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ABSTRACT 
 

The poor performance of transition zones in railway tracks has long been a subject of 

concern for the rail infrastructure managers. These zones are the discontinuities along a 

railway line that are highly susceptible to differential settlement due to an abrupt variation 

in the support conditions over a short span. Consequently, these regions require frequent 

maintenance to ensure adequate levels of passenger safety and comfort. The rapid 

deterioration of track geometry in these zones is primarily ascribed to limited 

understanding of the underlying mechanism and scarcity of adequate tools to assess the 

severity of the potential issue. Therefore, a comprehensive evaluation of their behaviour 

is paramount to improve the design and ensure adequate service quality. With this 

objective, a novel methodology is developed which can predict the dynamic behaviour of 

the transition zones under train-induced repeated loading and assess the suitability of 

different countermeasures in improving the track performance.  

 

To this end, an integrated approach is first developed by combining track loading, 

resiliency, and settlement models to evaluate the transient and irrecoverable response of 

the substructure layers of a standard ballasted railway track. The track substructure layers 

(ballast, subballast, and subgrade) in this model are simulated as an array of lumped 

masses that are connected by elastic springs and viscous dampers. The irrecoverable 

response of the track is evaluated using the empirical settlement models for substructure 

layers. The accuracy of the method is validated by comparing the predicted results against 

the field investigation data reported in the literature. Subsequently, the practical 

applicability of the aforementioned method under different traffic loading and soil 

conditions is improved by replacing the empirical approach with a mechanistic approach, 

in which, plastic slider elements are employed to predict the inelastic deformation in the 

substructure layers. To validate the approach, the predicted results are compared with the 

in-situ measurements reported in the literature. A good agreement between the predicted 

results and the field data verified the accuracy of the novel geotechnical rheological track 

model. A parametric investigation is conducted which highlights the significant influence 

of axle load, train speed, and granular layer thickness, on the accumulated settlement in 

the track layers. 
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The novel geotechnical rheological track model is then applied to an open-track bridge 

transition by incorporating the inhomogeneous support conditions associated with the 

critical zone and the adequacy of different countermeasures to mitigate the differential 

track settlements is examined. The approach is successfully validated with published field 

data and predictions from the finite element (FE) analysis. The results revealed that an 

increase in axle load exacerbates the track geometry degradation problem. The results 

also show that the performance of transition zones with weak subgrade can be improved 

by increasing the granular layer thickness. Interpretation of the predicted differential 

settlement for different countermeasures exemplified the practical significance of the 

proposed methodology.  

 

Subsequently, the influence of principal stress rotation (PSR) experienced by the soil 

elements during a train passage is incorporated in the geotechnical rheological model. 

The results revealed that PSR causes significant cumulative deformation in the 

substructure layers, and disregarding it in the analysis leads to inaccurate predictions. 

Finally, the adequacy of using three-dimensional (3D) cellular geoinclusions to improve 

the performance of critical zones is investigated using the proposed methodology and FE 

analyses. A novel semi-empirical model is first developed to evaluate the magnitude of 

improvement provided by these inclusions under the 3D stress state. The proposed model 

is successfully validated against the experimental data. This model is then incorporated 

in the geotechnical rheological model and the effectiveness of 3D geoinclusions in 

improving the performance of an open track-bridge transition is investigated. The results 

show that the geoinclusions significantly reduce the magnitude of differential settlement 

and therefore, have a huge potential to be used in the transition zones to improve track 

performance. 

 

The essential contribution of this thesis is that it provides reliable, practical, and adaptable 

techniques to assist the practising railway engineers in analysing the performance of 

various sections of ballasted railway tracks, identifying the most effective method to 

improve the track performance, planning the maintenance operations, and improving the 

design. The developed techniques are available in the form of MATLAB codes, which 

can readily be converted into an application that can be used by railway engineers. 

Nonetheless, the outcomes of this study have huge potential to influence the real-world 
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design implications of track transition zones. The approaches developed in this study are 

original, simple yet elegant, and can enhance, if not fully replace, present complex track 

modelling procedures for anticipating the behaviour of critical zones and adopting 

appropriate mitigation strategies. 
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le  Effective length of sleeper (m) 

lg  Gauge width (m) 

lsl  Sleeper length (m) 

lw  Distance between centre of rails and the resultant wind force (m) 
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N  Number of load cycles 
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�̂�𝑝xt, �̂�𝑝xc, �̂�𝑝xr  Intersection of transitional, current and reference surfaces with �̂�𝑝 axis 

Q, Qa  Static wheel and axle load (N) 

Qd  Design wheel load (N) 

Qdy  Dynamic component of load (N) 

Qqs  Quasi-static wheel load (N) 

Qr,n  Vertical rail seat load at nth sleeper (N) 

Qt  Tensile load (N) 

Qtv  Total vertical wheel load (N) 

q  Deviatoric stress (N/m2) 

𝑞𝑞� and �̂�𝑝  Deviatoric and hydrostatic stress invariants in the characteristic stress space 

R  Parameter that controls the magnitude of plastic volumetric strain increment 

Rc  Radius of curvature of track (m) 

Ri     Parameter that controls the magnitude of plastic strain accumulation 

Rs  Stress ratio 

Rw  Nominal radius of the wheel (m) 

r  Spacing ratio 

S  Sleeper spacing (m) 

s1α, s2α  Constitutive parameters to account for the effects of principal stress rotation 

sb, ss  Settlement of ballast and subballast (m) 

sg, sgl  Settlement of subgrade and granular layers (m) 

sij  Deviatoric stress tensor 

st  Settlement of track substructure (m) 

sv
r  Vertical resilient deformation (m) 

T  Cumulative tonnage (kg) 

Tn
s  Average shear stress vector 

Tx, Ty  Tensile stresses in planar geosynthetic along x and y directions (N/m) 
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t  Time instant (s) 

tg  Thickness of geoinclusion (m) 

tu  Factor that depends on the upper confidence limit 
V  Train speed (m/s) 

Vm  Maximum normal operating speed (m/s) 
Wu  Unsprung weight at one wheel (N) 

Wvd  Vertical deformation (m) 

Wwr  Deformation at the wheel-rail contact point (m) 

w  Vertical track deflection (m) 

wb  Vertical displacement at ballast top (m) 

wbm  Mean value of track displacement in stiffer zone (m) 

wt  Vertical track displacement (m) 

x  Distance along longitudinal direction (m) 

xn
j  Distance of nth sleeper from jth wheel (m) 

Z  Plastic softening parameter 

z  Depth (m) 

zb,n, żb,n, �̈�𝑧b,n  Displacement, velocity and acceleration of ballast below nth sleeper 

𝑧𝑧b,n
𝑝𝑝 , �̇�𝑧b,n

𝑝𝑝
   Plastic displacement and velocity of ballast below nth sleeper 

zs,n, żs,n, �̈�𝑧s,n  Displacement, velocity and acceleration of subballast below nth sleeper 

𝑧𝑧s,n
𝑝𝑝 , �̇�𝑧s,n

𝑝𝑝    Plastic displacement and velocity of subballast below nth sleeper 

zg,n, żg,n, �̈�𝑧g,n  Displacement, velocity and acceleration of subgrade below nth sleeper 

𝑧𝑧g,n
𝑝𝑝 , �̇�𝑧g,n

𝑝𝑝   Plastic displacement and velocity of subgrade below nth sleeper 

𝑧𝑧g𝑣𝑣𝑣𝑣, 𝑧𝑧s𝑣𝑣𝑣𝑣, 𝑧𝑧b𝑣𝑣𝑣𝑣  Viscoelastic displacement in subgrade, subballast and ballast (m) 

   

Greek Symbols: 

α   Stress distribution angle for ballast (°) 

α*  Empirical parameter 

α′  Coefficient relating track irregularities, train suspension and speed 

αr  Stress distribution angle for ballast in the stiffer side (°) 

α0  Reference stress distribution angle in ballast (°) 

αm  Bonding coefficient for planar geosynthetic 
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αv  Angle between major principal stress direction and vertical (°) 

β  Stress distribution angle for subballast (°) 

β′   Coefficient accounting for the movement of train along a curve 

β0  Reference stress distribution angle in subballast (°) 

Γ  Critical void ratio at p = 1 kPa 

𝛤𝛤�, 𝑁𝑁�  Void ratio of critical state line and normal compression line at �̂�𝑝=1 kPa 

γ  Stress distribution angle for subgrade (°) 

γ′  Coefficient that depends on speed and design of train, and track condition 

Δσ  Increase in stress (N/m2) 

Δσ′2, Δσ′3  Effective additional confining stress in the direction of σ′2 and σ′3 (N/m2) 

Δσ3  Additional confining stress in the direction of σ3 (N/m2) 

Δσx, Δσy  Additional confining pressure along x and y directions (N/m2) 

𝑑𝑑𝜺𝜺ij
𝑝𝑝, 𝜀𝜀v

𝑝𝑝  Plastic strain increment and cumulative plastic volumetric strain 

dεv, dεq  Volumetric and deviatoric strain increments 

𝑑𝑑𝜀𝜀v
𝑝𝑝, 𝑑𝑑𝜀𝜀q

𝑝𝑝  Plastic volumetric and deviatoric strain increments 

𝑑𝑑𝜀𝜀z
𝑝𝑝   Plastic strain increment in vertical direction 

𝛿𝛿ij   Kronecker delta 

δt  Factor that depends on the track condition 

ε0/εr, ρp, βp  Fitting parameters 

ε1, ε2, ε3  Major, intermediate and minor principal strains 

ε1
e, ε2

e, ε3
e
   Resilient components of major, intermediate and minor principal strains 

ε1
p, ε2

p, ε3
p  Plastic components of major, intermediate and minor principal strains 

ε1,1
p  Plastic axial strain after the first load cycle 

εa  Axial strain 

εa
p  Accumulated plastic axial strain 

𝜀𝜀b
𝑝𝑝, 𝜀𝜀s

𝑝𝑝, 𝜀𝜀g
𝑝𝑝   Cumulative plastic strain in ballast, subballast and subgrade 

εc  Circumferential strain 

εq  Deviatoric strain 

εr  Radial strain 

εt  Tensile strain 
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εx, εy   Strain along x and y directions 

𝜀𝜀x𝑚𝑚, 𝜀𝜀y𝑚𝑚   Strains in geosynthetic in x and y directions 

𝜀𝜀z
𝑝𝑝   Cumulative plastic strain in vertical direction 

η  Stress ratio 

�̂�𝜂   Stress ratio in characteristic stress space 

ηv  Factor that depends on the speed of vehicle 

θ  Bulk stress (N/m2) 

θ1+ θ2
  Total dip angle of the rail joint (rad) 

ℐ   Tensorial invariant 

Λs, Λg  Scalars 

λ, κ  Slope of critical state line and swelling line in e–ln p space 

νb, νs, νg  Poisson’s ratio of ballast, subballast and subgrade 

𝜈𝜈b𝑟𝑟   Poisson’s ratio of ballast in the stiffer side 

νi   Poisson’s ratio of infill 

νm  Poisson’s ratio of geoinclusion material 

ξ, A  Dimensionless material parameters 

ρb, ρs, ρg  Density of ballast, subballast and subgrade (kg/m3) 

𝜌𝜌b𝑟𝑟   Density of ballast in the stiffer side (kg/m3) 

σ1, σ2, σ3  Major, intermediate and minor principal stresses (N/m2) 

𝜎𝜎bb𝑟𝑟    Vertical stress at the bottom of substructure layer in the stiffer side (N/m2) 

σC,2, σC,3  Circumferential stresses in the direction of σ'2 and σ'3 (N/m2) 

σc  Confining pressure in triaxial tests (N/m2) 

σ′c  Effective confining pressure (N/m2) 

σcyc  Cyclic deviator stress (N/m2) 

σd  Deviator stress (N/m2) 

σ′d  Effective deviatoric stress (N/m2) 

σdi  Deviator stress at which slope of ER versus σd curve changes (N/m2) 

σg  Compressive strength of the soil (N/m2) 

σij  Stress tensor 

𝝈𝝈�ij   Characteristic stress tensor 
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σj  Principal stress (N/m2) 

σoct  Octahedral normal stress (N/m2) 

σref  Reference stress (N/m2) 

σsb, σbs, σsg, σgo  Vertical stresses at the sleeper-ballast, ballast-subballast, subballast-

subgrade interfaces and bottom of subgrade layer (N/m2) 

σv  Vertical stress (N/m2) 

σ′x, σ′y, σ′z  Effective stresses along x, y and z directions (N/m2) 

τcyc  Cyclic shear stress amplitude (N/m2) 

τoct  Octahedral shear stress (N/m2) 

φ  Friction angle (°) 

φc, φe  Critical state friction angles under triaxial compression and extension (°) 

φd  Dynamic amplification factor 

φ′m  Mobilised friction angle (°) 

χi, χtc  Dilatancy parameter corresponding to image state and triaxial compression 

ψ  State parameter 

ψd  Dilation angle (°) 

ψi  Image state parameter 

ψm  Mobilised dilation angle (°) 

   

Abbreviations: 

2D  Two-dimensional 

2.5D  Two and a half dimensional 

3D  Three-dimensional 

ACR  Additional confinement ratio 

AREA  American Railway Engineering Association 

ARTC  Australian Rail Track Corporation 

BEM  Boundary element method 

BoEF  Beam on elastic foundation 

CBM  Cement bound mixture 

CBR  California Bearing Ratio 

CG  Coir geotextile 
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CSL  Critical state line 

CSSR  Cyclic shear stress ratio 

CVSR  Cyclic vertical stress ratio 

DEM  Discrete element method 

FDM  Finite difference method 

FEM  Finite element method 

GB  Geocell reinforced ballast 

GG  Geocell reinforced subgrade 

GS  Geocell reinforced subballast 

HDPE  High-density polyethylene 

HMA  Hot-mix asphalt 

LVDT  Linear variable displacement transformer 

MDD  Multi-depth deflectometers 

MGT  Million gross tonnes 

MSD  Mass-spring-dashpot 

NCL  Normal compression line 

ORE  Office for Research and Experiments 

PE  Polyethylene 

PP  Polypropylene 

PSR  Principal stress rotation 

RAP  Recycled asphalt pavement 

SS  Silica sand 

UGM  Unbound granular material 

UR  Unreinforced 

US  United States 

WMATA  Washington Metropolitan Area Transit Authority 
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