over a large area to use the suggested method for road extraction 

from extremely high-resolution remote sensing imagery. An FCN-8 network was proposed 
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by [65] for road extraction from SAR images. The method was implemented on the 

TerraSAR-X dataset with 20% for testing and 80% for training. The experimental 

outcomes proved that the proposed model was able to extract the road part accurately. Wei, 

et al. [66] performed a multistage deep learning model based on FCN for accurate and 

simultaneous road surface and centerline extraction. The proposed method includes three 

main parts: segmentation (based on FCN), points tracking, and fusion (FCN+PT+Fusion). 

The frameworks were verified on the Massachusetts, Shaoxing, and Google Earth images. 

The Shaoxing dataset contains 532 images of size 1024×1024 and resolution of 0.6m, while 

the Google Earth dataset includes 2368 images with the size of 1024×1024 and resolution 

of 0.6m per pixel. For the road segmentation outcomes, IOU was evaluated that obtained 

with 78.65%, 61.78%, and 52.47% for  Massachusetts, Shaoxing, and Google Earth 

datasets, respectively. However, the technique failed to detect road segments well in 

heterogeneous environments. Furthermore, the technique could not obtain correct 

information regarding road width and location for road centerline extraction. The access 

link to the open source code of FCN models for satellite image segmentation can be found 

at https://github.com/Mattymar/satellite-image-segmentation. 

2.4. Road extraction based on the deconvolutional neural networks (Dense 
Nets) 

Deconvolutional networks struggle to extract hierarchical features from images that closely 

pertain to a number of deep learning methods from the machine learning community. These 

models comprise an encoder and decoder part, which a bottom-up mapping from the input 

image to the latent feature space is provided by the encoder part while the latent features 

are mapped back to the input image using the decoder part. A general architecture of 

deconvolutional networks is shown in Figure 2.4. Following this, the previous works 

https://github.com/Mattymar/satellite-image-segmentation
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related to using deconvolutional models for road extraction from remote sensing datasets 

are highlighted. 

Panboonyuen, et al. [28] presented a technique based on a modified deep encoder–decoder 

neural network to extract road objects from remote sensing imagery. To improve the 

suggested model, the authors enhanced certain phases of the suggested approach containing 

the incorporation of the exponential linear unit (ELU) function against the rectified linear 

unit function. In addition, the authors increased the number of training datasets by rotating 

images to eight different angles incrementally and used a landscape metrics (LM) method 

to eliminate false road parts and improve the general accuracy of the output. The designed 

model was tested on the Massachusetts dataset containing 49, 14, and 1108 images for 

testing, validation, and training, respectively. The most common metrics, namely, F1 score, 

recall, and precision, were also used for the performance evaluation, which gained 85.7%, 

86.1%, and 85.4%, respectively. The results proved that the suggested approach yields 

satisfactory results and outperforms state-of-the-art approaches in road extraction from 

remote sensing imagery in terms of performance metrics. 

 
Figure 2.4. General architecture of deconvolutional networks. 
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Wang, et al. [47] introduced a semiautomatic technique based on the finite state machine 

(FSM) and DNN, including two main steps, namely, training and tracking, for road 

extraction from high-resolution remote sensing imagery. In the training step, the model 

was trained to recognize the pattern of an input image. To generate training samples, a 

vector-guided labeling approach that elicited huge image-direction mates from available 

vector road maps and images was defined. In the tracking step, a fusion strategy was used 

to detect the size of a detection window, and the trained DNN was used to recognize 

extracted image patches. In general, the DNN was applied to the proposed method to 

determine a pattern from complicated scenes, and the FSM was used to control the behavior 

of trackers and translate identified patterns into states. The model was applied to two 

datasets, namely, aerial and Google Earth images, which were divided into 60%, 20%, and 

20% for training, testing, and validation, respectively. Completeness, correctness, and 

quality percentage indices were used for the performance assessment, which were 75%, 

70%, and 74%, respectively, thereby proving that the suggested method could effectively 

exploit road classes from high-resolution remote sensing imagery in areas that were not 

highly complex. However, the proposed method could not operate properly in extremely 

complicated positions where road and other occlusions roughly contribute equal 

reflectance characteristics. 

Panboonyuen, et al. [67] developed a new enhanced deep convolutional encoder–decoder 

model based on SegNet to segment road classes from high-resolution remote sensing 

imagery. A new activation function, namely, the ELU, was incorporated into the model to 

improve accuracy. The LM method was applied to remove falsely categorized road classes 

and identify road patterns. In the final step, the authors used CRFs to sharpen extracted 

roads. The proposed model was applied to two aerial and satellite datasets: 1) the 
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Massachusetts dataset, including 1171 images divided into 1108, 14, and 49 images for 

training, validation, and testing, respectively, and 2) the Thailand Earth Observation 

System (THEOS) dataset containing 855 satellite images. The authors used F1 score, recall, 

and precision performance measures, which achieved 87.6%, 89.4%, and 85.8%, 

respectively, for the Massachusetts dataset and 64.9%, 58.4%, and 75.1%, respectively, for 

the THEOS dataset. The results indicated that the suggested approach outperforms other 

existing road segmentation techniques. However, this framework only works on extremely 

high-resolution remote sensing images, and distinguishing road sections from low- and 

medium-resolution remote sensing imagery is challenging. Constantin, et al. [68] 

introduced a modified UNet CNN for extracting road classes from high-resolution remote 

sensing imagery. The authors applied a novel binary cross entropy loss function and 

Jaccard distance fusion to train the model to decrease the number of false positives (an 

outcome where the model incorrectly predicts the positive class) and enhance the accuracy 

of binary classification. The proposed method was tested on the Massachusetts dataset, 

including 49 aerial test images, 14 validation data, and 1108 training data, with extra data 

augmentation to extend the dataset. For the accuracy assessment, overall accuracy, F1 

score, recall, and precision were calculated, which were 97.14%, 74.54%, 75.48%, and 

74.15%, respectively. Although the proposed model achieved a high accuracy of over 97%, 

its accuracy for other parameters was low. Therefore, additional pre- and postprocessing 

operations are necessary to improve the classification efficiency of the proposed approach 

for road extraction. 

Zhang [52] developed a deep residual UNet model similar to a UNet architecture for road 

semantic segmentation from high-resolution remote sensing imagery. The proposed 

network was designed based on residual units, which simplify network training. Rich skip 
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connections were also used inside the model, which allowed few parameters and facilitated 

information propagation while achieving improved performance. The authors used their 

model on the Massachusetts road dataset, including 1171 images divided into 49, 14, and 

1108 images as the test, validation, and training data, respectively. The authors compared 

the suggested model with the UNet model and two other deep networks (e.g., CNN and 

CNN+postprocessing) for road extraction and found that the suggested technique was more 

efficient in extracting roads from high-resolution remote sensing imagery in terms of 

precision and recall. However, the introduced approach could not identify road sections in 

parking lots and under trees. Hong, et al. [44] employed a method based on richer 

convolutional features (RCFs) for road segmentation from high-resolution remote sensing 

imagery. The proposed model contains four principal phases. (1) Training and testing 

samples were generated based on dataset preprocessing on the main image. (2) The RCF 

network was trained on the training samples and implemented on the testing images to 

generate strict road feature maps. (3) Autothreshold segmentation was applied to remove 

nonroad information and produce a road binary map. 4) Finally, road sections were 

extracted and vectorized. The authors applied their method on the Massachusetts road 

dataset, including 865 images. Four metrics, namely, precision, recall, F1 score, and overall 

accuracy, were used to determine the capability of the proposed method for road extraction, 

which were 85.8%, 98.5%, 91.5%, and 96.3%, respectively. Although the suggested 

approach achieved high accuracy for road class extraction from high-resolution remote 

sensing imagery, it could not gain precise road width information owing to combined pixel 

and model structure issues. 

Xin, et al. [69] applied the DenseUNet model that takes advantage of UNet as primary 

structure for road extraction from remote sensing images. The DenseUNet model included 
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skip connection and dense connection units that facilitated the merging of various scales 

by joints at different network layers. Also, in DenseUNet, the convolution operations with 

were replaced with up-sampling operations. Two main datasets, namely, the Massachusetts 

and Conghua datasets, were used to calculate model efficiency. The image resolution of 

the Conghua dataset was 0.2 m and consisted of three red, blue, and green bands (RGB). 

A total of 47 aerial images were used in this dataset, with each image consisting of 

3×6000×6000 pixels. In this dataset, 80% of the data were used for training and the 

remaining 20% were used for model validation. The Massachusetts dataset was separated 

into 49 images, 14 data items, and 1108 data items for testing, validation, and training, 

respectively. The authors used precision, recall, F1 score, Intersection Over Union (IOU), 

and the Kappa coefficient to calculate the efficiency of the proposed method for road 

extraction. The respective values were 78.25%, 70.41%, 74.07%, 74.47%, and 70.32% for 

the Massachusetts dataset and 85.55%, 78.51%, 76.25%, 80.89%, and 80.11% for the 

Conghua dataset. The outcomes showed that the suggested technique has the advantage of 

low noise and high precision. 

Li, et al. [70] suggested a new convolutional neural network called the Y-Net, which 

includes two main fusion and feature extraction modules for extracting road parts from 

high-resolution remote sensing imagery. A feature extraction module consisting of a deep 

downsampling-to-upsampling subnetwork was introduced for semantic feature extraction, 

and a convolutional subnetwork without downsampling was introduced for detail feature 

extraction. The authors applied a fusion module to combine features for segmenting road 

classes. Moreover, the proposed technique was tested on the public Massachusetts dataset 

and a private dataset from the Jlin 1 business satellite. Both datasets were split into a 

training dataset with 12,376 images, a validation dataset with 474 images, and a testing 
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dataset with 531 images. The authors calculated mean region IOU (mean IOU), the Dice 

coefficient, mean accuracy, the Matthew correlation coefficient, and pixel accuracy for the 

accuracy assessment of the proposed model, which were 77.09%, 85.58%, 82.53%, 

71.56%, and 97.36%, respectively. The experiment results showed the superiority and 

potential of the model for road semantic segmentation from remote sensing imagery. 

However, the proposed approach possesses several road extraction limitations. A small 

portion of the remote sensing imagery is occupied by a number of road pixels; thus, class 

imbalance is a considerable dilemma in road segmentation, particularly in narrow road 

sections. Thus, the method does not perform well in such areas. In addition, the proposed 

method requires additional time for training, which could be reduced by introducing 

transfer learning and generative adversarial network (GAN) fusion in the model, thereby 

improving accuracy. In general, deep learning models can achieve high accuracy in road 

extraction from remote sensing imagery compared with other machine learning 

approaches.  

Cheng, et al. [71] presented a new deep learning technique called the cascaded end-to-end 

(CasNet) deep learning model for detecting road classes and extracting road centerlines 

from extremely high-resolution remote sensing imagery. The suggested model includes 

two networks. The first is for detecting road regions, and the second is for extracting road 

centerlines, which are cascaded to the previous one and take full advantage of feature maps 

provided previously. The authors used a thinning method to achieve a single-pixel width 

and smooth road centerline. The model was evaluated on Google Earth images with 224 

images. The Earth images obtained using Google Earth were in the form of aerial or 

satellite images with RGB color and different spatial resolutions based on the data source 

[48]. The dataset was randomly divided into 180, 14, and 30 images for training, validation, 
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and testing, respectively. Several regularization methods and data augmentation 

approaches were applied to reduce overfitting and increase the size of the dataset. 

Classification metrics, namely, quality, correctness, and completeness, were introduced to 

evaluate the road extraction performance of the proposed model, which were 88%, 92%, 

and 94%, respectively. The results showed that the method is effective for road centerline 

extraction and road detection. However, the proposed method does not perform well in 

areas where roads are covered by tree occlusions. Therefore, additional high-level semantic 

information is needed to improve the performance of the method and to extract obstructions 

effectively. Xu, et al. [72] used a new technique based on a densely connected 

convolutional network (DenseNet) by introducing local and global road information to 

segment roads from high-resolution remote sensing images. The method was applied to 

Google Earth data with a 1.2-meter spatial resolution containing 224 images. The authors 

calculated F1 score, accuracy, precision, and recall measurement indicators for the 

accuracy evaluation, which were 95.72%, 96.3%, 96.30%, and 95.15%, respectively. The 

results proved that the introduced technique is efficient for road extraction. The experiment 

results were compared with other semantic segmentation methods, such as the DeepLab 

V3+, FCN, and UNet models, and showed that the proposed method outperformed the 

others. 

Buslaev, et al. [73] developed a deep learning technique based on the UNet family to 

extract roads from remote sensing imagery. The authors used an encoder similar to the 

RezNet-34 network, and a decoder was used based on the vanilla UNet decoder. The 

authors also produced a loss function that considers binary cross-entropy and IOU 

simultaneously. In addition, data augmentation was used to improve the performance of 

the method. The model was evaluated on a dataset collected by the DigitalGlobe satellite, 
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with a 50 cm pixel resolution and 6226 images. Furthermore, 1243 validation images were 

provided to calculate the performance of the model. IOU was used as a metric for the 

accuracy assessment of the suggested method, which was 64%, thereby indicating 

satisfactory results for road extraction. However, the model can be further improved by 

preparing high-quality labeled masks and amending data augmentation. Zhou, et al. [74] 

introduced the D-LinkNet model for road semantic segmentation from remote sensing 

imagery. The proposed model contains an encoder–decoder structure, dilated convolution, 

and a pretrained encoder for extracting road sections. A dilated convolution is a beneficial 

alternative to pooling layers, which is a valuable kernel for expanding and modifying 

receptive feature point fields and keeping detailed information, such as narrowness, 

connectivity, and complexity, without reducing the resolution of feature maps. The 

proposed technique was tested on the DigitalGlobe road dataset with 6226, 1243, and 1101 

data items for training, validation, and testing, respectively. The IOU metric was evaluated 

and showed that the method has road extraction capabilities but retains several issues 

concerning road connectivity and recognition. 

Doshi [75] applied an integrated model based on the ResNet and an inception-style encoder 

called the residual inception skip net to extract roads from satellite images. The introduced 

model was implemented on a dataset with a 0.5-meter pixel resolution and 6226 images. 

The dataset was gathered by DigitalGlobe satellites. The dataset was randomly divided into 

85% and 15% for training and testing, respectively. The IOU metric was calculated to 

assess the accuracy of the model, which was 61.3%, thereby showing that the suggested 

united method can generally exceed the two other baseline approaches (i.e., UNet and 

DeepLab). However, various postprocessing strategies, such as the use of CRFs, can 

definitely promote and optimize the performance of the suggested method. Xu, et al. [76] 
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applied a deep CNN based on deep residual networks to extract roads from WorldView-2 

satellite images. A Gaussian filter was first applied as a preprocessing operation to 

eliminate noise. Next, the M-Res-UNet model was introduced for road semantic 

segmentation. The authors calculated precision, recall, and F1 score to assess the 

classification performance, which were 90.04%, 95.17%, and 92.77%, respectively. The 

proposed method could extract road classes efficiently and achieve improvements for the 

assessment factors. However, the approach did not perform well in certain areas wherein 

objects such as cars and building roofs had similar colors and spatial distributions. The 

authors generated ground truths using vector maps by setting a buffer in which all road 

areas with similar widths affected the accuracy of the model. Therefore, generating 

trustworthy labels and considering topological relationships could improve accuracy. 

Henry, et al. [65] used DeepLabV3+ and Deep Residual UNet to extract road sections from 

SAR images. The authors also used a control variable and mean squared error in the 

training process over the spatial tolerance of the network to promote the capability of the 

method. Each road was manually labeled, from major apparent highways to minor 

detectable roads. The authors applied the proposed approaches on a TerraSAR-X dataset 

with 80% for training and 20% for testing. For the accuracy evaluation, IOU, precision, 

and recall indices were calculated, which were 45.46%, 71.69%, and 75.17%, respectively. 

The results showed that though the FCNN models obtained satisfactory quantitative 

outcomes, the models missed multiple road sections and predicted unanticipated features, 

such as forests and hills. 

He, et al. [77] implemented a transfer learning technique for road segmentation from high-

resolution remote sensing imagery. First, the authors applied a deep network based on an 

improved UNet model for training. Second, cross-modal data were used to fine tune the 
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first two layers of a pretrained network to adjust the local features of the cross-modal data. 

An autoencoder was used to convert the data into three bands and extract local features for 

the cross-modal data of various bands. For the evaluation, the proposed method was tested 

on 6626 WorldView-3 images with a 0.5-meter spatial resolution per pixel. The images 

were split into 6035 and 591 images for training and testing, respectively. F1 score, 

precision, recall, and IOU indicators were used to evaluate performance, which were 

58.03%, 59.23%, 59%, and 42.03%, respectively. According to the results, the suggested 

model could extract road sections efficiently but could not achieve high accuracy in 

complex environments where other objects exhibited reflectances similar to road classes. 

Xia, et al. [78] applied a DeepLab architecture for road extraction from high-resolution 

satellite images. The authors first implemented a semiautomatic approach to produce 

labeled data. A road benchmark was generated automatically then revised manually based 

on the construction characteristics and road patterns built by the transportation industry. 

The authors studied data influenced by color distortion as a type of road. Subsequently, 

they trained a DCNN model with deep layers to learn different road attributes. The 

designed method was tested on a GF-2 dataset, with spatial resolutions of 1 and 4 meters 

for the panchromatic and multispectral scanners, respectively. The experiment results 

illustrated that the suggested approach can recognize road classes from complicated 

positions with an accuracy of more than 80% in indistinguishable regions. However, 

smoothness estimation for curved lines is not successfully achieved by the proposed 

approach. Gao, et al. [79] introduced a new framework called the refined deep residual 

CNN to extract roads from high-resolution satellite imagery. The proposed method 

comprises two main units, namely, residual connected and dilated perception units. The 

authors applied a postprocessing step based on a tensor-voting technique and math 
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morphology to incorporate split roads and promote the performance of the proposed model. 

The suggested method was implemented on two datasets: (1) Massachusetts road images 

with a 1-meter spatial resolution per pixel, including 60, 6, and 10 images for training, 

validation, and testing, respectively, and (2) GF-2 road images with a 0.8-meter spatial 

resolution consisting of 60, 16, and 10 images for training, validation, and testing, 

respectively. The authors calculated IOU, accuracy, recall, precision, and F1 score 

indicators to assess the quantitative performance of the suggested approach, which were 

65.91%, 98.10%, 77.94%, 83.88%, and 80.58%, respectively. The experimental results 

confirmed the efficiency advantage of the proposed technique for road extraction from 

remote sensing imagery. However, further processing is needed to achieve high accuracy 

in outline boundaries and complex urban areas. Xie, et al. [80] applied a new road 

extraction method using a high-order spatial information global perception framework 

(HsgNet), which uses LinkNet as its basic network and embeds a middle block between 

encoder and decoder. The middle block learns to maintain various feature dependencies 

and channels’ information, long-distance spatial relationship and information, and global-

context semantic information. They implemented the proposed model on the DeepGlobe 

dataset that consists of 622 test images, 622 validation images and 4971 training images 

with a spatial resolution of 0.5 m and image resolution of 1024×1024, as well as the 

SpaceNet dataset that includes 567 test images and 2213 training images with an image 

size of 512×512. For evaluating the performance of the proposed method for road 

extraction, they calculated measurement metrics such as precision, recall, F1 score and 

IOU that obtained 83%, 82%, 71.1%, and 71.1%, respectively, for the DeepGlobe dataset 

and 81.6%, 84.5%, 83%, and 71%, respectively, for the SpaceNet dataset. The 
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experimental results showed that the suggested model performed well for road extraction 

from high-resolution remote sensing imagery.  

Chen, et al. [81] extracted road parts from three datasets called the large road segmentation 

dataset of New York (LRSNY), Shaoshan, and Massachusetts based on adaboost-like end-

to-end multiple lightweight UNets model (AEML UNets). The proposed approach was 

made up of several lightweight UNet components, which the output of the previous UNet 

was used as an input for the next UNet. They separated the original Massachusetts images 

(1500×1500) into 256×256 for their experiment, resulting in 27700, 350, and 1225 images 

for training, validation and testing, respectively. For Shaoshan dataset, they generated 

14580 training images with the size of 256×256 to fit their model input size. The LRSNY 

dataset is optical images with 0.5 m spatial resolution that includes 716 training,  220 

validation, and 432 test images with the size of 256 × 256. In their experiment, they 

achieved the IOU with 88.21% for the LRSNY dataset, 75.08% for the Shaoshan dataset, 

and 64.77% for the Massachusetts dataset. The result proved the effectiveness of the model 

in road extraction from different datasets; however,  the model showed serious issues with 

incorrect extractions, especially in regions obstructed by car parking lots and trees. Chen, 

et al. [81] proposed a global context-aware and batch-independent network (GCB-Net) for 

continuous and complete road networks extraction. To successfully incorporate global 

context characteristics, the global context-aware (GCA) block was added to the encoder-

decoder part in GCB-Net. To improve the original basic model, they used the filter 

response normalization (FRN) layer that remove batch reliance and enhance the model’s 

robustness and accelerate learning. They applied their model to the three CHN6-CUG, 

SpaceNet, and DeepGlobe road datasets. The CHN6-CUG includes Google Earth images 

with the size of 512×512 and a resolution of 0.5m per pixel. They divided the dataset into 
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3608 and 903 images for training and testing, respectively. They divided the SpaceNet 

dataset with 0.3m resolution and size of 650×650 into 567 images for testing and 2213 

images for training. For the DeepGlobe dataset, they cropped the original images into the 

size of 512×512 and finally created 42255 and 6116 imagery for training and testing, 

respectively. They obtained an F1 score of 81.54% for the DeepGlobe dataset, 76.33% for 

the SpaceNet dataset, and 72.70% for the CHN6-CUG dataset. The outcomes of the 

experiments showed that the suggested framework outperformed other state-of-the-art 

techniques. However, the baseline network was difficult to segment due to the significant 

heterogeneity of road networks in Wuhan. Wan, et al. [82] performed a shallow encoder-

decoder model with densely connected blocks called dual-attention network (DA-

RoadNet) for road extraction, which can reduce the amount of road structural data lost as 

a result of successive downsampling operations. Also, they included a hybrid loss function 

to deal with class imbalance. They performed the method on the Massachusetts and 

DeepGlobe datasets. They cropped the Massachusetts images into image tiles at 256×256 

and DeepGlobe images into 512×512. They selected 3736 training, 1245 validation and 

1245 testing images for DeepGlobe, while 725 training, 14 validation and 49 testing images 

for Massachusetts dataset. They attained the quantitative results for the F1-score=78.19% 

for Massachusetts and F1-score=71.54% for DeepGlobe. However, in order to produce 

more complete and accurate results, the topology of the roads must be incorporated into 

the model. To extract road from satellite imagery, Shan and Fang [87] offered a DCNN 

model with encoder-decoder structure called E-Road network comprises of ResNet-18 with 

atrous spatial pyramid pooling (ASPP) method. To recover a clear and sharp boundary of 

road, the PointRend algorithm was used. They trained the model on the DeepGlobe dataset 

with 6226 training, 1243 validation, and 1101 testing images with a size of 512×512. 
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Although the proposed model could achieve accurate results with an IOU of 85.20%, more 

challenging datasets with complex environments are required to be tested to prove the 

model's efficiency in road extraction.  

Zhou, et al. [83] presented a fusion network (FuNet) that combines location data and 

remote sensing images for road extraction. FuNet has an IteR (universal iteration 

reinforcement) module that improves network learning capabilities. BeiJing Dataset with 

a size of 1024×1024 and 0.5m spatial resolution was used for the training (278 images) and 

testing (70 images). The proposed model achieved an IOU of 63.31%; however, multi-

source data integration like road spatial relationship and direction should be used to 

improve the extraction results. In [84], a dual-attention capsule UNet (DA-CapsUNet) that 

integrates the powerful features of attention mechanisms and the beneficial aspects of 

capsule representations was suggested for extracting road networks from remote sensing 

imagery. The presented technique was evaluated on the 20000 Google Earth images with 

a spatial resolution of 0.3-0.5m and the size of 800×800. On the test set, the suggested DA-

CapsUNet yielded promising road segmentation outcomes with an F1 score of 91.30%. 

However, the DA-CapsUNet model failed to keep the road's completeness for regions 

where road portions were highly obscured by dark shadows or covered by the buildings or 

trees. In another work [85], a multitask road-related extraction network (MRENet) was 

developed for simultaneous road surface and centerline extraction from GF-2 satellite 

images. The proposed approach obtained an F1 score of 71.41% for road surface extraction 

and 70.09% for road centerline extraction; however, it demonstrated errors in maintaining 

the road connectivity at most intersection areas. Wang, et al. [86] applied an encoder-

decoder deep learning method called inner convolution integrated network and directional 

CRFs (ICN-DCRF) for road extraction. The suggested technique provided good extraction 
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results, with an F1 score of 84.6%, according to the experimental tests on the Massachusetts 

dataset. The proposed technique, on the other hand, did not recognise long occlusions and 

some blurred roads accurately. Wang, et al. [87] proposed a deep learning network named 

coord-dense-global (CDG) to detect road networks from GF-2 and Massachusetts datasets. 

The model was built on three main steps: a global attention module, a dense convolutional 

network (DenseNet), and a coordconv module that translates coordinates into feature maps. 

They evaluated the F1 score to assess the performance of the model, which achieved 

76.10% for Massachusetts and 72.62% for GF-2 images. Although the method improved 

outcomes, the model's extraction effect was pretty weak when roads are substantially 

blocked by many trees. The links to download the public datasets and official code 

repositories of the aforementioned deep learning models can be found in the online version 

at https://github.com/robmarkcole/satellite-image-deep-learning; 

https://github.com/jeradhoy/DeepSatelliteData, https://github.com/divamgupta/image-

segmentation-keras. 

2.5. Road extraction based on the GANs model 

GANs comprises two main generative and discriminator models, in which the generative 

term tries to obtain the data dispensation and the discriminator part tries to determine the 

likelihood that a representation refers to training data instead of being created by a 

generative model [88]. The generic architecture of GANs model is presented in Figure 2.5. 

In this section, previous work related to applying the GANs model for road segmentation 

is highlighted.  

https://github.com/robmarkcole/satellite-image-deep-learning
https://github.com/jeradhoy/DeepSatelliteData
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Figure 2.5. Generic architecture of GANs model. 

Costea, et al. [89] presented a new method named dual-hot generative adversarial networks 

(DH-GAN) to detect intersections and roads from UAV images at the higher semantic level 

of road graphs during the first step. Then, they applied a smoothing-based graph 

optimization method for pixel-wise road segmenting and finding the road graph. They used 

the F1 score, precision, and recall for evaluating the performance of the model, which were 

86%, 89.84%, and 82.48% that proved the efficiency of the proposed model for road 

extraction, and also was able to minimize the memory costs. Varia, et al. [61] applied the 

GANs model for road extraction from UAV images. They used the UNet model for the 

generator part, and the model was trained on 189 UAV images and evaluated on 23 test 

images. The training took 300 seconds per image for GANs-UNet. They achieved an 

accuracy of 96.08 for the F1 score, which shows that the proposed model was more 

efficient for road extraction from UAV images. Shi, et al. [88] implemented the GANs 

model for attaining a smooth road segmentation map from Google Earth images with 550 

images: 320 images were used for training, 100 images for validation, and 130 images for 

testing. They also used data augmentation procedures to increase the size of the dataset. 

An encoder–decoder SegNet model was used for the generative part to generate a high-
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resolution segmentation map. The accuracy that they achieved for recall, precision, and F1 

score was 91.01%, 88.31%, and 89.63%, respectively, which shows the superiority of the 

proposed model for road extraction. Yang and Wang [90] applied the E-WGAN-GP 

approach, which is an ensemble Wasserstein generative adversarial network with gradient 

penalty (WGAN-GP) technique to extract road from remote sensing data in rural 

environments. To overcome the class imbalance difficulties in road extraction, they added 

a spatial penalty component to the WGAN-GP model's loss function. They tested the 

method on the GF-2 images, including 36000 training images and 4000 validation images 

with the size of 512×512, and DeepGlobe dataset containing 5500 training, 500 validation, 

and 300 test images with the size of 1024×1024. They achieved F1-score=85% and 

IOU=73% for GF-2 dataset and F1=82% and IOU=73% for DeepGlobe dataset.  

Cira, et al. [91] implemented a conditional generative adversarial network (cGAN) for road 

surface areas extraction from a high-resolution aerial dataset including 6784 training tiles 

and 1696 testing tiles with the size of 256×256. The IOU metric (75.30%) was used to 

assess the performance of the model in road extraction. However, the method showed 

shortcomings, particularly in urban domains. Zhang, et al. [92] presented a multi-

supervised generative adversarial network (MsGAN) as a learning-based method for road 

extraction that is jointly trained by the road network’s topology and spectral characteristics. 

The suggested model was tested on two road datasets called Massachusetts and Pleiades-

1A remote sensing images with a spatial resolution of 0.5m. The model showed satisfactory 

performance in road extraction with achieving quantitative statistic (F1 score) of 86% for 

Pleiades-1A and 86.2% for Massachusetts images. However, in regions where roads are 

blocked for a long distance, the method produced errors. In [93], a new approach on the 

basis of cycle generative adversarial network (CycleGAN) and transfer learning with 



 

 
46 

ensemble classifier (TEC) was performed for road network extraction from UAV imagery. 

The performance of the proposed techniques was evaluated on 13 test images based on 

performance measures such as completeness=87%, correctness=82% and quality=71%. 

The model needs to be tested on more UAV images for extracting roads in complicated 

settings such as city avenues and roads. In another work [94], a multi-conditional 

generative adversarial network (McGAN) was implemented to extract roads from remote 

sensing data. The Massachusetts dataset and Pleiades-1A remote sensing images were used 

in the experiment to assess the suggested method. Experiments showed that the suggested 

method produced acceptable quantitative results with F1 score=84.9% for Massachusetts 

and F1 score=84.1% for Pleiades-1A datasets. The proposed method produced good 

quantitative results, according to the experiments. The method, on the other hand, was 

unable to refine the discontinuous structures in some complex regions. The access link to 

the GANs model code for image segmentation can be found at 

https://github.com/eriklindernoren/Keras-GAN/tree/master/pix2pix. 

2.6. Discussion 

Several deep learning techniques have been suggested for extracting road classes from 

high-resolution remote sensing imagery. However, demands to obtain improved precision 

for segmented road outcome sets remain. Compared with other machine learning methods, 

deep learning techniques have shown notable development in object segmentation from 

images. However, their efficiency in road extraction can be scaled based on the processing 

power, model complexity, and the size of the training data. This review of existing research 

proves that compared with other machine learning and traditional techniques; deep learning 

methods have obtained higher precision in extracting road parts from high-resolution 

remote sensing imagery. 
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All the CNNs were classified into four major models: the patched-based CNN model [38]; 

the FCN-based model [31]; deconvolutional net-based models, such as UNet [95], SegNet 

[96], and DeepLab [97]; and the GAN-based model [54]. GANs contains two sections 

called the generator and discriminator parts, which have recently gained considerable 

attention [98]. The generator part struggles to make fake images from realistic ones, 

whereas the discriminator part strives to identify feigned images from actual images. 

Finally, dynamic balance can be achieved by the two parts, and an image can be segmented 

by the generator portion. 

Table 2.1. Strengths and limitations of various deep learning methods for road extraction. 

Approaches Complexity Output Smoothness 

Models based on 
GANs 

• Model breakdown 
and lack of 
convergence for 
complex and large 
data 

• Complex training 
 

• Efficient and 
robust 

• Provide 
constant output 

• Capable of 
achieving boundary 
information and 
smooth 
segmentation map 

Models based on 
CNNs 

• Require few 
parameters 

• Require extensive 
samples 

• Low computing 
process 

• Not highly 
efficient in 
providing 
constant output 

• Do not perform 
well in highly 
complex 
positions 

• Ignore the 
correlation 
among 
neighboring 
pixels 

• Attain pixel-to-
pixel reasoning 

• Require high 
processing to 
identify boundaries 
and create a smooth 
segmentation map 
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Models based on 
FCNs 

• Low adaptability 
with complex data 
and depend on 
images and masks 
for training 

• Issues with 
road 
connectivity 

• Low position 
accuracy, lack 
of spatial 
consistency 

• Cannot 
successfully 
achieve 
smoothness 
estimation for 
curved lines 

 

Models based on 
deconvolutional 

nets 

• Require large 
amounts of 
memory and 
storage 

• Require additional 
time for training 
and high 
computing process 

• High spatial 
accuracy 

• Efficient and 
robust for 
achieving 
consistent 
output 

• Able to obtain a 
smooth 
segmentation map 

 

 

In FCN models, each pixel can be inferred end-to-end by examining the patch-to-pixel 

anticipation. In these models, convolutional layers are replaced by final dense layers in 

which the output of the label map is the last convolutional layer. Deconvolutional net-based 

models are identified by deconvolutional layers, which are called decoder sections. Finally, 

the image block around a pixel can be used to train and anticipate input in the patch-based 

CNN model. The throughput outcomes of the aforementioned studies have shown that the 

deconvolutional networks are the most popular models that most of the researchers apply 

for the purpose of road semantic segmentation from high-resolution remote sensing 

imagery. I elaborate on the advantages and disadvantages of the discussed approaches to 

develop a general comparison (Table 2.1). 

Table 2.1 shows that each model has its own limitations and strengths. For example, simple 

interpolation is utilized in the upsampling of the FCN models, thereby causing the models 

to achieve low precision. However, pixel-to-pixel reasoning can be obtained as well as end-

to-end can be learned by FCNs inspired by CNN-based models that need expansive 
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samples, ignore the correlation among neighboring pixels, and require a high processing 

step to recognize precise road boundaries. While FCNs models encounter problems with 

road connectivity and cannot make smoothness predictions for curved lines as well as the 

segmentation map encounters with low spatial constancy, the DeconvNet model can obtain 

higher spatial precision and contains high adaptability compared with FCNs, as the former 

uses low-level information in deconvolutional layers. However, a large amount of storage 

and memory as well as a high computing process is required for applying this model. By 

contrast, the GANs model is more efficient because this model can achieve a constant 

segmentation map with road boundary information. However, the model encounters 

problems with a lack of convergence, gradient destruction, and complex training.  

 
Figure 2.6. General comparison of deep learning models applied to different road 

datasets. 

In addition, I attempt to compare the accuracy of different deep learning models applied to 

remote sensing datasets based on the common metrics [84] used to evaluate the efficiency 

of the proposed approaches for road extraction. Popular evaluation measures are calculated 
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based on a confusion matrix comprising four main factors, namely, false negative (FN), 

true negative, true positive, and FP [99, 100]. A general comparison of all the methods 

used in all datasets is provided to elaborate on the most efficient technique for road 

extraction (Figure 2.6). All the aforementioned works and corresponding values are plotted 

using an x-axis and y-axis, respectively. Only the methods that include a dataset and 

research performance reports are compared. 

I consider the F1 score metric, which is a trade-off measure between recall and precision, 

to compare the results achieved by different deep learning models for road extraction, 

except for some models, as the authors utilized only the IOU indicator for the performance 

evaluation. Figure 2.6 shows that the F1 score percentage is high for the GANs-UNet 

model, DenseNet method, and FCN-32 applied to UAV and Google Earth images, with 

accuracies of 96.08%, 95.72%, and 94.59%, respectively. One of the elegant fully 

convolutional neural networks named UNet model was used for a generative model in the 

GANs framework to create a high-resolution segmentation map with more accuracy. Also, 

the model was applied on UAV images that consist of very high spatial resolution with a 

variety for the angle of capture, color, shapes, and orientation, which led to achieving a 

highly precise road segmentation map compared to the other deep learning models. Figure 

2.7 illustrates the results achieved for road segmentation from UAV images (Figure 2.7a, 

b) with image dimension of 128×128, Google Earth images (Figure 2.7c) with a spatial 

resolution of 1.2 m and image dimension of 256×256, and the Massachusetts dataset 

(Figure 2.7d) with a spatial resolution of 1 m and image dimension of 375×375, by using 

the FCN-32, GANs-UNet, DenseNet, DeepLab V3+, CNN, and RSRCNN methods. The 

first and second columns are original and ground truth images, while the third and fourth 

columns depict the results achieved by the state-of-the-art methods. As it can be seen from 
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Figure 2.7, the GANs model applied on UAV images performed better and predicted less 

FP and FN pixels when compared to other methods. Also, a smooth segmentation map with 

more details of boundary information is attained by the proposed model. In contrast, the 

CNN model applied on the Massachusetts dataset was unable to achieve high accuracy in 

road extraction compared to the RSRCNN method that was applied on the same dataset. 

The extracted road parts by CNN have a significant issue of fuzzy boundaries and “salt and 

pepper” phenomena because the CNN model only counts on texture and spectral features; 

the mixed pixels in road borders lead to misclassification while the other methods improve 

the classification performance by restraining the effect of mixed pixels by the segmentation 

process. In the models such as DenseNet and GANs, road features are extracted from every 

convolutional layer and then integrated on multiscales. Multiscale merging of road features 

not only uses high-level semantic information to avoid influence of width changes, 

curvatures, and shadows to achieve precise road boundaries, but also utilizes low-level 

information to preserve detailed information of road features. As a result, the CNN model 

predicted more nonroad pixels that lead to extract larger road parts compared to the 

reference map with low accuracy. 
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Figure 2.7. Extracted road parts using deep learning methods from high-resolution remote 

sensing images: (a,b,c,d) original images; (e,f,g,h) corresponding reference maps; (i,j) 

results of FCN-32 and (k) result of DeepLab V3+; (m,n) results of GANs-UNet and (o) 

result of DenseNet model; and (l,p) results of CNN and RSRCNN methods, respectively. 

2.7. Summary 

Despite the fact that a variety of methodologies have been used to identify road networks 

from remote sensing data, they all have flaws. In other words, pre-existing techniques could 

not detect road parts well in heterogeneous areas. Thus, by integrating new 

hyperparameters, modules, and other functions, I tried to develop robust DCNN methods 

to accurately extract road network high-resolution remote sensing images and tackle the 



 

 
53 

shortcomings of existing methods in road extraction (Objective 1). Also, due to the 

complex characteristics of covered roads, typical FCNs-based approaches will not be 

capable of detecting them accurately. Furthermore, because these techniques are mainly 

encoder-decoder architectures, the boundary and connectivity precision of the road 

extraction findings would diminish during the downsampling phase. The number of feature 

maps in the encoder rises as the model goes deeper, while the spatial resolution diminishes. 

Feature maps' spatial resolution is gradually regained in the decoder arm via the up-

sampling layer; however, edge information is degraded. Because roads are man-made 

objects with distinct borders, concentrating on boundary and connectivity precision 

increases the road network quality. Convolutional and down-sampling processes in the 

local receptive fields are used in traditional FCN-based techniques to convey context 

information. As a result, they have trouble detecting road networks that are hidden by trees 

or buildings. Traditional FCNs' context information modeling processes are unable to 

create topological linkages between road segments broken by barriers, leading to 

fragmented and discontinuous road extraction outputs. Therefore, in this research, I 

developed a shape, and connectivity-preserving road detection deep learning-based 

architecture (SC-RoadDeepNet) is suggested to address the shape-accuracy and 

connectivity challenges (Objective 2). Moreover, some of the previous studies applied 

deep learning models to extract road surface and centerline simultaneously. However, for 

road centerline extraction, the existing approaches could not extract road centerline well 

around road intersections and could not get accurate information about road width and 

location (Not Road vectorization is done). Therefore, in this study, I developed a new deep 

learning model called RoadVecNet to extract the road surface and vectorize the road 

network simultaneously by identifying and extracting road vector instead of road centerline 
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to obtain correct location and width information about the road network (Objective 3). 

According to the literature review, this study can provide the following important 

outcomes. 

1. The capabilities of deep learning methods for road extraction are more effective than 

those of conventional approaches. 

2. When the complexity of images is high, and various road types are present, the accuracy 

of the models is low. Therefore, mixing additional robust functions and modules to the DL 

techniques is recommended and useful to achieve satisfactory results. 

3. Occlusions, such as shadows, cars, and buildings, are similar to road features, such as 

colors, reflectance, and patterns. Road extraction remains challenging owing to such issues. 

Also, most of the methods resulted in fragmented and discontinuous road extraction results, 

where the aforementioned issues cover the roads. Thus, developing a robust DCNN model 

to preserve the shape and connectivity of road networks is recommended and beneficial.  

4. Further research is required to build detailed techniques with high precision. CNNs 

trained by one dataset may be inconsistent with other scenes. Nonetheless, if training 

datasets are adequate and a deep learning model can be created effectively, then the model 

can be implemented properly on the most prevalent datasets. 

5. Most of the methods focused on road surface segmentation and centerline extraction 

without achieving accurate information regarding the road’s width and location. Therefore, 

further research is required to build detailed techniques with high precision for road 

vectorization to not only extract road surfaces accurately but also vectorize the road 

network and obtain the above-mentioned essential information.  
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In the literature review, state-of-the-art DCNN models that represent common and newly 

advanced methodologies were described. In conclusion, introducing several new robust 

methods related to road semantic segmentation is important, and research on different 

proposed techniques with cutting-edge technology for road vectorization is increasing. 
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CHAPTER 3 

MATERIALS AND METHODOLOGY 

 

3.1. Introduction 

Several approaches, including conventional ML methods and DCNN models applied for 

road extraction, and vectorization from different high-resolution remote sensing data are 

illustrated in this chapter. The overall methodology, detailed methodology execution, and 

performance assessment are all presented. The utilized materials and data and experiment 

settings were thoroughly discussed. First, some traditional ML approaches such as 

Trainable Weka segmentation and Level Set methods applied on UAV images and 

integrated technique of segmentation (multiresolution segmentation method) and 

classification methods (DT, KNN, and SVM) with connected components analysis 

implemented on orthophoto images for road extraction are presented. Second, various 

kinds of DCNN methods with additional modules and loss functions such as 

GAN+MUNet, VNet, MCG-UNet network, and BCD-UNet network implemented to the 

different remote sensing images for road surface segmentation are described. The SC-

RoadDeepNet model was developed to extract accurate road surfaces from different images 

and solve the issue of road shape and connectivity challenges. Finally, the RoadVecNet 

approach was used to extract road surface and vectorize road network accurately and 

simultaneously. Figure 3.1 depicts the overall framework for road databases updating 

system that briefly present three objectives: road surface segmentation using different 

robust DCNN models with additional parameters from various HRSI, dealing with broken 

road parts and connectivity-preserving challenges to improve the road segmentation maps 
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and achieve the road information like location and width/length based on road vectorization 

technique that is essential for road database updating. The methodology includes five main 

steps: Step 1 includes data preparation. In this step, different types of high-resolution 

remote sensing images were prepared to evaluate the proposed techniques for road 

extraction and vectorization. Step 2 contains applying data augmentation methods or image 

enhancement techniques to increase the size and quality of some training datasets. In Step 

3, traditional ML methods and state-of-the-art DL models were implemented for road 

surface segmentation, and the results were compared.  In Step 4, I applied a new DCNN 

technique called SC-RoadDeepNet to delete non-road noises, connect broken roads, and 

preserve the shape of road networks. Finally, In Step 5, a new DCNN method 

(RoadVecNet) was developed for road surface segmentation and road vectorization 

automatically and simultaneously that can achieve important information like width and 

location of road networks, which is essential for updating road database. In the following, 

the methods are described in detail based on each objective and published works mentioned 

on the “LIST OF PUBLICATIONS” page. 
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Figure 3.1. Overall flowchart of research methodology for road database updating 

3.2. Conventional ML methods for road surface extraction 

In this study, some traditional ML techniques such as multiresolution segmentation 

method, DT, KNN, SVM, connected components method, Trainable Weka 

segmentation method, and Level Set were applied for road extraction from HRSI, 

which the implementation of the methods are described in this section. The Trainable 

Weka segmentation method and Level Set were implemented to the UAV images for 

road extraction, while the multiresolution segmentation, DT, KNN, SVM, and 

connected components methods were applied to the orthophoto images to extract road 

networks.  

3.2.1. Level Set segmentation approach 

This study proposed a new approach based on Trainable Weka Segmentation (TWS) and 

LS techniques for road extraction from UAV. Also, a series of filtering processes such as 
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detectors for edge detection, filters for texture, filters for noise depletion, membrane finder 

and new morphological filtering approach were applied for improving extraction precision. 

The suggested road extraction method consists of the following steps. First, some training 

data (200 samples) are selected as input for the TWS algorithm. Then, the algorithm is 

implemented for image segmentation. One of the essential stages in image processing and 

recognition is segmentation [101]. In the image segmentation process, images are divided 

to disjoint and uniform areas on the basis of color, texture and depth [102]. These similar 

sections are supposed to match with the real classes in an image during processing. Thus, 

image segmentation plays an important role in image processing. After segmentation, the 

subsequent processes, such as identification and interpretation, are implemented. 

Therefore, the outcome achieved from image segmentation is essential in high-level image 

processing. 

In the next part, the LS method is performed for extracting roads from UAV images. Some 

roads can be identified more easily because they are more recognizable and include less 

noise. As roads in the corresponding image assign some general visual features, the 

information from the previously elicited roads and other objects, such as spectrum, can be 

utilized to interpret the process of classifying roads that are less obvious or massively 

influenced by surrounding objects. Otherwise, these roads are not simply separable from 

patterns created by other objects. For instance, a collection of small blocks may resemble 

with the road class from the corresponding block. Subsequently, for improving road class 

extraction accuracy, morphological operators are applied. Considered as the most common 

operators in feature extraction, opening and erosion operators are used in this study [103]. 

Numerous deficiencies can be found in binary images. Particularly, binary sections, which 

are provided by uncomplicated thresholding methods, are deteriorated by texture and noise.  
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Figure 3.2. The methodological framework of Level Set segmentation approach for road 

extraction. 

Morphological operators in image processing eliminate these defects by considering the 

structure and formation of the image [7]. Finally, the accuracy of road extraction from the 

images is calculated. All the steps listed above are shown in Figure 3.2. 

3.2.1.1. Data 

Data from UAV images from the Shiraz region were used to evaluate the Level Set method 

for road extraction (Figure 3.3). Shiraz City is in the southwestern part of Iran in Fars 

Province (29.61° N, 52.53° E) with an elevation of 1500 m above sea level. A UAV, also 

known as a drone, is an aircraft remotely or autonomously managed by a human operator 

or an onboard computer, respectively. UAV-based remote sensing can be used for large-

scale mapping and monitoring activities and real-time evaluation of multiple applications 

[104].  
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Figure 3.3. Study area location map (Shiraz, Iran) and UAV image used for road extraction 

based on Level Set method. Some examples of GCPs are shown on the images in blue 

color.  

The UAV images were collected on March 04, 2017, using Phantom 3 drone, with a flying 

height of 1000 meters. These images have no spectral band and are taken as RGB with a 

resolution of 5 cm. 108 images acquired in 60 % forward lap and 30 % side lap based on 

oblique left-tilted method, which all the images were finally mosaiced. 

3.2.1.2. Geometric and atmospheric correction 

Since the UAV images was captured by Phantom 3 drone, it was essential to calibrate it 

geometrically before any processing to correct the geometric errors. For geometric 

calibration, first some ground control points (GCPs) were collected. These points were 

collected from clearly identifiable points (corners, intersection roads and solitary trees). 
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Geometric calibration was applied in ArcGIS 10.6 software and included three main steps: 

(A) recognition of transformation points in the UAV images, (B) using the least square 

transformation, and calculation of the accuracy of the process. The chosen points were well 

distributed throughout the images. Then, least square approach used to evaluate the 

coefficients, which are necessary for geometric transformation process. In this step, 

polynomial equations were applied to identify the root mean square (RMS) error between 

the aligned data points and source data points. For atmospheric correction, since UAV 

images were taken in a good weather condition and low altitude, so atmospheric correction 

process was not applied on the images. 

3.2.1.3. Trainable Weka segmentation 

One of the Fiji plugins is the TWS, which merges several algorithms in machine learning 

with a collection of selected image characteristics to create pixel-based segmentation [105]. 

For image data segmentation, TWS converts the problem of segmentation into a problem 

of pixel classification, in which each pixel should be categorized to a particular class or 

section. The collection of input pixels that are specified is displayed in the property space 

and then applied as a training collection for a selected classifier. During the training of the 

classifier, it would be handled to categorize either entirely as new image data or the rest of 

the input pixels. TWS includes a combination of visualization tools and algorithms for 

predictive modelling and data analysis, together with graphical user interfaces for easy 

access to this functionality. Also, it contains a wide variety of image characteristics, and 

most of them are elicited by usual plugins or filters accessible as a section of Fiji. The 

features existing in TWS can be classified as (1) detectors for edge detection, which target 

demonstrating object borders in an image (e.g. Gabor filters, difference of Gaussians, 
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Hessian matrix eigenvalues, Sobel filters, Laplacian); (2) filters for texture analysis for 

evoking texture data (containing filters, such as entropy, variance, minimum, maximum 

and median); (3) filters for noise depletion, such as Lipschitz and Kuwahara, anisotropic 

diffusion, bilateral filter and Gaussian blur [105]. In this study, the difference of Gaussians, 

Hessian, Sobel filter, Gaussian blur and membrane detectors were used as training features 

to indicate the boundaries of road objects in an image, reduce noise in the image and 

localize the membrane-like structures of certain size and thickness. Furthermore, TWS 

provides users with customizing features. Accordingly, a rather easy script is required to 

add user-defined features in the segmentation process, in combination with the existing 

filters or alone. This can help users to create all kinds of linear and nonlinear features. 

Furthermore, a fast random forest (RF) algorithm is applied as a classifier because of its 

efficiency and robustness. The RF algorithm is an ensemble classifier, which uses a 

randomly elected subset of training variables and samples to generate several decision 

trees. The RF method is a technique of machine learning, which is frequently applied to 

image classification and creation of connected objects, such as roads and vegetation [106]. 

In addition, this technique needs fewer parameters when running, compared with other 

machine learning methods, such as artificial neural network (ANN) and SVM, whilst 

achieving high accuracy and good results [107]. 

3.2.1.4. Level set approach 

The active contour method fits closed or open splines to edges or lines in an image. 

This model acts by minimising an energy, which is defined partially by the image and 

by the spline’s shape, length and smoothness. Minimisation is performed explicitly in 

the image energy and implicitly in the shape energy [108]. Kass, et al. [109] introduced 
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an active contour method. Osher and Sethian [110] launched the LS approach to calculate 

and investigate the progression of a contour with incomplete differential equation because 

of some constraints, such as confronting topological differences and development of 

boundary indentations. The basic idea of LS is to show the surfaces as the zero level set of 

a higher dimensional hyper-surface. Using this technique, not only more accurate 

numerical implementations can be provided but also topological changes can be handled 

very easily. Primarily, it means that the closed curvatures in a two-dimensional surface are 

considered as a constant surface of a three-dimensional space. The definition of a 

smoothing function ϕ (x, y, t) stands for the surface while the set of definitions ϕ (x, y, t) 

=0 for the curves. Therefore, the progression of a curve can be converted into the 

progression of a three-dimensional LS function. Given a Level Set function ϕ (x, y, t = 0), 

which zero LS matches to curve. With the curve as the boundary, the entire surface can be 

separated into an inner region and an outer section of the curve. Set a Signed Distance 

Function (SDF) on the surface: 

ϕ (x, y, t = 0) = d   (1) 

Where, the value of d is the shortest distance between the point of x on the surface and the 

curve. In the whole evolutional process of the curve, its points will fit into the following 

formula: 

ϕ (x, y, t) = 0       (2) 

The common movement formula of LS is: 

  Φ1+|𝐹∇ϕ| = 0   (3)                        
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F is the speed function, which is a function related to evolving surface features (e.g. 

curvature, normal direction, etc.) and image features (e.g. gray, gradient). When applied 

into image segmentation, the design of F depends on the information of image and the ideal 

value is zero on the edge of the target. LS method usually shows a large influence in solving 

the obstacles of corner point constructing, curve breaking and combining because of its 

stability and irrelevancy with topology. Consequently, it is applied in a broad area. 

Nevertheless, there are some drawbacks to this method. Following the edge-stopping 

function depends on the image gradient, only objects with edges defined by gradient can 

be segmented. Other drawback is that in practice, which the curve may eventually pass 

through object boundaries due to of edge-stopping function is never exactly zero at the 

edges.  

The forward progression of a border is persuaded by the LS approach by using a speed 

function, which is common to the boundary curve [108]. The problem of extracting roads 

is regarded as a border transition issue inside the framework of the LS method. As long as 

the speed function is more than zero, the LS method will spread. At the borders of the right 

road edge, the speed function must be higher than zero for road extraction. Therefore, to 

move the zero-level curvature towards the object borders, an outer energy is specified. 

Given that the LS framework provides borders and automatic topological differences, the 

LS approach has been applied widely for several purposes, including border improvement. 

These kinds of features prepare a rational option for extracting roads for the LS framework, 

as the border of extracted roads might (1) disintegrate because of car appearance, (2) 

occupy pointed corners because of junctions and (3) adjust its topology arbitrarily (e.g., 

roads can be mixed anywhere along the road). Consequently, the road extraction query is 

set as a border evolving difficulty into the framework of LS. 
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3.2.2. Integrated technique of segmentation and classification methods with connected 
components analysis 

This work proposed an integrated method combining segmentation and classification 

methods with connected components analysis to extract road class from orthophoto images 

[111]. The proposed technique is threefold. First, multiresolution segmentation was 

performed to divide the images into segments based on their spectral values. A total of 567 

segments were selected as labeling data for training classification methods based on the 

segmented images randomly. Then, three main classification approaches, namely, SVM, 

DT, and KNN, were applied to the segmented image and trained based on sampling data 

to classify the image into two principal classes: road and non-road class. Finally, connected 

components analysis and morphological operations were performed to group the pixels 

together in terms of similar connected components and delete holes and noises to improve 

the accuracy of the proposed road extraction method. Figure 3.4 illustrates the flowchart 

of the suggested method along with the entire process for road part extraction from 

orthophoto images. 
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Figure 3.4. Flowchart of the proposed road extraction method from orthophoto images. 

3.2.2.1. Orthophoto data and geometric correction 

Orthophoto images obtained from the state of Selangor in Peninsular Malaysia with spatial 

resolution of 7 cm are utilized in this paper (Figure 3.5). An Optech Airborne Laser Terrain 

Mapper 3100 instrument in an airborne laser scanning of light detection and ranging 

(LiDAR) system was used to collect orthophotos from the specific area on November 2, 

2015. A LiDAR system basically includes a specific GPS (global positioning system) 
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receptor, a scanner, and a laser. The most regularly utilized platforms for collecting LiDAR 

data over large regions are helicopters and airplanes. Laser scanning systems are classified 

as topographic and bathymetric. Topographic LiDAR maps the land based on a near-infrared 

laser, whereas bathymetric LiDAR measures seafloor and riverbed elevation and maps land 

based on water-penetrating green light [112]. The flight height for data collection was 1510 

m in a bright sky. The geometric calibration of the orthophoto images was performed to 

eliminate geometric error and designate single pixels in their appropriate planimetric (x, y) 

map positions [113]. Subsequently, several well-distributed ground control points in the 

entire image were selected, and then the least square technique was performed to determine 

the coefficient. Finally, polynomial equations were formulated to determine the root mean 

shift error between the X, Y of reference, and the adjusted coordinates.  

 
Figure 3.5. Orthophoto images showing the location of the study area. 
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3.2.2.2. Segmentation process

Image segmentation is a crucial step because it will produce the primary entities for the 

subsequent processes. The quality of image segmentation has a notable impact on the 

succeeding operations, making it a crucial yet challenging aspect of OBIA [114]. The 

algorithms for image segmentation can be divided into four main categories: edge-based, 

pixel-based, region-based, and mixture methods. The multiresolution segmentation 

technique is applied in this study for image segmentation [115]. The scale, shape, and 

compactness parameters for the proposed segmentation method were set to 20, 0.2, and 0.6, 

respectively, to obtain high accuracy in the classification process. The proposed 

segmentation method is a region-based method, which reduces the non-homogeneous 

segments using spectral and shape characteristics [116]. In this method, each pixel of the 

image is considered as an object. Then, using a fusion factor, objects were joined together to 

make a large one during a repetitive process. Equation 4 shows the fusion factor, which 

demonstrates the cost of fitting [115].

       (4)

where hshape is the difference in the shape dissimilarity, hcolor is the difference in the spectral 

dissimilarity, Wshape is the weight of shape dissimilarity, and Wcolor is the weight of spectral 

heterogeneity. Furthermore, Wcolor + Wshape = 1. Equation 5 defines the difference between 

two objects on the basis of spectral heterogeneity in a multispectral image with B band.

        (5)   

  where n is the number of pixels in every object; σ is the standard deviation of spectral 

values; indexes 1, 2, and m represent the first, second, and the combined object, respectively; 

and Wb is the band weight. Smoothness and compactness dissimilarity represent the 
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difference between the shape heterogeneity of two objects [117]. The difference in shape 

dissimilarity is expressed by Equation 6. Wcomp and Wsmooth are the compactness and 

smoothness dissimilarities, respectively.

         (6)

where p shows the minimum bounding box perimeter of the object, and ℓ represents the 

genuine length of the object. Wsmooth + Wcomp = 1.

3.2.2.3. Selecting features

In this work, OBIA, which considers not only spectral information but also spatial and 

textural features, was applied to deal with color sensitivity and enhance the efficiency of the 

suggested road extraction approach. Pixels in the image are first grouped into objects on the 

basis of either spectral correlation or an outer parameter, such as ownership, soil, or 

geological unit in the OBIA [118]. The parameter values, such as standard deviation and 

mean, were considered for each band in the image for the spectral values. The different 

shapes and elongation of road objects facilitated the easy identification of the proposed 

method. Geometric features (e.g., length/width, area, and number of pixels) were also 

considered to ease the classification process. Finally, for the textural values, contrast, 

entropy, dissimilarity, homogeneity, and correlation values were considered. These features 

are generally applied to alleviate the classification process and improve the efficiency of road 

extraction approaches. These features were fed into the classifiers as a training part to 

accurately classify the image into the road and non-road sections.
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3.2.2.4. Classification process

After image segmentation, classifiers, such as SVM, KNN, and DT, were selected to 

categorize the orthophoto images into two principal classes: road and non-road. This section 

presents individual discussions of the above classifiers.

3.2.2.4.1. SVM classifier

SVM, which is one of the supervised machine learning approaches, exhibited ample ability 

in image classification compared with that of the traditional techniques, such as neural 

networks [119]. The SVM classifier is a linear classification approach that creates a 

hyperplane to separate data. The process of separating data into classes is followed by 

identifying the best hyperplane and maximum margin. SVM transforms data according to 

the predesignated sections in a novel space, wherein data can be detached and classified 

linearly. Then, a linear equation that provides a maximum margin between two classes is 

formulated by finding a support line in multi-dimensional space using SVM [11]. The 

practical application of the SVM method depends on the hypothetical maximum margin 

classifier. Given that hyperplane is a line separating the input variable space, a hyperplane in 

the SVM classifier detaches points from the input variable space based on their class (0 or 

1). All the input points can be completely split by this line into a two-dimension space 

(Equation 7).

        (7)

where X1 and X2 are the input variable, B0 is set up by the learning algorithm, and B1 and B2

specify the slope of the line. In this study, the kernel type for SVM is considered to be a 

linear kernel explaining the distance measure or similarity between new data and support 

vectors. The performance of the SVM method is shown in Figure 3.6. 
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Figure 3.6. SVM performance in categorizing data [120]. 

The dotted lines in the figure represent corresponding class support vectors, and the data are 

presented into two categories (red and blue). The long black line is the SVM. Each kind of 

support vector has a characteristic formula that describes the boundary of each group. 

3.2.2.4.2. KNN classifier 

One of the non-parametric techniques in machine learning methods is KNN, which has been 

utilized in statistical applications since the early 1970s [121]. The fundamental concept of 

KNN is the discovery of a collection of k samples in the calibration dataset nearest to 

uncertain samples based on distance functions. By evaluating the average of the response 

variables (e.g., attributes of KNN class), the class of uncertain samples is specified from 

these k samples [122]. Therefore, k is the key tuning parameter of KNN and plays a crucial 

role in ensuring the efficiency of KNN in image classification. The bootstrap process is used 

to identify the k parameter [123]. Different k values from 1 to 10 were inspected in this study 

to find the ideal k value from all the training datasets, which finally yielded 2. 

3.2.2.4.3. DT algorithm 

Regarding the dispensation of data, the DT method can be executed without any previous 

statistical presumptions because it is a non-parametric classifier. The basic structure of the 
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DT algorithm has three main parts, which include one root node, numerous interior nodes, 

and a collection of final nodes [124]. The data are recessively broken down into a DT based 

on the assigned classification structure. Using a breaking test of the form xi> c for 

univariate or    for multivariate decision trees, a decision rule necessary at every 

node can be performed. Where c is the decision threshold, a is the linear coefficient vector, 

n is the chosen feature, and xi presents the evaluation vectors. Compared with traditional 

methods, such as the minimum-distance-to-means approach, the DT method has high 

precision. However, several variables, such as decision threshold, boosting, and pruning 

approaches, can affect the efficiency of DT in classification [125]. Some parameters, such 

as max categories, cross-validation fold, and depth, are set to 16, 3, and 1, respectively, for 

the DT method to achieve optimal results.

3.2.2.5. Connected component analysis and morphological operations

After applying the classification methods and obtaining the results, connected components 

labeling was performed to extract road sections. Image pixels were grouped into 

components using connected components analysis on the basis of pixel connectivity, 

wherein all pixels in the connected component have the same pixel intensity values and are 

labeled with color or gray level based on each component [126]. The image can be 

partitioned into segments using these connected components. Morphological operators can 

be used to extract connected components. Analyzing connected components can be very 

useful for several applications, such as line detection and road extraction [103]. 

The trivial operation was applied to extract connected component based on some criteria. 

Assume that P(i) is the connected component, P is the image, and T is the length of the 

main axis. The trivial opening can then be expressed as follows:
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         (8)

where R0 is the connected component. According to the T, trivial operation is utilized for 

suitable connected components extraction. The entire region of connected components is 

preserved if that component satisfied condition T and is removed otherwise. After 

extracting the required connected components in terms of road section, common 

morphological operations, such as opening and erosion operations, were used to fill gaps, 

remove noises, delete non-road parts from the image, and improve the accuracy of the 

extracted road class using the proposed methods [127].

3.3. State-of-the-art DCNN models for road surface extraction (Objective 1)

Based on the first objective, several new robust DCNN models such as VNet, 

GAN+MUNet, MCG-UNet, and BCD-UNet were implemented for road surface 

segmentation from various HRSI data such as Google Earth and Aerial images, which the 

implementation of the approaches is detailed in this part. In the designed approaches, some 

additional modules or loss functions were also used to improve the performance of the 

models, solve the issues of pre-existing ML and DL methods in road extraction, and 

produce high-resolution road segmentation maps even under complicated backgrounds.

3.3.1. Generative Adversarial Network (GAN) and modified UNet model (MUNet)

This work lied in proposing a GAN with a modified UNet generative model 

(GAN+MUNet) to extract roads from high-resolution aerial imagery [128]. Compared to 

prior GAN-based road extraction approaches such as GAN+FCN proposed by [42], 

GAN+SegNet presented by [88], Ensemble Wasserstein Generative Adversarial Network 

(E-WGAN) proposed by [90], Multi-supervised Generative Adversarial Network 

(MsGAN) performed by [92], and Multi-conditional Generative Adversarial Network 
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(McGAN) implemented by [94], I introduced the modified UNet model (MUNet) for the 

generative term to create a high-resolution smooth segmentation map, with high spatial 

consistency and clear segmentation boundaries. The proposed model did not require high 

computational time and a large training dataset and still improved performance and 

addressed the challenges of aforementioned methods for road extraction from remote 

sensing imagery. Also, the proposed method preserved the edges and structure of roads and 

generated high-quality road segmentation maps in agreement with ground truth labels.  

Figure 3.7 shows the overall methodology for training and evaluating the proposed GAN-

based approach for road network extraction organized as four major steps: (i) generation 

of training and testing samples; (ii) local Laplacian filtering (LLF)-based pre-processing to 

enhance image quality; (iii) GAN optimization using the training samples, and extraction 

of the road network from images in the test set using the generator from the optimized 

GAN; and (iv) performance quantification for the proposed method using common metrics.   

 

Figure 3.7. Workflow for training and evaluating the proposed GAN-MUNet approach. 
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3.3.1.1. Pre-processing 

As a pre-processing step, I used LLF to enhance the quality of images prior to using them in 

the proposed model for training/testing. LLF is a nonlinear image filtering framework based 

on Laplacian pyramids (LP) that enables edge-aware processing using simple local 

processing operations. The filtered LLF image is obtained by rendering its LP coefficient by 

coefficient based on locally adaptive processing of the input image [129]. LLF was 

introduced in [130], where it was verified that this filtering technique can enrich image details 

without introducing halos or other artifacts and can be effectively used for range compression 

and tone mapping. With appropriate approximation and parallel implementation, LLF can be 

significantly speeded up to enable interactive use [129].  

3.3.1.2. GAN Framework for semantic segmentation 

As illustrated in Figure 3.8, the GAN framework [98] uses two subnetworks: a generator G 

and a discriminator D. The generator attempts to generate data representative of the ground 

truth provided for training, whereas the discriminator attempts to distinguish true ground 

truth data from data produced by the generator. The two subnetworks are jointly trained in 

an adversarial game to obtain the min-max operating point where the road maps created by 

G minimize the maximum discrepancy for D between the true and generated pairs [131]. 

Figure 3.9 illustrates the detailed network architecture illustrating the structure of the 

generator and discriminator. For the generator, I utilized the MUNet model that includes 

two corresponding arms, a contracting (downsampling) encoder and an expanding 

(upsampling) decoder, with skip-connections that append every upsampled feature map at 

the decoder with the corresponding one in the encoder that has the same spatial resolution 

[132].  
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The generator subnetwork seeks to learn a map :G x y→  that produces a binary 

segmentation map y from the input image x based on the distribution p seen in the training 

data.  The discriminator maps a pair { , }x y comprised of an input image and a segmentation 

map to a value between 1 and 0 indicating the discriminators' estimate of whether y

represents a ground truth mask or an estimate from a generator subnetwork.  

For road map segmentation, the GAN objective function is then formulated as  

, ~ ( , )

~ ( )

( , ) [log ( , )]

[log(1 ( , ( )))]
data

data

GAN x y p x y

x p x

L G D E D x y

E D x G x

=

+ −
 (9) 

Note that maximization of the objective function aligns with maximization of ( , )D x y and 

minimization of ( , ( ))D x G x , which seeks to train the discriminator subnetwork D to 

make right decision. On the other hand, the generator subnetwork G should generate 

outputs that are indistinguishable from the true data to hamper the discriminator D from 

making right decision and should therefore be chosen to minimize the objective function. 

I defined the objective function as minimax of the objective function in (1) with 

maximization over choices of D and minimization over choices of G , as the final purpose 

is to achieve realistic probability outputs from G . 

In addition to the GAN objective function, I also used a second binary cross-entropy loss 

function that is common in segmentation and has also recently been incorporated in a GAN 

framework for segmentation [132] of retinal images, 

, ~ ( , )( ) [ .log ( )

(1 ).log(1 ( ))]
dataSEG x y p x yL G E y G x

y G x

= −

− − −
   (10) 

 



 

 
78 

 

Figure 3.8.  GAN training to generate a road segmentation map from an RGB image; the 

generator network seeks to create a representation that cannot be distinguished from the 

ground truth image by the discriminator network, which in turn is trained to best distinguish 

generated samples from real ground truth data.  

Combining both the segmentation loss and the GAN objective function, the optimal 

generator network for road map segmentation is obtained as 

* arg min[max ( , )] ( )GAN SEGG D
G L G D L G= +  (11) 

where the impact of the two objective functions can be balanced by the weighting 

parameter . In practice, I used the Prop-GAN architecture to train from a low to a high 

resolution on the ground truth segmentation maps. During training, I incrementally added 

layers to the generator and discriminator to increase the spatial resolution of the generated 

segmentation maps. Per pixel semantic class labels is the output of the generator. I first 

created per-pixel likelihood scores of belonging to every semantic label, and then sampled 

every semantic class per pixel to synthesize segmentation layouts. Then, I used tanh 

function on the generator's last layer to calculate the per-pixel probability scores, which 

resulted in probability maps. The synthesized samples fed to the Prop-GAN discriminator 

should still have distinct labels, similar to the real samples. As a result, I computed minimax 
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for both forwards and backwards passes, with the goal of achieving practical probability 

outputs.  

3.3.1.3. Generator and discriminator architecture 

The detailed architectures of the generator and discriminator subnetworks used in our work 

are shown in Figure 3.9. The generator uses the MUNet architecture [133] and it is built 

from scratch and trained according to our dataset. The upper half corresponds to the 

contracting encoder arm where resolution decreases and feature depth increases as one 

proceeds from left to right and the lower half corresponds to the expanding decoder arm 

where resolution increases and feature depth decreases as one proceeds from right to left. 

The feature map size for the downscaling and upscaling layers of the generator is listed in 

Table 3.1.  

Table 3.1. The detailed architecture of the generator subnetwork including downscaling 

and upscaling parts. 

Instruction Layers Kernel 
Size Feature Map Size 

Input Input - (Batch size, 512,512,3) 

Downscale 

Conv2D 

4×4 

(Batch size, 256,256,32) 
Conv2D (Batch size, 128,128,64) 
Conv2D (Batch size, 64,64,128) 
Conv2D (Batch size, 32,32,256) 
Conv2D (Batch size, 16,16,512) 

Upscale 

Deconv2D 

4×4 

(Batch size, 32,32,256) 
Deconv2D (Batch size, 64,64,128) 
Deconv2D (Batch size, 128,128,64) 
Deconv2D (Batch size, 256,256,32) 

Output Output - (Batch size, 512,512,3) 
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Figure 3.9. Detailed structures of generative and discriminative networks comprising the 

proposed GAN for road network segmentation. 

The skip connections characteristic of the UNet architecture [95] connect corresponding 

resolution layers between the encoder and decoder arms allowing for the insertion of details 

in the upsampling for each resolution expansion. Compared to UNet, the changes in the 

MUNet architecture include: the introduction of batch normalization, the use of the ReLU 

activation function in the decoder and Leaky ReLU for the encoder, and elimination of the 

pooling layer. Specifically, as shown in Figure 3.9, in the contracting arm of the MUNet, I 

used convolutional layers with a kernel size of 4×4 followed by batch normalization and 

Leaky ReLU activation function, and in the expanding arm, I used deconvolution layers 

with a 4x4 stride followed by batch normalization and ReLU activation function. Finally, 

for mapping every 32-component feature vector to the desired number of classes (road and 

non-road), I used the final deconvolution layer with the 4x4 stride and a tanh activation 
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function [31] for mapping predicted values to classification probabilities. The ReLU and 

Leaky ReLU activation functions are, respectively, defined as 

0 0
( )

0
if k

k
k if

R
k

eLU
=

= 


 (12) 

0
( )

0
k if k

k
k if k

LReLU



= 

=

 (13) 

where  is a small constant between 0.1 and 0.3 [134].     

The discriminator architecture used in our work is also shown in Figure 3.9. The ground 

truth data and segmentation results are fed into the discriminative term to find whether the 

generator output is fake (0) or real (1). The discriminator uses a fully convolutional 

architecture with 17 layers, with a structure that mimics the encoder arm of the generator 

comprising of convolutional layers with a kernel size of 4×4 and stride of 2×2 followed by 

batch normalization and Leaky ReLU activation function. The final layer used a sigmoid 

function to produce a value between 0 and 1 indicative of the discriminator’s assessment 

of the probability that the presented road segmentation map corresponds to labeled ground 

truth.   

3.3.1.4. Dataset 

For our benchmarks, I used the Massachusetts dataset [135], which is the largest existing 

road dataset. This dataset includes 1,171 aerial images with original spatial dimensions of 

1500×1500. For validating the proposed model on the dataset for road extraction, 100 images 

with complete information and good quality were selected. The original images were divided 

into eight parts with a size of 512×512 to accommodate computational constraints. 

Consequently, 761 images were used as the final dataset in the experiments. The dataset was 
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divided into 733 images for training and validation: and 28 images for testing. Data 

augmentation techniques, such as horizontal flip, vertical flip, zooming, and rotation, were 

used to increase dataset size for training of the proposed method.  

3.3.1.5. Parameters and implementation 

For LLF, the sigma and alpha parameters were set as 0.2 and 0.3, respectively.  Training of 

the GAN network to optimize the loss function was performed using the extensively 

utilized Adam optimizer [134] with learning rate of 0.001, beta_1 of 0.9 and beta_2 of 

0.999. A dropout probability of 0.5 was used during model training to avoid overfitting. The 

proposed model was trained with batch size 1 for 100 epochs and the trained model was 

then applied to the test data to extract roads. The extracted labels were compared against the 

ground truth labels for evaluating the performance. The whole process of the proposed 

method for road extraction from remotely sensed imagery was implemented on a GPU 

Nvidia Quadro P5000 with a computing capacity of 6.1 with 2560 shading units, 160 

texture mapping units, and 64 render output units (ROPs), and a memory of 16 GB under 

the framework of Keras with Tensorflow backend. 

3.3.2. VNet network and cross-entropy-dice-loss (CEDL) 

In this research, I used a novel deep learning-based convolutional network called VNet 

model with 2D convolutional kernel to extract road networks from two different high-

resolution remote sensing imagery such as Massachusetts road dataset (Aerial images) 

and Ottawa road dataset (Google Earth images) and produced a high-resolution 

segmentation output [136]. The proposed method trained end-to-end and leverage the 

power of fully convolutional neural networks to process high-resolution remote 

sensing imagery. In the suggested VNet network, pooling layers were replaced with 
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convolutional layers that resulted in a shorter memory footprint throughout the training 

process. Also, a new objective loss function on the basis of cross entropy and dice loss 

(CEDL) was used to (i) combine local information (CE) and global information (DL), 

(ii) diminish the influence of class imbalance, and (iii) improve the road segmentation 

results. In addition, a new non-linearities activation function named parametric 

rectified linear unit (PRelu) was applied rather than rectified linear unit (ReLU) 

function to enhance accuracy at a negligible additional computational cost and its 

performance is better than ReLU for large-scale data processing. The overall 

methodology of the suggested VNet-based method for road extraction from high-

resolution remote sensing imagery is shown in Figure 3.10. At the first step, two 

different road datasets called Massachusetts and Ottawa were used to prepare the 

training, validation and test images for training and evaluating the proposed method. 

Then, the architecture of the proposed VNet approach along with the new CEDL 

function was defined. Following this, the training samples were used to train the VNet 

model and then test images were used to extract road networks and evaluate the 

performance of proposed methods. 
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Figure 3.10. The overall framework of the proposed VNet network for road extraction. 

3.3.2.1. VNet architecture 

A schematic presentation of the proposed VNet model is shown in Figure 3.11. The 

proposed VNet approach is comprised of two main parts: the left section that includes a 

compression path and the right part that decompresses the input till its initial size is 

attained. Convolutions with appropriate padding are all performed, aiming to both exploit 

features from the input and decrease its resolution using proper stride at the end of each 

stage. The architecture of the proposed VNet network is similar to the widely used UNet 

[95] model, but with some differences. 

The left part of the VNet architecture is split into various phases operating at different 

resolutions. One to three convolution layers exist in each stage. A residual function can be 

learned in each phase as I formulate each stage similar to the method illustrated in [40]. In 

other words, in order to enable learning a residual function, the input of every phase is 

processed through the non-linearities and utilized in the convolution layers and then 

appended to the output of the final convolution layer of that phase. This network guarantees 
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convergence in comparison with non-residual learning architecture such as UNet. Also, in 

each stage, the convolutional layers with the size of 5×5 is performed. The convolution 

process is expressed using Equation (14).  

1 1
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( , ) ( , )
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n f f k
n p q
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= = =

=

 
 +  +  
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     (14) 

where kb  is the bias parameter of the k-th filter that is shared among all locations (p,q), fs

is the sampling stride, kh (p,q) is the weight value at (p,q) of the k-th filter, kx (ii,jj) is the 

pixel value at (ii,jj) in the k-th filter size of the input map, and nx (ii,jj) is the pixel value at 

(ii,jj) in the n-th channel of an input feature map. 

The resolution of data is reduced as it proceeds through various phases along the 

compression path and this is implemented using convolutional layer with size of 2×2 and 

stride 2. The size of the resulting feature maps is halved as the second operation considers 

only non-overlapping 2×2 patches and extract features [137]. I replaced max-pooling layers 

with convolutional layers in our method that serves as the same objective as pooling layers 

incited by [137]. I used these convolutional operations for doubling the number of feature 

maps. This is due to the formulation of the method as a residual framework, and since the 

number of feature channels double at every phase of the VNet compression path. Using 

convolutional layers instead of pooling layers results to the network to have a smaller 

memory footprint throughout the training. Pooling operation did down-sampling the 

features, but I wanted to keep all the features as possible. Therefore, the advantages of 

using convolutional layers rather than pooling layers in our proposed method is that to 

process inputs in higher resolution and detect fine-details as well as capture more 
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contextual information by broadening the view of input data [138]. Decreasing the size of 

input and increasing the receptive field of the features being assessed in the following 

layers ofnetwork is operated by down-sampling step. In the left section of the network, the 

number of features that are assessed by each phase is two times higher than one of the prior 

layer. For activation function (Equation 15), there are several functions such as tanh , 

rectified function and so on that can be used. 

( ( , )) ( ( , ) ) ( )
1

k
Z x ii jj f x ii jj w b Z f X W bk k k kk

=  +  =  +
=

  (15) 

where w is a weight vector, b is a bias vector, and kx (ii,jj) is used as input to the activation 

function of the neural network that is the output of convolution operation. 

In this work, a non-linearity function called PRelu (Equation 16) proposed by [139] was 

implemented throughout the model. PRelu function can be optimized concurrently with 

other layers and can be trained using back-propagation. This function enhances accuracy 

at a negligible additional computational cost, and adaptively learns the parameters of the 

rectifiers. For the large-scale image classification, the authors reported that its performance 

is better than ReLU function.  
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where ia defines as a fixed parameter in the range of ( )1,+ and it is learned via back-

propagation in the training.  

In order to assemble and gather the essential information to output of two channels 

segmentation map, the right part of the network expands the spatial support of the lower 

resolution feature maps and extract features. The last convolutional layer with the kernel 
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size of 1×1 produces the output with a similar size of the input data and computes the two 

features maps. Also, I used sigmoid function in this layer that converts these two feature 

maps into probabilistic segmentation maps of the background and foreground areas. 

Compared to the UNet architecture, after every phase of the right part of the network, a 

deconvolutional operation was followed by one to three convolution layers. This includes 

half the number of 5×5 kernels that were applied in the past layer and was used to increase 

the size of input. I also resorted to learn residual functions in the convolutional phases of 

the right part of the network similar to the left portion. Next, the extracted features were  

forwarded from early phases of the left portion of the network to the right section similar 

to [95] that is shown in Figure 3.11 by horizontal links. Subsequently, I improved the 

quality of last contour prediction in this way by gathering fine-grained details that would 

have been otherwise missed during the compression stage. It is also observed that the 

convergence time of the model has been improved by these connections. 

 

Figure 3.11. The architecture of VNet network including two mains expansive (right side) 

and contracting parts (left side). 
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3.3.2.2. Loss function 

In feature semantic segmentation from high-resolution remote sensing images such as road 

networks segmentation, it is common that road pixels occupy just a pretty tiny area of the 

image. This usually can be the cause of confining learning process in the regional minima 

of the loss function, generating a model whose anticipations are heavily prejudiced to the 

background. Therefore, the foreground area is usually only partly identified or even missed. 

To tackle this problem, multiple prior methods on the basis of re-weighting the samples 

where background areas are assigned less significance than foreground areas ones through 

learning such as weighted cross-entropy [140] and dice loss [141] have been presented. 

Equation 17 defines the dice loss (DL) between two binary classes whose values are 

ranging between 0 and 1.  
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where ig G is the ground truth pixels, ip P is the predicted binary pixels and N defines 

as total pixels. The dice formulation can be modified with producing the gradient measured 

regarding the j-th pixels of the anticipation (Equation 18). As a result, for establishing the 

right balance between background pixels and foreground ones, I do not require to allocate 

weights to the various classes samples using this formulation.  
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In this study, since we have the same issue of imbalance classes such as road pixels 

(foreground) and non-road pixels (background) I introduced a new dual objective loss 
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function (CEDL) that incorporates both cross-entropy loss function (CE) and dice 

coefficient (DL) to reduce the influence of class imbalance issues.  Equation 19 defines the 

new loss function (L) that is a mixture of CE and DL. Note that DL returns a scalar while 

CE returns a tensor of every image in the batch. In other words, I mixed global information 

(DL) and local information (CE) to extract road network more accurately. 

( , ) ( , )i i i iC CE p g DLDL pE g= +    (19) 

3.3.2.3. Datasets 

Massachusetts road dataset: This dataset [135] contains 1171 aerial imagery with the 

primary spatial resolution of 0.5 m and dimension of 1500×1500. The target maps were 

usually generated by rasterizing road centerlines obtained from the OpenStreetMap project 

Due to computational restrictions, I split the main images into smaller parts with the size 

of 384×384 that include good quality and complete information. The dataset that I used for 

validating the proposed method for road extraction includes 4135 images that I divided it 

into 215 images for test, 120 images for validation and 3800 images for training. For 

expanding the dataset, some data augmentation methods such as vertical flip, rotation and 

horizontal flip are also used. Moreover, for overcoming the over-fitting issue, I added a 

dropout of 0.5 to deeper convolutional layers. Some examples in the Massachusetts road 

dataset are illustrated in Figure 3.12. 
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Figure 3.12. Some sample imagery in Massachusetts road dataset. The main imagery and 

corresponding ground truth maps are illustrated in the first and second columns, 

respectively.   

Ottawa road dataset: This dataset includes Google Earth images with spatial resolution 

of 0.21 m that encompasses 21 typical urban regions covering about 8 km2 of Ottawa, 

Canada [46]. The road labels were annotated manually and compared to other datasets such 

as [45], [47] and [10]. This dataset is more challenging and comprehensive as it covers 

different urban areas with different complexity. In this study, I divided the dataset into 

images with a size of 384×384 to validate the proposed method. The final dataset contained 

1005 images that were split into 899 training images, 62 validation images and 44 test 

images. Also, I used data augmentation techniques like flipping horizontally and vertically 

and rotating the images to expand the dataset. Some examples in the Ottawa road dataset 

are depicted in Figure 3.13. The whole process of applying the proposed model for road 

network extraction from high-resolution remote sensing imagery is functioned on a GPU 

Nvidia Quadro RTX 6000 with a computation capacity of 7.5 and a memory of 24 GB 

under the framework of Keras with Tensorflow backend. 
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Figure 3.13.  Some sample imageries in Ottawa road dataset. The main imagery and 

corresponding ground truth maps are illustrated in the first and second columns, 

respectively. 

3.3.3. Multi-level context gating UNet (MCG-UNet) and bi-directional ConvLSTM 
UNet (BCL-UNet) models 

In this work, I implemented two end-to-end frameworks, the MCG-UNet and BCL-UNet 

models [142], which are an extension of the UNet model, and which have all the advantages 

of UNet, dense convolution (DC) mechanism, bi-directional ConvLSTM (BConvLSTM), 

and squeeze and excitation (SE) to identify road object from aerial imagery. The BCL-

UNet model only takes the advantages of BConvLSTM, whereas the MCG-UNet model 

also takes the benefit of SE function and DC. The densely connected convolutions (DC) 

were used to increase feature reuse, enhance feature propagation, and assist the model to 

learn more various features. The BConvLSTM module was applied in the skip connections 

to learn more discriminative information by combining features from encoding and 

decoding paths. The SE function was employed in the expanding path to consider the 

interdependencies between feature channels and extract more valuable information. A BAL 

loss function was also used to focus on hard semantic segmentation regions, such as 

overlapped areas of objects and complex regions, to magnify the loss at the edges and 
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improve the model’s performance. I used this strategy to improve the border of semantic 

features and make them more appropriate for actual road forms. By adding these modules 

to the models and using BAL loss, the model’s performance for road segmentation was 

improved. The overall methodology of the presented techniques is depicted in Figure 3.14. 

The proposed framework includes three main steps. (i) Dataset preparation step was firstly 

applied to produce test imagery and training and validation imagery for road objects. (ii) 

The presented networks were then trained on the basis of training imagery and validated 

based on validation imagery. After that, the trained frameworks were applied on the test 

images to generate the road segmentation maps. (iii) Common measurements factors were 

finally used to assess the model’s performance. 

 

Figure 3.14. Overall flow of the offered BCL-UNet and MCG-UNet frameworks for road 

surface segmentation. 

3.3.3.1. BCL-UNet and MCG-UNet architectures 

The proposed BCL-UNet and MCG-UNet models are inspired by dense convolutions 

[143], SE [144], BConvLSTM [145], and UNet [95]. The architectures of the UNet and the 

proposed BCL-UNet and MCG-UNet are shown in Figures 3.15–3.17, respectively. The 

widely used UNet model comprises the encoding and decoding paths. In the contracting 
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path, hierarchically semantic features are extracted from the input data to take context 

information. A huge dataset is required for training a complicated network with a massive 

number of parameters [95]. However, deep learning-based techniques are mainly localized 

on a particular task, and collecting a massive volume of labeled data is very challenging 

[146]. Therefore, I used the concept of transfer learning [146] by employing a pretrained 

convolutional network of VGG family as the encoder to deal with the isolated learning 

paradigm, leverage knowledge from pre-trained networks, and improve the performance 

of the UNet. To make utilizing pre-trained networks feasible, the encoding path of the 

proposed model was designed similar to the first four VGG-16 layers. In the first two 

layers, I used two 3 3  convolutional layers chased by a 2 2  max pooling layer and ReLU 

function. In the third layer, I used three convolutional layers with a similar kernel size 

chased by a similar ReLU function and max pooling layer. At every stage, the quantity of 

feature maps was doubled. In the final step of the contracting path, the main UNet model 

included a series of convolutional layers [147]. This allowed the networks to learn various 

sorts of features. However, in the successive convolutions, the model might learn excess 

features. To moderate this issue, I used the idea of “collective knowledge” by exploiting 

densely connected convolutions [143] to reutilize the feature maps through the model and 

improve the model performance. Inspired by this idea, I concatenated feature maps learned 

from the current layer with feature maps learned from all prior convolutional layers and 

then forwarded to utilize as the next convolutional layer input.  

Using densely connected convolution (DCC) instead of the usual one [143] has some 

benefits. First, it prompts the model to avoid the risk of vanishing or exploding gradients 

by getting advantages from all the generated features before it. Furthermore, this idea 

allows information to flow through the model, in which the representational power of the 
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networks can then be improved. Moreover, DCC assists the models to learn various 

collections of feature maps rather than excessive ones. Therefore, I employed DCC in the 

suggested approaches. One block was introduced as two successive convolutions. There is 

a sequence of N  blocks in the final convolutional layer of the contracting path that are 

densely connected. The feature map concatenation of all previous convolutional blocks, 

e.g., ( 1)1 2 1[ , ,..., ] ll li F Hi
e e

W
ex x x R −  −   was considered as an input of the thi   1,..., )(i N  

convolutional block and l llF Hi
e

Wx R  
  was considered as its output, where the number and 

size of feature maps at layer l  are defined as l lW H  and lF , respectively. A sequence of 

N  blocks that are densely connected in the final convolutional layer is presented in Figure 

3.18.  

 
Figure 3.15. UNet model without any dense connections and with BConvLSTM in the 

skip connections. 
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In the expansive path, every phase starts with an upsampling layer over the prior layer 

output. I used two significant modules, namely, BConvLSTM and SE, for the MCG-UNet 

and BConvLSTM module for BCL-UNet to augment the decoding part of the original UNet 

and improve the representation power of the models. In the expanding part of the main 

UNet model, the corresponding feature maps were concatenated with the upsampling 

function output. For combining these two types of feature maps, I employed BConvLSTM 

in the proposed frameworks. The BConLSTM output was then fed to a set of functions 

containing two convolutional modules, one SE function, and another convolutional layer. 

SE module takes the output of the upsampling layer, which is a collection of feature maps. 

On the basis of interdependencies between all channels, this block uses a weight for every 

channel to promote the feature maps to be more instructive. SE also allows the framework 

to utilize global information to suppress useless features and selectively emphasize 

informative ones. The SE output was then fed to an upsampling function. Figures 3.19a,b 

illustrate the structure BConvLSTM in BCL-UNet framework and BConvLSTM with SE 

modules in MCG-UNet framework, respectively. Presume that 1 1 1l l lF W H
dX R + + + 
  defines 

a set of exploited feature maps from the prior layer in the expansive part. We have 

1
1
2 llH H+ =  , 

1
1
2l lW W+ = 

 and 1 2l lF F+ =  , which we assume as 2
2 2

W HF

dX R
 

  for 

simplicity. As illustrated in Figures 3.17 and 3.18, the set of feature maps first goes through 

an upsampling function chased by convolutional layer with size 2 2 , in which these 

functions halve the channel number and double the size of every feature map to produce 

up F W H
dX R   . In the decoding part, the size of the feature maps is increased layer-by-

layer to achieve the primary size of input data. These feature maps are then converted into  

prediction maps of the foreground and background parts in the last layer based on the 
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sigmoid function. The detailed configurations of all approaches, the number of parameters 

and layers, batch size, and input shape are shown in Table 3.2. In the following, the batch 

normalization (BN), BConvLSTM, and SE modules are described. 

 

Figure 3.16. BCL-UNet model without any dense connections and with BConvLSTM in 

the skip connections. 

 
Figure 3.17. MCG-UNet model with dense connections, with the SE function in the 

expansive part and BConvLSTM in the skip connections. 
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3.3.3.2. SE function 

The SE function [144] was suggested to gain a clear relationship between the convolutional 

layers channels and improve the representation power of the model by a context gating 

mechanism. By allocating a weight for every channel in the feature map, this function 

encodes feature maps. The SE module comprises two main sections named squeeze and 

excitation. Squeeze is the first operation. I accumulated the input feature maps to SE block 

to generate channel descriptor by applying global average pooling (GAP) of the entire 

context of channels. We have 1 2[ , ,..., ]up up up up
d FX X X X= , in which the input data to SE 

function is up W H
fX R  , and spatial squeeze (GAP) is calculated as: 

1( ) ( , )
H W

up up
f sq f f

i j
z F X X i j

H W
= =


  (20) 

where the size of the thf  channel, the channel spatial location, and the spatial squeeze 

function are expressed as ( , )up
fX i j , H W , and sqF , respectively. In other words, fz  can be 

produced by compressing every two-dimensional feature map using a GAP. The initial 

stage (Squeeze) introduces the global information, which is then fed to the next stage 

(Excitation). The excitation stage comprises two dense (FC) layers as shown in Figure 3.17. 

To shape 1 1 F
r

   and 1 1 F  , the pooled vector is initially encoded and decoded, 

respectively. Next, the excitation vector is generated as 12( ; ) ( ( ))exs WW W zF z  = = , where 

r  is the reduction ratio,   denotes the sigmoid function,  is Relu, and 1

F F
rW R


  denotes 

the initial fc layer 
FF
rR

  parameters. The SE block output is produced as

~
( , )

up
up up

f scale f c c fX F X z s X= = , where cs  is the scale factor, scaleF  is the input feature map, 

and 
~ ~ ~ ~

1 2[ , ,..., ]
up up up up

d FX X X X=  is defined as a multiplication between the channel’s attention 
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on a channel-by-channel basis. In [144], a dimensionality-reduction and a dimensionality-

increasing layer with ratio r were utilized, respectively, in the initial FC layer and the 

second one to aid generalization and limit model complexity.  

Table 3.2. Detailed configurations of all approaches. 

Approaches Number of 
Parameters 

Number of 
Layers 

Batch 
Size 

Input 
Shape 

Computer 
Configuration 

UNet 9,090,499 30 2 768×768× 3 A GPU: Nvidia 
Quadro RTX 

6000 24 GB and 
a computation 
capacity of 7.5 
Python: 3.6.10 
TensorFlow: 

1.14.0 

BCL-UNet 13,580,995 42 2 768×768× 3 

MCG-UNet 27,891,901 74 2 768×768×3 

 

 

Figure 3.18. Densely connected convolutional layers of MCG-UNet. 

 
Figure 3.19. (a) Structure of BConvLSTM in the expansive part of the BCL-UNet model, 

and (b) BConvLSTM with the SE module in the expansive part of the MCG-UNet model 

(b). 
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3.3.3.3. BN function 

The dispensation of the activations alters in the intermediate layers in the training stage 

and this issue slows down the training process. This is because every layer in each training 

stage must learn to adjust themselves to a novel distribution. Therefore, the BN function 

[148] is used to enhance the consistency of the networks. The batch mean is subtracted and 

then divided by the batch standard deviation using the BN function to standardize the inputs 

to a layer in the models. The BN function improves the performance of the networks in 

some cases and efficiently hastens the speed of training process. BN uses 
up

dX  as an input 

after upsampling to generate 
up

dX


. Additional details are available in [148].  

3.3.3.4. BConvLSTM function 

The standard long short-term memory (LSTM) networks utilize full relationships between 

transmissions of input-to-state and state-to-state and do not take the spatial correlation into 

account, which is the major disadvantage of these networks [149]. Therefore, ConvLSTM 

was suggested by [150] to exploit convolution operations into transmissions of input-to-

state and state-to-state and tackle this issue. ConvLSTM includes a memory cell, a forged 

gate, an output gate, and an input gate, which work as controlling gates for accessing, 

updating, and clearing the memory cell. The ConvLSTM function can be calculated as: 

1 1

1 1

1 1

1

( )
( )

tanh( )
( )

tanh( ),

t xi t hi t ci t i

t xf t hf t cf t f

t t t t xc t hc t c

t x t h t c t c

t t t

i W X W H W C b
f W X W H W C b
C f C i W X W H b

W X W H W C b
H C

  







  

 

− −

− −

− −

−

=  +  +  +

=  +  +  +

= +  +  +

=  +  + +

=

           (21) 

where cb , b , fb , and ib  are bias terms, tH  is the hidden state, tX  is the input state,   is 

the Hadamard and   denotes the convolution functions, tC  is the memory cell, and *XW  



 

 
100 

and *hW  are Conv2D kernels corresponding to the input and hidden state, respectively. To 

encode eX  and 
up

dX
 , I applied BConvLSTM [145] in the proposed BCD-UNet and MCG-

UNet models that derive the output of BN step. The BConvLSTM function decides for the 

current input based on processing the data dependencies in both forward and backward 

directions. In contrast, a standard ConvLSTM only processes the dependencies of the 

forward way. In other words, the BConvLSTM processes the input data into two paths 

(forward and backward) utilizing two ConvLSTM. The output of BConvLSTM can be 

formulated as: 

tanh( )H H
t y t y tY W H W H b

→ → 

=  +  +   (22) 

where t t tF W H
tY R  
  denotes the last output with bidirectional spatio-temporal information, 

tH


 and tH
→  are the backward and forward hidden tensors, respectively, b  is the bias term, 

and tanh  is a non-linear hyperbolic tangent used to mix the output of both states. Analyzing 

the forward and backward data dependencies will boost the predictive performance. 

3.3.3.5. Boundary-aware loss 

In this work, I suggested a boundary-aware loss function (BAL), which is a simple yet 

efficient loss function. I first extracted boundaries iE  by filter 2 2Ef =   from semantic 

segmentation labels il  for every class i (Equation (23). Then, at the boundary image, I 

adopted Gaussian blurring using a Gaussian filter Gf , summed all of the channels results 

GE , and added bias   (Equation (24). I calculated the BAL by multiplying the original 

binary cross-entropy loss L to the Gaussian edge GE  (Equation (25)) between ground truth 

and prediction to suppress the inner regions of every class and amplify loss around 

boundaries. The Gaussian edge efficiently concentrates on not only small objects, occluded 
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areas between objects, and complex parts of objects, but also boundaries and corners of 

objects [53].  

( , )
( , )

( , )

0 | ( ) | 0
1 | ( ) | 0

i E x y
i x y

i E x y

l f
E

l f
 =

= 
 

  (23) 

where 
1 0.5
0.5 0Ef

− 
=  

− 
 

( )G i G
i

E E f =  +    (24) 

( , )

1 ( , ) ( , )G
x y

BAL E x y L x y
n

=   (25) 

where the number of pixels in the label l is denoted as n. 

3.3.3.6. Dataset and experiment setting 

I used the Massachusetts [135] and DeepGlobe [151] road datasets to test the proposed 

networks for road extraction. Massachusetts dataset comprises 1171 aerial imagery with a 

dimension of 1500×1500 pixels and a spatial resolution of 0.5 m. I selected some good-

quality imagery with complete information of road pixels and then split them into the size 

of 768×768. The last dataset that I utilized comprised 1068 images. I divided the dataset 

into 64 test images and 1004 validation and training images. DeepGlobe dataset includes 

7469 training and validation images and 1101 testing images with a spatial resolution of 

50 cm and a pixel size of 1024 1024 . Furthermore, I applied vertical and horizontal 

flipping and rotation as data augmentation approaches to extend our dataset. Deeper 

convolution layers were given a 0.5 dropout to overcome over-fitting concern [17]. An 

optimization method is necessary to reduce the energy function and update the model 

parameters while training the network. Thus, I utilized the adaptive moment estimation 
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(Adam) optimization algorithm in our framework with a learning rate of 0.0001 to diminish 

the losses and update weights and biases. The entire process of the presented approaches 

for road extraction in this study was implemented using Keras with a TensorFlow backend 

and a GPU Nvidia Quadro RTX 6000 with a 7.5 computation capacity and memory of 24 

GB. 

3.4. Road shape and connectivity-preserving with SC-RoadDeepNet 
(Objective 2) 

Based on the second objective, a new robust DCNN method called SC-RoadDeepNet was 

performed for road surface segmentation from HRSI, which the implementation of the 

method is described in this section. As discussed in the literature, road extraction remains 

challenging owing to obstacles, such as shadows, cars, and buildings that are similar to 

road features in terms of patterns, reflectance and color. Furthermore, the majority of the 

approaches yielded broken and disconnected road extraction outputs, indicating that the 

roads are affected by the aforementioned difficulties. As a result, it is essential to design a 

robust DCNN framework to conserve the geometry and connectedness of road networks. 

Thus, the SC-RoadDeepNet was proposed in this work to solve the above-mentioned issues 

with the existing methods and produce high-quality road segmentation maps. 

In the proposed model, I implemented a new deep learning-based network called the 

recurrent residual CNN model (RRCNN) that is on the basis of the UNet network. The 

presented network uses recurrent residual convolutional layers (RRCLs), UNet, and 

residual networks. For segmentation tasks, RRCLs accumulate important features and thus 

enable better feature representation. They allow us to build a UNet network with similar 

network parameters but better segmentation performance. I also utilized road boundaries 

to make road semantic features more proper for actual road form, solve irregular semantic 



 

 
103 

features, and enhance the boundary of road semantic polygons. I leveraged each road’s 

binary edge-map to penalize boundary misclassification and fine-tune the road shape. 

Furthermore, I offered a connectivity-preserving centerline Dice (CP_clDice), a new 

measure based on the intersection of segmentation masks, and their (morphological) 

skeleton to preserve road connectivity and obtain accurate segmentations. Our measure 

states the network’s connectivity rather than evenly weighting each pixel given its 

morphological skeletons-based formulation. I showed that CP_clDice ensures connectivity 

conservation for binary segmentation, allowing for a proper road network extraction.  

3.4.1. The architecture of RRCNN 

I proposed RRCNN (Figure 3.20), a new model for segmentation tasks that is inspired by 

UNet [95] (Figure 3.21), RCNN [152], and the deep residual model [40]. The original UNet 

model consists of two main parts: convolutional encoding and decoding units. In both 

portions of the model, the fundamental convolutional layers are applied, followed by ReLU 

activation. In the encoding part, 2×2 max-pooling layers are applied for down sampling. 

The convolutional transpose layers are used to up-sample the feature maps during the 

decoding step. Also, in the UNet network, cropping and copying method is used to crop 

and copy feature maps from the encoder part to the decoder part. Therefore, the benefits of 

all three newly established deep learning approaches are combined in the proposed 

approach. Assuming a pixel in an input sample on the thk feature map in the recurrent 

convolutional layers (RCL) that is located at ( , )i j and input sample lx in the layer thl of 

the RCNN block, the network’s output ( )l
ijko t at the t time step can be expressed as 

follows: 

( , ) ( , )( ) ( ) ( ) ( ) ( 1)l f T f i j r T r i j
ijk k l k l kO t w x t w x t b=  +  − + , (26) 
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where kb is the bias, r
kw is the weight of the thk RCL’s feature map, f

kw is the standard 

convolutional layer’s weight, ( , )( 1)r i j
lx t − is the input for the  thl  RCL, and ( , )( )f i j

lx t is the 

input for the standard convolutional layers. The RCL’s outputs are passed through the 

rectified linear unit (ReLU) activation function f that is denoted as follows: 

( ) ( ( )) max(0, ( ))l l
l l ijk ijkF x w f O t O t= = ,  (27) 

where ( )l lF x w  denotes that the outputs of the thl  RCNN layer are utilized in the encoding 

and decoding arms of the network for down-sampling and up-sampling layers, respectively. 

For the RRCNN model, the last output that is passed through residual units can be 

expressed as follows: 

1 ( )l l l lx x F x w+ = + ,  (28) 

where, in the RRCNN’s encoding and decoding arms, 1lx +
 is utilized as the input for 

immediate subsequent down or up-sampling layers, and the RRCNN-input block’s samples 

are represented by lx . 

The suggested RRCNN model is the building block of the stacked recurrent residual 

convolutional units depicted in Figure 3.22(c). This study investigated convolutional and 

recurrent convolutional units in various variants for three distinct architectures, shown in 

Figures 3.22(a)–3(c). The first is the primary UNet architecture [95] with encoder-decoder 

arms and a crop and copy method (skip connection). This model’s fundamental 

convolutional unit is depicted in Figure 3.22(a). The second is ResUNet [153], which is 

the original UNet model with forwarding convolutional and residual connection units, as 

illustrated in Figure 3.22(b). 
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Figure 3.20. Architecture of the proposed RRCNN model, including encoder-decoder 

units based on recurrent RRCL and UNet networks. 

 
Figure 3.21. Architecture of the original UNet model, including convolutional encoder-

decoder units. 

 

The final architecture is the proposed RRCNN, including the primary UNet with RCL and 

residual connections, as depicted in Figure 3.22(c). When compared with UNet, the 

proposed architecture offers various advantages. One of those is network productivity, 
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which is measured in relation to the number of network parameters. Compared with UNet 

and ResUNet, the suggested RRCNN model is built to have similar parameters while 

performing efficiently on feature extraction. Recurrent or residual units do not increase the 

number of network parameters. However, they have a considerable effect on 

training/testing results. Furthermore, the proposed model’s RCL units provide an efficient 

feature accumulation mechanism. Concerning distinct time-steps, feature accumulation 

guarantees more reliable and robust feature representation. As a result, it aids in the 

extraction of low-level features that are critical for feature extraction. I eliminated the 

cropping and copying method from the primary UNet network and replaced it with 

concatenation operation, leading to a considerably more elegant design with improved 

efficiency. 

 
Figure 3.22. Convolution and recurrent convolution units in various variants: (a) forward 

convolution units, (b) residual convolution units, and (c) recurrent residual convolution 

units. 

3.4.2. Emphasizing connectivity using CP_clDice 

Figure 3.23 depicts a schematic overview of our suggested CP_clDice technique. Based on 

intersecting skeletons with masks, I present a new connectivity-preserving measure for 

evaluating road structure segmentation. The ground truth ( )GM and detected segmentation 
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( )DM masks are two binary masks that I considered. From GM and DM , skeletons GS and 

DS are first extracted, respectively. 1{ }N
D i iS g == is the detected skeleton of a detected mask

DM , while 1{ }N
G i iS h ==  is the true skeleton of a true mask GM , where the ih and  ig are 

the skeleton points of GS and DS , respectively. Following that, I calculated the proportion 

of GS that exists within DM , which is called connectivity sensitivity or ( , )sens G DC S M , 

and vice-a-versa. I computed connectivity precision or ( , )prec D GC S M as follows: 

( , ) ; ( , )G D D G
sens G D prec D G

G D

S M S M
C S M C S M

S S
 

= =
.    (29) 

Or 
1 1

1 1

( )( );
N N

i G ii D i
sens precN N

i ii ij j

g M gh M hC C
h g= =

= =

= = 
 

 

The metric the measure ( , )sens G DC S M is prone to false negatives in prediction, whereas 

( , )prec D GC S M  is prone to false positives, clarifying why I referred to ( , )sens G DC S M as 

connectivity’s sensitivity and ( , )prec D GC S M as its precision. I calculated CP_clDice as the 

harmonic mean of both measures because I want to maximize sensitivity and precision: 

( , ) ( , )
_ ( , ) 2

( , ) ( , )
prec D G sens G D

D G
prec D G sens G D

C S M C S M
CP clDice M M

C S M C S M


= 
+

        (30) 

3.4.3. Soft-skeletonization with soft CP_clDice 

The following section demonstrates how I used CP_clDice formulation to train a 

connectivity-preserving network using our theory effectively. Our strategy relies on correct 

skeletons extraction. A variety of ways have been presented for this task [154]. However, 

most of them are not entirely distinguishable and thus unsuitable for use in a loss function. 

The repeated morphological thinning [155] or Euclidean distance transform [156] are two 

popular methods. A series of erosions and dilation operations are used in morphological 
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thinning. The Euclidean distance transform remains a discrete operation, prohibiting it 

from being used in a loss function for neural network training. As a grey-scale alternative 

to morphological erosion and dilation, min- and max filters are often utilized. As a result, 

I suggested soft-skeletonization, in which iterative min-max pooling is used as a surrogate 

for morphological dilation and erosion. Figures 3.24 and 3.25 illustrate the sequential steps 

of our skeletonization intuitively. Initial iterations (Figure 3.24) skeletonize and maintain 

structures with a small radius until later iterations skeletonize and maintain thicker 

structures, allowing for the creation of a parameter-free, morphologically focused soft 

skeleton. The iterative processes involved in its computation are described in Algorithm 1 

(soft-skeletonization) shown in Figure 3.25. The iterations are represented by the hyper-

parameter, which must be equal to or greater than the maximum witnessed radius. 

 

Figure 3.23. An overview of our suggested CP_clDice technique. The CP_clDice method 

can be implemented in any generic segmentation model. I applied the RRCNN network in 

this work. Pooling functions from any common deep learning toolbox can be used to build 

soft-skeletonization simply. 

This parameter varies depending on the dataset. In our experiments, for example, 

5...20k = , which corresponds to the pixel radius of the largest witnessed road structures. 

A low k results in incomplete skeletonization. Increasing the value of k does not 

decrease performance but lengthens computation time. Given the previously stated soft-
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skeletonization, I can utilize CP_clDice as an optimizable, real-valued, and fully 

differentiable measure. The implementation is described in Algorithm 2 (Figure 3.25) that 

is known as the soft CP_clDice. The amount of linked loops determines the homotopy type 

for a single connected foreground component without knots. As a result, no pairwise linked 

loops are detected, and reference pixels are not homotopy-equal. The deformation retracted 

skeleton of the solid foreground must be added or removed to include or omit these extra 

loops. Thus, the addition of new pixels that have been appropriately detected is needed. 

Unlike other losses like cross-entropy and Dice, CP_clDice only analyses the solid 

foreground structure’s deformation-retracted graphs. As a result, I assert that CP_clDice 

needs the minimum number of new properly detected pixels to ensure homotopy equality. 

Cross-entropy or Dice can only ensure homotopy equivalence in these lines provided each 

pixel is properly segmented. CP_clDice can ensure the equivalence of homotopy for a 

wider combination of pixels, which is an intuitively appealing trait because it renders 

CP_clDice powerful against noisy segmentation labels. 

3.4.4. Cost function 

I integrated our suggested soft CP_clDice with soft-Dice (a function to calculate dice loss) 

in the following manner to preserve connectivity while obtaining correct segmentations 

(our objective) rather than the learning skeleton: 

(1 )(1 ) (1 )cL softDice softCPclDice = − − + −   (31) 

where 
2 2

2 i

N

i
i

N N

i i
i i

s c
p o

i
p

oftD e
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=

+
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here, N denotes as total pixels, i Dp M is the detected binary pixels, and i Go M is the 

ground truth pixels. 

 
Figure 3.24. Sequential bagging of skeleton pixels (dark blue) by iterative skeletonization 

leads to complete skeletonization based on the initial road structure (blue), where 

k j i   signifies iterations and d diameter. 

This study aims to learn a connectivity-preserving segmentation, not learning the 

centerline. As a result, I limited   options (weight for the CP_clDice element) in our 

experiments to [0.1,0.5]for achieving high-quality results. Furthermore, I used the binary 

edge-map of each road to penalize boundary misclassification, solve irregular road forms, 

and enhance the shape of semantic roads. In fact, reliable annotated road edges are 

integrated into semantic polygons to strengthen the semantic polygon's border, repair 

discontinuous areas, assure the road's continuity and integrity, and obtain more precise 

boundary positioning. I tested our CP_clDice and binary edge-map information on a new 

state-of-the-art deep learning model (RRCNN). I proposed a new method named SC-

RoadDeepNet, a shape and connectivity-preserving method, to show the model’s 

effectiveness in preserving connectivity while obtaining accurate segmentation. 
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Algorithm 1: soft-skeletonization Algorithm 2: soft CP_clDice 
   Input: ,M k  
        'M  ← 
max (min ( ))pooling pooling M  

        Skel  ← '( )relu M M−  
    for  m ←0  to k do 
        M ← min ( )pooling M  
       'M ←
max (min ( ))pooling pooling M  
      Skel ←

'(1 ) ( )Skel Skel relu M M+ − −  
    end 
 Output: Skel  

Input: DM , GM  

    DS ← soft-skeletonization ( DM ) 

    GS ← soft-skeletonization ( GM ) 

    ( , )prec D GC S M ← D G

D

S M
S


 

   ( , )sens G DC S M ← G D

G

S M
S


 

   CP_clDice ←    
( , ) ( , )

2
( , ) ( , )

prec D G sens G D

prec D G sens G D

C S M C S M
C S M C S M




+
 

                          
Output: CP_clDice 

Figure 3.25. The suggested soft-skeleton is calculated using Algorithm 1, where k  is the 

number of iterations for skeletonization and M  is the mask to be soft-skeletonized. The 

soft CP_clDice loss is calculated using Algorithm 2, where GM  is the ground truth mask 

and DM is the segmentation mask.  denotes the Hadamard product. 

3.4.5. Datasets 

This part describes the datasets used to train and assess SC-RoadDeepNet, including 

Google Earth imagery [42] DeepGlobe [151] and Massachusetts [135]. The Google Earth 

dataset has a spatial resolution of 0.21 m per pixel covering around 8 km2. The dataset is 

more comprehensive and difficult to work with because of the numerous obstacles and 

shadows generated by avenue trees and cars along the roads. A total of 696 images are 

included in the dataset, which is divided into a training set and a testing set of 651 images 

and 45 images. Every original image has 512 512  pixels size. The DeepGlobe dataset is 

captured in India, Indonesia, and Thailand, containing 8570 images with 50 cm per pixel 

spatial resolution and covering 2220 km2. Each image is 1024 1024  pixels in size. The 

training and testing datasets consisted of 1006 and 26 images in this study, respectively. 
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The Massachusetts dataset that I used contains 1032 training and 32 testing images with a 

size of 768 768 and spatial resolution of 0.5 m. 

3.4.6. Experiment settings 

Given that the size of our road dataset is still small, which may lead to an over-fitting issue, 

some data augmentation techniques are utilized to increase the dataset size. I used data 

augmentation tactics, such as rotating (90, 180, and 270 degrees) the images and flipping 

(vertical and horizontal) them to enhance the dataset’s capacity. The proposed network was 

trained on a GPU Nvidia Quadro RTX 6000 under Keras framework and with Tensorflow 

backend with batch size 1 for 100 epochs across the datasets. This study used an adaptive 

moment estimation (Adam) optimizer with a 1 3e −  learning rate and decay of 0.9 to 

optimize the loss function and learn model parameters. The Sigmoid activation is also 

applied to sort the outcomes. The final layer gives outputs in continuous value from 0 to 1 

since it is activated by the Sigmoid function. As a result, I used a 0.5 threshold to attain the 

final segmentation map of the input images. 

3.5. Simultaneous road network segmentation and vectorization using 
RoadVecNet (Objective 3) 

For the third aim, a novel trustworthy DCNN methodology called RoadVecNet was used 

for simultaneous road surfaces segmentation and vectorization from different HRSI [45], 

which the method's implementation is discussed in this section. Most of the techniques 

concentrated on road surface segmentation and centerline extraction without obtaining 

precise information about the road's width and position, as stated in the literature. As a 

result, a new high-accurate road vectorization model was developed in this study that can 
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not only extract road surfaces accurately but also vectorize the road network and get the 

crucial information indicated above. 

The proposed RoadVecNet model extract the road surface and vectorize the road network 

simultaneously. In the extraction part, I wanted to deal with the road segmentation issues 

and detect consistent road parts. I also wanted to vectorize the road network by determining 

and extracting the road vector rather than the road centerline to obtain accurate information 

about the road network’s width and location. The proposed approach comprised two 

convolutional UNet networks that are interlinked into one architecture. The initial 

framework was used to identify road surfaces, while the second framework was utilized to 

vectorize roads to achieve road location and width information. In the proposed model, I 

used two encoders, two decoders, and two novel modules, namely, dense dilated spatial 

pyramid pooling (DDSPP) [157] and squeeze-and-excite (SE) [144]. The DDSPP module 

was used to achieve a bigger receptive field and create feature pyramids with a more denser 

scale variability. The SE module was employed to consider the interdependencies between 

feature channels and extract more valuable information. I also used a loss function named 

focal loss weighted by the median frequency balancing (MFB_FL) to overcome highly 

unbalanced datasets where positive cases are rare. MFB_FL lessens the burden of simple 

samples, allowing more time to be spent on difficult samples, and improves the road 

extraction and road vectorization results. Accordingly, I could achieve constant road 

surface identification outcomes and complete and smoothen road vectorization results with 

accurate information of road width and location even under obstructions of shadows, trees, 

and complicated environments compared with other comparative deep learning-based 

techniques. 
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3.5.1. RoadVecNet architecture 

An overview of the suggested RoadVecNet framework is shown in Figure 3.26. The 

proposed network comprises the road surface segmentation and road vectorization 

networks. Each UNet model includes a contracting encoder arm where the resolution 

decreases, and the feature depth increases and an expanding decoder arm where the 

resolution increases, and the feature depth decreases. I utilized filters of 32, 64, 128, and 

256 to consider the number of feature maps in encoder–decoder. The skip connections 

characteristic of the UNet framework [95] connect each upsampled feature map at the 

decoder arm to the encoder’s arm with an identical spatial resolution. Accordingly, the 

probability map that indicates the likelihood of every road and non-road pixel is obtained 

with the sigmoid classifier.   

1) Road surface segmentation architecture: The detailed configuration of this network 

is shown in Figure 3.26(a). This network was first applied to detect the road surface, which 

is categorized into two: road and background categories. In this network, pre-trained VGG-

19 [39] was used as an encoder because VGG-19 can be easily transferred to another task, 

given that it has formerly learned features from ImageNet. The key advantages of adopting 

the VGG-19 network are as follows: (1) its design is identical to UNet, making it easier to 

combine with UNet, and (2) it will allow much deeper networks to produce superior output 

segmentation and vectorization results. I also used the DDSPP module to extract high-

resolution feature maps and capture contextual information within the architecture and the 

SE module to pass more relevant data and reduce redundant ones. Every block in the 

decoder part implements a 2 2  bilinear upsampling on the input features to double the 

dimension of the input feature maps. This avoids artifacts and the use of slow 

deconvolution layer and hence decrease the number of learning parameters, which it also 
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contributes to a faster total training and inference time. Then, the proper skip connections 

of the encoder feature maps to the output feature maps are concatenated. Thereafter, two 

3 3  convolutional layers were applied, followed by batch normalization (BN) and 

Rectified Linear Unit (ReLU) function. The distribution of activations varies in the 

intermediate layers during the training step, which is a problem. This issue slows down the 

training phase because every layer in every training phase must learn to adjust to a new 

distribution. Thus, BN [148], which standardizes the inputs to a layer in the network by 

subtracting the batch mean and dividing by the batch standard deviation, is used to improve 

the stability of a neural network. The speed of a neural network’s training process can be 

accelerated by BN [148]. Furthermore, the model's performance is improved in some cases 

due to the modest regularization influence. Subsequently, the SE module was used, and the 

mask was generated by applying a convolutional layer with the sigmoid function. In remote 

sensing imagery, the road samples face the class imbalance issue because of the skewed 

dispensation of ground objects [136]. The cross-entropy loss does not adequately account 

for the imbalanced classes because it is calculated by summing up all of the pixels. A 

typical approach for considering the imbalanced classes is to use a weighting factor [158]. 

The class loss is weighted using median frequency balancing by the ratio of the training 

set’s median class frequency and the real class frequency [158]. The presentation of a 

weighting factor between the simple and the hard samples is the same; however, it balances 

the value of positive and negative samples. Therefore, the focal loss function was 

implemented by [159] to lessen the burden of simple samples, allowing them to focus more 

on the hard samples. I used the focal loss weighted by the median frequency balancing 

(MFB_FL) to address the imbalance issue of the training data and train the road surface 

segmentation network that is denoted as follows: 
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2) Road vectorization architecture: The detailed configuration of this network is shown 

in Figure 3.26(b). This network was then implemented to vectorize roads and extract the 

accurate width and location of the road network. The architecture has a similar architecture 

as the road surface segmentation architecture that has a contracting arm, expanding arm, 

skip connections, and sigmoid layer; however, it is much smaller than the road surface 

segmentation model. A relatively small architecture was chosen for this part for the 

following reasons. First, the training network has fewer positive pixels (vectorized road 

pixels) compared with the road segmentation framework. Thus, applying a relatively deep 
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network may cause overfitting. In addition, the feature maps generated by the final 

convolutional layer in the decode arm of the road segmentation framework have fewer 

complex backgrounds compared with the original image. A relatively small architecture is 

sufficient to deal with the vectorization task. In Figure 3.26, the inputs of the vectorization 

model are the feature maps generated by the final convolutional layer of the decoder arm 

in the road segmentation model. In every encoder block, two 3 3  convolutional layers 

were implemented, followed by batch normalization and ReLU. Thereafter, the SE block 

is used to enhance the feature map’s quality. Then, a 2 2  max-pooling layer with stride 2 

was applied to decrease the spatial dimension of the feature maps. All the components in 

the decoder arm are comparable to those of the decoder arm of the road segmentation 

network. To train the road vectorization model, its MFB_FL is denoted as follows: 

2( , ( ), ) (1_ ( ( )))j
vec c i vecMFB FL y h I l f I BCE = −  , (35) 

where 

1 1 1
( ) log ( ( ))

S P C
j j

vec c i c i
i j c

BCE w y C l f I
= = =

= −  = ,    (36) 

where j
iy  is the vectorized ground truth label, ( ( ))j

ih f I  is the output of the final 

convolutional layer in the road vectorization network, ( )j
if I  is the output of the final 

convolutional layer at pixel j
iI  in the road segmentation model, C  is the amount of 

classes, P  is the amount of pixels in every patch, S  is the batch size, 2  denotes the 

road vectorization network parameters, and ( ( ))j
c il f I  is denoted as the vectorized road 

likelihood of pixel j
iI .  
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I employed an end-to-end strategy to concurrently train the proposed road segmentation 

network and road vectorization network and utilized a distinct training dataset for every 

subtask. Moreover, I used the main RGB (red, green, and blue) images and the 

corresponding ground truth surface images for the road surface segmentation task and the 

main images and its corresponding ground truth vectorized images for the road 

vectorization task. Finally, the overall loss function in RoadVecNet, which is a 

combination of losses (1) and (3), can be expressed as follows: 

1 2 1
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where the last convolutional layer’s output in the road vectorization network is ( ( ))h f  , 

and the last convolutional layer’s output in the road segmentation model is ( )f  . The focal 

loss is parameterized by   and  , and it controls the degree of downweighting of easy 

examples and the class weights, respectively. The FL simplifies to BCE when  =0. In this 

work, I set the values for 2 =  and 0.25 =  because the degree of concentrating on hard 

and easy samples can be increased by higher values of   and lower values of  . 

3.5.2. SE module 

The SE module [144] was used to improve the model’s representation power by a context 

gating mechanism and attain a clear relationship between the convolutional layer channels. 

The module encodes feature maps by allocating a weight for every channel in the feature 
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map. The SE module includes two major parts, called squeeze and excitation. The first 

operation is squeeze. The input feature maps to SE block are accumulated to generate a 

channel descriptor by applying global average pooling (GAP) of the entire context of 

channels. 

 

Figure 3.26. Flowchart of the RoadVecNet framework containing (a) road surface 

segmentation and (b) road vectorization UNet networks. 

 

We have 1 2[ , ,..., ]up up up up
d FX X X X= , in which the input data to the SE module are 

up W H
fX R  , and the spatial squeeze is calculated as follows: 

1( ) ( , )
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f sq f f

i j
z F X X i j
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= =


 ,    (39) 

where H W  is the size of this channel, ( , )up
fX i j  is a spatial location of the thf  channel, 

and sqF  is the spatial squeeze module. The second operation is excitation, which takes the 

global information produced in the squeeze stage. This operation includes two fully 

connected (FC) layers. The pooled vector is first encoded and then decoded to shape 1 1 F
r

   

and 1 1 F  , respectively, to generate an excitation vector as 12( ; ) ( ( ))exs WW W zF z = =  , 
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where 1

F F
rW R


  denotes the parameters of the initial FC layer 
FF
rR

 , r  is the reduction 

ratio,   is ReLU, and   denotes the sigmoid function. The output of the SE block is 

generated as ~
( , )

up
up up

f scale f c c fX F X z s X= = , where ~ ~ ~ ~
1 2[ , ,..., ]

up up up up

d FX X X X=  is a channel-

wise multiplication between the channel attention, cs  is the scale factor, and scaleF  is the 

input feature map. 

3.5.3. DDSPP module 

In this work, the DDSPP module was performed on the feature maps generated by the 

encoder arms to elicit further multi-scale contextual information and produce a greater 

number of scale features over a broader range. Atrous spatial pyramid pooling (ASPP) was 

first utilized in DeepLab [160] to enhance the suggested networks’ performance. ASPP is 

a mixture of spatial pyramid pooling and atrous convolution with various atrous rates. This 

tool is effective in adjusting the receptive field to catch multi-scale information and in 

controlling the resolution of the features computed by deep learning networks. In 

particular, ASPP includes (a) an image-level feature that is generated by global average 

pooling and (b) one convolution with a 1 1  filter size and four parallel convolutions of a 

3 3  filter size with different rates of 2, 4, 8, and 12, as illustrated in Figure 3.27. Then, 

bilinear upsampling was applied to upsample the outcoming features from the entire 

branches to the input size and concatenated and underwent another convolution with 1 1 . 

However, I used a new module named DDSPP [157], which combines the benefit of 

cascaded modules with atrous convolution and ASPP to produce more scale features over 

a broader range and exploit further multi-scale contextual features. The receptive field for 

atrous convolution can be defined as follows: 
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[( 1)( 1) ] [( 1)( 1) ]F K R K K R K= − − +  − − + ,   (40) 

where R  is the rate, and k  is the convolution kernel size. For example, when R=2 and 

K=3, the F is then equal to 5×5. However, we can have a bigger receptive field and can 

create feature pyramids with a more denser scale variability by using dense connections 

between stacked dilated layers. Assuming that we have two convolutional operations with 

K1 and K2 kernel sizes, the receptive field can be defined as follows: 

1 2 1 2( 1) ( 1)F K K K K= + −  + − .   (41) 

The new receptive field size will result in 13×13 when the rates are 2 and 4. 

  

 

Figure 3.27. DDSPP structure. Each dilated convolutional layer’s output is concatenated 

(C) with the input feature map and then fed to the subsequent dilated layer. 

3.5.4. Inference stage 

The road surface segmentation and road vectorization can be concurrently implemented 

through the proposed RoadVecNet in the inference stage (Figure 3.26). A probability road 

map was achieved by using the road segmentation network. Then, the road vectorization 

network transformed the features maps of the final convolutional layer generated by using 

a road segmentation model into vector-based possibility maps in the inference stage. 

Finally, the Sobel algorithm was applied to achieve a complete and smooth road 

vectorization network with precise road width information [161]. The Sobel algorithm is 
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an instance of the gradient approach. In the gradient method, the edges are detected by 

looking for the minimum and maximum in the image’s initial derivative. The Sobel method 

computes an estimation of the image intensity gradient function and is a discrete 

differentiation method [161]. 

3.5.5. Experimental setting 

I utilized some data augmentation strategies, such as flipping the images vertically and 

horizontally as well as rotating them 90˚, 180˚, and 270˚ to expand the size of our training 

and validation sets and train a proper model. Moreover, to dominate the overfitting 

difficulty, I appended a dropout of 0.5 [162] to the deeper convolutional layers of the road 

segmentation network and road vectorization network. A computationally affordable yet 

strong regularization to the model can be provided using this strategy. Adaptive moment 

estimation (Adam) optimizer with 0.001 learning rate was also utilized in this work to learn 

the model parameters, such as weights and biases via optimizing the loss function. The 

presented RoadVecNet was trained with batch size 2 from scratch except the backbone 

network that I used as the pretrained one. The trained network was then implemented on the 

test data for road surface segmentation and road vectorization. I implemented the 

optimization of the networks for 100 epochs through the datasets until no more performance 

improvements were seen. I applied the suggested network for road surface segmentation and 

road vectorization on a GPU Nvidia Quadro RTX 6000 with a memory of 24 GB and a 

computing capability of 7.5 under Keras framework with TensorFlow backend. 

3.5.6. Dataset descriptions 

Two types of remote sensing datasets called Massachusetts road imagery [135] containing 

aerial images with 0.5 m spatial resolution and Ottawa road imagery [163] containing 
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Google Earth images with 0.21 m spatial resolution were used to test the proposed network 

on the road segmentation and vectorization. I selected these two different datasets, which 

contain various road width pixels, to show the proposed architecture’s superiority in road 

segmentation and vectorization. Each dataset includes two sub-datasets, namely, road 

surface segmentation and road vectorization. The detailed information of each dataset is 

highlighted as follows:  

1) Massachusetts datasets: In this dataset, I used 766 images, which are split into 690 

training, 48 validation, and 28 test images with a dimension of 512×512 and road width of 

approximately 6–9 pixels. Figure 3.28 demonstrates some samples of the original images 

in the first column, the corresponding reference map in the second column, and a 

superposition between vectorized road and road segmentation ground truth maps in the last 

column. 
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Figure 3.28. Demonstration of three representative imagery, their segmentation ground 

truth, and vectorized ground truth maps for the Massachusetts road imagery. (a), (b), and 

(c) illustrate the original RGB imagery, corresponding segmentation ground truth maps, 

and superposition between vectorized and segmentation ground truth maps, respectively.

 

2) Ottawa datasets: I utilized 652 images divided into 598 training, 34 validation, and 20 

test images with a dimension of 512×512 and road width of almost 24–28 pixels. Figure 

3.29 illustrates some examples of the main imagery, the corresponding reference map, and 

the superposition between vectorized road and road segmentation ground truth maps in the 

first, second, and last columns, respectively.
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Figure 3.29. Demonstration of three representative imagery and their segmentation ground 

truth and vectorized ground truth maps for the Ottawa road imagery. (a), (b), and (c) 

demonstrate the main RGB images, corresponding segmentation ground truth maps, and 

superposition between vectorized and segmentation ground truth maps, respectively. 
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3.6. Evaluation factors 

Different metrics were used to evaluate the accuracy assessment of the suggested ML and 

DL methods applied for road class extraction and vectorization from high-resolution 

remote sensing data, namely, F1 score, Recall (Completeness), Intersection over union 

(IOU), Precision (Correctness), Matthews correlation coefficient (MCC), and Mean 

intersection over union (MIOU) factors. These metrics can be calculated from the number 

of false positive (FP), false negative (FN), true negative (TN), and true positive (TP) pixels 

as: 
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+
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The recall represents the fraction of the labeled road pixels that are correctly classified and 

precision represents the fraction of the road pixel classifications that are correct [7]. The F1 

score [164] combines the precision and recall metrics within a single numeric score that is 

considered a balanced measure of accuracy when class sizes are different. In addition, the 

MCC is also a correlation coefficient between predicted and recognized binary 

classifications, providing a value between −1 and +1 [136]. The proportion of unions and 

intersections between the set of classified values and the set of ground truth is computed 

using MIOU. In MIOU, the number of classes k is equal to 2, presenting the road class and 

background. OA is also a simple summary assessment of a case's likelihood of being 

correctly classified [100]. IOU factor (Quality) is calculated by dividing the total number 
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of mutual pixels between the real and the classified masks by the total number of present 

pixels in both masks. 

3.7. Summary 

The following are the summaries obtained from the developed ML and DCNN models for 

road extraction and vectorization in this chapter: 

1. Different types of high-resolution remote sensing images with various resolutions, such 

as Orthophoto, UAV, Aerial, and Google Earth images, were used to evaluate the models. 

2. The datasets were used to generate the training, validation, and test images for training 

and assessing the suggested methods. 

3. ML approaches such as Trainable Weka segmentation and Level Set methods, as well 

as multiresolution segmentation, classification methods (DT, KNN, and SVM), and 

connected components analysis were used to extract road networks. 

4. State-of-the-art DCNN models such as BCD-UNet, MCG-UNet, VNet, and 

GAN+MUNet were applied to alleviate the issues of ML and pre-existing DL methods in 

detecting the road networks from heterogeneous areas due to the presence of occlusions. 

5. The SC-RoadDeepNet method was applied to address the issues of road geometry and 

connection while also producing high-quality road segmentation maps. 

6. The RoadVecNet technique was used to precisely and simultaneously extract road 

surface and vectorize road networks and address the challenges of existing methods that 

are only used for road surface and centerline extraction.  
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7. Some experimental settings were done for performing the methods, and the whole 

process of running the proposed DCNN models for road extraction and vectorization HRSI 

was implemented under the framework of Keras with Tensorflow backend. 

8. The efficiency of the given DCNN algorithms for road surface segmentation and 

vectorization was evaluated using a variety of assessment metrics. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1. Introduction 

The results of road surface segmentation from HRSI using developed ML and DL models 

are presented in this chapter. The road vectorization results obtained by the developed 

RoadVecNet model are also shown in this part. In addition, the quantitative comparison 

results of the proposed models and other comparative methods are demonstrated in this 

chapter. Moreover, the ablation studies for testing the methods with different parameters 

for road extraction and vectorization are discussed in this section. In this chapter, the 

generated high-resolution road segmentation and vectorization maps are also presented to 

show the effectiveness of the proposed models for the given tasks compared to the 

comparative techniques.  

4.2. Results of traditional ML approaches for road segmentation 

In this part, the results of the proposed traditional ML methods such as the Level Set 

segmentation method and integrated approach of segmentation and classification approach 

with connected components technique are described. 

4.2.1. Results of Level Set method 

To implement and calculate the accuracy of the suggested road extraction method from 

UAV images, several software, such as ImageJ (Weka), MATLAB and ArcMap were used. 

The UAV images were from urban and suburban areas, involving various road features in 

terms of type and form. In Figures 4.1(a) and 4.2(a), the main images of suburban and 
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urban areas were presented respectively. The test image in Figure 4.1 was retrieved from 

outside the city and was not surrounded by other features, whereas the original image in 

Figure 4.2 was completely covered by buildings, cars and vegetation. Figures 4.1(b) and 

4.2(b) illustrate the segmented image using the TWS method. Both images were segmented 

by the algorithm with high precision. The segmented images were used as input for the LS 

method for road extraction (Figures 4.1, 4.2(c)). As shown in the figure, the road 

boundaries were extracted accurately using the LS method despite the presence of other 

objects on the road, but the objects with spectral characteristics similar to roads were also 

extracted, appearing as small irregular shapes (noise) in the extracted image. Therefore, 

after road extraction using the LS method, morphological operators were applied on the 

images for improving accuracy, given that morphological operators fill the gaps and 

eliminate nonroad pixels and noises (Figures 4.1, 4.2(d)). Table 4.1 also shows the 

confusion matrix factors (TN, FN, FP, TP) for evaluating the accuracy of road extraction 

based on the TWS and LS methods from UAV images. 
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Figure 4.1. (a) Main image, (b) Segmented image, (c) result from Level Set, and (d) result 

from Morphological Operators. 

 
Figure 4.2. (a) Main image, (b) Segmented image, (c) result from Level Set, and (d) result 

from Morphological Operators. 
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Table 4.1. Road extraction accuracy using Confusion Matrix 

 TN FN FP TP 
Figure 4.1 507069 8019 16103 128400 
Figure 4.2 639015 7014 19241 92259 

4.2.1.1. Discussion  

The parameters of accuracy evaluation for the suggested road extraction approach, which 

are achieved on the basis of the parameters shown in Table 4.1, are exhibited in Table 4.2.  

As shown in the table, the results of completeness, correctness and quality of the proposed 

approach are 94.12%, 88.85% and 84.18%, respectively, for Figure 4.1 and 92.93%, 

82.74% and 77.84%, respectively, for Figure 4.2. As specified in Table 4.1, the number of 

pixels not belonging to road class (FP) in Figure 4.2 is greater than the number of FP in 

Figure 4.1. In other words, the method could not recognise numerous pixels related to road 

class. Therefore, the precision of road extraction decreases slightly, especially for the 

correctness and quality parameters, due to the presence of vehicles. Therefore, these means 

extend the spectral heterogeneity, which influences the representation of linear structures 

by path opening. Moreover, the method produced a higher number of FPs in some sections 

where roads are near to built-up sections and buildings. Therefore, detaching road sections 

from their surroundings by solely relying on spectral characteristics is difficult, because 

these regions have a similar spectral reflectance as roads. Table 4.2 denotes that the 

suggested method is highly accurate in road extraction for both images. In terms of 

performance measures, the extracted road in Figure 4.2 has lower accuracy than that in 

Figure 4.1. The completeness percentage of the extracted roads is higher than the 

correctness and quality measures that are based on the performance factors. For Figure 4.2, 

although the suggested approach generated a good result, its extracted road still has lower 

accuracy than Figure 4.1. The accuracy reduction in Figure 4.2 is due to having more 
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similarities between road class and other features, such as vegetation and building shadows 

and urban complex texture and other obstacles, in which the suggested technique 

encounters difficulty in extracting road class and has less accuracy than Figure 4.1. 

However, using the TWS and LS techniques concurrently showed that the introduced 

approach has overall success for automatic road extraction. In this study, the TWS had a 

high accuracy in image segmentation, and using the segmented image as input for the LS 

method resulted in a highly accurate road extraction.   

Table 4.2. Parameters of precision assessment 

 Completeness Correctness Quality Percentage 

Figure 4.1 94.12 88.85 84.18 

Figure 4.2 92.93 82.74 77.84 
 
To display clearly the effectiveness of the method used in this study, the performance 

measure factors of the suggested work were compared with other works. In this work, two 

test images were selected for measuring performance factors, whereas in other works the 

number of images taken for these factors varies. Therefore, the percentages of the average 

values of quality, completeness and correctness were considered for comparison with other 

methods. Huang, et al. [165] applied a feature fusion method based on the cross-validation 

line features of the statistical region merge and line segment detector, according to their 

spatial relation, to extract roads from remote sensing images. The performance factors are 

evaluated for different images, in which the average value of performance measures is 

taken for comparison. Miao, et al. [166] suggested a novel integrated approach according 

to tensor voting, kernel density estimator and geodesic technique for road centreline 

extraction from remote sensing images. They considered completeness, correctness and 

quality measures to calculate the precision of extracted road. Shi, et al. [167] applied a 
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method based on shape features and spectral–spatial classification for urban road extraction 

from a Ziyuan-3 satellite image with a spatial resolution of 6 m per pixel and an IKONOS 

image. They calculated completeness, correctness and quality factors, which are taken to 

compare with the proposed method in this study. Sujatha and Selvathi [103] suggested a 

technique to extract road centreline from various high-resolution satellite images 

automatically. They evaluated the performance measures to calculate the efficiency of their 

method, and the average values of those factors are presented in Table 4.3 for comparison. 

Results of the suggested method, along with the results from previous studies, are rounded 

off to the nearest integer, as shown in Table 4.3. 

Table 4.3. Performance measures comparison of the proposed method with another 

works. 

Approaches Average of 
Completeness (%) 

Average of 
Correctness (%) 

Average of 
Quality (%) 

[165] 
[166] 
[167] 
[103] 
Ours 

87 
87 
79 
90 
94 

89 
92 
77 
96 
86 

76 
83 
63 
87 
81 

 

The performance measures for the proposed method and other methods are plotted to 

illustrate the differences clearly (Figure 4.3). The x-axis is categorised into three sections: 

the first section presents the average value of completeness; the second section 

demonstrates correctness; and the last section shows the values for quality. The y-axis 

presents the percentages of the corresponding values. As shown in the plot, the percentage 

of completeness for the proposed approach lies on the top level, compared with other 

works. Furthermore, the values for correctness and quality of the proposed method in some 
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sections are higher than those of the other works, which proves that the method was 

remarkably efficiency for road extraction from UAV images. 

 
Figure 4.3. Comparison plot for performance factors. 

4.2.2. Results of segmentation and classification methods with connected components 
analysis 

Three images from different areas, in which road section is covered by some other objects, 

such as vegetation, vehicles, and buildings, were considered to demonstrate the efficiency of 

the proposed road extraction method in this work. Software, including MATLAB, 

eCognition Developer 64, and ArcMap, were used to apply the proposed method and 

calculate its efficiency in road extraction. I considered two sets of values for parameters such 

as scale, shape and compactness for the proposed segmentation approach to measure how 

the parameters of the method affect the detection accuracy. First, I set the values for the scale, 

shape and compactness parameters of the segmentation method to 50, 0.5 and 0.3 and then 

applied the classification methods, and the results are shown in Figure 4.4. 
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Figure 4.4. Extracted road class from orthophoto images with scale=50, shape=0.5 and 

compactness=0.3. First and second columns show the original image road label, 

respectively while third, fourth and fifth columns show the results of road detection by 

KNN, DT and SVM approaches, respectively.  

Whereas Figure 4.5 shows the results of road detection by the methods after setting the values 

of scale, shape and compactness parameters to 20, 0.2 and 0.6, respectively. Both figures are 

illustrated in five columns and three rows. The first and second columns depict the original 

RGB images and original ground truth maps, respectively. The third, fourth and fifth columns 

depict the results of road detection by the KNN, DT and SVM approaches after integration 

with connected components analysis. Road parts in the main images of Figures 4.4 and 4.5 

are evidently less or more covered by other occlusions with similar reflectance, making 

accurate road part extraction from images difficult. This phenomenon is due to the objects 

with the same spectral features, which possibly become visible as a road section in the 

extracted image. Consequently, OBIA, connected components analysis, and morphological 

operations were applied along with segmentation and classification method to obtain 

additional information, such as texture and geometry, and eliminate irrelevant road 

components and noises to improve the accuracy. As shown in Figures 4.4 and 4.5, the 
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proposed integration of KNN, DT, and SVM methods with connected components could 

generally extract accurate road section from orthophoto images. However, the three proposed 

classification methods demonstrated better performance for extracting road from images in 

Figure 4.5 with parameters values of scale=20, shape=0.2 and compactness=0.6 than those 

in Figure 4.4 with parameters values of scale=50, shape=0.5 and compactness=0.3. In both 

figures, the proposed SVM method could produce better qualitative results for road 

extraction with less false positive (FPs) prediction (shown as blue color) than other methods 

while KNN method predicted more FPs and less false negative (FNs) (shown as yellow 

color) and generated low-quality visualization results compared to other approaches. 

 
Figure 4.5. Extracted road class from orthophoto images with scale=20, shape=0.2 and 

compactness=0.6. First and second columns show the original image road label, 

respectively while third, fourth and fifth columns show the results of road detection by 

KNN, DT and SVM approaches, respectively.  

A confusion matrix with four main factors ( TN, FN, TP, and FP) was used for assessing 

the accuracy of the suggested approach because road part extraction from remote sensing 

image is a binary classification [55]. Several main metrics, such as recall, F1-score, and 

precision, were considered based on the parameters of the confusion matrix to evaluate the 
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capability of the introduced approach in road network extraction from orthophoto images. 

Table 4.4 demonstrates the quantitative results achieved by the proposed methods for 

Figure 4.4 and those for Figure 4.5 are presented in Table 4.5. 

Table 4.4. Evaluated metrics for different methods (Figure 4.4). Best values are in bold 

and second-best values are underlined. 
  KNN DT SVM 

Image1 
Recall 0.8833 0.8305 0.8485 

Precision 0.8112 0.8957 0.8765 
F1-score 0.8457 0.8619 0.8623 

Image2 
Recall 0.8881 0.9025 0.9326 

Precision 0.9095 0.9161 0.9044 
F1-score 0.8987 0.9092 0.9182 

Image3 
Recall 0.7851 0.8058 0.8547 

Precision 0.8998 0.8967 0.8823 
F1-score 0.8386 0.8488 0.8683 

Average 
Recall 0.8522 0.8463 0.8786 

Precision 0.8735 0.9028 0.8877 
F1-score 0.8610 0.8733 0.8829 

 

Table 4.5. Evaluated metrics for different methods (Figure 4.5). Best values are in bold 

and second-best values are underlined. 
  KNN DT SVM 

Image1 
Recall 0.8966 0.8492 0.8922 

Precision 0.8442 0.9167 0.8982 
F1-score 0.8696 0.8817 0.8952 

Image2 
Recall 0.8952 0.9318 0.9218 

Precision 0.9144 0.9023 0.9223 
F1-score 0.9047 0.9168 0.9220 

Image3 
Recall 0.8064 0.8475 0.8809 

Precision 0.8865 0.8722 0.8651 
F1-score 0.8446 0.8597 0.8730 

Average 
Recall 0.8661 0.8762 0.8983 

Precision 0.8817 0.8971 0.8952 
F1-score 0.8730 0.8861 0.8967 
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4.2.2.1. Discussion 

Based on Table 4.4, the average percentage of F1 score metric is 86.10%, 87.33%, and 

88.29% for KNN, DT and SVM methods, respectively. Meanwhile, the percentage of such 

metric presented in Table 4.5 is 87.30%, 88.61%, and 89.67% for KNN, DT and SVM, 

respectively. The suggested approaches evidently showed satisfactory performance in terms 

of road extraction from orthophoto images. However, the accuracy of specific measurements 

is slightly higher for all the methods in Figure 4.5 (with scale=20, shape=0.2 and 

compactness=0.6) than those in Figure 4.4 (with scale=50, shape=0.5 and compactness=0.3). 

As illustrated in Tables 4.4 and 4.5, the precision factor percentage is high for the DT model 

compared with that of the two other methods. However, the SVM model achieved a higher 

percentage in recall and F1 score than that of the two other methods, which demonstrates the 

effectiveness of the model for road extraction. In both tables, the KNN method was ranked 

the least in road detection. The poor road extraction performance of the KNN technique is 

related to its prediction of a large number of FPs and a smaller number of FNs, which results 

in poor accuracy. In contrast, the SVM model was ranked the number-one in road extraction 

in both. In fact, the SVM model could improve the results of F1 score to 2.19% and 0.96% 

compared to KNN and DT, respectively for Figure 4.4 and 2.37% and 1.06%, respectively 

for Figure 4.5. Figure 4.6 illustrates the average accuracy of the metrics achieved using the 

proposed road extraction methods for Figures 4.4 and 4.5. The vertical and horizontal axes 

shows the average percentage of accuracy and the three accuracy assessment metrics, 

respectively. As displayed in Figure 4.6, SVM model could achieve better quantitative results 

than KNN and DT. However, all the three proposed models showed a deficiency in road 

extraction when road parts are covered by occlusions, such as vehicles, shadows, vegetation, 

and buildings, and predicted more FP pixels. In addition, I measured the computational time 
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of the proposed methods applied on the three images, which the average running time among 

the approaches is shown in Table 4.6. As it is obvious, KNN method takes more time than 

DT and SVM for training with the average running time of 147.33. The reason is that we 

have to ascertain the value of parameter K (number of nearest neighbors) and the type of 

distance to be utilized. Therefore, the computation time is much as the model requires 

measuring the distance of every query instance to all training samples. 

 
Figure 4.6. Comparison of average performance metrics achieved by the proposed 

methods for road extraction. 

 
Table 4.6. Computational time comparison of various approaches. Here, the time is 

measured in second. 

Methods Images 
Image1 Image2 Image3 Average 

DT 140 104 139 127.66 
KNN 142 105 195 147.33 
SVM 141 106 172 139.66 

In addition, the efficiency of the introduced approaches was compared with that of other 

works to demonstrate the effectiveness of the model for road extraction from orthophoto 

imagery. The average percentage of recall, precision and F1 score metrics were considered 
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for comparison. A method for road extraction from Ziyuan-3 satellite images based on 

spectral–spatial classification and shape features was introduced by [167]. Recall, precision 

and F1 score metrics were calculated for the accuracy assessment, in which the average 

values were obtained caught for comparison. Miao, et al. [49] extracted road sections from 

remotely sensed images according to a fusion method of geodesic, kernel density, and tensor 

voting techniques. They evaluated recall, precision and F1 score measures to assess the 

performance, in which the average amount is obtained for comparison with the suggested 

techniques in this paper. A technique for road extraction from different high-resolution 

remote sensing images was also introduced by [117], in which the average percentage of 

recall, precision and F1 score factors are obtained for comparison. Table 4.7 depicts the 

average amount of performance metrics for the proposed methods in this study and other 

prior studies. 

Table 4.7. Performance factors of different proposed methods compared with various 

previous studies. Best values are in bold. 

Methods Recall Precision F1 score 
Proposed DT 0.8762 0.8971 0.8861 

Proposed KNN 0.8661 0.8817 0.8730 
Proposed SVM 0.8983 0.8952 0.8967 

[167] 0.79 0.77 0.7798 
[49] 0.87 0.92 0.8943 
[117] 0.86 0.91 0.8842 
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Table 4.7 shows that the three proposed SVM method in this study demonstrated a higher 

percentage in F1 score factor compared with that from previous works. The DT method is 

ranked third with 88.61%, while SVM is ranked first with 89.67%. By contrast, the average 

value of F1 score for the second-best method (Miao, et al. [49]) is 89.43%, which could 

achieve better results than the proposed KNN and DT methods. Miao, et al. [49] also 

achieved a high precision amount with 92%, which is more than the average percentage of 

precision for the three proposed methods with 89.52%, 89.71%, and 88.17% for SVM, DT, 

and KNN. The decreasing accuracy for the proposed methods is due to the high FP amount 

prediction, which affected the percentage of precision. Also, Shi, et al. [167] obtained the 

lowest amount of F1 score with 77.98%, indicating that their method was ineffective in road 

extraction. By comparing the quantitative results, it can be seen that the three proposed 

classification methods integrated with connected components analysis demonstrated 

efficiency in road extraction from orthophoto images. 

4.3. Results of DCNN methods for road segmentation (Objective 1) 

The results of the proposed DCNN approaches such as MCG-UNet, BCD-UNet, VNet, and 

GAN+MUNet for road segmentation from different HRSI data based on the first objective 

are described in this section. The proposed techniques could generate high-quality road 

segmentation maps even under complex environments compared to the traditional methods 

discussed in the previous section and other comparative DL methods that are discussed in 

this part.  

4.3.1. Results of GAN+MUNet 

Figure 4.7 visually illustrates the results obtained with the proposed MUNet and GAN 

models for some images with varied characteristics, specifically including non-complex and 
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complex backgrounds, shadows, and occlusions due to trees and buildings. From the results 

in the figure, one can observe that, while both the proposed approaches could extract and 

detect roads in the images with good accuracy, the GAN framework offered several 

advantages over the MUNet approach. The MUNet approach was sensitive to occlusion by 

trees and to shadows and predicts few FN pixels (depicted in blue box in Figure 4.7) but its 

accuracy compromised due to a number of FP pixels (depicted in yellow box in Figure 4.7). 

Given that the textural and spectral characteristics of parking lots, shadows, and buildings 

frequently match those of roads, the proposed MUNet model could not reliably distinguish 

roads from these other elements, resulting in incorrect classification for several small 

patches. Moreover, some of the extracted road parts are not continuous; lack of connectivity 

is observed between the roads at junction regions where roads connect. For complex images, 

extracting road parts can be challenging for the proposed MUNet model. The proposed GAN 

model offered a significant improvement over the MUNet approach and generated more 

coherent high-resolution road segmentation maps with better preservation of the road borders 

and mitigation of the effects of occlusions and shadows. Compared to the MUNet approach 

the GAN approach predicted fewer FP pixels, which is a key contributor to the improved 

accuracy.  

The accuracy of the proposed MUNet and GAN models was also evaluated numerically in 

terms of the five metrics and the results are summarized in Table 4.8. The numerical results 

in Table 4.8 reinforce the findings from the visually presented results in Figure 4.7; compared 

with the MUNet model the GAN model provided significantly higher precision but slightly 

lower recall, indicating that the MUNet model predicted more false positive and less false 

negative pixels than the GAN model. For the combined F1 score and MCC accuracy metrics, 

the GAN model achieved scores of 92.20%, and 91.13% compared with scores of 90.18%, 
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and 88.92% for the MUNet, respectively. The improvements of 2.02% and 2.21%, 

respectively, for F1 score and MCC demonstrate the superiority of the proposed GAN 

approach for road extraction. Although the proposed GAN approach offered state of the art 

performance, it is also impacted by the complicated backgrounds and occlusions, as well as 

the challenge of common spatial and spectral characteristics of roads with other regions, such 

as parking lots, and buildings. I also conducted some experiments to check the effect of 

different hyper-parameters on the performance of the model for road extraction. I changed 

the Adam optimizer to Stochastic gradient descent (SGD) with a learning rate of 0.001 and 

ReLU activation function used in the encoder part of the model to Exponential linear unit 

(ELU). I then performed the Prop-GAN with these hyper-parameters (Pro-

GAN+ELU+SGD) on the dataset. I measured the evaluation metrics for the same test images 

after adding the SGD and ELU parameters. I achieved an average accuracy of 88.01% for 

Precision, 92.02% for F1 score, 90.99% for MCC, and 87.25% for MIOU. As it is shown, 

the Prop-GAN approach with ReLU and Adam parameters (Prop-GAN+ReLU+Adam) 

obtained better accuracy and improved the results by 3.53%, 0.18%, 0.14%, and 0.18% for 

Precision, F1 score, MCC, and MIOU, respectively. In contrast, the Prop-GAN+ELU+SGD 

method obtained 96.43% for Recall compared to the Pro-GAN+ReLU+Adam with 92.92%, 

which shows that more FPs and fewer FNs were predicted by the method. Furthermore, I 

depicted some qualitative results of the Prop-GAN+ELU+SGD method in Figure 4.7 (e). As 

it can be seen, compared with the same test images in Figure 4.7 achieved with Prop-

GAN+ReLU+Adam, more non-road pixels were predicted by the Prop-GAN+ELU+SGD, 

which leads to obtaining less accurate qualitative results compared to the Prop-

GAN+ReLU+Adam. 
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Figure 4.7. Sample image blocks and corresponding extracted road regions using 

alternative techniques: (a) image block, (b) ground truth road segmentation, (c) road 

segmentation obtained with the proposed modified U-Net model (Prop-MUNet), (d) road 

segmentation obtained with the proposed GAN approach (Prop-GAN+ReLU+Adam), and 

(e) road segmentation obtained with the proposed GAN approach with new parameters 

(Prop-GAN+ELU+SGD). The blue and yellow boxes present the FNs and FPs, 

respectively. 

 
Table 4.8. Quantitative accuracy metrics for the proposed approaches for the individual 

images in the Massachusetts road dataset. values are reported in percentage, and the best 

metrics are indicated by bold font. 

 Prop-MUNet Prop-GAN 

Image 1 Recall 95.80 93.45 
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Precision 79.51 86.83 
F1 score 86.90 90.02 

MCC 85.38 88.65 
MIOU 80.02 84.24 

Image 2 

Recall 94.30 91.25 
Precision 79.66 89.19 
F1 score 86.36 90.21 

MCC 84.29 88.57 
MIOU 79.91 84.91 

Image 3 

Recall 93.50 91.28 
Precision 84.53 89.70 
F1 score 88.79 90.48 

MCC 86.98 88.91 
MIOU 83.02 85.27 

Image 4 

Recall 96.88 95.24 
Precision 87.12 92.91 
F1 score 91.74 94.06 

MCC 91.02 93.47 
MIOU 86.24 89.86 

Image 5 

Recall 94.29 91.86 
Precision 88.99 93.37 
F1 score 91.56 92.61 

MCC 90.38 91.58 
MIOU 86.55 88.04 

Image 6 

Recall 96.15 93.34 
Precision 89.36 93.63 
F1 score 92.63 93.48 

MCC 91.74 92.66 
MIOU 87.97 89.22 

Image 7 

Recall 94.15 91.94 
Precision 91.41 95.28 
F1 score 92.76 93.58 

MCC 91.98 92.92 
MIOU 87.87 89.13 

Image 8 

Recall 95.03 95.02 
Precision 86.83 91.42 
F1 score 90.74 93.19 

MCC 89.60 92.31 
MIOU 88.43 88.82 

Average 

Recall 95.01 92.92 
Precision 85.92 91.54 
F1 score 90.18 92.20 

MCC 88.92 91.13 
MIOU 85.00 87.43 
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4.3.1.1. Comparison and discussion 

The performance of the proposed MUNet and GAN approaches  over the Massachusetts road 

dataset was also compared against six state-of-the-art prior approaches for road extraction 

from high resolution aerial imagery: (1) The  SEEDS-MCNN proposed recently by Lv, et al. 

[168], which used super-pixels extracted via energy-driven sampling (SEEDS) followed by 

a CNN classifier, (2) The CNN approach of Zhong, et al. [37], (3) The RSRCNN  approach 

of Wei, et al. [55] which used road structure-refined CNN model that is provided with road 

geometric information and spatial correlation, (4) The Road-RCF technique proposed by 

Hong, et al. [44] which used richer convolutional features (RCFs) for road extraction, (5) the 

RDRCNN approach proposed by Gao, et al. [79] which used a novel architecture called the 

refined deep residual CNN composed of dilated perception and residual connected units, and 

(6) the RDRCNN+Postprocessing approach of Gao, et al. [79] which performed a post-

processing step on the RDRCNN output using mathematical morphology and a tensor-voting 

method to incorporate split roads.  

Table 4.9. Average precision, recall, and F1 score metrics over the Massachusetts road 

dataset for the proposed approach and alternative techniques. for each metric, the best value 

obtained across the different methods is indicated by bold font.  

 Average Percentage 
 Recall Precision F1 score 

CNN [37] 68.6 43.5 53.2 
SEEDS-MCNN [168] 80.4 78.0 79.0 

RSRCNN [55] 72.9 60.6 66.2 
Road-RCF [44] 98.5 85.8 91.5 
RDRCNN [79] 75.33 84.64 79.72 

RDRCNN + post-
processing [79] 75.75 85.35 80.31 

Prop-MUNet 95.01 85.92 90.18 
Prop-GAN 92.92 91.54 92.20 
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The referenced publications for these prior methods reported precision, recall, and F1 score 

on the Massachusetts road dataset and those values are compared in Table 4.9 against the 

corresponding metrics for the MUNet and GAN approaches proposed in this paper. 

The results in Table 4.9 demonstrate the effectiveness of the proposed GAN approach, which 

provided the highest F1 score among all the methods compared, which at 92.20% is 0.7% 

better than the next best performing Road-RCF technique and 2.02% better than the proposed 

MUNet approach. The proposed GAN approach yielded the highest precision metric, which 

at 91.54% is almost 5.74% better than the next best Road-RCF [44] technique and 5.62% 

better than the proposed MUNet approach, which has the third best precision value. The 

proposed GAN approach also has a high recall metric, which at 92.92% is only superseded 

by the 98.5% value for the Road-RCF [44] technique but is better than all other prior methods 

and only slightly worse than the 95.01% value for the proposed MUNet. Among the prior 

methods, the Road-RCF [44] technique offered performance that is clearly superior to other 

methods in all three reported metrics. The CNN and RSRCNN achieved the lowest accuracy 

compared with the other methods and our proposed methods in this paper. In addition to the 

numerical results presented in Table 4.9, I also presented a sample set of images and extracted 

road regions for the images to highlight and compare the performance of the alternative 

techniques that are depicted in Figure 4.8. The first and second columns present the test and 

ground truth images, whereas the third column depict the results achieved by the state-of-

the-art SEEDS-MCNN Lv, et al. [168], CNN [37] and RDRCNN [79] methods. The fourth 

column shows the results achieved by the state-of-the-art Road-RCF [44], RSRCNN [55] 

and RDRCNN [79]. Finally, the fifth and sixth columns illustrate the extracted road parts 

using proposed MUNet and GAN models, respectively. These images further highlighted the 
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effectiveness of the proposed GAN approach, which is particularly effective in preserving 

the edges of the roads while maintaining high fidelity with the ground truth labels. 

 
Figure 4.8. Comparison of road segmentation obtained with the proposed method (GAN) 

against other techniques illustrated on the three images from the Massachusetts road 

dataset. The yellow boxes highlight regions with the FP and FN pixel predictions by the 

models. 

Also, I compared the performance of the proposed GAN+MUNet approach with other  

GAN-based road extraction approaches reported in the literature such as GAN+FCN [42], 

GAN+SegNet [88], E-WGAN [90], MsGAN [92], and McGAN [94] to test the efficacy of 

the presented model in road extraction. For comparison purpose, that the statistical measure 

such as the accuracy, recall, and F1 scores reported in the referenced papers vs. our 

proposed Prop-GAN approach are shown in Table 4.10. The quantitative results indicate 

that the presented GAN+MUNet model attained the highest F1 score value with 92.20%, 

which could improve the earlier methods by 2.57% compared to the second highest 

approach called GAN+SegNet. Also, the model could improve the F1 score value 
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compared to the other GAN-based road extraction methods such as GAN+FCN, E-WGAN, 

MsGAN, and McGAN to 5.2%, 7.2%, 6%, and 7.3%, respectively, assert the 

GAN+MUNet model's ability to extract roads from aerial imagery. Also, I estimated the 

runtime of the suggested approach applied on the dataset, which took 78.6s per epoch and 

71ms per step for training and testing process, respectively. The model was trained for 100 

epochs and tested on 28 images; thus, it took 131 minutes for training and 2s for testing. 

Overall, the proposed model does not require high computational time and a large training 

dataset and still achieved the best performance among other comparative models in term 

of both quantitative and qualitative results.  

Table 4.10. Average precision, recall, and F1 score metrics for the proposed GAN+MUNet 

and alternative GAN-based road detection approaches.  bold font indicates the best value. 

 Average Percentage 
 Recall Precision F1 score 

GAN+FCN 82 93 87 
GAN+SegNet 91.01 88.31 89.63 

E-WGAN 85 86 85 
MsGAN 87.1 85.3 86.2 
McGAN 85.8 84.1 84.9 

Prop-GAN 92.92 91.54 92.20 

4.3.2. Results of VNet 

In this section, the results achieved by the proposed VNet approach based on CE, DL and 

CEDL loss functions are highlighted. Figure 4.9 and Figure 4.10 illustrate the obtained 

results via the suggested technique based on CE loss function, DL and CEDL for 

Massachusetts road dataset and Ottawa dataset, respectively. The figures are represented 

in six columns and five rows. The main RGB images, the ground truth labels, the results 

achieved by the VNet+CE, VNet+DL and VNet+CEDL are presented in the first, second, 

third, fourth and last row, respectively. Also, the second, fourth and sixth columns show 

the zoomed outcomes. Based on the figures, the suggested VNet network with all loss 
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functions could generally segment road class from high-resolution remote sensing data 

precisely. However, the results achieved by VNet+CEDL is more accurate than VNet+CE 

and VNet+DL. In fact, VNet+CE and VNet+DL predicted more false positive pixels (FPs) 

(shown as blue pixels) and less false negative pixels (FNs) (shown as red pixels) in both 

datasets that lead to achieving lower accuracy compare to VNet+CEDL for road extraction. 

The proposed VNet+CE and VNet+DL models could not segment road part from remote 

sensing data where the road network is covered by shadows or in the junction parts. 

Therefore, by using new CEDL loss function that consider both local and global 

information and solve the issue of lessening the influence of class imbalance, the proposed 

VNet plus CEDL could improve the results.  
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Figure 4.9. The achieved outcomes using the proposed VNet+CE, VNet+DL and 

VNet+CEDL from Massachusetts road dataset. The second, fourth and sixth columns 

present the zoomed outcomes of the prior column. The black, yellow, blue, and red colors 

show the TNs, TPs, FPs, and FNs, respectively. 

Moreover, I assessed the accuracy measurements of VNet+CE, VNet+DL, and 

VNet+CEDL for Massachusetts and Ottawa datasets to probe the capability of the proposed 

network for road extraction. Table 4.11 and Table 4.12 depict the accuracy of each defined 

metric for the Massachusetts and Ottawa road datasets, respectively. As it can be seen from 

both Tables, the proposed VNet+CEDL model could achieve higher average accuracy than 

VNet+CE and VNet_DL for F1 score, MCC and IOU with 90.11%, 88.30% and 82.07%, 

respectively for Massachusetts dataset; and 93.54%, 89.89% and 87.93%, respectively for 

Ottawa dataset. 
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Figure 4.10. The achieved outcomes using the suggested VNet+CE, VNet+DL and 

VNet+CEDL from Ottawa road dataset. The second, fourth and sixth columns present the 

zoomed outcomes of the prior column. The black, yellow, blue, and red colors show the 

TNs, TPs, FPs, and FNs, respectively. 

Note that the proposed VNet+CEDL network achieves good results for the road 

segmentation from both datasets and determines that the segmented road sections are close 

to labels, verifying the effectiveness of our approach in road extraction. Furthermore, the 

suggested VNet+CEDL network could maintain edge information and achieve higher 

precision on the segmentation boundary than the other comparative approaches. 

 



 

 
154 

Table 4.11. Comparing VNet model with CE, DL and CEDL loss functions for road 

extraction form Massachusetts dataset.  
  F1 score MCC IOU 

VNet+CE 

Image1 0.9242 0.9103 0.8590 
Image2 0.8825 0.8633 0.7897 
Image3 0.8616 0.8347 0.7568 
Average 0.8894 0.8694 0.8018 

VNet+DL 

Image1 0.9268 0.9133 0.8635 
Image2 0.8973 0.8801 0.8138 
Image3 0.8705 0.8454 0.7706 
Average 0.8982 0.8796 0.8159 

VNet+CEDL 

Image1 0.9289 0.9159 0.8672 
Image2 0.9027 0.8865 0.8225 
Image3 0.8717 0.8466 0.7725 
Average 0.9011 0.8830 0.8207 

 

Table 4.12. Comparing VNet model with CE, DL and CEDL loss functions for road 

extraction form Ottawa dataset.  
  F1 score MCC IOU 

VNet+CE 

Image1 0.9361 0.9060 0.8799 
Image2 0.8814 0.8099 0.7878 
Image3 0.9391 0.9030 0.8852 
Average 0.9189 0.8730 0.8510 

VNet+DL 

Image1 0.9551 0.9338 0.9141 
Image2 0.9022 0.8437 0.8218 
Image3 0.9416 0.9074 0.8896 
Average 0.9329 0.8949 0.8751 

VNet+CEDL 

Image1 0.9563 0.9356 0.9162 
Image2 0.9069 0.8509 0.8295 
Image3 0.9431 0.9102 0.8922 
Average 0.9354 0.8989 0.8793 

4.3.2.1. Discussion 

The obtained measurement factors in the current work and in other studies were compared 

to further explore the benefit of the suggested approach for road network extraction from 

high-resolution remote sensing imagery. For comparison, I used the results achieved by 
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VNet+CEDL for both Massachusetts and Ottawa datasets as it shows better results in road 

extraction compared to VNet+CE. Particularly, the proposed approach was compared with 

some deep learning-based neural networks such as UNet framework introduced by [95], 

FCN proposed by [31] for image semantic segmentation and SegNet architecture applied 

by [96] for sematic pixel-wise segmentation. The quantitative results achieved by the 

proposed technique and other comparisons approaches for both Massachusetts and Ottawa 

road datasets are illustrated in Table 4.13 and Table 4.14. By comparing the results 

achieved for each metric, the difference between the precision for road extraction can be 

observed.  

Table 4.13. Quantitative outcomes achieved by the VNet+CEDL and other techniques for 

Massachusetts dataset.  
  FCN SegNet UNet VNet_CEDL 

Image1 
F1 score 0.9120 0.8916 0.9283 0.9314 

MCC 0.8993 0.8759 0.9180 0.9216 
IOU 0.8381 0.8043 0.8662 0.8716 

Image2 
F1 score 0.9058 0.8933 0.9076 0.9087 

MCC 0.8891 0.8742 0.8910 0.8924 
IOU 0.8278 0.8072 0.8308 0.8327 

Image3 
F1 score 0.9048 0.9083 0.9087 0.9152 

MCC 0.8887 0.8928 0.8933 0.9008 
IOU 0.8261 0.8320 0.8327 0.8437 

Image4 
F1 score 0.8785 0.8392 0.8864 0.8933 

MCC 0.8489 0.8022 0.8588 0.8675 
IOU 0.7832 0.7229 0.7959 0.8072 

Image5 
F1 score 0.9032 0.9041 0.9084 0.9105 

MCC 0.8860 0.8874 0.8922 0.8947 
IOU 0.8235 0.8249 0.8322 0.8356 

Average 
F1 score 0.9009 0.8873 0.9079 0.9118 

MCC 0.8824 0.8665 0.8907 0.8954 
IOU 0.8197 0.7983 0.8316 0.8382 
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As illustrated in Table 4.13 and 4.14, the proposed VNet+CEDL model could achieve 

higher average accuracy for the whole three evaluation metrics (F1 score, MCC and IOU) 

than other cutting-edge deep learning-based techniques for both datasets. In fact, the model 

predicts less FPs and more FNs than other methods, leading to the improve in the results 

for IOU factor with almost 0.66%, 3.99% and 1.85% compared to UNet, SegNet and FCN 

for Massachusetts dataset respectively and 4.38%, 3.09% and 11.17% for Ottawa dataset, 

respectively. 

 

Table 4.14. Quantitative outcomes achieved by the VNet+CEDL and other techniques for 

Ottawa dataset.  
  FCN SegNet UNet VNet+CEDL 

Image1 
F1 score 0.8665 0.907 0.8867 0.9236 

MCC 0.799 0.8501 0.8181 0.8793 
IOU 0.7643 0.8297 0.7965 0.858 

Image2 
F1 score 0.7886 0.9005 0.8602 0.9093 

MCC 0.7193 0.8538 0.7864 0.8622 
IOU 0.6509 0.8189 0.7547 0.8336 

Image3 
F1 score 0.9046 0.887 0.91 0.9178 

MCC 0.8455 0.8202 0.8565 0.8662 
IOU 0.8258 0.797 0.8347 0.848 

Image4 
F1 score 0.8034 0.8826 0.8876 0.9009 

MCC 0.7268 0.8388 0.8415 0.8608 
IOU 0.6714 0.7899 0.7979 0.8197 

Average 
F1 score 0.8408 0.8943 0.8861 0.9129 

MCC 0.7727 0.8407 0.8256 0.8671 
IOU 0.7281 0.8089 0.7960 0.8398 

Moreover, Figures 4.11 and 4.12 depict the visual results obtained by the introduced 

VNet+CEDL model and other state-of-the-art deep learning-based techniques for 

Massachusetts road dataset and Ottawa dataset, respectively to show the proficiency of the 

proposed model in road extraction. The results demonstrate that the proposed deep 

learning-based models could generally reduce the effect of obstacles to a particular degree 

as they are using spatial information for segmentation. However, the other methods such 
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as UNet, SegNet and FCN could anticipate more FNs than the proposed VNet+CEDL 

model that could predict less FPs and consequently could achieve better results. This is 

because this technique could obtain and preserve boundary information that leads to 

anticipating less FPs and achieving high-resolution and smooth segmentation maps 

compared to the other deep learning-based methods. 

 
Figure 4.11. Road segmentation results obtained by the proposed VNet+CEDL against 

other comparison approaches from the Massachusetts road dataset. The yellow, blue, and 

red colors show the TPs, FPs and FNs, respectively. 

In addition, I compared the results achieved by the proposed model with more several deep 

learning-based networks such as CNN [37] and road structure-refined CNN model 
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(RSRCNN) [55] for Massachusetts dataset and CasNet [71] and RoadNet [163] for Ottawa 

dataset. 

 
Figure 4.12. Road segmentation results obtained by the proposed VNet+CEDL against 

other comparison approaches from the Ottawa road dataset. The yellow color, blue and red 

colors depict the TPs, FPs, and FNs, respectively. 

Note that the outcomes for the other methods were chosen from the main published papers, 

whereas the suggested approach has been performed and tested on the experimental 

datasets. The visualization and quantitative results for the proposed network and other 

comparative methods are shown in Figure 4.13, Table 4.15 and Table 4.16, respectively. 

In terms of F1 score, the outcomes illustrate that our suggested technique was superior to 

all other approaches. Our suggested technique achieved higher F1 score than those of [37] 

and [55], at 39.69% and 26.69% for Massachusetts and higher F1 score than those of [71] 

and [163], at 0.67% and 0.17% for Ottawa dataset, respectively. 
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Table 4.15. Quantitative values on the testing data of Massachusetts dataset in terms of 

F1 score. 

Method CNN RSRCNN  VNet+CEDL 

F1 score 0.5320 0.6620 0.9289 
 

Table 4.16. Quantitative values on the testing data of Ottawa dataset in terms of F1 score. 

Method CasNet RoadNet VNet+CEDL 

F1 score 0.9340 0.9390 0.9407 
 

 
Figure 4.13. Comparison of road segmentation achieved with the suggested approach 

(VNet+CEDL) against other techniques for Massachusetts and Ottawa datasets. 

4.3.3. Results of BCD-UNet and MCG-UNet 

To show the ability of the presented BCD-UNet and MCG-UNet models for road object 

extraction, I measured the accuracy assessment factors. Table 4.17 depict the accuracy of 

every specified measurement factor for road extraction. The average F1 score achieved by 

the UNet, BCL-UNet, and MCG-UNet is 86.89%, 87.55%, and 88.74%, respectively, for 

road extraction. Clearly, the MCG-UNet model worked better than the other approaches in 

road extraction and could improve the F1 score to 1.19% and 1.85% compared with the 

BCL-UNet and UNet models, respectively, for road segmentation results. 
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Table 4.17. Comparison of the MCG-UNet, BCL-UNet, and UNet networks for road 

segmentation. 
 Metrics UNet BCL-UNet MCG-UNet 

Im
ag

e1
 Recall 0.8592 0.8604 0.8643 

Precision 0.8757 0.8801 0.9051 
F1 score 0.8674 0.8701 0.8842 

MCC 0.8431 0.8465 0.8637 
IOU 0.7657 0.7701 0.7924 

Im
ag

e2
 Recall 0.8277 0.8374 0.8984 

Precision 0.884 0.887 0.8984 
F1 score 0.8549 0.8615 0.8984 

MCC 0.8283 0.8358 0.8797 
IOU 0.7466 0.7567 0.8156 

Im
ag

e3
 Recall 0.857 0.8589 0.8672 

Precision 0.9043 0.9165 0.9191 
F1 score 0.88 0.8868 0.8924 

MCC 0.8546 0.8632 0.8699 
IOU 0.7857 0.7965 0.8057 

Im
ag

e4
 Recall 0.7787 0.7831 0.7658 

Precision 0.8874 0.8924 0.905 
F1 score 0.8295 0.8342 0.8296 

MCC 0.7943 0.80 0.7969 
IOU 0.7086 0.7154 0.7088 

Im
ag

e5
 Recall 0.9026 0.9097 0.9340 

Precision 0.9233 0.9410 0.9312 
F1 score 0.9128 0.9251 0.9326 

MCC 0.9034 0.9171 0.9251 
IOU 0.8396 0.8606 0.8736 

A
ve

ra
ge

 Recall 0.8450 0.8499 0.8659 
Precision 0.8949 0.9034 0.9118 
F1 score 0.8689 0.8755 0.8874 

MCC 0.8447 0.8525 0.8670 
IOU 0.7692 0.7799 0.7992 

 
For qualitative results, I showed examples of road segmentation maps achieved by the 

networks in Figure 4.14, respectively. The figure is presented in three rows and five 

columns. The first and second columns of the figures depict the RGB and reference images, 

respectively. The results acquired by UNet, BCL-UNet, and MCG-UNet are depicted in 

third, fourth, and fifth columns, respectively. All the networks can normally obtain an 

accurate road segmentation map. However, the road segmentation map produced by the 
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MCG-UNet is more accurate than those by other methods. In other words, the presented 

MCG-UNet network could obtain a high-quality segmentation map, preserve the higher 

accuracy of object boundaries’ information on the edge segmentation, and predict fewer 

FPs (depicted in yellow color) and more FNs (depicted in blue color), which achieved an 

average F1 score of 88.74% for road compared with other deep learning-based models. 

This is due to the addition of the BConvLSTM, DC, and SE modules to the network. 

BConvLSTM mixes the encoded and decoded features that include more local information 

and more semantic information. Additionally, the DC assist the model to learn more 

varying features and the SE module can capture the spatial relations between features. 

Therefore, these modules, which were embedded into the models, could improve the 

performance in road object segmentation.  

 
Figure 4.14. Obtained products with the presented UNet, BCL-UNet, and MCG-UNet 

networks from the Massachusetts road dataset. The yellow, blue, and white colors present 

the FNs, FPs, and TPs, respectively. 
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4.3.3.1. Discussion 

To further investigate the advantage of the presented techniques in this study for road 

object extraction from aerial imagery, I compared the F1 score attained by the networks 

with other comparative deep learning-based networks applied for road segmentation. Note 

that the findings for other networks are taken from the key published manuscripts, whereas 

the presented networks were performed on experiential datasets. Specially, the proposed 

models in the current work were compared with convolutional networks, such as 

DeeplabV3 [169], BT-RoadNet [170], DLinkNet-34 [74], RoadNet [163], and GL-

DenseUNet [69] for road extraction. Table 4.18 provide the average F1 score for the 

proposed frameworks and other comparative techniques for road extraction, respectively. 

As indicated in Table 4.18, both the models applied in the current study, such as BCL-

UNet and MCG-UNet, worked better than other comparative models for road extraction. 

The BCL-UNet and MCG-UNet models achieved F1 score of 87.55% and 88.74% for road 

extraction, respectively, which is higher than other comparative road segmentation 

methods. This is because the proposed BCL-UNet and MCG-UNet networks use dense 

connections and BConvLSTM in the skip connections and SE in the expansive part. These 

functions help the networks learn more various features, learn more discriminative 

information, extract more valuable information, and improve accuracy.  

Table 4.18. Quantitative results generated by the BCL-UNet and MCG-UNet and other 

deep learning-based techniques for road extraction. 

Methods Precision Recall IOU F1 score 
DeeplabV3 74.16 71.82 57.60 72.97 

BT-RoadNet 87.98 78.16 74.00 82.77 
DLinkNet-34 76.11 70.29 57.77 73.08 

RoadNet 64.53 82.73 56.86 72.50 
GL-DenseUNet 78.48 70.09 72.73 74.04 

BCL-UNet 0.9034 0.8499 0.7799 87.55 
MCG-UNet 0.9118 0.8659 0.7992 88.74 
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Figure 4.15. Road map comparisons generated by the presented BCL-UNet and MCG-

UNet techniques against other deep learning-based networks. The yellow boxes show the 

predicted FPs and FNs. 

Additionally, I portrayed the visual road products achieved by other techniques and the 

proposed BCL-UNet and MCG-UNet frameworks in Figure 4.15, to evaluate the efficiency 

of the suggested approaches in road segmentation. The proposed BCL-UNet and MCG-

UNet methods could maintain the boundary information of roads and produce a high-

resolution segmentation map for road objects compared with other comparative 

frameworks. By contrast, DeeplabV3 [169], BT-RoadNet [163], DLinkNet-34 [74], and 

RoadNet [163], which were performed for road segmentation, achieved lower quantitative 

values for F1 score, could not preserve the boundaries of road object, and identified more 

FNs and FPs, especially where roads were surrounded by obstructions and located in the 
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dense and complex areas. As a result, they produced low-resolution segmentation maps for 

roads.  

4.3.3.2. DeepGlobe dataset 

Moreover, I implemented our proposed models on another dataset called the DeepGlobe 

road dataset [151] to prove the effectiveness of the models on the road segmentation from 

various types of remote sensing images. DeepGlobe dataset includes 7469 training and 

validation images and 1101 testing images with a spatial resolution of 50 cm and a pixel 

size of 1024 1024 . I compared the results of our methods for roads with other comparative 

methods, such as DeeplabV3 [169], and LinkNet [171]. Table 4.19 presents the quantitative 

results, while Figure 4.16 present the visualization outcomes obtained by the proposed 

models and other methods for road extraction from the dataset. The proposed BCL-UNet 

and MCG-UNet models could improve the F1 score compared to the comparative 

techniques and achieved an accuracy of 87.03% and 88.09% for road extraction, 

respectively. Additionally, according to the qualitative outcomes (Figure 4.16), the 

proposed models could extract roads from the DeepGlobe dataset accurately and achieve 

high-quality segmentation maps compared to the other approaches, which confirms the 

efficiency of the models for road extraction from another remote sensing dataset.  

Table 4.19. Quantitative results generated by BCL-UNet and MCG-UNet for road 

extraction from DeepGlobe dataset. 

 Methods Recall Precision F1 score MCC IOU 

DeepGlobe Road 
Dataset 

DeeplabV3 0.8115 0.8750 0.8411 0.8139 0.7258 
LinkNet 0.8852 0.8238 0.8486 0.8199 0.7369 

BCL-UNet 0.8408 0.9047 0.8703 0.8482 0.7705 
MCG-UNet 0.8597 0.9044 0.8809 0.8595 0.7870 
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Figure 4.16. Road maps produced by the proposed BCL-UNet and MCG-UNet and 

comparative techniques from the DeepGlobe dataset. (i) Original imagery, (ii) ground truth 

imagery, (iii) results of BCL-UNet and DeeplabV3, and (iv) results of MCG-UNet and 

LinkNet. The yellow boxes present the predicted FPs and FNs. 

4.4. Results of SC-RoadDeepNet for road shape and connectivity-preserving 
(Objective 2) 

This study was compared with some state-of-the-art techniques, including deep learning 

approaches, such as LinkNet [171], DeeplabV3+ [169], ResUNet [153], UNet [95], and 

VNet [136], to examine the applicability of the presented SC-RoadDeepNet method for 

road segmentation from Google Earth imagery. I tested the proposed RRCNN model by 

integrating the edge map to the semantic segmentation to see how boundary learning (BL) 

fine-tunes the road shape via penalizing boundary misclassification. I call this network 

RRCNN-boundary-learning or RRCNN+BL. Furthermore, I compared the proposed SC-

RoadDeepNet with different values of  , such as 0.1 = , 0.3 = , 0.5 = , 0.7 = and 
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0.9 = , to show the effect of alpha parameter on the road connectivity and segmentation 

results. All of the mentioned methods were tried using the same collection of imagery to 

make the assessments fair and objective.  

Table 4.20 demonstrates the quantitative findings obtained by the methods. The accuracy 

of the methods was calculated using IOU and F1 scores. LinkNet, DeeplabV3+, ResUNet, 

and UNet achieved the lowest IOU values with 81.52%, 82.53%, 84%, and 85.01%, 

respectively, when I compare the outcomes of different approaches (Table 4.20). VNet 

could improve the results to 86.99% compared with the mentioned four methods. By 

adding BL to the proposed RRCNN method (RRCNN+BL) and the proposed loss function 

to the model without BL (RRCNN+CP_clDIce), the accuracy of the IOU was also 

increased to 89.02% and 89.75%, and these methods were the third-best and second-best 

methods in all approaches, which proved the influence of edge-map and CP_clDice on 

improving road shape and segmentation results. In contrast, by including BL and 

connectivity-preserving CP_clDice techniques to the proposed SC-RoadDeepNet, IOU 

values reached 90.04%, 90.43%, 91.05%, 90.34%, and 89.85% for 0.1 = , 0.3 = , 

0.5 = , 0.7 = and 0.9 = , respectively. I found that including CP_clDice in any values 

( 0  ) results in improving road connectivity and segmentation. Figures 4.17 and 4.18 also 

depict the qualitative results obtained using state-of-the-art techniques. According to the 

findings, all extraction methods can reduce the impact of occlusions to some extent. 

However, LinkNet, DeeplabV3+, UNet, ResUNet, and VNet approaches are sensitive to 

noise and introduced some FPs in some parts, such as the shadows, buildings, and trees, 

and could not extract roads accurately. Benefited from BL and CP_clDice, the proposed 

RRCNN+BL and RRCNN+CP_clDice methods could reduce boundary misclassification 

and achieve relatively satisfactory results. 
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Table 4.20.  Quantitative experimental outcomes yielded by the comparative approaches 

for the Google Earth road dataset. 
  Image 

1 
Image 

2 
Image 

3 
Image 

4 
Image 

5 
Image 

6 Average 

LinkNet 

F1 score 0.8821 0.9183 0.9149 0.8830 0.8970 0.8930 0.8981 
IOU 0.7890 0.8488 0.8430 0.7905 0.8132 0.8067 0.8152 
MCC 0.7903 0.8474 0.8615 0.8225 0.8341 0.8214 0.8295 
OA 0.8869 0.9231 0.9334 0.9154 0.9219 0.9137 0.9157 

ResUNet 

F1 score 0.8851 0.9302 0.9404 0.8870 0.9177 0.9157 0.9127 
IOU 0.7938 0.8694 0.8874 0.7969 0.8478 0.8445 0.8400 
MCC 0.7941 0.8662 0.9054 0.8288 0.8661 0.8564 0.8528 
OA 0.8923 0.9331 0.9556 0.9181 0.9364 0.9304 0.9277 

UNet 

F1 score 0.8901 0.9354 0.9313 0.9064 0.9284 0.9210 0.9188 
IOU 0.8019 0.8785 0.8714 0.8289 0.8663 0.8536 0.8501 
MCC 0.8051 0.8743 0.8906 0.8584 0.8840 0.8639 0.8627 
OA 0.8953 0.9372 0.9487 0.9333 0.9452 0.9328 0.9321 

DeeplabV3+ 

F1 score 0.8626 0.9159 0.9254 0.8901 0.9226 0.9067 0.9039 
IOU 0.7584 0.8448 0.8612 0.8020 0.8563 0.8293 0.8253 
MCC 0.7516 0.8510 0.8791 0.8336 0.8668 0.8479 0.8383 
OA 0.8738 0.9231 0.9426 0.9206 0.9347 0.9274 0.9204 

VNet 

F1 score 0.9315 0.9390 0.9418 0.9108 0.9312 0.9277 0.9303 
IOU 0.8718 0.8850 0.8899 0.8361 0.8713 0.8650 0.8699 
MCC 0.8784 0.8797 0.9063 0.8647 0.8880 0.8758 0.8822 
OA 0.9382 0.9386 0.9559 0.9370 0.9463 0.9393 0.9426 

RRCNN+BL 

F1 score 0.9344 0.9517 0.9584 0.9209 0.9455 0.9397 0.9418 
IOU 0.8768 0.9078 0.9202 0.8534 0.8965 0.8862 0.8902 
MCC 0.8833 0.9052 0.9337 0.8811 0.9113 0.8971 0.9020 
OA 0.9414 0.9052 0.9689 0.9435 0.9576 0.9501 0.9445 

RRCNN+CP_clDice 

F1 score 0.9362 0.9669 0.9628 0.9213 0.9456 0.9418 0.9458 
IOU 0.8800 0.9359 0.9282 0.8541 0.8967 0.8900 0.8975 
MCC 0.8865 0.9352 0.9405 0.8810 0.9117 0.9002 0.9092 
OA 0.9423 0.9673 0.9721 0.9444 0.9578 0.9513 0.9559 

SC-RoadDeepNet  
(α=0.1) 

F1 score 0.9399 0.9719 0.9601 0.9247 0.9440 0.9437 0.9474 
IOU 0.8866 0.9453 0.9232 0.8599 0.8939 0.8934 0.9004 
MCC 0.8935 0.9450 0.9361 0.8865 0.9085 0.9034 0.9122 
OA 0.9462 0.9723 0.9700 0.9466 0.9557 0.9527 0.9573 

SC-RoadDeepNet 
 (α=0.3) 

F1 score 0.9411 0.9726 0.9610 0.9301 0.9459 0.9467 0.9496 
IOU 0.8888 0.9466 0.9248 0.8693 0.8973 0.8988 0.9043 
MCC 0.8956 0.9479 0.9375 0.8945 0.9119 0.9090 0.9161 
OA 0.9472 0.9738 0.9610 0.9509 0.9575 0.9558 0.9577 

SC-RoadDeepNet  
(α=0.5) 

F1 score 0.9435 0.9775 0.9677 0.9331 0.9466 0.9493 0.9530 
IOU 0.8929 0.9560 0.9374 0.8746 0.8985 0.9034 0.9105 
MCC 0.8997 0.9561 0.9484 0.8992 0.9132 0.9130 0.9216 
OA 0.9495 0.9781 0.9758 0.9529 0.9581 0.9574 0.9620 

SC-RoadDeepNet  
(α=0.7) 

F1 score 0.9398 0.9687 0.9611 0.9283 0.9475 0.9491 0.9491 
IOU 0.8864 0.9392 0.9251 0.8661 0.9002 0.9031 0.9034 
MCC 0.8934 0.9390 0.9373 0.8916 0.9146 0.9129 0.9148 
OA 0.9458 0.9695 0.9705 0.9498 0.9591 0.9575 0.9587 

SC-RoadDeepNet  
(α=0.9) 

F1 score 0.9367 0.9711 0.9495 0.9311 0.9457 0.9441 0.9464 
IOU 0.8809 0.9438 0.9039 0.8710 0.8970 0.8941 0.8985 
MCC 0.8876 0.9439 0.9201 0.8956 0.9127 0.9052 0.9109 
OA 0.9441 0.9720 0.9625 0.9521 0.9589 0.9541 0.9573 
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Furthermore, the proposed SC-RoadDeepNet, which takes advantage of BL and CP_clDice 

techniques, could obtain fewer FPs (shown in blue) and FNs (shown in red), reduce road 

discontinuity and produce high-resolution road segmentation maps compared to the other 

approaches. The presented SC-RoadDeepNet model with 0.5 = improved the results of 

IOU to 2.03% and 1.3% compared with the RRCNN+BL (third best) and 

RRCNN+CP_clDice (second best) models, respectively. They all showed that combining 

the suggested BL and CP_clDice techniques in the shape and connectivity-aware SC-

RoadDeepNet model resulted in superior performance than other current approaches. 

 
Figure 4.17.  Road qualitative results were compared visually using various comparing 

models: (i) original RGB Google Earth images, (ii) reference images, (iii) LinkNet results, 

(iv) ResUNet results, (v) UNet results, (vi) VNet results, and (vii) DeeplabV3+ results. 

TPs, FPs, and FNs are represented by yellow, blue, and red, respectively. 
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Figure 4.18. Road qualitative results were compared visually using proposed models: (i) 

original RGB Google Earth images, (ii) RRCNN+BL results, (iii) RRCNN+CP_clDice 

results, (iv) SC-RoadDeepNet results (α=0.1), (v) SC-RoadDeepNet results (α=0.3), (vi) 

SC-RoadDeepNet results (α=0.5), (vii) SC-RoadDeepNet results (α=0.7), and (viii) SC-

RoadDeepNet results, (α=0.9). The TPs, FPs, and FNs are represented by yellow, blue, and 

red, respectively. 

4.4.1.  Discussion 

In this section, I evaluated the performance of the proposed framework by analyzing the 

ablation study and testing the model on another road datasets.  

4.4.1.1.  Ablation study 

To assess the efficiency of the proposed shape and connectivity-preserving SC-

RoadDeepNet model’s ability in improving road discontinuity and road shape 

segmentation, I conducted an ablation study in this work. In this case, I applied the 
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proposed RRCNN model with the primary binary cross-entropy loss function and without 

BL and CP_clDice techniques to see the influence of these methods on fine-tuning road 

shape and preserving road connectivity. I obtained the quantitative and visualization 

findings by the model in road segmentation from the Google Earth dataset. Table 4.21 

contains the quantitative results, whereas Figure 4.19 depicts the visualization results. After 

adjusting various variables and removing those crucial techniques, the IOU’s accuracy of 

the proposed RRCNN model was reduced to 87.85%, as shown in Table 4.21. Furthermore, 

as shown in Figure 4.19, the suggested approach introduced spurs and generated more FPs 

and FNs in homogeneous areas, reducing the smoothness and connectedness of the road 

segmentation network significantly. Therefore, BL and CP_clDice have shown a 

significant role in preserving road shape and connectivity and producing high-quality road 

segmentation maps.  

Table 4.21.  Quantitative experimental outcomes yielded by the RRCNN approach for road 

extraction without BL and CP_clDice techniques. 

  Image 
1 

Image 
2 

Image 
3 

Image 
4 

Image 
5 

Image 
6 Average 

RRCNN 

F1 
score 0.9350 0.9424 0.9513 0.9140 0.9386 0.9301 0.9352 

IOU 0.8779 0.8909 0.9071 0.8415 0.8842 0.8693 0.8785 
MCC 0.8853 0.8876 0.9227 0.8694 0.9000 0.8807 0.8910 
OA 0.9407 0.9438 0.9637 0.9402 0.9522 0.9421 0.9471 
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Figure 4.19. Road qualitative results were compared visually using the proposed RRCNN 

model: (i) original RGB Google Earth images, (ii) reference images, (iii) RRCNN results. 

TPs, FPs, and FNs are represented by yellow, blue, and red, respectively. 

4.4.1.2.  DeepGlobe and Massachusetts road datasets 

Furthermore, I applied our proposed SC-RoadDeepNet model on more road datasets called 

DeepGlobe [151] and Massachusetts [135] to show the model’s efficiency in road 

segmentation from various types of remote sensing imagery. The DeepGlobe dataset is 

captured in India, Indonesia, and Thailand, containing 8570 images with 50 cm per pixel 

spatial resolution and covering 2220 km2. Each image is 1024 1024 pixels in size. The 

training and testing datasets consisted of 1006 and 26 images in this study, respectively.  
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Table 4.22.  Quantitative experimental outcomes yielded by the RRCNN, RRCNN+BL, 

RRCNN+CP_clDice, and SC-RoadDeepNet approaches for road extraction from the 

DeepGlobe road dataset. 

  Image 
1 

Image 
2 

Image 
3 

Image 
4 

Image 
5 Average 

RRCNN 

F1 score 0.9207 0.9250 0.8927 0.8918 0.9444 0.9149 

IOU 0.8529 0.8604 0.8061 0.8047 0.8947 0.8438 

MCC 0.9078 0.9157 0.8632 0.8763 0.9329 0.8992 

OA 0.9774 0.9835 0.9534 0.9722 0.9808 0.9735 

RRCNN+BL 

F1 score 0.9327 0.9296 0.8976 0.8973 0.9469 0.9208 

IOU 0.8738 0.8684 0.8141 0.8137 0.8990 0.8538 

MCC 0.9215 0.9209 0.8707 0.8823 0.9360 0.9063 

OA 0.9807 0.9846 0.9563 0.9734 0.9817 0.9753 

RRCNN+CP_clDice 

F1 score 0.9394 0.9304 0.8983 0.8988 0.9481 0.9230 

IOU 0.8858 0.8698 0.8154 0.8161 0.9013 0.8577 

MCC 0.9294 0.9217 0.8726 0.8834 0.9380 0.9090 

OA 0.9828 0.9846 0.9570 0.9733 0.9824 0.9760 

SC-RoadDeepNet 

F1 score 0.9416 0.9349 0.9062 0.9065 0.9499 0.9278 

IOU 0.8896 0.8777 0.8285 0.8289 0.9046 0.8659 

MCC 0.9319 0.9271 0.8805 0.8924 0.9394 0.9143 

OA 0.9834 0.9859 0.9593 0.9756 0.9826 0.9774 

 

The Massachusetts dataset that I used contains 1032 training and 32 testing images with a 

size of 768 768 and spatial resolution of 0.5 m. I obtained quantitative and visualization 

outcomes yielded by the presented RRCNN, RRCNN+BL, RRCNN+CP_clDice, and SC-

RoadDeepNet models for road segmentation from the DeepGlobe and Massachusetts 

datasets, which are demonstrated in Table 4.22 and Figure 4.20 for DeepGlobe and Table 

4.23 and Figure 4.21 for Massachusetts dataset, respectively. Table 4.22 shows that the 

proposed RRCNN model did not benefit from BL and CP_clDice techniques achieved the 

lowest F1 score with 91.49% for DeepGlobe and 87.19% for Massachusetts. In contrast, 



 

 
173 

the proposed RRCNN+BL, RRCNN+CP_clDice,  and SC-RoadDeepNet could improve 

the results of DeepGlobe to 92.08%, 92.30%, and 92.78%  for F1 score and the results of 

Massachusetts to 87.95%, 88.47%, and 89.33%, respectively. According to the 

visualization results (Figures 4.20 and 4.21), the proposed RRCNN model failed to 

segment roads in the complex areas, where the road is covered by shadows and trees and 

brought in more FPs, FNs, and discontinuity. 

Table 4.23. Quantitative experimental outcomes yielded by the RRCNN, RRCNN+BL, 

RRCNN+CP_clDice, and SC-RoadDeepNet approaches for road extraction from the 

Massachusetts road dataset. 

  Image 
1 

Image 
2 

Image 
3 

Image 
4 

Image 
5 Average 

RRCNN 

F1 score 0.8827 0.8591 0.8785 0.8663 0.8730 0.8719 
IOU 0.8099 0.7729 0.8032 0.7841 0.7946 0.7929 
MCC 0.8586 0.8320 0.8614 0.8490 0.8543 0.8511 
OA 0.9552 0.9534 0.9680 0.9677 0.9642 0.9617 

RRCNN+BL 

F1 score 0.8964 0.8711 0.8866 0.8700 0.8733 0.8795 
IOU 0.8321 0.7915 0.8162 0.7898 0.7950 0.8049 
MCC 0.8738 0.8477 0.8704 0.8529 0.8538 0.8597 
OA 0.9627 0.9599 0.9716 0.9698 0.9663 0.9661 

RRCNN+CP_clDice 

F1 score 0.8985 0.8743 0.8898 0.8820 0.8790 0.8847 
IOU 0.8357 0.7966 0.8215 0.8088 0.8040 0.8133 
MCC 0.8765 0.8518 0.8743 0.8665 0.8604 0.8659 
OA 0.9629 0.9611 0.9726 0.9726 0.9678 0.9674 

SC-RoadDeepNet 

F1 score 0.9037 0.8808 0.9039 0.8899 0.8881 0.8933 
IOU 0.8443 0.8070 0.8446 0.8216 0.8187 0.8272 
MCC 0.8828 0.8581 0.8902 0.8762 0.871 0.8757 
OA 0.9655 0.9617 0.976 0.9752 0.9695 0.9696 

 
On the contrary, the presented SC-RoadDeepNet that benefited from BL and CP_clDice 

could obtain the segmentation map with fewer FPs and FNs and showed higher extraction 

accuracy on the boundary and road connectivity than others. In summary, the proposed 

method could improve road extraction by tackling occlusion-related interruptions. It could 

solve discontinuity in road extraction results and produce high-resolution results compared 

with the other methods. Also, I calculated the runtime of the presented method on each 



 

 
174 

dataset, which took 117s, 388s, and 226s per epoch for the training process for Ottawa, 

DeepGlobe, and Massachusetts datasets, respectively. The model was trained for 100 

epochs; therefore, it took 195 minutes for Ottawa, 646.66 minutes for DeepGlobe, and 

376.66 minutes for Massachusetts datasets. It is clear that as the size of images and datasets 

increases, the training time is also increased. Overall, the suggested method does not need 

a huge training dataset or a lot of computational effort, yet it still outperformed previous 

models in terms of statistical outcomes. 

 
Figure 4.20. Road qualitative results achieved by the models from the DeepGlobe road 

dataset: (i) original RGB images, (ii) reference images, (iii) RRCNN results, (iv) 

RRCNN+BL results, (v) RRCNN+CP_clDice results, and (vi) SC-RoadDeepNet results. 

TPs, FPs, and FNs are represented by yellow, blue, and red, respectively. 
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Figure 4.21. Road qualitative results achieved by the models from the Massachusetts road 

dataset: (i) original RGB images, (ii) reference images, (iii) RRCNN results, (iv) 

RRCNN+BL results, (v) RRCNN+CP_clDice results, and (vi) SC-RoadDeepNet results. 

TPs, FPs, and FNs are represented by yellow, blue, and red, respectively. 

4.5. Results of road vectorization using RoadVecNet (Objective 3) 

In this part, the quantitative and qualitative results achieved by the proposed RoadVecNet 

for automatic and simultaneous road surface segmentation and vectorization from different 

high-resolution remote sensing datasets are presented.  

4.5.1. Qualitative comparison of road surface segmentation 

I compared the presented RoadVecNet architecture with some other state-of-the-art 

classification-based deep learning networks to investigate the capability of the network in 

road surface segmentation from HRSI. Examples of these networks are as follows: UNet 
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architecture provided by [95]; SegNet network implemented by [96]; DeepLabV3 

framework performed by [160]; VNet model applied by [136]; ResUNet provided by [153]; 

and FCN architecture developed by [31]. For denoting segmentation, I utilized the suffix 

“-S” after each method’s name. The visualization outcomes obtained by the presented 

RoadVecNet architecture and other comparative networks for road surface segmentation 

from the Massachusetts and Ottawa datasets are demonstrated in Figures 4.22, 4.23, and 

4.24. The figures illustrate that the SegNet-S, ResUNet-S, and DeepLabV3-S networks 

were sensitive to the barriers of trees and shadows and predicted more FN pixels (depicted 

as blue color) and FP pixels (depicted as green color), thereby producing low-quality road 

segmentation maps for both datasets. Meanwhile, the FCN-S, UNet-S, and VNet-S 

architectures could improve the results and generate more coherent and satisfactory road 

segmentation maps. However, none of the abovementioned models achieved better 

qualitative results than Ours-S. Ours-S could generate high-resolution road segmentation 

maps for both datasets by alleviating the effect of obstacles, predicting less FP pixels, and 

preserving the road border information. The reason is that I used the DDSPP module to 

create feature pyramids with more denser scale variability and a bigger receptive field. I 

also utilized the SE module to extract more valuable information by considering the 

interdependencies between feature channels. In addition, I applied the MFB_FL loss 

function to overcome highly unbalanced datasets and allow more attention on the hard 

samples. Therefore, I could obtain more constant and smoother road segmentation and 

vectorization results. 
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Figure 4.22. Visual performance attained by Ours-S against the other comparative 

networks for road surface segmentation from the Massachusetts imagery. The cyan, green 

and blue colors denote the TPs, FPs, and FNs, respectively. 

 

Figure 4.23. Visual performance attained by the comparative networks for road surface 

segmentation from the Ottawa imagery. The cyan green, and blue colors denote the TPs, 

FPs, and FNs, respectively. 
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Figure 4.24. Visual performance attained by Ours-S against VNet-S network for road 

surface segmentation from the Ottawa and Massachusetts imagery. The cyan, green, and 

blue colors denote the TPs, FPs, and FNs, respectively. 

4.5.2. Qualitative comparison of road vectorization 

Here, I compared the results attained by the presented RoadVecNet architecture for road 

vectorization from the Massachusetts and Ottawa datasets with the same comparative deep 

learning methods applied in the road surface segmentation part, such as UNet architecture 

[95], DeepLabV3 framework [160], SegNet network [96], VNet applied by [136], ResUNet 

provided by [153], and FCN [31]. I utilized the suffix “-V” after every approach’s name to 

denote road vectorization. Figures 4.25 and 4.26 demonstrate the comparison outcomes of 

various approaches and the presented RoadVecNet for road vectorization in visual 

performance for Ottawa imagery. The vectorized road ground truth map is also included in 

the second column of the figure to better display the contrast influences. I also used blue 

rectangular boxes in the figures to show the FP and FN pixels for facilitating comparison. 
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Figures 4.25 and 4.26 illustrate that although the FCN-V, SegNet-V ResUNet-V, and 

DeepLabV3-V architectures could generate relatively complete road vectorization 

network, they brought in spurs and produced some FPs in the homogenous regions where 

the road was covered by occlusions and around the intersections, reducing the correctness 

and smoothness of the road vectorization network. The UNet-V and VNet-V methods could 

improve the results and generate a complete network of the road vectorization; however, it 

failed to vectorize the road in the intersection parts and brought in some discontinuity and 

FPs. Figures 4.27 and 4.28 demonstrate the visual performance of the comparative models 

for Massachusetts imagery. In this dataset, the complexity of obstacles and backgrounds 

are more, and the road width is less than those in the Ottawa dataset. Accordingly, all the 

above-mentioned comparative models, including VNet-V, could not accurately vectorize 

the road, resulting in non-complete and non-smooth vectorized road network, especially 

for complex backgrounds and intersection areas where they brought in more discontinuity 

and FPs. By contrast, Ours-V could detect complete and non-spur vectorized road network 

even from the Massachusetts dataset with narrow road width and complex backgrounds. 

Our vectorized road map is more similar to the actual ground truth vectorized road than the 

other comparative models.  
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Figure 4.25. Comparison outcomes of various approaches for road vectorization in visual 

performance for Ottawa imagery. The first and second columns demonstrate the original 

RGB and corresponding reference imagery, respectively. The third, fourth, fifth, sixth, and 

last columns demonstrate the results of FCN-V, SegNet-V, UNet-V, DeepLabV3-V, and 

ResUNet-V. More details can be seen in the zoomed-in view. 

4.5.3. Quantitative comparison of road segmentation 

I obtained the quantitative calculations for the presented technique and other comparative 

networks applied to the Massachusetts and Ottawa datasets for road segmentation, which 

are summarized in Table 4.24 and 4.25, respectively. The first four columns in both tables 

are the performance of four test sample imagery, and the final column is the average 

accuracy of the whole test imagery. The bold value is the best in the F1 score metric, while 

the underlined values are the second-best. 
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Figure 4.26. Comparison of the outcomes of the VNet-V approach and Ours-V for road 

vectorization in terms of visual performance for Ottawa imagery. The first and second 

columns demonstrate the original RGB and corresponding reference imagery, respectively. 

The third and fourth columns demonstrate the results of VNet-V and Ours-V. More details 

can be seen in the zoomed-in view. 
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Figure 4.27. Comparison of the outcomes of various approaches for road vectorization in 

terms of visual performance for Massachusetts imagery. The first and second columns 

demonstrate the original RGB and corresponding reference imagery, respectively. The 

third, fourth, and fifth columns demonstrate the results of FCN-V, SegNet-V, and 

DeepLabV3-V, respectively. More details can be seen in the zoomed-in view. 
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Figure 4.28. Comparison outcomes of our approach and the other comparative models for 

road vectorization in visual performance for Massachusetts imagery. The first column 

demonstrates the original RGB imagery. The second, third, fourth, and last columns 

demonstrate the results of ResUNet-V, UNet-V, VNet-V, and Ours-V, respectively. More 

details can be seen in the zoomed-in view. 

Table 4.24 and 4.25 illustrate that Ours-S, along with other comparative convolutional 

networks, could attain satisfactory outcomes for road segmentation from both datasets. 

However, the DeepLabV3-S, ResUNet-S, and SegNet-S architectures achieved the lowest 

F1 score accuracy with 85.83%. 86.97%, and 87% for Massachusetts and 90.54%, 90.72%, 

and 91.48% for Ottawa. The SegNet-S model could slightly improve the accuracy because 

it utilizes the max-pooling indices at the encoder and corresponding decoder paths to 

upsample the layers in the decoding process. The model does not need to learn the 
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upsampling weights again because this function makes the training process more 

straightforward.  

Table 4.24. Percentage of F1 score, MCC, and IOU attained by Ours-S and other 

comparative networks for road segmentation from Massachusetts imagery. The bold and 

underline F1 scores demonstrate the best and second-best, respectively. 

  Image1 Image2 Image3 Image4 Average 

FCN-S 

F1 score 0.9104 0.9117 0.9028 0.9007 0.9064 

MCC 0.9008 0.9037 0.8910 0.8901 0.8964 

IOU 0.8338 0.8360 0.8212 0.8176 0.8272 

SegNet-S 

F1 score 0.8680 0.8909 0.8701 0.8511 0.8700 

MCC 0.8554 0.8838 0.8573 0.8324 0.8572 

IOU 0.7654 0.8017 0.7686 0.7394 0.7688 

UNet-S 

F1 score 0.9128 0.9141 0.9075 0.9073 0.9104 

MCC 0.9017 0.9057 0.8984 0.8942 0.9000 

IOU 0.8378 0.8570 0.8289 0.8286 0.8381 

VNet-S 

F1 score 

MCC 

IOU 

0.9122 

0.9023 

0.8385 

0.9192 

0.9108 

0.8504 

0.9084 

0.8965 

0.8322 

0.9173 

0.9067 

0.8473 

0.9145 

0.9040 

0.8421 

ResUNet-S 

F1 score 

MCC 

IOU 

0.8632 

0.8493 

0.7593 

0.8882 

0.8806 

0.7988 

0.8668 

0.8539 

0.7649 

0.8609 

0.8453 

0.7557 

0.8697 

0.8572 

0.7696 

DeeplabV3-

S 

F1 score 0.8564 0.8798 0.8468 0.8503 0.8583 

MCC 0.8383 0.8693 0.8294 0.8303 0.8418 

IOU 0.7475 0.7839 0.7330 0.7382 0.7507 

Ours-S 

F1 score 0.9243 0.9239 0.9282 0.9240 0.9251 

MCC 0.9143 0.9168 0.9190 0.9128 0.9157 

IOU 0.8574 0.8740 0.8641 0.8568 0.8631 

 

 

 



 

 
185 

Table 4.25. Percentage of F1 score, MCC, and IOU attained by Ours-S and other 

comparative networks for road segmentation from Ottawa imagery. The bold and underline 

values demonstrate the best and second-best, respectively. 

  Image1 Image2 Image3 Image4 Average 

FCN-S 

F1 score 0.8829 0.9150 0.9375 0.9282 0.9159 

MCC 0.8453 0.8887 0.9103 0.8796 0.8810 

IOU 0.7888 0.8415 0.8803 0.8641 0.8437 

SegNet-S 

F1 score 0.8816 0.9302 0.9371 0.9103 0.9148 

MCC 0.8432 0.9053 0.9102 0.8572 0.8790 

IOU 0.7867 0.8676 0.8797 0.8336 0.8419 

UNet-S 

F1 score 0.8849 0.9329 0.9321 0.9231 0.9183 

MCC 0.8477 0.9108 0.9028 0.8711 0.8831 

IOU 0.7921 0.8722 0.8709 0.8554 0.8477 

VNet-S 

F1 score 

MCC 

IOU 

0.8933 

0.8597 

0.8072 

0.9294 

0.9070 

0.8681 

0.9390 

0.9137 

0.8850 

0.9191 

0.8678 

0.8502 

0.9202 

0.8870 

0.8526 

ResUNet-S 

F1 score 

MCC 

IOU 

0.8761 

0.8137 

0.7484 

0.9160 

0.8887 

0.8450 

0.9372 

0.9110 

0.8818 

0.8995 

0.8159 

0.7949 

0.9072 

0.8573 

0.8175 

DeeplabV3-S 

F1 score 0.8731 0.9274 0.9330 0.8884 0.9054 

MCC 0.8101 0.9016 0.9027 0.8229 0.8593 

IOU 0.7427 0.8627 0.8725 0.7759 0.8135 

Ours-S 

F1 score 0.8992 0.9412 0.9434 0.9520 0.9340 

MCC 0.8666 0.9202 0.9186 0.9190 0.9061 

IOU 0.8152 0.8869 0.8909 0.9062 0.8748 

 

Table 4.24 and 4.25 also show that the VNet-S framework was the second-best approach 

in road surface segmentation, with 91.45% for Massachusetts and 92.02% for Ottawa. By 

contrast, the accuracy of the F1 score metric for Ours-S was higher than all the comparative 

approaches. In fact, the presented model could improve the F1 score accuracy by 1.06% 
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for Massachusetts and 1.38% for Ottawa compared with the VNet-S network, which was 

the second-best model. Furthermore, I compared the quantitative results achieved by the 

proposed model with more deep learning-based models, such as CNN-based segmentation 

method [66], road structure-refined CNN (RSRCNN) technique [55], and FCNs approach 

[37] applied for road segmentation from Massachusetts imagery. The presented method 

was built and evaluated on an experimental dataset, while the outcomes for the other three 

works were taken from a previously published study. The F1 score accuracy achieved by 

the CNN-based approach, RSRCNN, and FCNs were 82%, 66.2%, and 68%, respectively, 

while that of Ours-S approach is 92.51%. The results confirmed that the more supervised 

information in the presented model obtains better outcomes against the other pre-existing 

deep learning approaches in road surface segmentation from the HRSI.  

4.5.4. Quantitative comparison of road vectorization 

I calculated the F1 score and MCC metrics to better probe the capability of Ours-V and 

other comparative models in road vectorization. The qualitative outcomes for the Ottawa 

(Google Earth) and Massachusetts (aerial) imagery are demonstrated in Tables 4.26 and 

Table 4.27, respectively. Tables 4.26 and 4.27 show that the VNet-V could achieve 

satisfactory results for road vectorization from the Ottawa imagery with 91.27% F1 score 

accuracy, which could improve the results of other comparative models, such as FCN-V, 

DeepLabV3-V, ResUNet-V, UNet-V, and SegNet-V, and it was ranked as the second-best 

model. Nevertheless, this method could not perform well in road vectorization using the 

Massachusetts imagery (Table 4.27) and predicted more FPs and less FNs, resulting in less 

F1 score accuracy with 83.73%, which is not very good. This phenomenon is attributed to 

the aerial images that have more complex backgrounds and occlusions, and the road width 

is narrow. The other methods that could not achieve a higher F1 score accuracy than VNet-
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V for Ottawa images could not obtain a higher accuracy for Massachusetts images as well. 

By contrast, Ours-V was able to achieve better results than others for both datasets. Ours-

V achieved F1 score accuracy rates of 92.41% and 89.24% for Ottawa and Massachusetts 

imagery, respectively. Ours-V could improve the results of VNet-V (second-best method) 

to 1.14% for Ottawa and 5.51% for Massachusetts, which confirmed its validity for road 

vectorization from Google Earth and Arial imagery. 

Table 4.26. Percentage of F1 score and MCC attained by Ours-V and other comparative 

networks for road vectorization from the Ottawa imagery. The bold and underline values 

denote the best and second-best, respectively. 

  Image1 Image2 Image3 Image4 Average 

FCN-V 
F1 score 0.8643 0.9017 0.8893 0.8893 0.8862 

MCC 0.8551 0.8953 0.8825 0.8821 0.8788 

SegNet-V 
F1 score 0.8622 0.8702 0.8820 0.8776 0.8730 

MCC 0.8563 0.8658 0.8782 0.8722 0.8681 

UNet-V 
F1 score 0.8999 0.9134 0.9072 0.9288 0.9123 

MCC 0.8931 0.9076 0.9015 0.9241 0.9066 

DeeplabV3-V 
F1 score 0.8566 0.8699 0.8804 0.8742 0.8703 

MCC 0.8513 0.8650 0.8763 0.8695 0.8655 

VNet-V 
F1 score 

MCC 

0.9045 

0.8985 

0.9129 

0.9071 

0.9038 

0.8973 

0.9297 

0.9254 

0.9127 

0.9070 

ResUNet-V 
F1 score 

MCC 

0.8614 

0.8529 

0.8734 

0.8659 

0.8839 

0.8771 

0.8874 

0.8807 

0.8765 

0.8691 

Ours-V 
F1 score 0.9203 0.9237 0.9164 0.9358 0.9241 

MCC 0.9149 0.9187 0.9110 0.9315 0.9190 
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Table 4.27. Percentage of F1 score and MCC attained by Ours-V and other comparative 

networks for road vectorization from Massachusetts imagery. The bold and underline 

values denote the best and second-best, respectively. 

  Image1 Image2 Image3 Image4 Average 

FCN-V 
F1 score 0.7982 0.8350 0.8204 0.8503 0.8260 

MCC 0.8004 0.8273 0.8095 0.8510 0.8221 

SegNet-V 
F1 score 0.7917 0.8326 0.8047 0.8424 0.8179 

MCC 0.7763 0.8232 0.7911 0.8333 0.8060 

UNet-V 
F1 score 0.8129 0.8458 0.8237 0.8514 0.8335 

MCC 0.7994 0.8478 0.8244 0.8421 0.8284 

DeeplabV3-V 
F1 score 0.7539 0.8263 0.7749 0.8237 0.7947 

MCC 0.7350 0.8176 0.7586 0.8114 0.7807 

VNet-V 
F1 score 

MCC 

0.8206 

0.8069 

0.8470 

0.8388 

0.8208 

0.8083 

0.8619 

0.8535 

0.8373 

0.8268 

ResUNet-V 
F1 score 

MCC 

0.7771 

0.7596 

0.8307 

0.8218 

0.7814 

0.7653 

0.8298 

0.8180 

0.8047 

0.7911 

Ours-V 
F1 score 0.8854 0.8834 0.8878 0.9129 0.8924 

MCC 0.8762 0.8754 0.8794 0.9066 0.8844 

The average F1 score accuracy attained by our approach and other comparative approaches 

in road surface segmentation and road vectorization from both datasets is plotted in Figures 

4.29(a) and 4.29(b), respectively. The approaches and the average percentage of the F1 

score metric are shown in the horizontal and vertical axes, respectively. Figure 4.29 depicts 

that the Ours-S and Ours-V methods achieved the highest F1 score, affirming the 

superiority of the proposed technique for road vectorization from Google Earth and Arial 

imagery. Figures 4.30(a) and 4.30(b) display the training and validation losses of the 

presented approach over 100 epochs for Ottawa and Massachusetts imagery, respectively. 

Based on the decrease in model loss, the method has learned efficient features for road 
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surface segmentation and vectorization. The training and validation losses are close 

together in the learning curve for both datasets. The model reduced over-fitting, and the 

variance of the method is negligible.  

 

Figure 4.29. Average percentage of the F1 score metric of our method and other methods 

for road surface segmentation (a) and road vectorization (b) from Ottawa and 

Massachusetts imagery. 

 
Figure 4.30. Performance of the proposed model for road segmentation and vectorization 

through training epochs: training and validation losses for the (a) Ottawa and (b) 

Massachusetts datasets. 

4.5.5. Ablation study 

I conducted some tests to see how different settings affected the model’s performance in 

road surface segmentation and vectorization. In this case, I used PSPNet backbone [172], 

stochastic gradient descent with a 0.01 learning rate, and batch size of 4. The quantitative 

results for both tasks are shown in Table 4.28. Meanwhile, the visualization results for 
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road segmentation and vectorization tasks are depicted in Figures 4.31 and 4.32, 

respectively. Table 4.28 illustrates that the accuracy of the F1 score decreased to 91.77% 

and 87.75% for road segmentation and 90.02% and 85.32% for road vectorization for the 

Massachusetts and Ottawa images, respectively, after changing some settings. Figures 

4.31 and 4.32 also show that the proposed model brought in spurs and produced some 

FPs in the homogenous regions, thereby considerably decreasing the smoothness of the 

road vectorization network. 

 

 
Figure 4.31. Visual performance attained by Ours-S network for road surface segmentation 

from the Ottawa and Massachusetts imagery after changing several settings. The cyan, 

green, and blue colors denote the TPs, FPs, and FNs, respectively.
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Figure 4.32. Visual performance attained by Ours-V for road vectorization from the 

Massachusetts and Ottawa imagery after changing several settings. The blue rectangle 

shows the predicted FPs and FNs. More details can be seen in the zoomed-in view. 

4.5.6. Failure case analysis 

In this case, I conducted some failure case analysis by reducing the size of images to 

256×256 to check the model’s performance on road segmentation and vectorization. Table 

4.29 shows the quantitative results for both tasks. Meanwhile, Figures 4.33 and 4.34 

illustrate the visualization results for road segmentation and vectorization tasks, 

respectively. In Table 4.29, when the size of the image was halved, the accuracy of the F1 

score was decreased for road segmentation to 88.87% and 84.44% and road vectorization 

to 87.02% 81.61% for both Massachusetts and Ottawa imagery, respectively. In addition, 

Figures 4.33 and 4.34 depict that the proposed model showed more noise and confused 

lanes with each other for road segmentation from both datasets. Moreover, the model 
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produced a non-complete vectorized road network for road vectorization, especially for 

complicated and intersection areas wherein they brought in more FPs when I decreased the 

image size. The model could learn considerably less, and the images were distinguished as 

failure due to overfitting when the image size was reduced. Accordingly, the detection 

accuracy was greatly diminished. Therefore, reducing the image input size was ineffective 

for producing high-quality road segmentation and vectorization maps. 

 
Figure 4.33. Visual performance attained by Ours-S network for road surface segmentation 

from the Ottawa and Massachusetts imagery after analyzing a failure case. The cyan, green, 

and blue colors denote the TPs, FPs, and FNs, respectively.
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Figure 4.34. Visual performance attained by Ours-V for road vectorization from the 

Massachusetts and Ottawa imagery after analyzing a failure case. The blue rectangle shows 

the predicted FPs and FNs. More details can be seen in the zoomed-in view. 

Table 4.28. Percentage of the F1 score, IOU, and MCC attained by Ours-V network for 

road segmentation and vectorization from the Massachusetts and Ottawa imagery after 

changing several settings.  

Road 
Segmentation 

Ottawa 
F1 score 0.9177 

MCC 0.8984 
IOU 0.8684 

Massachusetts 
F1 score 0.8775 

MCC 0.8662 
IOU 0.7818 

Road 
Vectorization 

Ottawa F1 score 0.9002 
MCC 0.9048 

Massachusetts F1 score 0.8532 
MCC 0.8460 
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Table 4.29. Percentage of the F1 score, IOU, and MCC attained by Ours-V network for 

road segmentation and vectorization from the Massachusetts and Ottawa imagery after 

analyzing a failure case.  

Road 
Segmentation 

Ottawa 
F1 score 0.8887 

MCC 0.8291 
IOU 0.7997 

Massachusetts 
F1 score 0.8444 

MCC 0.8226 
IOU 0.7308 

Road 
Vectorization 

Ottawa F1 score 0.8702 
MCC 0.8637 

Massachusetts F1 score 0.8161 
MCC 0.8045 

 

Figure 4.35. The vectorized road is superimposed with the original Aerial (Massachusetts) 

and Google Earth (Ottawa) imagery to show the overall geometric quality of vectorized 

outcomes. The first and second rows demonstrate the Aerial images, and the third and last 

rows illustrate the Google Earth images. The last column also demonstrates the 

superimposed vectorized road. More details can be seen in the zoomed-in view. 

 

Figure 4.35 demonstrates the vectorized road results overlaid on the original Google Earth 

and Aerial imagery to prove the overall geometric quality of the road segmentation and 

vectorization by the model. I calculated the root-mean-square (RMS) of road widths based 

on the quadratic mean distance between the matched references and extracted widths. The 

vectorization of the classified outcomes achieved width RMS values of 1.47 and 0.63 m 
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for Massachusetts and Ottawa images, respectively, proving that the proposed model could 

achieve precise information about road width. Moreover, the proposed network could 

extract the precise location of the road network because the vectorized road maps are well 

superimposed with the original imagery. 

4.6. Summary 

The application of the developed ML and DCNN approaches for road extraction and 

vectorization yields the following findings in Chapter 4: 

1. The assessment of the proposed models was conducted on different types of high-

resolution remote sensing images, and both quantitative and qualitative results were 

pinpointed.  

2. Several traditional ML methods such as Level Set approach and classification methods 

(e.g.., DT, SVM and KNN) with connected components analysis and segmentation method 

were first used for road surface segmentation from UAV and Orthophoto images and the 

results of each were discussed. Although all the mentioned techniques achieved reliable 

accuracy for road extraction from high-resolution remote sensing imagery, they missed 

some road segments where there is low visibility of road segments in the images. Also, the 

proposed techniques faced some errors in road segmentation because of the road-like 

patterns in some areas of images. Moreover, the traditional ML methods can only be 

applied to a limited dataset.   

3. In the first objective, several robust DCNN models with additional functions and 

modules such as VNet, GAN+MUNet, MCG-UNet, and BCD-UNet were applied to 

alleviate the shortcomings of the conventional ML methods in road surface segmentation. 

The models were tested on various HRSI datasets, including Google Earth and Aerial 
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images. The proposed techniques were compared with other state-of-the-art approaches 

that showed better results in road extraction than others. However, the suggested 

techniques were not effective in accurate road segmentation from areas where the road 

networks are covered by trees and parking lots, resulting in fragmented and discontinuous 

road networks.  

4. In the second objective, the SC-RoadDeepNet was performed to solve the issue of the 

suggested DCNN models for road extraction and maintain the road’s shape and 

connectivity. The proposed technique was tested on different remote sensing datasets such 

as Google Earth images, DeepGlobe, and Massachusetts datasets. The experimental results 

demonstrated that the suggested approach outperformed other comparative models in terms 

of maintaining shape and road connectivity while also producing high-resolution 

segmentation maps. 

5. In the third objective, the RoadVecNet was developed for road extraction and 

vectorization simultaneously. In terms of effectiveness, constraints achieved findings, and 

validation, the suggested RoadVecNet model differed from pre-existing DL models. 

6. The suggested RoadVecNet model demonstrated robustness in simultaneous road 

segmentation and vectorization, allowing for the achieving of accurate information on the 

location of the road network and road width. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK RECOMMENDATIONS 

 

5.1. General 

This study deployed high-resolution remote sensing images (HRSI) such as Orthophoto, 

UAV, Aerial, and Google Earth images and complete corresponding ground truth images. 

The study is aimed at the development of state-of-the-art deep convolutional neural 

networks (DCNN) for automatic road maps verification and updating. This study applied 

various types of DCNN methods such as GAN+MUNet, VNet, MCG-UNet, BCD-UNet, 

SC-RoadDeepNet, and RoadVecNet networks in python. As a result, this research 

generated high-resolution road segmentation and vectorization maps from the 

aforementioned datasets using the developed DCNN networks. Introducing novel robust 

approaches for road network extraction and vectorization from HRSI data would be useful 

for intelligent transportation systems (ITS) and geospatial information systems (GIS). 

However, there are some issues that make the process of extracting road parts from high-

resolution remote sensing imagery more difficult. For example, high-resolution images are 

complex and other features such as vehicles on the roads, building on the roadsides, and 

trees shadows can be observed from these images. This is because these features present 

similar spectral values as road pixel values, and inadequate context of road parts is similar 

to these objects in the remote sensing imagery. In addition, road segments are irregular and 

road networks present complex structures in the remote sensing images. Although many 

methods, techniques, approaches, and procedures for road networks mapping have been 

developed, the majority of these methods are sophisticated, conventional, and time-
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consuming. Thus, the artificial intelligence (AI) approaches encouraged by the reliable 

efficiency of DCNN architectures simplify the road networks vectorization and road 

database updating from HRSI and produce highly accurate results.  

5.2. Conclusions of traditional ML methods 

In this study, different conventional ML methods were applied for road extraction from 

HRSI data, which the results and limitations of the methods are concluded in this part.  

First, a new interactive approach of TWS and LS methods was introduced for extracting 

urban and suburban roads. The suggested method consists of steps such as segmentation 

of approximated road sections from UAV images using TWS, adoption of a LS method for 

extracting roads from the segmented images and implementation of a morphological 

operation for eliminating undesirable sections and closing of holes inside the road 

component. The proposed approach was performed on two UAV images, and results 

proved its efficiency for road extraction. The achieved results were compared with the 

manually digitized road layer. Performance factors, such as completeness, correctness and 

quality, were evaluated in this work; the average values obtained were 93.52%, 85.79% 

and 84.18% and 81.01%, respectively. These performance findings were compared with 

those in other works, with plots for illustrative comparison. Comparison results verified 

that the method is highly efficient for road extraction from UAV images. TWS has great 

potential for image segmentation, and the LS method is efficient for road extraction from 

high-resolution remote sensing images. However, road pixel extraction from images needs 

considerable computation. The approach has several benefits that render it suitable for road 

extraction from UAV images. One of the most important issues is that the approach is 

capable of eliciting sections not only of curved roads but also of straight ones. Moreover, 
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the approach can distinguish obstacles, such as cars, vegetation and buildings, from road 

class. Limited image transparency restricts road extraction and causes failures during 

extraction. Another reason for failures in road extraction is the availability of real 

comparable pixels to roads in images, which can be eliminated using filtering techniques.  

Second, a new integrated model of segmentation and classification methods with connected 

components analysis was introduced to extract road parts from VHR orthophoto images. 

The introduced model included three main steps. First, the multiresolution segmentation 

approach was applied to segment orthophoto images. The obtained results were then 

processed by the classification methods, such as SVM, KNN, and DT, to categorize the 

image into the road and non-road sections. Training the approaches utilized not only 

spectral information but also included texture and geometry information to improve the 

accuracy of the model. Finally, connected components labelling and morphological 

operations were performed to delete some components that do not belong to the road 

section, fill the gaps, and enhance the model performance for road extraction. Three 

different orthophoto images were used for applying the methods, and the final outcomes 

proved that the suggested models were capable of road extraction with satisfactory results. 

The roads layer was manually digitized to compare the results achieved by the suggested 

approaches, and three common accuracy metrics, such as recall, precision, and F1score, 

were calculated. The average metrics percentage obtained by the suggested methods were 

87.62%, 89.71%, and 88.61%, respectively, for DT; 86.61%, 88.17%, and 87.30%, 

respectively, for KNN; and 89.83%, 89.52%, and 89.67%, respectively, for SVM. The 

results from different accuracy assessment factors were also compared with those of other 

previous studies, which showed that the integrated model was still efficient in terms of 

accurate road region extraction from orthophoto images. The novelty of the proposed 
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integrated method lies in its capability to distinguish and extract straight and curved road 

parts. However, some parts of the road in the image are entirely covered by trees and 

shadows, making accurate road extraction from these parts difficult. Therefore, this 

difficulty is considered a limitation and deficiency of the integrated approach. In addition, 

the traditional ML techniques can be applied to a limited number of images. Therefore, as 

a first objective, I applied robust DCNN models on the large datasets to extract road 

networks more accurately than ML methods and solve the issues of these methods.  

5.3. Conclusions of objective 1 

In this study, various types of DCNN approaches were applied for road surface 

segmentation, which each method’s shortcomings and results are highlighted in this 

section.  

In the first work, I proposed a deep learning approach for segmenting road regions from 

high-resolution images that incorporates two new innovations: a modified UNet (MUNet) 

architecture for the extraction of road regions and a generative adversarial neural network 

(GAN) framework for optimizing learning and improving the accuracy of the segmentation 

map. Experimental results validated the efficacy of the proposed approach. Compared with 

prior state-of-the-art approaches and GAN-based road detection methods, the proposed 

GAN framework offered significant improvements in precision and in the F1 score metrics. 

Visual comparison indicated that the proposed GAN approach yields high-quality 

segmentation maps where, compared with prior approaches, the edges are particularly well 

preserved and in agreement with ground truth labels. 

In the second work, I applied a new deep convolutional neural network called VNet model 

to extract road networks from HRSI. Also, I implemented a new loss function named 

CEDL to decrease the problem of class imbalance in our datasets and improved the result 
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of road segmentation. I utilized two different remote sensing datasets such as 

Massachusetts and Ottawa road datasets that contained Aerial imagery and Google Earth 

imagery, respectively. Also, I calculated different important accuracy measurements such 

as F1, MCC and IOU to evaluate the performance of the suggested technique in road 

extraction. The proposed VNet+CEDL model could achieve an average F1 score of 91.18% 

for Massachusetts dataset and 91.29% for Ottawa dataset confirmed that the model could 

obtain accurate road results and produce high-resolution segmentation maps. Moreover, 

the proposed deep convolutional model was compared with other deep learning-based 

techniques, and the visual and quantitative outcomes proved the superiority of the proposed 

method in road extraction from HRSI. 

In the third work, I used two new deep learning-based networks in this research, namely, 

BCL-UNet and MCG-UNet, which were inspired by UNet, dense connections, SE, and 

BConvLSTM, for the segmentation of roads from aerial imagery. The presented networks 

were tested on the Massachusetts and DeepGlobe road datasets. The results achieved by 

the presented BCL-UNet framework and MCG-UNet models were firstly compared. The 

qualitative and quantitative products proved that both frameworks worked better than 

others and generated an accurate segmentation map for road object. To show the efficiency 

of the introduced models in road segmentation, I also compared the BCL-UNet and MCG-

UNet quantitative and visualization findings to those of other state-of-the-art comparative 

models used for road segmentation. The empirical consequences affirmed the advantage of 

the offered techniques for the extraction of road object from aerial imagery. In summary, 

the proposed techniques could detect roads well even in incessant and prominent regions 

of closures and could also generate high-resolution and non-noisy road segmentation maps 

from different datasets.  
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As it is discussed, the newly developed DCNN models showed substantial improvements 

in road extraction compared to the comparative DL methods and traditional ML methods, 

as well as yielded high-quality road segmentation maps. However, the accuracy of the 

proposed deep learning models is slightly lower, and the method could neither identify 

roads from complex areas nor extract continuous road parts from these images and produce 

fragmented results, where the roads are covered by other obstructions. These factors are 

the main limitations of the proposed methods. Thus, I addressed these limitations and 

developed a new DCNN model, which uses some topological characteristics like 

connectivity to improve the accuracy of our proposed approaches for road extraction. 

5.4. Conclusions of objective 2 

In this work, I introduced SC-RoadDeepNet, a new method for extracting roads from 

remote sensing imagery based on a shape and connectivity-preserving road segmentation 

deep learning model. The proposed model consists of a state-of-the-art deep learning model 

called the RRCNN model, BL, and CP_clDice techniques. The RRCNN model includes 

convolutional encoder-decoder units similar to the primary UNet model. However, in the 

encoder-decoder arms, RRCLs were employed instead of standard forward convolutional 

layers. RRCLs aids in the development of a more effective deeper structure. Furthermore, 

the suggested model’s RRCL units provide an effective feature accumulation mechanism. 

Concerning distinct time-steps, feature accumulation guarantees stronger and better feature 

representation. As a result, it aids in the extraction of low-level features that are critical for 

segmentation tasks. I also employed BL to punish boundary misclassification and fine-tune 

the road form as a result. I provided CP_clDice for maintaining road connectivity and 

obtaining correct segmentations. The suggested framework was tested on different HRSI 

datasets, and the findings demonstrated its usefulness and feasibility in increasing the 
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performance of road semantic segmentation. Qualitative comparisons were compared with 

several comparative semantic segmentation algorithms. The presented model 

outperformed the other models, preserving shape and road connectivity and achieving 

high-resolution segmentation maps according to the results of the experiments. Compared 

with the aforementioned semantic segmentation methods, the suggested method could also 

improve the complete assessment metrics, such as IOU and F1 score. However, most of 

the pre-existing traditional ML and DCNN models were implemented on HRSI for road 

surface segmentation and road centerline extraction, not road network vectorization, 

including accurate road width and location information. Thus, because the semantic 

segmentation results from the remote sensing images cannot be used for navigation and 

urban planning, it is essential to extract the vector of roads (location and width/length 

information) from remote sensing data that can be utilized for updating road database.  

5.5. Conclusions of objective 3 

In this study, a new interlinked end-to-end UNet framework called RoadVecNet was 

proposed to implement road surface segmentation and road vectorization simultaneously. 

The first network in the RoadVecNet architecture was used to produce feature maps. 

Meanwhile, the second network was performed to formulate road vectorization. The Sobel 

method was utilized to achieve a complete and smooth vectorized road with accurate road-

width information. Two separate datasets, namely, road surface segmentation and road 

vectorization datasets, were used to train the model. The advantage of the proposed model 

was verified with rigorous experiments: 1) Two different road datasets imagery called 

Ottawa (Google Earth) and Massachusetts (Aerial) datasets, which comprise the original 

RGB images, corresponding ground truth segmentation maps, and corresponding ground 

truth vector maps, were employed to test the model for road segmentation and 
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vectorization. 2) In the road surface segmentation tasks, the proposed RoadVecNet could 

achieve more consistent and smooth road segmentation outcomes than all the comparative 

models in terms of visual and qualitative performance as well as showed robustness against 

the obstacle. 3) In the road vectorization task, RoadVecNet also showed better performance 

than the other comparative state-of-the-art deep convolutional architectures.  

In summary, the suggested techniques and the study's findings (high quality and accurate 

road network data) have great promise for environmental applications including urban land 

use change detection and emergency tasks. They also have commercial value for navigation 

and updating road maps. 

5.6. Limitations and Future work recommendations 

The suggested DCNN approaches were applied in this study, and all three objectives were 

met. Furthermore, more road network extraction and vectorization works can be done using 

detailed datasets and the most up-to-date DCNN algorithms. The future work 

recommendations are listed as follow: 

1. More studies can be done to address the constraints of our proposed road extraction and 

vectorization method by incorporating topological criteria and gap-filling methods into it 

to improve its accuracy. 

2. The developed model for road vectorization and updating road database in this study can 

be exercised in other remote sensing datasets, e.g., medium-resolution images, LIDAR, 

and SAR images for the given task.  

3. The employed methods in this work can be used to extract and vectorize other urban 

features like buildings, trees crowns, etc., with the purpose of obtaining complete 

information on urban features. 
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4. The current study can be improved further by applying the methods to multi-object 

segmentation and vectorization from remote sensing data simultaneously. For this, there is 

a need to prepare datasets including ground truth images with more classes to extract and 

vectorize the urban objects at the same time. 

5. Future research could focus on mapping road vectorization all over the world to see how 

well the suggested method generalizes on a global scale. 
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