
Essays on Market Design

by Hao Zhou 

Thesis submitted in fulfilment of the requirements for 
the degree of  

Doctor of Philosophy 

under the supervision of Isa Hafalir (principal), 
Jun Zhang and Kentaro Tomoeda 

University of Technology Sydney 
Economics Discipline Group, Business School 

December 2021 



Hao Zhou

Certificate of original authorship

I, Hao Zhou, declare that this thesis is submitted in fulfillment of the requirements

for the award of Doctor of Philosophy, in the Business School at the University of

Technology Sydney. This thesis is wholly my own work unless otherwise indicated in

the references or acknowledged. In addition, I certify that all information sources and

literature used are indicated in the thesis. This document has not been submitted

for qualifications at any other academic institution. This research was supported by

the Australian Government Research Training Program.

Signature:

Date: December 1, 2021

1

Production Note:
Signature removed prior to publication.



Hao Zhou

Abstract

This thesis consists of two independent essays. They are unified by the common

theme of market design.

In the first essay, we consider a school choice program with the diversity constraints

on the composition of the students by implementing a�rmative actions. Students

may belong to more than one disadvantaged types (e.g. a student may both belong

to the “minority” and “financially distressed” group.) In addition, they may have

(weak) preference orders over the channels through which they would possibly be

enrolled (e.g. a student from a poor family may be granted a scholarship). We con-

sider the case where the school tries to assign as many reserved seats as possible by

sophisticatedly reshu✏ing the seats to the eligible students. We provide a choice rule

that eliminates justified envy, satisfies the no swapping condition and is acceptant

under this situation. We further show that the choice rule is bilaterally substitutable

and thus the cumulative o↵ering process can produce a stable outcome.

In the second essay, we establish the optimal auction when a seller can incentivize an

existing buyer to refer a privately known potential buyer to compete for an object.

We identify three optimal channels to provide referral incentives: discouraging non-

referral, favoring referral, and providing informational rent for referral. While the

first two channels always appear and are essential, the third one is supplementary

and appears when the potential buyer is less likely to exist and stronger. We also

provide conditions under which the optimal mechanism can be implemented by

simple mechanisms. Finally, we show that the conventional resale mechanism is

suboptimal.
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Chapter 1

Introduction

This thesis consists of two independent essays, unified by the common theme of

market design.

Chapter 2 considers a controlled school choice problem where each student may have

multiple disadvanged types. We investigate the case where some seats of the school

are reserved for targeted groups and each student can take at most one reserved

seat. We further assume that each student has weak preference over di↵erent type-

specific seats which they are eligible to take. The school’s objective is to assign the

reserved seats as many as possible while taking students’ preferences into account.

We propose three desirable properties of the choice function of the school. That

is, no justified envy, no swapping condition and acceptance. A student i who is

not enrolled has justified envy towards j if either of the following conditions hold.

First, when i has a higher priority than j, the number of the reserved seats assigned

should not reduce by replacing j with i. Second, when i has a lower priority than

j, it should allow the school to assign strictly more reserved seats by enrolling i and

rejecting j. No swapping condition says that there is no enrolled student who can

be strictly better o↵ by switch the type of the contract without hurting those who

have higher priorities. Acceptance simply says that the school should enrolled the

students up to its total capacity.

We propose the sequential reservation choice rule and show that it is the unique
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choice rule that satisfies these three properties. We then provide other properties

of the sequential reservation choice rule such as strategy-proofness and bilaterally

substitutable.

In Chapter 3, we establishe the optimal auction when a seller can incentivize an

existing buyer to refer a privately known potential buyer to compete for an object.

We characterize the optimal mechanism in this environment and we identify three

optimal channels to provide referral incentives: discouraging non-referral, favoring

referral, and providing informational rent for referral. We show that the first two

channels always appear and are essential, while the third one is supplementary

and appears when the potential buyer is less likely to exist and stronger. We also

provide conditions under which the optimal mechanism can be implemented by

simple mechanisms. Finally, we show that the conventional resale mechanism is

suboptimal.

This thesis concludes with Chapter 4, where the key findings are summarized and

ideas for future areas of research are outlined.
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Chapter 2

A�rmative Actions with

Multi-Dimensional Privileged

Types

2.1 Introduction

Controlled school choice programs require considering students’ priorities while

maintaining the diversity constraints on the composition of the students. One typical

aim is to provide underrepresented students with options to close the opportunity

gap. This chapter investigates the controlled school choice problems where each

student may have multiple disadvantaged types. For example, a students may both

belong to the “minority” and the “financially distressed” group. Suppose each en-

rolled student can fill one reserved seat of one of her types, the school then is given

the flexibility to decide which type of the reserved seat each enrolled student should

take. For example, suppose the school has one reserved seat for the “minority” and

one for the “financially distressed”. Student A has both of the types and student B

only belongs to the minority group. The school can assign both of the reserved seats

by enrolling student A with financially distressed and student B with minority. It is

a non-trivial problem for the school to assign the type-specific seats to the students

if it do not want to “waste” the reserved seats. It is also not di�cult to see that the
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way of assigning the reserved seats can have a significant e↵ect on the outcome of

the enrollment. In an important recent work, Sönmez and Yenmez (2021) propose a

choice rule that allow the school to assign as many reserved seats as possible where

they assume that each student is indi↵erent to the type they are enrolled.

This chapter generalizes Sönmez and Yenmez (2021) by considering the case where

the students are not indi↵erent to the channels they could potentially be enrolled.

Numerous examples show that this setting is relevant. Aygün and Turhan (2020)

examine the admissions to Engineering schools (IITs) in India. They quote the

survey showing that 56% of the students enrolled through under-privileged castes

and tribes feel discriminated against in the school. This is because some opponents

of the a�rmative action policies believe that those who are enrolled through reserved

seats decrease the average quality of schools. As a result, some students with high

test scores who also belong to disadvantaged groups prefer not using their privileges.

They would rather be enrolled as the general category instead. They also argue that

the true preferences of students should be over program name-seat type pairs, not

just program names. As another example, if a student belongs to the “financially

distressed” category who uses her privilege and is assgined to a reserved seat then

she may be granted a scholarship or a lower tuition fee. This may induce a preference

for being admitted as a financially distressed student.

One can also think of a more general one-to-many matching model where students

have preferences over “terms”. Terms are only available to those who have certain

qualifications. Our model can then serve as a special case if we assume that there

is a one-to-one correspondence between terms and qualifications. From this view,

our model can be applied to the fields other than a�rmative action policies. For in-

stance, China proposed the Strengthening Basic Academic Disciplines Plan in 2020

as a supplementary enrollment scheme to the College Entrance Exam, which focuses

on students with special talents in math, physics, chemistry, biology, history, phi-

losophy and ancient characters. According to the plan, universities will reserve a

certain number of seats for majors of these basic academic disciplines. In addition,

students who are enrolled through this plan are expected to enjoy a better learning
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environment and greater chances of admission to the graduate school. The students

who wants to be enrolled through this plan should show the talent for the specific

decipline. For example, they should rank high in the corresponding subject com-

petitions. Assuming that students is not indi↵erent to the way they are enrolled

is natural in this case. First, students are eligible for multiple deciplines and they

naturally have preferences over these deciplines. Second, there are trade-o↵s on

whether to apply for this plan in the first place. This is because these deciplines, es-

pecially humanities majors, are unpopular among students. It’s harder for students

from these majors to find good job opportunities after graduation and the switch of

major is very restrictive if one is enrolled through the plan. 1

We show that when taking into account the preferences of the students, the school’s

objective of assigning as many reserved seats as possible may incur conflict to fair-

ness. We show that it could be possible that a student with a higher priority and

strictly more disadvantaged types may take a less preferred type seat. We then

propose three axioms that a desirable outcome in the weak preferences environment

should satisfy. That is, no justified envy, no swapping condition and acceptence.

The concept of no justified envy defined in this chapter incorporates the usual spirit

in the matching theory literature that a student with a higher priority should be

enrolled prior than those who with lower priorities. In addition, the school should

provide extra priori to those who have disadvantaged types. In particular, a student

i who is not enrolled has justified envy towards an enrolled student j if either of the

following two situations are satisfied. First, suppose i has a higher priority than j.

By replacing j with i, there is still a way for the school to keep the same number of

assigned reserved seats. Second, suppose i has a lower priority than j. The school

can assign strictly more reserved seats by replacing j with i. No swapping condition

requires that the enrolled students can ask for swap of the types of the reserved seats

as long as the swapping will not make those who with higher priorities strictly worse

o↵. Acceptant condition simply says that the school should choose the students up

1On the other hand, this plan can help solve the “admissions di�culty” for some graduate
programs, so universities are quite active to promote it. This coincides with our assumption that
the school wants to assign as many reserved seats as possible.
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to its total capacity.

We then provide the sequential reservation choice rule that satisfies these properties.

The sequential reservation choice rule not only specifies the set of the students which

should be enrolled but also indicate which type of the seat an enrolled student

should take. To do so, we introduce the strict and weak reassignment chain finding

processes. The strict reassignment chain allows us to check whether enrolling a new

student can let the school assign one more reserved seat and the weak reassignment

chain allows us to determine whether enrolling a new student can let the school to

keep the same cardinal number of reserved seats.

We further show that the sequential reservation choice rule is characterized by these

three axioms. That is, it is the unique choice rule that satisfies these axioms. We

also show that the sequential reservation choice rule is strategy proof and can be

implemented in polynomial times.

Finally, we introduce the matching market where there are multiple schools. We

show that the sequential reservation choice rule is bilaterally substitutable so that it

can produce a stable outcome when embedded into the cumulative o↵ering process.

Several papers on school choice with diversity constraints are related to our work.

Kojima (2012) examines the model with two types of the students (namely, minor-

ity and majority), and shows that setting hard-bounds ceiling for the number of

majority students may hurt the minority students. Hafalir, Yenmez, and Yildirim

(2013) then propose the soft-bounds floors for the number of the minority students

to overcome this problem. Ehlers, Hafalir, Yenmez, and Yildirim (2014) further

extend the model of Hafalir et al. (2013) by relaxing the number of the privileged

types. In Ehlers et al. (2014), there could be more than just one privileged type in

total, but each student belongs to only one type.

Based on the seminal papers of a�rmative actions where each student is assumed

having only one type, controlled school choice models with students who may have

multiple types are examined more recently. These papers are closely related to this

work. Aygun and Bó (2021) study the implementation of the college admission rule
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in Brazil where public universities are mandated to use the a�rmative policies for

candidates from ethinical and income minorities, where the existing policy may reject

high achieving minorities and accept low achieving majorities. The main di↵erence

between their paper and ours is that in their model, seats are reserved for the type

combinations 2 while in this chapter the seats are reserved for each individual type.

We argue that our setting has advantages. This is because with the number of type

increases, the number of type combinations will increase exponentially. It is thus

computationally di�cult for the schools to set a�rmative action goals. Kurata,

Hamada, Iwasaki, and Yokoo (2017) consider a model in which students may have

multiple types and have strict preferences over these types. Their work is di↵etent

from ours because they further assume that the school has a strict preference over

the contracts. This rules out the flexibility of the school to assign the reserved seats

and makes their setting quite di↵erent from ours.

A recent paper Sönmez and Yenmez (2021) is most related to ours. We introduce

their model as the benchmark in section 3. The main di↵erence between this chapter

and theirs is that they assume students are indi↵erent to the privileged types and we

show that in the weak preferences environment, it could cause unfairness. Sönmez

and Yenmez (2021) also consider the one-to-many convention of the a�rmative

action policy, meaning that when a student is enrolled, she consumes one reserved

seat for all of her types. We restrict our attention to the one-to-one convention, that

is, when a student is enrolled, she consumes one reserved seat for one of her types.

This is mainly because in the one-to-many convention, the preferences over types it

is not meaningful.

There are also some papers in the computer science literature that study related

problems. Aziz and Sun (2021) extend Sönmez and Yenmez (2021) such that the

school has multi-ranked diversity goals, that is, there may be a requirement that

some types should be filled only after other types are filled. Aziz, Gaspers, and

Sun (2020) transfer the original policy targets on individual types to some artificial

2For example, the school may reserve 30 seats for the minorities, 30 seats for the financially
distressed and 15 seats for the students who both belong to the minority and the financially
distressed group.
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targets on the type combinations. We do not treat the problem in this way because

this setting may result in cases where the total number of the transferred reserved

seats exceeds the total capacity.

This chapter is also related to the school choice problems with the distributional

constraints (Goto, Kojima, Kurata, Tamura, and Yokoo (2017); Kamada and Ko-

jima (2015, 2017)), where the regional maximum and minumum quotas are imposed.

Finally, this chapter serves as an application of the general framework for matching

with constrains (see Goto et al. (2017); Kojima, Tamura, and Yokoo (2018)).

The rest of the chapter is organized as follows. In section 2.2, we introduce the

setting of our model. In section 2.3, we provide the results of Sönmez and Yenmez

(2021) in one-to-one reservation convention as a benchmark. Section 2.4 introduces

desirable properties of a choice rule in the weak preferences environment. We propose

the sequential reservation choice rule in section 2.5. In section 2.6, we show our

choice rule is characterized by the desired properties. Finally, in section 2.7, we

extend our model to the multiple school environment and show that our choice rule

leads to the the stable outcome in this environment.

2.2 Setup

We first introduce a single school environment where there is only one school en-

dowed with several reserved seats for the privileged types, as well as normal seats.

Each student has a weak preference over the type specific seats. We assume that

each student can take at most one privileged type seat. The school enrolls a subset

of students and decides what type of seat each enrolled student is assigned to.

A single school with reserved seats environment is denoted by (S,T ,⌧ ,⇡,q,(rt)t2T ,(⌫⇤

i

)i2S). There is a finite set of students S = {s1,s2,...,sn}. T = {t1,...,tm} is the set

of privileged types and we refer to t0 as the general type. ⌧ is a function mapping

S to 2T [{t0} specifying each student’s types. We assume that t0 2 ⌧(i) for all i 2 S.

⇡ is a strict priority order over S and q is the total capacity of the school. For each

8
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tk 2 T , denotes rtk the number of reserved positions for students with type tk. We

assume that the total number of the reserved seats is smaller than the capacity of

the school. That is,
P

tk2T
rtk  q. For each student i, ⌫⇤

i represents her weak

preference over ⌧(i), where tk ⌫
⇤

i tl means student i weakly prefers tk over tl. We

denote the set of all possible preferences by �.

Throughout this chapter, we use the language of matching with contract proposed

by Hatfield and Milgrom (2005). A contract x = (i,tk) means to enroll student i

with one of her types tk (note that a legitimate contract requires that tk 2 ⌧(i).) Let

X be the set of all the legitimate contracts. We denote the null contract by ;, which

means a student is not enrolled. For X ✓ X , we define Xi = {(i,tk) 2 X|tk 2 ⌧(i)}

and Xtk = {(i,tk) 2 X|i 2 S}. In addition, for S ✓ S, XS = [i2SXi and

for T ✓ T , XT = [tk2TXtk . Given a set of contracts X, s(X) refers to the

set of students who have contracts in X, i.e. s(X) = {i 2 S|Xi 6= ?} and

⌧(i|X) = {tk 2 ⌧(i)|(i,tk) 2 X} is the types of student i in X. Given a set of

contracts X and student i’s preference over her types ⌫
⇤

i , we define her induced

preference over Xi such that (i,tk) ⌫i (i,tl) if and only if tk ⌫⇤

i tl. We assume all the

contracts (i,tk) are acceptable to student i. Thus, (i,tk) ⌫i ; for all (i,tk) 2 X .

A choice rule Ch : 2X ⇥�|S|
! 2X is a function that maps the Cartesian product of a

considerate set of contracts X and students’ preferences profile {⌫
⇤

i }i2S to a subset

of X. This chosen set of contracts is called an outcome. For notational convenience,

given a fixed preferences profile {⌫
⇤

i }i2S, we simply write the choice function as

Ch(X) in stead of Ch(X, {⌫⇤

i }i2S) if no confusion arises.

Definition 2.1. Given a set of contracts X, an outcome Ch(X) ✓ X is called

feasible if it satisfies:

1. |Ch(X)|  q, |Ch(X)tk |  rtk for all tk 2 T , and

2. |Ch(X)i|  1 for all i 2 S.

The first condition says that the school can sign at most rtk type tk contracts and

9
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q contracts in total. The second condition says that a student can sign at most one

contract with the school. Note that by the definition of the feasible outcome, we

only let each student be enrolled through a single type. Given X, O denotes the

set of all feasible outcomes. Suppose Y is a feasible outcome. We sometimes write

(i,tk) ⌫i Y if one of the following is true: (1). Yi = (i,tl) for some tl 2 ⌧(i) and

tl 6= tk such that (i,tk) ⌫i (i,tl), or (2). Yi = ;. We also write Y ⌫i Z if i is weakly

better o↵ under the outcome Y compared to the outcome Z.

Definition 2.2. Given a set of contracts X, let Y 2 O be a feasible outcome. The

number of assigned reserved seats ⌘(Y ) is the total number of contracts with

privileged types. That is, ⌘(Y ) =
P

tk2T
|Ytk |.

Definition 2.3. Given a set of contracts X, ⇢(s(X)) is the the maximum num-

ber of reserved seats that can be assigned to the students in s(X). That is

⇢(s(X)) = max
{Y 2O|s(Y )✓s(X)}

⌘(Y )

We say that an outcome has maximum cardinality in reserve matching if it

assigns the maximum number of reserved seats to the students in s(X) and M(s(X))

denotes the set of all these outcomes. That is, M(s(X)) = argmax{Y 2O|s(Y )✓s(X)}⌘(Y ).

Definition 2.4. Given X and let Y 2 O be a feasible outcome, a student i /2 s(Y )

increases reserve utilization with respect to Y if there exists Y 0
2 O such

that s(Y 0) = s(Y ) [ {i} and ⇢(s(Y 0)) > ⇢(s(Y )).

Our goal is to assign as many the reserved seats as possible given certain fairness

conditions.

2.3 The Benchmark

Sönmez and Yenmez (2021) consider the situation where all students are indi↵erent

to the type they are enrolled. They find a choice rule that maximally complies with

the reservations, eliminates justified envy and is non-wasteful. Maximally complying

with the reservation means that the school chooses the set of students that can take

10
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the maximum cardinality of the reserved seats. Eliminating justified envy means if a

student with lower priority is enrolled while a high priority student is not, this only

happens when enrolling the low priority student can increase the reserve utilization.

Non-wastefulness means that the school always chooses the students up to its total

capacity.

They call the choice rule the horizontal envelope choice rule (denoted as C̃h) and it

works as follows:

Consider the students in the order of their priorities one by one.

Round 1: Choose a student in this round if and only if she can increase reserve

utilization with respect to the currently enrolled pool of the students.

Round 2: Choose the remaining students with the highest priority until all the

positions are filled or there is no unchosen students remaining.

Note that, since the students are indi↵erent between types, the outcome of the

horizontal envelope choice rule is a set of students rather than a set of contracts.

They further show that the chosen set of the students that satisfies the maximally

complying with the reservations, eliminating justified envy then non-wastefulness is

unique, implying that these three properties fully characterized the choice rule.

2.4 The weak preferences environment

We first provide some motivative examples which show that when students have

weak preferences over the types, directly employing the horizontal envelope choice

rule can be problematic since the preferences are not taken into consideration.

Example 2.1. (Unfairness in the weak preferences environment)

• S = {s1,s2,s3,s4} with s1⇡s2⇡s3⇡s4

• T = {t1,t2}, rt1 = 2, rt2 = 1, q = 3

• ⌧(s1) = {t0,t1,t2}; ⌧(s2) = {t0,t2}; ⌧(s3) = {t0,t1}; ⌧(s4) = {t0,t2}

11
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• t2 �s1 t1 �s1 t0 ; t2 �s2 t0 ; t1 �s3 t0; t2 �s4 t0

In this case, we can show that C̃h(S) = {s1,s2,s3}. In addition, the only possible

way to accomodate s1, s2 and s3 in the horizontal envelope choice rule is to match

s1 with t1, s2 with t2 and s3 with t1.

In Example 2.1, even though s1 has a higher priority than s2 and s2’s types is a

proper subset of s1’s, s1 will be enrolled through a less preferred type (i.e., t1). If

being admitted through t2 means being provided with a more generous scholarship,

C̃h can cause unfairness in the sense we illustrate in this example.

A more appropriate outcome is to enroll s1 with t2, s2 with t0 and s3 with t1. The

reasoning is as follows. First, since s1 has the highest priority and the richest type

space. s1 should be enrolled with his top choice, namely t2. Now the school is facing

a sub-problem. There are three candidates, s2, s3 and s4; the total capacity for the

school is 2 and there are 2 reserved seats for t1. To enroll s3 with type t1 and s2

with t0 is the straightforward solution to this sub-problem.

Example 2.2. (Paternalism in the weak preferences environment)

• S = {s1,s2,s3} with s1⇡s2⇡s3

• T = {t1}, rt1 = 1, q = 2

• ⌧(s1) = {t0,t1}; ⌧(s2) = ⌧(s3) = {t0}

• t0 �s1 t1

In this environment, we can confirm that C̃h(S) = {s1,s2} with s1 matched to t1

and s2 matched to t0.

In this example, student s1 has the highest priotity and is the only one who has

the privileged type. Thus, s1 would have been enrolled even if she doesn’t have the

privileged type. In the example, s1 prefers to be enrolled as the normal type than

the privileged type t1. This can be justified by interpreting that being enrolled as

t1 will incur some obligations. A more appropriate outcome is to enroll s1 with t0

and s2 with t0.
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In the remaining of this section, we formalize the properties that a desirable choice

rule should have. We first introduce the concept of no justified envy.

Definition 2.5. Given a feasible outcome Y, a student i has justified envy to-

wards student j where i /2 s(Y ) and j 2 s(Y ), if either of the following condi-

tion holds: There exists a feasible outcome Z such that s(Z) = (s(Y ) [ {i}) \ {j},

⌘(Z) � ⌘(Y ) and Z ⌫m Y for all m⇡i except for j. In addition, if j⇡i, the inequality

should be strict.

In words, a student i who is not enrolled has justified envy towords an enrolled

student j if either of the following two conditions hold. First, suppose i has higher

priority than j. By enrolling i and rejecting j, there is still a way for the school

to keep the same number of assigned reserved seats. Second, suppose i has lower

priority than j. The school can assign strictly more reserved seats by replacing j

with i. Such assignment may involve reassigning other students’ seats. We impose

the restriction on the reassignment that those who has higher priority than i will

not be strictly worse o↵.

Note that this definition of no justified envy provide extra priori for those who can let

the school increase reserve utilization. Thus, the spirit that the school should not

waste the reservation seats is inherantly embedded in this concept of no justified

envy. On the other hand, the school cannot assign as many reserved seats as it

wishes. The restriction that the reassignment of reserved seats should not hurt

those who has higher priority than i can prevent undesired situations in Example

2.1 and 2.2 and this makes the definition di↵erent from the concept proposed by

Sönmez and Yenmez (2021).

Definition 2.6. An outcome Y exhibits no justified envy if no student has

justified envy. A choice rule has no justified envy if it always chooses outcomes

that exhibit no justified envy.

Example 2.3. (No justified envy)

• S = {s1,s2,s3} with s1⇡s2⇡s3

13
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• T = {t1}, rt1 = 1, q = 2

• ⌧(s1) = ⌧(s3) = {t0,t1}; ⌧(s2) = {t0}

• t1 ss1 t0; t1 ss3 t0

Consider the outcome Y1 = {(s1,t0),(s3,t1)}. In Y1, s2 has justified envy towards s3.

To see this, let Z1 = {(s1,t1),(s2,t0)}. s1 is indi↵erent between Y1 and Z1 while s2

prefers Z1 to Y1 and the total number of the privileged contracts are the same. So s2

has justified envy. On the other hand, Y2 = {(s1,t1),(s2,t0)} has no justified envy.

The concept of no justified envy describes if a student is not enrolled in a particular

outcome, in what condition she can block this outcome. In our setting, students care

about the types of seats, as is shown in Example 2.1 and 2.2, so it is possible that

even if a student is enrolled, she still want to block the outcome. We introduce the

concept of no swapping condition indicating under what circumstances a enrolled

student can block the outcome.

Definition 2.7. Given a feasible outcome Y , a student i who has a contract in Y

can ask for swapping by a privileged contract if:

• There exists (i, tk) such that (i, tk) �i Y , and

• There exists a feasible outcome Z with (i, tk) 2 Z such that Z ⌫m Y for all

m⇡i.

In words, a student i can ask for swapping by a privileged contract (i, tk) if the

school can reassign the reserved seats to the enrolled students and all the students

who have a higher priority than i are not worse o↵ because of the reassignment.

Note that such reassignment may sacrifice the number of reserved seats assigned, in

order to satisfy fairness.

Definition 2.8. Given a feasible outcome Y , a student i who has a contract (i,tk)

in Y can ask for swapping by a normal contract if:

• (i,t0) �i (i,tk); and

• There exists a feasible outcome Z with (i,t0) 2 Z such that Z ⌫m Y for all

14
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m⇡i.

• No student has justified envy towards i under Z.

The only di↵erence between asking for swapping by a privileged contract and a

normal one is that when a student wants to replace her contract by a normal one, a

further requirement which says no one will have justified envy towards i under the

new outcome should be satisfied. This requirement is needed because in our setting,

the school gives the students with privileged types extra prioiri and if a student want

to be enrolled as a normal type, that means she should give up the extra priori. The

next example makes this point clear.

Example 2.4. (Asking for swapping by a normal contract)

• S = {s1,s2,s3} with s1⇡s2⇡s3

• T = {t1}, rt1 = 1, q = 2

• ⌧(s3) = {t0,t1}; ⌧(s1) = ⌧(s2) = {t0}

• t0 �s3 t1

Let Y = {(s1,t0),(s3,t1)}. Here, s3 cannot exchange his contract by (s3,t0) since s3

should not be enrolled if she give up the extra priority of being belong to the t1 group.

Definition 2.9. We say that an outcome satisfies the no swapping condition if

no student can ask for swapping by a privileged contract or a normal contract.

Example 2.1(continued) The outcome {(s1,t1),(s2,t2),(s3,t1)} does not satisfies

the no swapping condition because s1 ask for swapping by a privileged contract

(s1,t2).

Example 2.2(continued) The outcome {(s1, t1),(s2,t0)} does not satisfies the no

swapping condition because s1 can ask for swapping by a normal contract (s1,t0).

Lastly, we provide another commonly used property of choice rule.

Definition 2.10. A choice rule is acceptant if for every X ✓ X , |Ch(X)| =

min{|s(X)|, q}.

15



CHAPTER 2. AFFIRMATIVE ACTIONS WITH MULTI-DIMENSIONAL
PRIVILEGED TYPES Hao Zhou

Acceptance says that the school enrolls the students up to its capacity. This condi-

tion is commonly required in the matching literature and we will see in section 6, it

is crucial to characterize the choice rule that we propose in the next section.

Note that there are two channels that the concept of no justified envy condition

and no swapping condition can potentially prevent the maximum utilization of the

reserved seats. First, by the requirement of no justified envy conditon, a student i

may not has justfied envy towards another student j even if replacing j with i can

allow the school to assign one more reserved seat. This is because such reassignment

may hurt some other students with a higher priority. For instance, in example 2.1,

in the proposed outcome {(s1,t2),(s3,t1),(s2,t0)}, s4 does not have justified envy to-

wards s2, even if the outcome {(s1,t1),(s3,t1),(s4,t2)} assigns one more reserved seat.

Second, no swapping condition allows some enrolled students to ask for swapping

by a a normal contract. This again reduces the utilization of reserved seats. In

example 2.2, s1 is entitled to choose to be enrolled with normal type.

2.5 The Sequential Reservation Choice Rule

Now we propose the sequential reservation choice rule that has no justified envy,

satisfies the no swapping condition and is acceptant in the weak preference environ-

ment.

We first propose the static reservation choice rule which is modified from the hor-

izontal envelope choice rule proposed by Sönmez and Yenmez (2021). The static

reservation choice rule provides us wth a systematic way to determine whether a

new student can increase the reservation utilization and explicitly tells us the type-

specific seat each enrolled student will be assigned. To do this, we first introduce a

concept called the “rearrangement chain”.

2.5.1 The Rearrangement Chain

We specify two kinds of rearrangement chain. We use the strict rearrangement chain

to determine whether adding a new student with one of her privileged contracts is
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feasible given the existing pool of contracts and if it is, we can reassign the type

seats to the students according to the rearrangement chain. By doing so, the school

can strictly enlarge the utilization of the reserved seats by one. We also use the weak

rearrangement chain to add a new student without decreasing the cardinal number

of assigned reserved seats. Both of them are crucial to defining the choice rule we

shall propose.

Definition 2.11. Given a feasible outcome Y 2 O, we call the following sequence

of contracts:

(s1,t1),(s2,t1),(s2,t2),(s3,t2),...,(sk,tk) where si 6= sj, ti 2 T , ti 6= tj for all i,j 2

{1,2,...,k} a strict rearrangement chain, if it satisfies:

1. the 2nth contracts belong to Y , where n 2 {0,1,...,k � 1};

2. the (2n+ 1)th contracts do not belong to Y , where n 2 {0,1,...,k � 1};

3. |Ytk | < rtk .

Definition 2.12. Given a feasible outcome Y 2 O, we call the following sequence

of contracts:

(s1,t1),(s2,t1),(s2,t2),(s3,t2),...,(sk,tk) where si 6= sj, ti 2 T , ti 6= tj for all i,j 2

{1,2,...,k � 1} a weak rearrangement chain, if it satisfies:

1. 2nth contracts belong to Y , where n 2 {0,1,...,k � 1};

2. (2n+ 1)th contracts do not belong to Y , where n 2 {0,1,...,k � 1};

3. tk = t0 and |Y | < q.

Note that each rearrangement chain contains odd number of contracts. Each 2nth

contract has the same type as the contract immediately prior to it and each (2n+1)th

has the same student as the contract immediately prior to it. The only di↵erence of

the strict and weak rearrangement chain is that, in a strict rearrangement chain, all

the contracts are privileged contracts and we require that the number of contracts

in the current pool which share the same type with the last contract of the chain

(namely, (sk,tk)) is strictly less than the number of the seats reserved for that type

while in a weak rearrangement chain, the last contract of the chain is a normal
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contract and we only require that the number of overall contracts in the current

pool is strictly less than the capacity of the school. We now provide an example of

the strict rearrangement chain to illustrate the idea.

Example 2.5. (The strict rearrangement chain)

• S = {s1,s2,s3,s4} with s1⇡s2⇡s3⇡s4

• T = {t1,t2,t3}, rt1 = rt2 = 1, rt3 = 2

• ⌧(s1) = {t0,t2,t3}; ⌧(s2) = {t0,t1,t3}; ⌧(s3) = {t0,t1,t3}; ⌧(s4) = {t0,t1}

• Y = {(s2,t1),(s1,t3),(s3,t3)}

• A strict rearrangement chain is: (s4,t1),(s2,t1),(s2,t3),(s1,t3),(s1,t2).

The idea of rearrangement chain is that we can add the first contact into Y and

replace 2nth contracts by (2n+1)th contracts and since the number of the contracts

with the type in the last contract of the chain does not hit the type-specific upper

bound, (i.e., |Ytk | < rtk) in the strict rearrangement chain or the total capacity, (i,e,

|Y | < q) in the weak rearrangement chain, the resulting outcome is still feasible. In

addition, by doing the replacement according to the strict rearrangment chain, the

school can assign one more reserved seat and by doing the replacement according

to the weak rearrangement, the school can assign the same number of the reserved

seats as the original outcome.

Thus, in Example 2.5, under Y , the school assigns three reserved seats in total.

Starting with Y , according to the rearrangement chain, the school can reassign

the t1 seat which is previously assigned to s2 under Y to s4, where s2 now in

turn takes s1’s t3 seat and s1 takes the t2 seat. The existence of the untaken t1

seat is assured by the last condition of the strict reassignment chain. After being

operated by the rearrangement chain, we now get another feasible outcome Y 0 =

{(s4,t1),(s2,t3),(s1,t2),(s3,t3)}, where the school assigns four reserved seats to the

students.

Also note that both strict and weak rearrangement chain can consist of a single

contract where we simply add this contract to the current pool and in that case no
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“rearrangment” occurs.

Example 2.5 shows that starting with a particular outcome Y , if we can find a strict

rearrangement chain starting with a new student, we can assign one more reserved

seat. The next lemma shows that if we can assign one more reserved seat with

respect to one particular feasible outcome Y , then we can do the same thing with

respect to every feasible outcomes containing the same set of students as Y .

Lemma 2.1. Given a feasible outcome Y 2 O, if a student i /2 s(Y ) increases

reserve utilization with respect to Y then, for all feasible Y 0 such that s(Y 0) = s(Y ),

i increases reserve utilization with respect to Y 0.

Equipped with lemma 2.1, it is without loss of generality for us to say that a student

can increase reserve utilization with respect to a set of existing students without

referring to the particular outcome.

Proposition 2.1. Given a feasible outcome Y 2 O, a student i /2 s(Y ) increases

reserve utilization with respect to Y if and only if we can find a strict rearrangement

chain starting with (i, tk) for some tk 2 ⌧(i) \ t0.

As we can see in Example 2.5, suppose we can find a strict rearrangement chain, then

the school can assign one more reserved seats to the students by replacing all the

even number indexed contracts with the odd number indexed contracts. Proposition

2.1 says that the opposite is also true. Suppose there is an approach that the school

can increase the reserve utilization by including a new student, then there is a strict

rearrangement chain starting with one of the privileged contract of that student.

2.5.2 The Rearrangement Chain Finding Process

From Proposition 2.1 we can see that the rearrangement chain is important to deter-

mine whether adding a new student can make the school increase reserve utilization.

The question now is that how to find a rearrangement chain given the current pool

of the contracts and we answer this question in this subsection.

Given a consideration set X and a feasible outcome Y 2 O and a student i /2 s(Y )
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with a contract (i,t1), we refer to the following process as a strict rearrangement

chain finding process:

Step 1: Let A1 be the students with type t1 in Y , (i.e., A1 = s(Yt1)), and let

T 1 = {t1}. 1.1: Suppose |A1
| < rt1 , then call Y 0 := {(i,t1)} a strict rearrangement

chain and stop.

1.2: Suppose |A1
| = rt1 and 8s 2 A1, ⌧(s|X) ✓ {t0}[ T 1, then (i, t1) is not chosen.

1.3: Suppose |A1
| = rt1 and 9s 2 A1, ⌧(s|X) * {t0}[T 1, then define T 2 = {tk|9s 2

A1 s.t. tk 2 ⌧(s|X) and tk /2 {t0}[T 1
} and A2 = [tk2T 2s(Ytk). Go to the next step.

Step 2: Given A2 and T 2.

2.1: Suppose |A2
| <

P
tk2T 2 rtk , then we can find t2 2 T 2 such that |Yt2 | < rt2 and

s1 2 A1 with t2 2 ⌧(s1|X). Call Y 0 := {(i,t1),(s1,t1),(s1,t2)} a strict rearrangement

chain and stop.

2.2: Suppose |A2
| =

P
tk2T 2 rtk and 8s 2 A2, ⌧(s|X) ✓ {t0} [ T 1

[ T 2, then (i, t1)

is not chosen.

2.3: Suppose |A2
| =

P
tk2T 2 rtk and 9s 2 A2, ⌧(s|X) * {t0} [ T 1

[ T 2, then define

T 3 = {tk|9s 2 A2 s.t. tk 2 ⌧(s|X) and tk /2 {t0} [ T 1
[ T 2

} and A3 = [tk2T 3s(Ytk).

Go to the next step.

In general, step m: Given Am and Tm.

m.1: Suppose |Am
| <

P
tk2Tm rtk , then we can find tm 2 Tm such that |Ytm | < rtm

and sm�1
2 Am�1 with tm 2 ⌧(sm�1

|X). Call Y 0 := {(i,t1),(s1,t1),(s1,t2),...,(sm�1,tm)}

where (sj,tj) 2 Y , sj 2 Aj and tj 2 T j for all 1  j  m, a strict rearrangement

chain and stop.

m.2: Suppose |Am
| =

P
tk2Tm rtk and 8s 2 Am, ⌧(s|X) ✓ [1jmT j

[ {t0}, then

(i, t1) is not chosen.

m.3: Suppose |Am
| =

P
tk2Tm rtk and 9s 2 Am, ⌧(s|X) * [1jmT j

[ {t0}, then

define Tm+1 = {tk|9s 2 Am s.t. tk 2 ⌧(s|X) and tk /2 [1jmT j
[ {t0}} and

Am+1 = [tk2Tm+1s(Ytk). Go to the next step.
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The process must terminate since [T j is strictly increasing. This process either

produces a strict rearrangement chain Y 0 or does not choose (i,t1).

In words, the strict rearragement chain finding process can be described as follows:

First search for all the students who has type t1 contracts in Y . We refer to all these

students as A1 and the type t1 as T 1. If there is a vacant t1 seat, then (i, t1) is a

strict rearrangement chain and we are done. If not, check whether the students in

A1 have privileged types other than the types in T 1. We refer to all these types as

T 2. If T 2 is empty, then there is no strict rearrangement chain towards Y starting

with (i,t1). If it is nonempty, then we call all the students who has contracts in Y

with the type in T 2 as A2. We continue to check whether there is a vacant seat

in T 2. If there is, then we are done and if not, we continue to check whether the

students in A2 has types which do not belong to T 1
[ T 2. And so on.

Note that Given a feasible outcome Y and a strict rearrangement chain Y 0, we can

define a new outcome Y 00 := (Y [ Y 0) \ (Y \ Y 0). This outcome is still feasible and

the school enrolls one more student and assigns one more reserved seat compared

to the original outcome Y .

Given the consideration set X, a feasible outcome Y with |Y | < q and a student

i /2 s(Y ) with a contract (i,t1), we now provide the weak rearrangement chain

finding process as follows:

Step 1: Let A1 be the students with type t1 in Y , (i.e., A1 = s(Yt1)), and let

T 1 = {t1}. 1.1: Suppose t1 = t0, the call Y 0 := {(i,t1)} a weak rearrangement chain

and stop.

1.2: Suppose t1 6= t0 and 8s 2 A1, ⌧(s|X) ✓ T 1, then (i, t1) is not chosen.

1.3: Suppose t1 6= t0 and 9s 2 A1, such that ⌧(s|X) * T 1, then define T 2 = {tk|9s 2

A1 s.t. tk 2 ⌧(s|X) and tk /2 T 1
} and A2 = [tk2T 2s(Ytk). Go to the next step.
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Step 2: Given A2 and T 2.

2.1: Suppose t0 2 T 2, then we can find s1 2 A1 with t0 2 ⌧(s1). Call Y 0 :=

{(i,t1),(s1,t1),(s1,t0)} a weak rearrangement chain and stop.

1.2: Suppose t0 * T 2 and 8s 2 A2, ⌧(s|X) ✓ T 1
[ T 2, then (i, t1) is not chosen.

1.3: Suppose t0 * T 2 and 9s 2 A2, ⌧(s|X) * T 1
[T 2, then define T 3 = {tk|9s 2 A2

s.t. tk 2 ⌧(s|X) and tk /2 T 1
[ T 2

} and A3 = [tk2T 3s(Ytk). Go to the next step.

In general, step m: Given Am and Tm.

2.1: Suppose t0 2 Tm, then we can find sm�1
2 Am�1 with t0 2 ⌧(sm�1|X). Call

Y 0 := {(i,t1),(s1,t1),(s1,t2),...,(sm�1,t0)} a weak rearrangement chain and stop.

1.2: Suppose t0 * Tm and 8s 2 Am, ⌧(s|X) ✓ [1jmT j, then (i, t1) is not chosen.

1.3: Suppose t0 * Tm and 9s 2 Am, ⌧(s|X) * [1jmT j, then define Tm+1 =

{tk|9s 2 Am s.t. tk 2 ⌧(s|X) and tk /2 [1jmT j
} and Am+1 = [tk2Tm+1s(Ytk). Go

to the next step.

The process must terminate since [T j is strictly increasing. This process either

produces a weak rearrangement chain Y 0 or does not choose (i,t1).

In words, the weak rearrangement chain finding process work as follows: we first

refer to all the students who has type t1 contracts in Y as A1 and the set of type t1

as T 1. If the normal contract belongs to T 1, then {(i,t1)} is a weak rearrangement

chain and we are done. Otherwise, check whether the students in A1 have types

other than the types in T 1. We refer to all these types as T 2. If T 2 is empty, then

there is not weak rearrangement chain starting with (i,s1). If it is nonempty, then we

call all the students who has contract in Y with the type in T 2 as A2. We continue

to check whether the normal type belongs to T 2. If it is, when we can find the weak

rearrangement chain and if not, we continue to check whether the students in A2

have the types which do not belong to T 1
[ T 2. And so on.
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Note that given a feasible outcome Y and a weak rearrangement chain Y 0, we can

define a new outcome Y 00 := (Y [ Y 0) \ (Y \ Y 0). This outcome is still feasible. In

the new outcome, the school enrolls one more student and the total number of the

reserved seats assigned remains the same.

2.5.3 The Reservation Choice Rule

The Static Reservation Choice Rule

Equipped with the rearrangement chain finding process, we can define the static

reservation choice rule Ch⇤ as follows:

Consider the students in the order of their priorities one by one. Without loss of

generality, we denote them by S = {s1,s2,...,sl} such that s1⇡s2⇡s3⇡...⇡sl.

Round 1: In this round, only the contracts with privileged types are considered.

Step 1: Set Y 0 = ;. Consider s1’s privileged types (if any) one by one starting with

the smallest index, and run the strict rearrangement chain finding process. When-

ever we find a strict rearrangement chain Y1, set Y 1 = (Y 0
[ Y1) \ (Y 0

\ Y1) and go

to the next step. Otherwise, s1 will not be chosen in this step and set Y 1 = Y 0.

In general, step k: Given Y k�1. Consider sk’s privileged types (if any) one

by one starting with the smallest index, and run the strict rearrangement chain

finding process. Whenever we find a strict rearrangement chain Yk, set Y k =

(Y k�1
[ Yk) \ (Y k�1

\ Yk) and go to the next step. Otherwise, sk will not be chosen

in this step and set Y k = Y k�1.

Round 2: The outcome of Round 1 is Yl. Since the sum of the reserved seats is less

than the total capacity, there are still vacant seats under Yl. Consider the students

who are not chosen in round 1 one by one based on their priorities. We denote them

by we denote them by S = {sa,sb,...,sj} such that sa⇡sb⇡sc⇡...⇡sj.

Step 1: Consider sa’s contracts in the order of the index of the types. Starting with

the smallest index, run the weak rearrangement chain finding process. Whenever
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we find a weak rearrangement chain Ya, set Y a = (Y l
[ Ya) \ (Y l

\ Ya). Otherwise,

sa will not be chosen and set Y a = Y l. Suppose |Ya| < q, go to the next step.

Otherwise, Ya is the outcome of the static reservation choice rule.

Continue this process until all positions are filled or there is no unchosen students

remaining. The resulting outcome is the outcome chosen by the static reservation

choice rule.

Roughly speaking, in the first round of the static reservation choice rule, the students

are considered one by one according to their priorities. The school will enroll a

new student if including her can strictly increase the reserve utilization. The type

specific seat each enrolled student will get is determined by the strict rearrangement

chains. In the second round, the students who are not chosen in the first round

are considered. The school will enroll a new student if there are still some vacant

seats and including her will not decrease the utilization of the reservation. The

type specific seat each enrolled student (including those who are chosen in the first

round) will get is determined by the weak rearrangement chains.

Also note that when searching for a rearrangement chain for a student, we start

with the her type of the smallest index. This is without loss of generality. The order

of searching for the rearragement will not a↵ect the set of students being enrolled

and this can be assured by Lemma 1.

The Sequential Reservation Choice Rule

The sequential reservation choice rule takes students’ preferences into account. Be-

fore describing the choice rule, we first need to introduce the concept of ordered

indi↵ence classes of the types.

Given a student’s preference %i, we can partition ⌧(si) into several indi↵erence

classes according to si. That is, if two types are indi↵erent with each other,

they are in the same indi↵erence class. We can then rank these indi↵erence classes

according to �i to form ordered indi↵erence classes.
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For example, (si,t1) s (si,t2) � (si,t3) s (si,t0). We refer to {(si,t1),(si,t2)} as first

indi↵erence class and {(si,t3),(si,t0)} as second indi↵erence class. In general, we can

denote i’s ordered indi↵erence classes by Ji1,Ji2,..., and we will denote corresponding

contracts by Xi1,Xi2,...

The sequential reservation choice rule Ch# works as follows:

Step 1: Each student’s first indi↵erence class contracts will be considered. Let

X1 = [i2SXi1. Find Ch⇤(X1). Denote S1 = S \ s(Ch⇤(X1)).

Step 2: Each student in S1’s next indi↵erence class contracts will be included

into the considerate set, if any. Let X2 = [i2S1Xi2 [ X1 Find Ch⇤(X2). Denote

S2 = S \ s(Ch⇤(X2)).

In general, Step k: Each student in Sk�1’s next indi↵erence class contracts will

be included into the considerate set, if any. Let Xk be the union of [1ik�1Xi

and all the contracts newly included in this step. Find Ch⇤(Xk). Denote Sk =

S \ s(Ch⇤(Xk)).

The process will terminate when each student who hasn’t a contract been chosen

at the last step doesn’t have any further contracts to propose. Suppose the process

stops at step t, the final outcome of Ch# is Ch⇤(X t).

2.5.4 An Example of the Sequential Reservation Choice Rule

Now we provide a comprehensive example to show how does the sequential reserva-

tion choice rule work.

Example 2.6. (The Sequential Reservation Choice Rule)

• S = {s1,s2,s3,s4,s5,s6,s7,s8} with s1⇡s2⇡s3⇡s4⇡s5⇡s6⇡s7⇡s8

• T = {t1,t2,t3}, rt1 = rt3 = 1, rt2 = 2, q = 5

• The types and preferences of the students are summarized in table 1.
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Table 1

s1 s2 s3 s4 s5 s6 s7 s8
First indi↵erence class t1, t2 t1 t3, t0 t1 t3 t0 t1, t3 t2, t3
Second indi↵erence class t0 t0 t0 t2 t0 t0
Third indi↵erence class t0

The sequential reservation choice rule work as follows: In the first round, only the

first indi↵erence class contracts will be considered. So the considerate set is X1 =

{(s1,t1),(s1,t2),

(s2,t1),(s3,t3),(s3,t0),(s4,t1),(s5,t3),(s6,t0),(s7,t1),(s7,t3),(s8,t2),(s8,t3)}.

In step 1, (s1, t1) will first be chosen. now consider (s2,t1), we can find the following

rearrangement chain {(s2,t1),(s1,t1),(s1,t2)}, so (s2, t1) will be chosen and s1 will be

reassigned with (s1,t2). Then, (s3,t3) will be chosen, s4,s5,s6 and s7 will not be chosen

in this step because they can not strictly increase the utilization of the reserved seats.

Finally, s8 will be enrolled as t2.

In step 2, those who have not been chosen in step 1 (in this example, they are

s4,s5,s6,s7) will be considered in priority order. In this step, (s5, t3) will be cho-

sen and s3 will be reassigned with t0. Thus, the result in this round is Y1 =

{(s1,t2),(s2,t1),(s3,t0),(s8,t2),(s5,t3)}.

In the second round, The considerate set will expand which will include the second

indi↵erence class contracts for those who has not been chosen in the first round.

Thus, the considerate set X2 = X1 [ {(s4,t0),(s7,t0),(s8,t0)}. Then we do the

same exercise as round 1 and this will lead to the outcome in this round Y2 =

{(s1,t2),(s2,t1),(s3,t3),(s8,t2),(s4,t0)}.

In the third round the considerate set further expands to include s5’s second indif-

ference class contracts. So X3 = X2 [ {(s5,t2)}. The final outcome of the sequential

reservation choice rule is Y3 = {(s1,t2),(s2,t1),(s3,t3),(s5,t2),(s4,t0)}.

2.6 The properties of the sequential reservation

choice rule

In this section, we show several properties of the sequential reservation choice rule.
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Proposition 2.2. The sequential reservation choice rule has no justified envy, sat-

isfies the no swapping condition and is acceptant.

To prove Proposition 2.2, we need the following lemma.

Lemma 2.2. For any contract (i,tk) 2 Xil, if no contact in Xil is chosen in a

particular step of the sequential reservation choice rule Ch#, then (i,tk) will not be

chosen by any subsequent steps of Ch#.

Note that Lemma 2.2 is di↵erent from the substitutes condition of the horizontal

envelope choice rule C̃h. The substitutes condition of C̃h requires that if a student

is not chosen, then she will still be rejected when some new students are available to

the school. By comparison, Lemma 2.2 involves adding new contracts of the existing

students. In our setting, the expanding of consideration set may potentially incur

the choice rule to revisit the formerly rejected contracts. As a simple example, sup-

pose there are two students (say, s1 and s2 with s1 has the higher priority) who both

have the type t1 but there is only one reserved seat for t1. Then (s2, t1) is rejected.

But suppose now (s1, t2) is available and there are vacant seats for t2, then the school

can reassign the reserved seat for t2 to s1 so that (s2, t1) can be chosen. Thus in

this sense, (s1,t2) and (s2,t1) are complementary to each other. However, lemma 2.2

rules out this possibility. Intuitively speaking, this is because the consideration set

cannot expand arbitarily. A new constract of an existing student will be considered

only when none of the existing constracts of this student is chosen in the current step.

Proposition 2.3. Let Y be the outcome of running Ch# on X and Z be another

outcome that eliminates justified envy, satisfies the no swapping condition and is

non-wasteful. Then for each student i, i is indi↵erent between Y and Z. In addition,

Z can be obtained by first reordering the index of the types and then running the

sequential reservation choice rule.

Proposition 2.3 establishes that, the sequential reservation choice rule is unique.

That is, eliminating justified envy, satisfying the no swapping condition and non-

wastefulness characterizes the sequential reservation choice rule. This result is also
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a generalization of Sönmez and Yenmez (2021)’s result that when all the student is

indi↵erent to the way they are enrolled, the chosen set of the students that satisfies

maximally filling the reserved seats, eliminates justified envy and is acceptant is

unique.

Proposition 2.4. The sequential reservation choice rule can be implemented in

polynomial time.

This proposition shows that the sequential reservation choice rule is computationally

e�cient.

The next proposition shows that the sequential choice rule is strategy-proof. That

is, it is a weakly domiant strategy for each student to reveal her own preference

truthfully. Note that this property is not satisfied if the school simply want to

make the maximum utilization of the reserved seat. In Example 2.1, if s1 hides her

type t1, then she will be enrolled through t2, which make her strictly better o↵. In

Example 2.2, if s1 hides her privileged type t1, she will be enrolled through t0 which

she strictly prefers.

Proposition 2.5. For each student i and for each fixed X, Ch#(X,%�i , %i) %i

Ch#(X,%�i , %0

i), for all %0

i in �.

2.7 Multiple school environment

In this section, we explore the environment where there are multiple schools. Our

analysis in the previous sections is useful in the decentralized market where each

school’s enrollment decision is independent of others, while in the centralized market,

we need to consider a mechanism that can lead to the stable outcome. We first

introduce some notations.

The set of the school is denoted by C = {c1, c2,..., cp}. ⇡a is the strict priority order

over the set of the students in school a and qa is the total capacity of school a. We

denote the the quota of the reserved seats for type tk in school a by ratk . A contract

x : (i, a, tk) now means student i is enrolled by school a with one of her type tk. The
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set of all the legitimate contracts is denoted by X and all the legitimate contracts

associated with student i is denoted by Xi and we assume that each student i has a

weak preference over Xi with the restriction that a 6= b implies that (i, a, tk) is not

indi↵erent with (i, b, tl) for all tk and tl in ⌧(i). Let ChC(·) = [a2CCha(·). Given

X 2 X , for each student i, let Chi(X) = max⌫i Xi and let ChS(X) = [i2SChi(X).

We now introduce the concept of the stability which is commonly used in the match-

ing literature.

Definition 2.13. A feasible outcome Y is a stable outcome if: (i) ChC(Y ) = Y =

ChS(Y ) and (ii) there is no school a and Y 0
6= Cha(Y ) such that Y 0 = Cha(Y 0

[Y ) ✓

ChS(Y 0
[ Y ).

Condition (i) is the individual rationality condition. If (i) fails, some student or

school blocks the outcome. If conditon (2) fails, there is an alternative set of con-

tracts that a school strictly prefers and that its corresponding students weakly prefer.

To achieve the stable outcome, we only need to check whether the sequential reserva-

tion choice rule satisfies the substitute condition. We first show that the sequential

reservation choice rule violates the substitutability condition introduced by Hat-

field and Milgrom (2005) and the unilateral substitutability condition introduced by

Kamada and Kojima (2018).

Definition 2.14. A choice rule Ch(·) is substitutable if for all z,z0 2 X and

Y ✓ X, z /2 Ch(Y [ {z}) implies z /2 Ch(Y [ {z,z0}).

Definition 2.15. A choice rule Ch(·) is unilaterally substitutable if for all z,z0 2

X and Y ✓ X for which s(z) /2 s(Y ), z /2 Ch(Y [ {z}) implies z /2 Ch(Y [ {z,z0}).

It’s clear that substitutability condition is stronger than the unilateral substitutabil-

ity condition. The following example shows that the sequential reservation choice

rule is not unilaterally substitutable.

Example 2.7. (The sequential reservation choice rule is not substitutable.)

• S = {s1,s2,s3} with s1⇡s2⇡s3

• T = {t1,t2}, rt1 = rt2 = 1, q = 2
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• Y = {(s1,t1),(s2,t0)}, z = (s3,t1) and z0 = (s1, t2).

In this example, we have Ch(Y [ {z}) = {(s1,t1); (s2,t0)} and Ch(Y [ {z,z0}) =

{(s1,t2); (s3,t1)}. Since z /2 Ch(Y [ {z}) but z 2 Ch(Y [ {z,z0}) sequential reserva-

tion choice rule is not substitutable.

The following lemma shows that the sequential reservation choice rule satisfies the

bilateral substitutability condition, which is weaker than unilateral substitutatility.

Definition 2.16. A choice rule Ch(·) is bilaterally substitutable if for all z,z0 2

X and Y ✓ X for which s(z), s(z0) /2 s(Y ), z /2 Ch(Y [ {z}) implies z /2 Ch(Y [

{z,z0}).

Lemma 2.3. The sequential reservation choice rule is bilaterally substitutable.

Armed with Lemma 2.3, by Kamada and Kojima (2018), we can show that when we

embed the sequential reservation choice rule into the cumulative o↵ering process, it

can result in a stable outcome. We put this result in the next proposition.

Proposition 2.6. The cumulative o↵ering process with the choice function to be

the sequential reservation choice rule results in a stable outcome.

2.8 Conclusion

In this chapter, we examine the model of the controlled school choice programs

with a�rmative actions, in which a student may belong to multiple privileged types

and have a weak preference over these types. We first provide examples that the

pursuit of maximally complying with the reservations could be problematic. We

then propose the properties that a desirable choice function in the weak preferences

environment should satisy: having no justified envy, satisfying no swapping condi-

tion and non-wastefulness. Next, we propose the sequential reservation choice rule

that satisfies these properties. Furthermore, we show that the sequential reservation

choice rule is characterized by these three properties.

There are many directions our analysis can be extended. For example, it would be

interesting to consider maximum quotas in additon to minimum quotas (reserves).
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Second, Kojima et al. (2018) provide a general framework to design matching mech-

anisms under constraints. They show that if the preferences of the schools can be

represented by an M \-concave function, then the generalized deferred acceptence

algorithm can produce student-optimal stable matchings and is strategy-proof for

students. While we do not use their framework in this chapter and it is tricky to

check whether our fairness requirements satisfy the su�cient condition provided in

their paper for M \-concavity, it is interesting to search for a weaker su�cient con-

dition to incorporate more situations in their framework. The model in this chapter

may serve as a good starting example. These are left for future research.

Appendix

Proof of Lemma 2.1: Suppose Y assigns k reserved seats to the students and

including a new student can let the school assign k+1 reserved seat. Now, starting

with Y 0 which involve the same set of the students as Y . The school can can first

replace all the contracts so that the resulting outcome is exactly Y and then adding

the new student. ⌅

Lemma 2.4. Let S 2 S to be a set of students. Suppose there is a way to assign a

reserved seat to each student in S (i.e., ⇢(S) = |S|), then for any subset A of S, we

must have: |A| 
P

tk2T
rtk where T = {tk|9i 2 A s.t. tk 2 ⌧(i) \ t0}.

Proof of Lemma 2.4: Suppose there exists a set A of sutdents such that the

number of students is strictly larger than the sum of reserved seats for which the

students in A are eligible. Then it is clear that at least one of the student in A can-

not be assgined to a reserved seat anyway. This is contradictory to the assumption

that each of the student in S is assigned to a reserved seat. ⌅

Proof of Proposition 2.1:

The “if” part: if there is a strict rearrangement chain starting with (i, tk), then we

can add this contact into Y and replace 2nth contracts by (2n + 1)th contracts and

since the number of the contracts with the type in the last contract of the chain

31



CHAPTER 2. AFFIRMATIVE ACTIONS WITH MULTI-DIMENSIONAL
PRIVILEGED TYPES Hao Zhou

hasn’t hit the upper bound, (i.e., |Ytk | < rtk), the resulting outcome is still feasible.

The “only if” part: suppose i increases reserve utilization with respect to Y , we will

use a constructive way to find a strict rearrangement sequence.

Let A denote the set of students among s(Y ) who are assigned the reserved seats in

Y . Suppose i increases reserve utilization with respect to A through (i,t). Without

loss of generality, we set t := t1. Now there are two cases.

Case 1: |(YA)t1 | < rt1 . In this case, (i,t1) is the strict required rearrangement chain

and we are done.

Case 2: |(YA)t1 | = rt1 . In this case, there must exists s0 2 A such that (s0,t1) 2 YA

and 9t0 2 ⌧(s0) \ t0 and t0 6= t1. Let T 2 be the set of all the types that students who

are currently assigned t1 have, excluding {t1}. Note that the nonemptiness of T 2

is guaranteed by Lemma 2.4. Suppose otherwise, let A0 be the set of students in A

having type t1 and none of them has other privileged types. Then |A0
\ {i}| > rt1 ,

contradicting to the assumption that i can increase reserve utilization through (i,t1).

Suppose we have already found T 2. Now there are still two cases.

Case 1: there exists s1 2 s(Yt1), t2 2 (⌧(s1)\ t0) and t2 2 T 2 such that |(YA)t2 | < rt2 .

If this is the case, then (i,t1),(s1,t1),(s1,t2) is the required strict rearrangement chain.

Case 2: for all s 2 s(Yt1) and t 2 (⌧(s)\ t0) ✓ T 2 such that |(YA)t| = rt. In this case,

there must exists s00 2 Yt0 for some t0 2 T 2 and 9t00 2 ⌧(s00)\t0 such that t00 /2 T 2
[{t1}.

Let T 3 be the set of all such types. That is, T3 is the set of privileged types the

students currently assigned reserved seat in T 2 have, excluding T 2
[{t1}. Again, the

nonemptiness of and T 3 is guaranteed by Lemma 2.4. Suppose otherwise, let A00 to

be the set of students in A having types in {t1}[T 2, then |A00
[{i}| >

P
ti2{t1}[T 2 rti ,

contradicting to the assumption that i can increase reserve utilization through (i,t1).

We can proceed the process in the above way. Since the number of privileged types

|T | is finite, we can always find a required rearrangement chain. ⌅

32



CHAPTER 2. AFFIRMATIVE ACTIONS WITH MULTI-DIMENSIONAL
PRIVILEGED TYPES Hao Zhou

Proof of Lemma 2.2: We di↵erentiate two ways for the contract (i,tk) to be chosen

at some step of Ch#. The first one is that there is a strict or weak rearrangement

chain starting at (i,tk). In the second situation, (i,tk) belongs to a stict or weak

rearrangement chain but not the starting contract. We first show that if no contract

in Xil is chosen in step m of Ch#, then there is no strict or weak rearrangement

starting with (i,tk) in any sebsequent steps of Ch#.

Let Y to be the set of chosen contracts in step h, round 1 before i is considered.

Since (i,tk) is not chosen in step h of the Ch#, then in step h, there is no strict

rearrangement chain with respect to Y starting at (i,tk). According to the strict

rearrangement chain finding process, this means that there is no rearrangement

chain start with (i,ti) with respect to Y means there exists an integer n such that

X

1mn

Am =
X

tk2[1mnTm

rtkand for all s 2 [1mnA
m, ⌧(s) ✓ {t0} [1mn Tm

(2.1)

Where Am and Tm are defined in the strict rearrangement chain finding process.

The only possible case to find a strict rearrangement chain start with (i,tk) in the

subsequent steps is that some students in [1mnAm are rejected. Consider the

first step where a student (say, sa) in [1mnAm is rejected. There must exists a

student sb such that no contract of sb is chosen at step h, sb has a higher priority

than sa and sb has a privileged contract being chosen in this step. In addition,

for tj 2 ⌧(b) * {t0} [1mn Tm, we cannot find a strict rearrangement chain that

contains (b,tj) because otherwise we can find a strict rearrangement chain starting

with one of sa’s contract and sa will not be rejected. Thus, the condition (2.1) still

holds with sb taking the place of sa and therefore (i,tk) will not be chosen in this

step. We can repeatedly use this argument and conclude that (i,tk) will not be the

starting contract of a strict rearrangement chain in any subsequent steps of Ch#.

We then show that there is no weak rearrangement chain starting with (i,tk) in

step h of Ch#. Let �(Xh) denote the number of privileged contracts chosen in the

first round of step h. Denote A(h) the set of the students who are qualified to be
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enrolled in round 2 of step h and have higher priorities than i. According to the

weak rearrangement chain finding process, we have

|A(h)| > q � |�(Xh)| (2.2)

Consider a subsequent step k. Note that |Xh| ⇢ |Xk| and this implies |�(Xh)| <

|�(Xk)|. Thus the remaining seats for round 2 of step k (i.e.,q � |�(Xh)|) is even

less. Thus, (i,tk) will not be the starting contract of a weak rearrangement chain in

any subsequent steps of Ch#.

Finally, if (i,tk) belongs to a strict or weak rearrangement chain but not the start-

ing contract in some subsequent step, we can truncate this rearrangement chain so

that (i,tk) is the starting contract. This contradicts to the results be have discussed

above. ⌅

We now propose an immediate corollary of lemma which says that as the sequential

choice rule processes, all the students are weakly worse o↵.

Corollary 2.1 Let Y be the outcome of running Ch# on X. Let X t be the contracts

available to the school in the final step of Ch#. Then for Xi \ Y = ;, Xi = X t
i . For

Xi \ Y 6= ;, for all (i,tk) 2 X t
i , we have (i,tk) ⌫i Y .

Proof of Proposition 2.2: We first show that Ch# has no justified envy. Let

Y = Ch#(X) and let X t be the consideration set for the school in the final step of

Ch#. Suppose there exists i /2 s(Y ) who has justifed envy towards j 2 s(Y ). Then

we can find a rearrangement chain with respect to Y (strict if j⇡i, weak if i⇡j),

starting with one of i’s privileged contract (denote it by (i,tk)). Since i /2 s(Y ), by

corollary 2.1, (i,tk) 2 X t, which means it has been rejected in some earlier step. By

lemma 2.2, we cannot find a rearrangement chain in the final step, which creates a

contradiction.
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We then show that no student can ask for swapping by a privileged contract. Sup-

pose i can ask for swapping by a privileged contract (i,tk). Since (i,tk) �i Y , (i,tk) is

in the consideration contract in some previous step and is not chosen. By lemma 2.2,

we cannot find a rearrangement chain starting with (i,tk). The second condition for

asking for a swapping by a privileged contract cannot hold which is a contradiction.

Suppose a student i who has a contract (i,tk) 2 Y can ask for swapping by a normal

contract. Since (i,t0) �i (i,tk), (i,t0) is in the consideration set in some previous

step (say, step l) and being rejected. Then there exists another student j who has

contract being chosen in step l but not in the final step. j has justified envy towards

i with respect to Y \ {(i,tk)} [ {(i,t0)}, otherwise there is a weak rearrangement

chain starting with (i,t0) and this contradicts to Lemma 2.2.

Finally, the choice rule fills its seats up to its total capacity, so it is acceptant. ⌅

Proof of Proposition 2.3 Suppose that there exists students who are not indif-

ferent between Y and Z. Let i be the student who has the highest priority among

them according to ⇡. Without loss of generality, we can assume that Y �i Z. We

denote the set of the students who have higher priorities than i by p(i) and who has

lower priority than i by p(i). Then for j 2 p(i) , we have Y ⇠j Z. There are four

cases for this to happen, we show that all of them result in contradiction.

In the first case, suppose (i, tk) 2 Y where tk 6= t0 and (i, tl) 2 Z. The school can

re-sign the contracts in Z with all the students in p(i) such that the re-signed con-

tracts are the same as in Y and p(i) to be the normal contracts. Such reassignment

of the seats is feasible and will not make those who in p(i) strictly worse o↵. Thus,

Z does not satisfies the no swapping condition.

Secondly, suppose (i, t0) 2 Y and (i, tl) 2 Z. We can do the same reassignment as

in the first case. Since there is no justified envy towards i in Y , there is no justified

envy towards i in the outcome re-signed from Z as well. Thus, Z does not satisfies

the no swapping condition.

In the third case, suppose (i,tk) 2 Y where tk 6= t0 but i /2 s(Z). Suppose students

in p(i) take weakly more reserved seats in Y than in Z. Starting from Z, we can
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reassign the seats in the following way. For each student in p(i), assign the seat

just the same as in Y . If a type of privileged contracts, say ts, exceeds its maximal

number by n because of this process, then reassign those who have the lowest n pri-

orities of type ts to the normal contracts. Note that this reassignment weakly signs

more privileged contracts than Z and it’s thus easy to see that i has justified envy

towards any of the student who has lower priority than her. This contradicts to the

assumption that Z eliminates justified envy. Suppose students in p(i) take strictly

less reserved seats in Y than in Z. Then under Z either i can increase the reserve

utilization through (i,tk) or we can including (i,tk), let any one of the student in

p(i) who is assigned a privileged seat to be reassigned to a normal seat and reject

any one of the student in p(i) \ s(Z). Otherwise, Y is not feasible.

In the last case, suppose (i,t0) 2 Y but i /2 s(Z). Suppose students in p(i) take

strictly more reserved seats in Y than in Z. Starting from Z, for each student in p(i),

assign the seat just the same as in Y . If the resulting outcome is still feasible, then

i has justified envy towards any of the student in p(i)\ s(Z). If a type of privileged

contracts, say ts, exceeds its maximal number, then i has justified envy towards a

student in p(i)\s(Z) who takes the type ts seat in Z. Suppose students in p(i) take

weekly less reserved seats in Y than in Z. We can also assume that under Z, all the

students in p(i)\ s(Z) take the privileged seats, for otherwise we can easily find the

justified envy. Denote j as the student who has the highest priority in s(Z) \ s(Y ).

By the construction, we know that i⇡j, so j must take the privileged seat under Z.

Denote all the students who has higher priority than j but has lower priority than i

by p(i,j). By the same argument as in the first and the second cases, we can show

that all the students in p(i,j) \ s(Z) must weakly prefer Z to Y . Finally we claim

that j has justified envy under Y . Starting from Y , we reassign the seats of the

students in p(i) [ p(i,j) such that they are the same as Z. If a type of privileged

contracts, say ts, exceeds its maximal number by n because of this process, then

reassign those who have the lowest n priorities of type ts to the normal contracts.

Note that this process assigns weekly more privileged seats compared to Y . Suppose

there exists a student m in s(Y ) who has lower priority than j, then j has justified
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envy towards m. Suppose each student in s(Y ) has higher priority than j, then j

has justified envy towards i. ⌅

Proof of Proposition 2.4 Firstly, the running time for exploring a rearrangement

chain is O(#|X|) since the total length of the rearrangement chain cannot exceed

#|X|. In each round of the choice rule, the number of implementing the rearrange-

ment chain finding process is less than 2#|X|. We have at most #|T |. So the

sequential reservation choice rule can be implemented in O(#|X|
2). ⌅

Proof of Proposition 2.5 Suppose s1’s true preference is ⌫i and her reported

preference is ⌫0

i. If s1 is not enrolled under ⌫0

i, then the proposition 5 holds imme-

diately since we assume that every contract is acceptable by the studets. Suppose

the contract s1 get by reporting ⌫
0

1 is (s1,t0). First note that by only reporting

(s1,t0), s1 can also obtain (s1,t0). Next, define ⌫
00

i in the following way: trancating

the ⌫i so that (s1,t0) it is easy to see that s1 will still get (s1,t0) under ⌫00

i . Finally,

suppse (s1,t) is outcome of s1 by reporting the true preference. Then (s1,t) ⌫i (s1,t0)

. This is because otherwise by corollary 1, (s1,t0) is in the consideration set in the

last step of the sequential reservation choice rule when reporting the true preference

and it is (s1,t0) rather than (s1,t) that will be chosen and this is a contradiction. ⌅

Proof of Lemma 2.3 Suppose z0 /2 Ch(Y [ {z,z0}), then it is clear that z /2

Ch(Y [ {z,z0}). Suppose z0 2 Ch(Y [ {z,z0}), if the type associated with z0 is not

null type, then we still cannot find the rearrangement chain starting with z, thus

z will not be chosen at the first round. In addition, the number of the previliged

contracts will weakly increase, so that z will not be chosen at the second round

either. If the type associated with z0 is null type. then both z and z0 will not be

chosen at the first round and they are competitive in the second round so that z

will not be chosen at the second round. ⌅
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Chapter 3

Optimal Auction Design with

Referral

3.1 Introduction

There are ample situations where designers can access certain players only through

existing players’ referral, and designers need to provide the right incentives. Sup-

pose you are an owner of a house and would like to sell your property. While it is

possible for you to sell it on your own, it is often in your interest to pay and hire

an real-estate agent since he/she can make your property known to much more po-

tential buyers.1 InnoCentive, one of the leading crowdsourcing platforms for solving

challenges, recently launches a new program called “finder’s fee” which pays solvers

who refer asuitable candidate.2 It is intuitive that more buyers and solvers benefit

sellers and seekers. It is now well-known that more buyers in auctions benefit the

seller: a famous result in Bulow and Klemperer (1999) shows that adding one more

bidder to an auction is better than running an optimal auction among existing pool

1Here, we can treat the real-estate agent as a buyer with zero value. Similar arguments hold for
selling antiques through the Sotheby’s, renting short-term accommodation through Airbnb.com,
etc.

2For example, in a recent call for “Seeking Commercially Available Zinc-Rich Materials”, it
is noted that “Proposals from Solvers who have the ability to work directly as the collaboration
partner or supplier will be considered first. The Seeker will also consider proposals from other
Solvers who refer a suitable candidate as a collaboration partner. A finder’s fee of $2,000 USD will
be paid to a Solver who can refer the Seeker to a candidate.”
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of bidders. In particular, running an auction between two bidders without a reserve

price is better than the optimal negotiation with one bidder. One e↵ective and

straightforward way to attract more bidders is through the networks of the existing

bidders by inducing them to refer potential buyers they may privately know. How-

ever, it may not be in the interests of the bidders to refer others to the auctions

since this induces more competition and may hurt themselves in return. This leads

to challenges for the design of optimal auctions: (1) Would it be beneficial to in-

duce bidders to refer? (2) If yes, what is the optimal way to provide such referral

incentives?

In this chapter, a seller has one unit of indivisible object to sell. We frame our

problem as a selling problem, but the procurement problem can be reinterpreted ac-

cordingly by changing the terms seller to seeker, buyer to solver, object to project,

valuation to productivity, and bid to score. There is one existing buyer who privately

knows whether there exists another potential buyer. The seller can incentivize the

existing buyer to refer the potential buyer to participate and compete for the object.

The private valuations of the buyers are drawn independently from asymmetric dis-

tributions. The challenge is the misalignment of interests between the seller and

the existing buyer toward the potential buyer’s appearance. We fully characterize

the optimal mechanism and reveal three optimal channels to provide referral incen-

tive: discouraging non-referral, favoring referral, and providing money transfer for

referral. If the existence of the potential buyer is public information, then the seller

can simply run Myerson’s optimal mechanism (that is, allocating the object to the

buyer with the highest virtue valuation.) depending on the number of the buyers.

Since we assume the existence of the potential buyer is the private information of

the exsiting buyer, the seller need to modify Myerson’s optimal mechanism to sat-

isfy the referral incentive constraint. We show that distorting the allocation rule to

disfavor the non-referral and favor the referral is less costly at the beginning of the

modification process and thus the first two channels always appear, and are thus

essential. At some point, the cost of changing the allocation rule exceeds providing

the money transfer and thus the third channel arises.
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We also conduct some comparative statics. When the potential buyer is more likely

to exist, the existing buyer is more disfavored with non-referral, is less favored with

referral, and is provided with a lower informational rent for referral. The existing

buyer is worse o↵ regardless of his valuation. In contrast, when the potential buyer

becomes stronger, the existing buyer is more disfavored with non-referral, is more

favored with referral, and is provided with a higher informational rent for referral.

The existing buyer with the highest (lowest) valuation is worse (better) o↵. In

particular, the supplementary channel is needed when the potential buyer is less

likely to exist and becomes stronger.

We also investigate when the optimal mechanism can be implemented by simple

mechanisms. With uniform distributions, the optimal mechanism can be imple-

mented by a second-price auction with a reserve and a constant unconditional

coupon. This mechanism is simple and easy to use since the unconditional coupon

is a fixed number and independent of bids. When the potential buyer is strong,

the optimal mechanism can be implemented by a sequential selling: the seller first

makes a take-or-leave-it o↵er to the existing buyer; if refused, the seller pays the

existing buyer a constant cash reward for referral and makes a take-it-or-leave-it

o↵er to the potential buyer. One may ask why not the seller simply sells the object

to the existing buyer who then can resell to the potential buyer. We show that this

conventional resale mechanism is never optimal, and it is always better for the seller

to directly include the potential buyer in the mechanism when he exists.

Despite of the significance and relevance of referral in auctions, there is little inves-

tigation from the optimal mechanism design approach. Nevertheless, there exist an

emerging literature studying auctions in social network. The approach of this liter-

ature in quite di↵erent from ours. They allow a general network structure among

buyers and assume that buyers can only communicate with neighbors. Their aim

is to design a mechanism with good properties including full di↵usion of informa-

tion, strategy-proofness, individual rationality and weakly budget-balance. In some

sense, this literature studies the problem from an axiomatic approach as in the vast

matching literature pioneered by Gale and Shapley (1962) and Shapley and Scarf
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(1974). A straightforward attempted mechanism is the VCG mechanism. However,

Li, Hao, Zhao, and Zhou (2017) show that it satisfies all properties except weak

budget-balance, implying that the seller may not have incentive to adopt it. Vari-

ous mechanisms are then proposed to improve upon VCG mechanisms in terms of

ex-post revenue: information di↵usion mechanism in Li et al. (2017), closest winner

of Myerson’s and all winners of Myerson’s, potential winner’s mechanisms in Zhang

and Zhao (2021), critical di↵usion mechanism in Li, Hao, Zhao, and Yokoo (2019),

multilevel mechanism in Lee (2017), groupwise-pivotal referral mechanism Jeong and

Lee (2020).3 Since the implementation of the mechanisms depends on the structure

of social network, another important question in this literature is computation using

algorithms, which makes this strand of literature more related to computer science.

We take the traditional approach of mechanism design following Myerson (1981).4

Instead of looking for strategic-proof mechanisms to improve the ex-post revenue, we

are interested in the optimal Bayesian incentive compatible mechanism to maximize

the seller’s ex-ante revenue. To our best knowledge, we are the first in the literature

to study the optimal referral incentives in auctions. It can be verified that none of the

mechanisms above maximizes the seller’s ex-ante revenue in our simple framework.

One obvious di↵erence is that when the potential buyer does not exist, all these

mechanisms allocate the object to the existing buyer in Myerson’s fashion, while the

optimal mechanism needs to distort the allocation.

Several papers on referral in the market places are related to our work. Lobel,

Sadler, and Varshney (2017) study how to optimally attract new buyers by using a

referral program. They find the optimal nonlinear referral payment function for the

seller and argue that a linear referral payment program with a threshold bonus can

approximately implement the optimal payment function. Leduc, Jackson, and Johari

(2017) study the case where the seller attracts part of the buyers to try a new product

3One major extension of the this literature is to multiple unit auctions including Kawasaki,
Barrot, Takanashi, Todo, and Yokoo (2020) and Takanashi, Kawasaki, Todo, and Yokoo (2019).
Li, Hao, and Zhao (2020) provide a necessary and su�cient condition for strategy-proofness. They
also propose a class of natural monotonic allocation policies and obtain the corresponding optimal
payment policy that maximizes the seller’s revenue.

4See Budish (2012) for a detailed discussion on the di↵erence between the “axiomatic approach”
and the mechanism design approach.
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and then refer other potential buyers. They establish the condition under which the

referral reward program is better than the inter-temporal price discrimination. In

these models, the seller sells multiple units of homogeneous products, therefore, the

new buyer and the existing buyer do not have to compete after the referral. In

contrast, in our paper, referring a new buyer induces more competition for existing

buyers, which makes the referral incentive challenging to design. Technically, we

examine the issue from the mechanism design approach which enables us to examine

all possible referral incentives instead of assuming particular forms.5

Our paper builds on the vast literature on optimal mechanism design pioneered by

Myerson (1981), and is related mostly to studies with multidimensional private in-

formation. While the canonical one-dimensional mechanism design model is well un-

derstood, its natural multidimensional analogue turns out to be much less tractable.

Rochet (1985) shows that a mechanism is incentive-compatible if, and only if, the

buyer’s utility induced by the mechanism is convex, as in one-dimensional environ-

ments. La↵ont, Maskin, and Rochet (1987) consider a model with a single good,

but where consumers are di↵erentiated by a two-dimensional parameter. McAfee

and McMillan (1988) extends La↵ont et al. (1987) by proposing a generalized single

crossing property. Wilson (1993) derives first order conditions for the optimality of

a mechanism. Since this approach does not generally yield a description of the opti-

mal mechanism, he also uses computational methods to obtain particular solutions.

Rochet and Choné (1998) analyze a general multi-dimensional screening model and

show that bunching will be a prominent feature of the optimal mechanism. In our

model, the existing buyer’s private information is two-dimensional: his own valua-

tion and the existence of the potential buyer. Since the second dimension is binary,

we are able to obtain closed-form solutions.

This chapter is organized as follows. In Section 2, we provide the setup of the

model. In Section 3, we present a benchmark model. In Section 4, we solve the

seller’s optimization problem. In Section 5, we derive the optimal mechanism in

5The term referral has been used in the literature on intermediaries as well. For instance,
Arbatskaya and Konishi (2012), Park (2005), and Garicano and Santos (2004) study matching
between buyers and sellers can be improved with referrals. Condorelli, Galeotti, and Skreta (2018)
endogenous intermediaries’ choice to operate in a referral mode and a merchant mode.
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several special cases. In Section 6, we conclude. An appendix contains the technical

proofs.

3.2 The Model

A seller has one unit of indivisible object. There is one existing buyer A with

private valuation vA. It is commonly known that with probability x 2 (0,1) buyer

A potentially knows buyer B whose private valuation is vB.6 We assume that the

seller can access buyer B only through buyer A’s referral, and the existence of buyer

B is buyer A’s private information.7 It is also commonly known that vA and vB are

independently drawn from atomless c.d.fs FA(vA) and FB(vB) with p.d.fs fA(vA)

and fB(vB) on supports [a,a] and [b,b], respectively. We assume that the seller can

verify whether buyer B indeed has a distribution FB(vB) through eligibility checks to

rule out the possibility for buyer A to refer a random person. The seller’s valuation

is normalized to be zero, and all players are risk neutral.

By the revelation principle, it is without loss of generality to focus on direct mecha-

nisms. When buyer B does not exist, the seller allocates the object to buyer A with

probability q↵A(vA) for an expected payment of t↵A(vA). We refer this sub-mechanism

as ↵ � mechanism. When buyer B exists, the seller allocates the object to buyer

A and buyer B with probabilities q�A(vA,vB) and q�B(vA,vB) for expected payments

t�A(vA) and t�B(vB), respectively. We refer this sub-mechanism as � �mechanism.8

Buyer A’s payo↵ by reporting ṽA and nonexistence of B is given by

u↵
A(vA,ṽA) = vAq

↵
A(ṽA)� t↵A(ṽA) (3.1)

6Here we exclude x = 0 and 1 to avoid triviality of the analysis. Furthermore, the optimal
mechanism in these extreme cases can be treated as the limit of our optimal mechanism.

7If the existence of the potential buyer is known by the seller but can only be accessed through
referral from the existing buyer, the seller can achieve the same outcome as if she could access the
potential buyer directly by committing not selling to buyer A directly.

8Here, we implicitly assume that the seller always induces buyer A to refer buyer B whenever
buyer B exists. This is without loss of generality since it is costless for buyer A to refer buyer B.
Furthermore, it is without loss of generality to assume that all payments are in expectation due to
risk neutrality.
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Buyer A’s payo↵ by reporting ṽA and existence of B is given by

u�
A(vA,ṽA) = vA

Z b

b

q�A(ṽA,vB)dFB(vB)� t�A(ṽA). (3.2)

Buyer B’s payo↵ by reporting ṽB is given by

u�
B(vB,ṽB) = vB

Z a

a

q�B(vA,ṽB)dFA(vA)� t�B(ṽB). (3.3)

The incentive compatibility (IC) constraints and individual rationality (IR) con-

straints are defined as follows.

Definition 3.1. A direct mechanism satisfies IC and IR if and only if:

u↵
A(vA,vA) � u↵

A(vA,ṽA), 8vA, ṽA (3.4)

u�
A(vA,vA) � u�

A(vA,ṽA), 8vA, ṽA (3.5)

u�
A(vA,vA) � u↵

A(vA, vA), 8vA, (3.6)

u�
B(vB,vB) � u�

B(vB,ṽB), 8vB, ṽB, (3.7)

u↵
A(vA,vA) � 0, 8vA, (3.8)

u�
A(vA,vA) � 0, 8vA, (3.9)

u�
B(vB,vB) � 0, 8vB. (3.10)

(3.4) ensures that when B does not exist, A has no incentive to lie about his valu-

ation. (3.5) ensures that when B exists, A has no incentive to lie about his val-

uation. (3.6) ensures that when B exists, A has no incentive to lie about B’s

existence. Note that in (3.6) potentially buyer A can also lie about his valua-

tion at the same time, but this is not profitable due to (3.4). Also note that

when B does not exist, A cannot report that B exists. (3.7) ensures that B has

no incentive to lie about his valuation. IR constraints (3.8)-(3.10) are standard

and mean that participating in the mechanism is better than one’s outside op-

tion which is normalized to be zero. Note that buyer A’s private information is

two-dimensional: valuation and knowledge about the existence of buyer B. Denote
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U↵
A(vA) = u↵

A(vA,vA), U
�
A(vA) = u�

A(vA,vA), U
�
B(vB) = u�

B(vB,vB) as the truthful pay-

o↵s of the buyers.

Given that all buyers are truthful, the seller’s expected revenue from a direct mech-

anism is

(1� x)

Z a

a

t↵A(vA)dFA(vA) + x

Z b

b

Z a

a

h
t�A(vA) + t�B(vB)

i
dFA(vA)dFB(vB).

The seller’s problem is choosing a direct mechanism to maximize her expected rev-

enue subject to IC and IR constraints described in Definition 1.

Applying the envelope theorem on (3.4), (3.5) and (3.7) yields

U↵
A(vA) =

Z vA

a

q↵A(⇠)d⇠ + U↵
A(a) (3.11)

U�
A(vA) =

Z vA

a

Z b

b

q�A(⇠,vB)dFB(vB)d⇠ + U�
A(a) (3.12)

U�
B(vB) =

Z vB

b

Z a

a

q�B(vA,⇠)dFA(vA)d⇠ + U�
B(b) (3.13)

By similar arguments as in Myerson (1981) and utilizing the above equalities, we

have a revenue equivalency result: the expected revenue for the seller is not a↵ected

by the detailed payment rules since they will be determined by the allocation rules.

We thus can rewrite the original problem equivalently as

max
q↵,q� ,U↵

A(a),U�
B(b),U�

A(a)
(1� x)

Z a

a

q↵A(vA)JA(vA)dFA(vA)� U↵
A(a)

�
� x

h
U�
A(a) + U�

B(b)
i

+ x

Z b

b

Z a

a

h
JA(vA)q

�
A(vA, vB) + JB(vB)q

�
B(vA, vB)

i
dFA(vA)dFB(vB)

subject to:

q↵A(vA),

Z a

a

q�B(vA,vB)dFA(vA),

Z b

b

q�A(vA,vB)dFB(vB) are nondecreasing,(3.14)

Z vA

a

Z b

b

q�A(⇠,vB)dFB(vB)d⇠ + U�
A(a) �

Z vA

a

q↵(⇠)d⇠, 8vA, (3.15)

U↵
A(a) � 0, U�

A(a) � 0, U�
B(b) � 0 (3.16)
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where Ji(vi) ⌘ vi �
1�Fi(vi)
fi(vi)

,i 2 {A,B}, denotes the virtual valuation. (3.14) and

(3.16) are standard, resulting from the second order conditions of the IC constraints

and IR constraints for the lowest valuations. (3.15) rewrites the referral constraint

(3.6) by replacing expected payments with the allocation rules.

3.3 A benchmark

One important benchmark is when the seller observes whether buyer B exists or

not, and does not rely on buyer A’s referral. This is the the same as when (3.15)

does not appear. The following proposition characterizes the optimal mechanism in

this benchmark model and shows that it is not feasible in the original problem. The

proof is standard and thus omitted.

Proposition 3.1. In the benchmark model where the seller knows whether or not

buyer B exists, the optimal mechanism is as follows:

q↵
B
(vA) =

8
><

>:

1 if JA (vA) > 0

0 if JA (vA) < 0
(3.17)

q�
B

A (vA, vB) =

8
><

>:

1 if JA (vA) > max {JB (vB) , 0}

0 otherwise
(3.18)

q�
B

B (vA, vB) =

8
><

>:

1 if JB (vB) > max {JA (vA) , 0}

0 otherwise
(3.19)

U↵B

A (a) = U�
A(a) = U�

B(b) = 0 (3.20)

This mechanism violates (3.15), and thus can never be optimal in the original prob-

lem.

The solution to the benchmark is simple: the seller simply maximizes her ex-

pected revenue separately conditional on whether or not buyer B exists. In the

↵�mechanism, she sells whenever buyer A’s virtual valuation is greater than zero.

In the ��mechanism, she sells to the buyer with the highest positive virtual valu-
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ations. It is also optimal to leave no informational rents to buyer A with the lowest

valuation regardless whether or not buyer B exists. With the presence of buyer B,

buyer A is less likely to win and he has no incentive to refer buyer B, i.e., the above

optimal mechanism violates the referral constraint (3.15). As a result, in the original

problem, the fact that the existence of buyer B is buyer A’s private information will

strictly hurt the seller. This implies that in order to solve the original problem, we

need to take (3.15) into consideration directly.

3.4 The original problem

The following lemma characterizes some properties of the optimal mechanism in the

original problem.

Lemma 3.1. In the optimal mechanism, we must have U↵
A(a) = 0, U�

B(b) = 0.

As is common in the mechanism design literature and consistent with the benchmark

model, the above lemma shows that it is still optimal not to leave any informational

rents to buyer A with the lowest valuation when buyer B does not exist, and to buyer

B with the lowest valuation. This lemma is straightforward since otherwise the seller

can achieve a strictly higher revenue by reducing these information rents. However,

we cannot conclude U�
A(a) = 0, since lowering U�

A(a) could potentially trigger the

referral incentive (3.15). Note that U�
A(a) stands for the informational rent for buyer

A with the lowest valuation when buyer B exists. This is the minimum amount of

informational rent that has to be given out to buyer A when buyer B exists, we can

call it informational rent for referral.

Obviously, the seller’s problem cannot be solved using the standard point-wise max-

imization due to the referral constraint (3.15). Our approach is as follows. We first

obtain a relaxed problem by ignoring the monotonicity constraints (3.14) and relax-

ing (3.15). We then fully characterize the optimal mechanism in the relaxed problem

and show that it also satisfies all the constraints in the original problem, and thus

is optimal in the original problem. The challenge is how to relax (3.15). The key

observation is that buyer A with the highest valuation seems to have the least incen-

47



CHAPTER 3. OPTIMAL AUCTION DESIGN WITH REFERRAL Hao Zhou

tive to refer buyer B. Therefore, instead of imposing the referral constraint (3.15) for

all valuations of buyer A, we only require it for the highest valuation. Readers with

general interests are advised to skip the next subsection, which contains technical

details for deriving the optimal mechanism, and jump to the characterization of the

optimal mechanism directly.

3.4.1 The relaxed problem

We thus obtain the following relaxed problem:

max
q↵,q� ,U�

A(a)
(1� x)

Z a

a

JA(vA)q
↵
A(vA)dFA(vA)� xU�

A(a)

+ x

Z b

b

Z a

a

h
JA(vA)q

�
A (vA, vB) + JB (vB) q

�
B (vA, vB)

i
dFB(vB)

subject to:

Z a

a

Z b

b

q�A(vA,vB)dFB(vB)dvA + U�
A(a) �

Z a

a

q↵A(vA)dvA (3.21)

U�
A(a) � 0 (3.22)

Constraint (3.21) must be binding, otherwise the problem is the same as the bench-

mark model, and according to Proposition 3.1, its solution would violate (3.21).

Thus, we must have

U�
A(↵) =

Z a

a

Z b

b

q�A(vA,vB)dFB(vB)dvA �

Z a

a

q↵A(vA)dvA, (3.23)

which pins downs the informational rent for referral with allocation rules. Define

J↵
A(vA) = JA (vA) �

x
(1�x)fA(vA) and J�

A(vA) = JA (vA) +
1

fA(vA) , which are buyer A’s

adjust virtual valuations in the ↵ �mechanism and � �mechanism, respectively.

As a result, the relaxed problem is reduced to choosing the optimal allocation rules
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only:

max
q↵,q�

= (1� x)

Z a

a

J↵
A(vA)q

↵
A(vA)dFA(vA)

+x

Z b

b

Z a

a

n
J↵
A(vA)q

�
A (vA, vB) + JB (vB) q

�
B (vA, vB)

o
dFA(vA)dFB(vB),

s.t.

Z a

a

q↵A(vA)dvA �

Z a

a

Z b

b

q�A(vA,vB)dFB(vB)dvA � 0. (3.24)

Consider the unconstraint optimal solution by ignoring the constraint (3.24), which

is obviously:

q↵ (vA) =

8
><

>:

1 if J↵
A (vA) > 0

0 if J↵
A (vA) < 0

(3.25)

q�A (vA, vB) =

8
><

>:

1 if J�
A (vA) > max {JB (vB) , 0}

0 otherwise
(3.26)

q�B (vA, vB) =

8
><

>:

1 if JB (vB) > max
n
J�
A (vA) , 0

o

0 otherwise
(3.27)

The LHS of (3.24) under this unconstraint optimal solution can be written as

[a� J↵�1

A (0)]�

Z ā

J��1

A (0)

FB

⇣
J�1
B � J�

A (vA)
⌘
dvA (3.28)

If this term is greater than zero, then the unconstraint optimal solution solves the

relaxed problem. Otherwise, (3.24) must be binding and we can take the continuous

linear programming approach and construct the Lagrangian:

L = (1� x)

Z a

a

J↵
A(vA;�)q

↵
A(vA)dFA(vA)

+x

Z b

b

Z a

a

n
J�
A(vA;�)q

�
A (vA, vB) + JB (vB) q

�
B (vA, vB)

o
dFA(vA)dFB(vB),
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where J↵
A(vA;�) = JA (vA)�

x��
(1�x)fA(vA) and J�

A(vA;�) = JA (vA) +
x��

xfA(vA) are buyer

A’s adjust virtual valuations in the ↵�mechanism and ��mechanism, respectively.

Note that J↵
A(vA; 0) = J↵

A(vA) and J�
A(vA; 0) = J�

A(vA). Obviously, given � = �⇤, the

solution is

q↵
⇤
(vA) =

8
><

>:

1 if J↵
A (vA;�⇤) > 0

0 if J↵
A (vA;�⇤) < 0

(3.29)

q�
⇤

A (vA, vB) =

8
><

>:

1 if J�
A (vA;�⇤) > max {JB (vB) , 0}

0 otherwise
(3.30)

q�
⇤

B (vA, vB) =

8
><

>:

1 if JB (vB) > max
n
J�
A (vA;�⇤) , 0

o

0 otherwise
. (3.31)

Plugging this solution into (3.24) and making it binding determine the value of �⇤:

Z a

a

q↵
⇤

A (vA)dvA �

Z a

a

Z b

b

q�
⇤

A (vA,vB)dFB(vB)dvA � 0, (3.32)

which can be rewritten equivalently in terms of primitives:

[a� J↵�1

A (0;�⇤)]�

Z ā

J��1

A (0;�⇤)

FB

⇣
J�1
B � J�

A (vA;�
⇤)
⌘
dvA = 0. (3.33)

Now we have fully solved the relaxed problem. We summarize the optimal mecha-

nism is the next subsection.

3.4.2 The optimal mechanism and its properties

Here we restate some key notations so that this subsection is self-contained. Let

J↵
A(vA;�) = JA (vA) �

x��
(1�x)fA(vA) and J�

A(vA;�) = JA (vA) +
x��

xfA(vA) be buyer A’s

adjust virtual valuations in the ↵ �mechanism and � �mechanism, respectively.

Also let J↵
A(vA) = J↵

A(vA; 0) and J�
A(vA) = J�

A(vA; 0) The following proposition

summarizes the optimal solution in the relaxed problem and shows that it is also

feasible in the original problem and thus solves the original problem.
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Proposition 3.2. The optimal mechanism in the original problem is as follows.

q↵
⇤
(vA) =

8
><

>:

1 if J↵
A (vA;�⇤) > 0

0 if J↵
A (vA;�⇤) < 0

(3.34)

q�
⇤

A (vA, vB) =

8
><

>:

1 if J�
A (vA;�⇤) > max {JB (vB) , 0}

0 otherwise
(3.35)

q�
⇤

B (vA, vB) =

8
><

>:

1 if JB (vB) > max
n
J�⇤

A (vA;�⇤) , 0
o

0 otherwise
(3.36)

U�⇤

A (a) = G(0) (3.37)

where �⇤ is the unique solution to

G(�⇤) ⌘ [a� J↵�1

A (0;�⇤)]�

Z ā

J��1

A (0;�⇤)

FB

⇣
J�1
B � J�

A (vA;�
⇤)
⌘
dvA = 0, (3.38)

if G(0)  0, and �⇤ = 0 if G(0) > 0.

The optimal mechanism can be interpreted in a similar way as that for the bench-

mark model.9 In the ↵ � mechanism, the seller should sell to buyer A whenever

his adjusted virtual valuation is greater than zero; in the ��mechanism, the seller

allocates the object to the buyer with a higher positive adjusted virtual valuation.

The most important issue is how to adjust the virtual valuations. Note that the

adjusted virtual valuations are indexed by �⇤. There are several important features

of the optimal mechanism. If we compare buyer A’s adjusted virtual valuation with

the standard virtual valuation in the benchmark, we obtain the following result.

Corollary 3.1. We have 0  �⇤ < x. Thus, compared to the benchmark model,

buyer A is strictly disfavored in the ↵ �mechanism, and is strictly favored in the

� �mechanism.

This is intuitive. Due to the existence of buyer B, the seller needs to distort the

allocation rule to induce buyer A to refer buyer B. This can be achieved by either

9Note that U↵⇤

A (a) = 0, U�⇤

B (b) = 0, and the expected transfer functions are determined
uniquely by the IC constraints.
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reducing the payo↵ for non-referral in the ↵�mechanism or increasing it for referral

in the � � mechanism. Note that x��⇤

(1�x)fA(vA) measures the magnitude of disfavor

in the ↵ � mechanism, and x��⇤

xfA(vA) measures the magnitude of favor in the � �

mechanism.

In the benchmark model, there is no need to set U�
A(a) strictly positive. The fol-

lowing corollary illustrates that it could be optimal to set the informational rent for

referral strictly positive to provide referral incentive.

Corollary 3.2. U�⇤

A (a) > 0 if and only if [a�J↵�1

A (0)]�
R ā

J��1

A (0)
FB

⇣
J�1
B � J�

A (vA)
⌘
dvA >

0.

Note that when � = x, the allocation rule reduces to the optimal allcoation rule for

the benchmark problem proposed by proposition 3.1. Also note that the only di↵er-

ence of the benchmark problem is that it ignores the referral constraint. These two

observations provide us the idea that if the seller can carefully modify the optimal

mechanism for the benchmark problem to satisfy the referral constraint, the result-

ing mechanism is then optimal. Corollary 3.2 gives the insight of the modification

process. It is always better to change the allocation rule first by reducing � while

keeping the unconditional payment U�⇤

A (a) to be 0. If � hits the lower bar 0 and

the corresponding mechanism still violates referral constraint, then the seller should

then provide the unconditional payment.

The above two corollaries fully spell out the di↵erence between the optimal mech-

anism with referral and the benchmark model by revealing three di↵erent channels

to provide incentive for buyer A to refer buyer B: discouraging non-referral by dis-

favoring the existing buyer in the ↵�mechansim, favoring referral by favoring the

existing buyer in the � � mechanism, and providing informational rent for refer-

ral. Corollary 3.1 implies that it is necessary to distort the allocation rule and the

first two channels always arise. Corollary 3.2 implies that the third channel may be

needed. We thus conclude that

Corollary 3.3. To provide referral incentive, discouraging non-referral and favoring

referral are nacessary, and providing informational rent for referral is supplemen-
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tary.

3.4.3 The e↵ect of potential buyer’s existence and strength

It is of particular interest to investigate how the probability of the existence of

buyer B would a↵ect the optimal mechanism. This is summarized in the following

proposition.

Proposition 3.3. When buyer B is more likely to exist,

(1) buyer A is more disfavored in the ↵ �mechanism and less favored in the � �

mechanism.

(2) a lower informational rent for referral is needed.

(3) buyer A with any valuation is worse o↵, and more so for higher valuation.

Here is the intuition. When buyer B is more likely to exist, the seller is less likely

to sell to buyer A directly and will disfavor him more in the ↵�mechanism. This

reduces buyer A’s payo↵ from not referring buyer B. Therefore, there is less need to

provide referral incentives by either favoring him in the ��mechanism or providing

informational rent for referral. These explain the first two results. For the third

result, it is because buyer B will be in direct competition with buyer A and the

presence of buyer B hurts buyer A.

Another interesting comparative statistic to conduct is on the e↵ect of how attractive

buyer B is, which is summarized in the following proposition.

Proposition 3.4. When buyer B becomes stronger in term of first order stochastic

dominance,

(1) buyer A is more disfavored in the ↵ � mechanism and more favored in the

� �mechanism.

(2) a higher informational rent for referral is needed.

(3) buyer A with the highest valuation is worse o↵, while buyer A with the lowest

valuation is better o↵.

53



CHAPTER 3. OPTIMAL AUCTION DESIGN WITH REFERRAL Hao Zhou

When buyer B is stronger, the seller is less likely to sell to buyer A directly and

will disfavor him more in the ↵ � mechanism. The not so intuitive parts are for

the distortion in � �mecahanism and the informational rent for referring. On one

hand, less referral incentive is needed due to a lower payo↵ in the ↵ �mechanism

from not referring.

On the other hand, a stronger B makes buyer A worse o↵ in the ��mechanism. This

reduces buyer A’s payo↵ from referring buyer B, which implies more need for referral

incentives. It turns out that the impact on � �mechansim is of higher order since

buyer B does not appear in the ↵ �mechansim but enters in the � �mechansim

directly. As a result, overall, more referral incentive is needed. These explain the

first two results. For the third result, a stronger buyer B has di↵erent implication

for buyer A with di↵erent valuations. A stronger buyer B is more attractive to the

seller, and she is willing to provide higher incentive for buyer A to refer; at the same

time a stronger B reduces buyer A’s chance of winning. The first e↵ect benefits

buyer A while the second hurts him. For buyer A with low valuation, winning is

unlikely anyway and thus the first e↵ect dominates. For buyer A with high valuation,

winning is the priority and the second e↵ect dominates.

Since informational rent for referral is supplementary, it is interesting to ask when

one would expect the seller to use it. This is a direct implication of Propositions 3.3

and 3.4.

Corollary 3.4. A higher informational rent for referral is needed when buyer B is

less likely to exist and becomes stronger.

3.4.4 Implementation with simple mechanisms

In this section, we investigate when the optimal mechanism can be implemented by

simple mechanisms. Just as standard auctions with reserve prices cannot implement

Myerson’s optimal auction in general, we need further assumptions on primitives.

Suppose both buyers’ valuations are uniform distributed on [0,1]. This is the most
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natural example to start with. The corresponding virtual valuations are:

JA (vA) = 2vA � 1, (3.39)

J↵
A (vA;�) = 2vA + ��1

1�x , (3.40)

J�
A (vA;�) = 2vA �

�
x , (3.41)

JB (vB) = 2vB � 1. (3.42)

Plug these into the G function, we can get

G(�) = x2+3x�4�
8x(x�1) (3.43)

G(0) = x+3
8(x�1) < 0 (3.44)

�⇤ = x2+3x
4 (3.45)

We thus have the following proposition.

Corollary 3.5. Suppose both buyer A and buyer B’s valuations follow uniform dis-

tribution on [0,1], then the optimal mechanism is:

q↵ (vA) =

8
>><

>>:

1 if vA �
1
2 +

x
8

0 otherwise

; (3.46)

q�A(vA,vB) =

8
>><

>>:

1 if vA + 1�x
8 > max{vB,

1
2}

0 otherwise

; (3.47)

q�B(vA,vB) =

8
>><

>>:

1 if vB � max{vA + 1�x
8 ,12}

0 otherwise

; (3.48)

U�
A(0) = 0 (3.49)

In this case, it is expectable that one can implement the optimal mechanism by

extending standard auctions. This is confirmed by the following proposition.

Proposition 3.5. With symmetric uniform buyers, the following modified second-

price auction with conditional coupon implements the optimal mechanism. If buyer
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A does not refer Buyer B, then set a take-it-or-leave-it price at 1
2 +

x
8 to buyer A.

If buyer A refers buyer B, then run a second-price auction with reserve price 1
2 and

conditional coupon equal to 1
8(1� x) to buyer A if he wins.

This mechanism is simple and easy to use since the conditional coupon is a constant

and independent of bids. Compared with the benchmark, a higher price for non-

referral and a conditional coupon are used to distort the allocation as so to provide

referral incentive. Note that with uniform distributions, there is no need to provide

informational rent for referral. One remark is that when x converges to 1, the take-

it-or-leave-it price converges to 5
8 . However this does mean that buyer A will buy

directly when his valuation is higher than 5
8 . In fact, in this case, buyer A never

buys directly.

When buyer B is strong, it seems reasonable not to sell to buyer A when he refers,

and the optimal mechanism may be able to implemented by sequential selling. The

following proposition provides such a situation.

Proposition 3.6. When JB(b) � J�
A(a,�

⇤), the following sequential selling mecha-

nism implements the optimal mechanism. First, make a take-it-or-leave-it price at

J↵
A
�1(0) to buyer A; if he does not buy, then provide him with a cash bonus G(0) to

refer buyer B and make a take-it-or-leave-it price at J�1
B (0) to buyer B only.

This mechanism is simple and easy to use since the cash bonus is a constant. Note

that real-estate agents and other intermediaries fit into the assumption of proposition

3.6. Therefore our model is general enough to incorporate these real world situations.

3.4.5 Would resale mechanism be optimal?

Calzolari and Pavan (2006) consider a model where a seller sells an indivisible good

to a buyer with the consideration that the buyer may resell the object to another

buyer in the secondary market. This is particularly relevant when the good is

durable such as real estates, artwork and antiques. In our environment, one natural

question is why not the seller simply sells the object to buyer A who then can resell

the object to buyer B? Let us consider the following natural resale mechanism: the
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seller sets an optimal take-it-or-leave-it price to buyer A knowing that buyer A will

set an optimal take-it-or-leave-it price to resell the item to buyer B if exists. We

have the following proposition.

Proposition 3.7. The resale mechanism is never optimal when referral is possible.

Here is the intuition. In the resale mechanism, the seller does not communicate

with buyer B directly. When buyer A communicates with buyer B, buyer A’s new

knowledge about B becomes another piece of private information of buyer A and

some extra information rent has to be provided to him. This proposition implies

that whenever the seller has the chance to communicate with buyer B directly, it is

always optimal to do so.

3.4.6 Multiple Buyers

While our model of one existing representative buyer and one potential third party

are general enough to incorporate our motivative examples such as real-estate agents

and crowdsourcing platforms, it is still worthwhile to investigate how our model

can be extended to have multiple agents. First note that the insights our analysis

provides above still hold where the existing buyer knows more than one potiential

buyers. The only di↵erence is how to adjust the virtue valuation.

We then examine the case where there are multiple existing buyers and they have

one common potential buyer. 10 We claim that the following two-step mechanism

is optimal. The seller first asks all the existing buyers to refer the potential buyer.

If all the existing buyers do not refer, then the mechanism goes to the second step.

If at least one of the existing buyer refers, then the seller imposes su�ciently large

punishments on those who don’t refer. In the second step, the seller runs Myerson’s

optimal mechanism correspondingly (i.e., to allocate the good to the buyer who has

the highest positive virtue valuation). To see why this mechansim is optimal, first

note that if we ignore the referral incentive constraints, Myerson’s optimal mechaism

can achieve the highest revenue. In addition, the first step of the mehanism can

10Actually, if any potential buyer is not exclusive to one of the existing buers, (i,e, at least two
existing buyers know him), the analysis here still holds.
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make all the existing buyers truthfully reveal the information. Unlike what we have

discussed in the main paragraph, in this case the seller do not need to provide any

information rent to induce referral. Note that here the private information regarding

whether the potiential buyer exists is correlated among the existing buyers. Thus,

according to Cremer and McLean (1988), the seller can fully extract the surplus of

this piece of information.

3.5 Conclusion

While more bidders benefit the seller, it is not in the interest of a bidder to invite

more bidders to the auction since it reduces his chance of winning. This apparent

conflict of interests makes the design of optimal auction nontrivial in providing

referral incentive. In this chapter, we provide a first step toward the design problem

involved. We are able to identify three optimal channels. It is essential to distort

the allocation by discouraging non-referral and favoring referral. When the potential

buyer is less likely to exist and is stronger, the essential channels become too costly

for the seller. In this case, a supplementary channel is to provide informational rent

for referral. We also identify two situations in which the optimal mechanism can

be implemented by simple mechanisms: either a second price auction with constant

conditional coupon or sequential selling. Finally, we show that the conventional

resale mechanism is suboptimal.

There are many directions in which our analysis can be extended. For instance,

we can assume that the existing buyer must incur a strictly positive cost to refer

the potential buyer. In this case, we only need to compare the revenue di↵erence

between the following two senarios. First, running the optimal mechanism derived

by this chapter but compensating the existing buyer for the cost of referral. Second,

if the referral cost is too high, simply ignoring the potential buyer and setting a

take-it-or-leave-it price to the existing buyer. The optimal mechanism is the better

one of the two. It is compelling to extend the analysis to allow general social

network as usually allowed in the literature with the axiomatic approach. While
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it is possible to consider some specific network structures, a general treatment is

challenging but rewarding. Finally, the referral incentive is not only relevant for

auction design but also for any mechanism design problem. For example, we may

compare the following three scenarios. First, referring is strategically substitutable

to the existing agents. Examples include auction as including a new bidder intensifies

the competition among the current bidders, which is the main topic of this chapter.

Second, strategically neutral. The popular referral refunding program serves as a

typical example. Introducing a new friend to the seller will not cause strategic

behaviors among the buyers. The last scenario is strategically complementary. For

instance, in the public good provision case, an additional agent will reduce the

average cost of providing the public good. This chapter thus opens the possibility

to consider optimal referral incentive for a general mechanism design problem. These

will be pursued by the authors in future work.

3.6 Appendix

Proof for Proposition 3.2

We need to establish three results. Result (A), the optimal mechanism satisfies

the monotonicity conditions in the original problem (3.14). Result (B), the optimal

mechanism satisfies the referral incentive constraint in the original problem (3.15).

Result (C), if G(0)  0, there exists a unique solution to (3.55). Result (A) is

obvious, and thus the proof is omitted.

Result(B). By replacing U�
A(a) with G(0), constraint (3.15) becomes:

Z ā

vA

q↵ (⇠) d⇠ >
Z ā

vA

Q↵ (⇠) d⇠,8vA (3.50)

For vA > J↵�1

A (0), in the ↵�mechanism buyer A obtains the object for sure, and

thus have

LHS = a� vA � RHS. (3.51)
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For vA < J↵�1

A (0), we have

LHS =

Z ā

a

q↵ (⇠) d⇠ �

Z a

a

Q↵ (⇠) d⇠ � RHS (3.52)

Result (C). We first show that G(�) is strictly increasing. 8� > �0
2 [0,x], we

have J↵
A(vA;�) > J↵

A(vA;�
0) for all vA. Thus,

R a

a q↵ (vA;�) dvA >
R a

a q↵ (vA;�0) dvA.

Similarly, since J�
A(vA;�) < J�

A(vA;�
0) for all vA, we obtain

Z ā

a

Z b̄

b

q�A (vA, vB;�) fB (vB) dvBdvA <

Z ā

a

Z b̄

b

q�A (vA, vB;�
0) fB (vB) dvBdvA.(3.53)

By the definition of G(�), it is strictly increasing.

Second, we show that G(x) > 0. This is because when � = x, we have J↵
A (vA) =

J�
A (vA) = JA(vA). Therefore,

R a

a q↵ (vA; x) dvA >
R a

a Q�
A (vA; x) dvA, which implies

that G(x) > 0.

Therefore, if G(0)  0, there exists a unique solution such that G(�⇤) = 0. ⌅

Proof of proposition 3.3

It is convenient to introduce a new notation w = �
x . We then index the modified

virtual valuations for buyer A using w instead of � as: J↵
A (vA;w) = JA (vA) +

x
1�x

w�1
fA(vA) and J�

A (vA;w) = JA (vA) +
1�w

fA(vA) .

Lemma 3.2. w strictly increases in x.

Proof: Note that ! is determined by

[a� J↵�1

A (0;w)]�

Z ā

J��1

A (0;w)

FB

⇣
J�1
B � J�

A (vA;w)
⌘
dvA = 0. (3.54)

Take the total derivative of J↵�1

A (0;w) with respect to x:

�
@[J↵�1

A (0;w)]

@x| {z }
K1

�
@[J↵�1

A (0;w)]

@w| {z }
K2

dw

dx
�

@
R ā

J��1

A (0;w)
FB

⇣
J�1
B � J�

A (vA;w)
⌘
dvA

@w| {z }
K3

dw

dx
= 0.(3.55)
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We thus obtain

dw

dx
= �

K1

K2 +K3
. (3.56)

K1 :=
@
⇥
J↵�1
A (0;w)

⇤

@x
=

�(w � 1)

(1� x)2fA
�
J↵�1

A (0)
� 1

J↵0
A

�
J↵�1

A (0)
� > 0, (3.57)

K2 :=
@
h
J↵�1

A (0;w)
i

@w
=

�x

(1� x)fA
�
J↵�1

A (0)
� 1

J↵0
A

�
J↵�1

A (0)
� < 0, (3.58)

and

K3 : =

8
<

:�FB

⇥
J�1
B (0)

⇤ d
h
J��1

A (0;w)
i

dw
+

Z ā

J��1
A (0;w)

@

@w
FB

⇣
J�1
B � J�

A (vA;w)
⌘
dvA

�

=

8
<

:�
FB

⇥
J�1
B (0)

⇤

fA
�
J↵�1
A (0)

�
J�0

A

⇣
J��1

A (0)
⌘ +

Z ā

J��1
A (0;w)

fB(·)J
�0

A (·)

✓
�

1

fA (vA)

◆
dvA

9
=

;

< 0.

Therefore,

dw

dx
= �

K1

K2 +K3
> 0. (3.59)

⌅

Now we are ready to show the proposition.

Part (1). We have

d
h
J↵�1

A (0;w)
i

dx
= K1 +K2

dw

dx
= K1 �K2

K1

K2 +K3
=

K1K3

K2 +K3
> 0; (3.60)

dJ�
A (vA)

dx
= �

1

fA(vA)

dw

dx
< 0. (3.61)
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Part (2). Note that U�⇤

A (a) = G(0), thus:

@G(0)

@x
=

@
h
ā� J↵�1

A (0,0)
i

@x
(3.62)

= �
f
�
J�1
A (0,0)

�
(1� x)2

J 0

A

�
J↵�1

A (0,0)
� < 0 (3.63)

Part (3). We know that U�⇤

A (vA) =
R vA
a

R b

b q
�⇤

A (⇠,vB)dFB(vB)d⇠ + U�⇤

A (a). We

have already shown that U�⇤

A (a) decreases in x. Thus it su�ces to show that
R vA
a

R b

b q
�⇤

A (⇠,vB)dFB(vB)d⇠ decreases in x for all vA. But then it is su�cient to

show that
R b̄

b q
�⇤

A (vA, vB) fB (vB) dvB decreases in x:

d
⇣R b̄

b q
�⇤

A (vA, vB) fB (vB) dvB
⌘

dx
= K3

dw

dx
< 0. (3.64)

Similarly, we can show that buyer A is also worse o↵ in the ↵�mechanism regardless

of his type. ⌅

Proof for proposition 3.4

In this proof it is convenient to index the terms with distributions. We first establish

how � changes:

Lemma 3.3. When fB(vB) increases in terms of first order stochastic dominance,

� increases.

Proof: Note that � is determined by:

Z a

a

q↵
⇤
(vA) dvA =

Z ā

a

Z b̄

b

q�
⇤

A (vA, vB) f (vB) dvBdvA. (3.65)

Suppose gB first order stochastically dominates fB. We need to show that �(fB) >
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�(gB). Suppose not and �(fB)  �(gB). We then have

Z ā

a

Z b̄

b

q�
⇤

A (vA, vB;�(fB)) fB (vB) dvBdvA (3.66)

=

Z ā

a

q↵
⇤
(vA;�(fB)) dvA (3.67)



Z ā

a

q↵
⇤
(vA;�(gB)) dvA (3.68)

=

Z ā

a

Z b̄

b

q�
⇤

A (vA, vB;�(gB)) gB (vB) dvBdvA, (3.69)

which is a contraception since a higher virtual valuation of B and a higher � both

decrease buyer A’s probability of winning the object. ⌅

Now we are ready to show the proposition.

Part (1).

dJ↵
A (vA)

d�
=

1

(1� x)
·

1

fA(vA)
> 0, (3.70)

dJ�
A (vA)

d�
= �

1

xfA (vA)
< 0. (3.71)

The result then follows Lemma 3.3.

Part (2). It su�ces to show that G(0; fB) > 0 implies G(0; gB) � G(0; fB). To see

this, notice that for any given vA:

Z b

b

q�
⇤

A (vA,vB; 0; fB) fB(vB)dvB (3.72)

= Prob{J�
A (vA,vB; 0) > max {0, JB (vB,0; fB)}} (3.73)

= Prob{J�
A(vA,vB; 0) > 0 and J�

A(vA; 0) > JB (vB; 0; fB)}} (3.74)

� Prob{J�
A(vA; 0) > 0 and J�

A(vA; 0) > JB (vB; 0; gB)}} (3.75)

=

Z b

b

q�
⇤

A (vA,0; gB) fB(vB)dvB (3.76)

Since the distribution of buyer B will not a↵ect q↵
⇤
(vA; 0), we have G(gB; 0) �

G(fB; 0) > 0.

Part (3). Since buyer A with the lowest valuation obtains a payo↵ equal to the
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informational rent for referral, the result in Part (2) already implies he is better o↵.

We only need to show that buyer A with the highest valuation is worse o↵. Note

that U�⇤

A (a) =
R ā

a q̂↵ (vA; 0) dvA). Thus,

dU�⇤

A (a)

d�
=

1

(1� x)

1

fA
�
J↵�1

A (0;�)
�/J↵0

A

⇥
J↵�1
A (0,�)

⇤
> 0. (3.77)

The desired result then follows Lemma 3.3. ⌅

Proof for proposition 3.5

It is routine to show that it is a dominant strategy for buyer A to bid vA + 1
8(1� x)

while it is a dominant strategy for buyer B to bid his own value vB. Thus, it is clear

that the allocation rules are the same as the optimal mechanism. Since buyer A’s

payo↵ is zero if he does not refer buyer B, we must have U�
A(0) = 0. This completes

the proof. ⌅

Proof for proposition 3.6

Suppose JB(b) � J�
A (ā,�⇤), in the optimal ��mechanism buyer A can never the

item and buyer B obtains the item if his value is larger than J�1
B (0) with payment

J�1
B (0). This is e↵ectively a take-it-or-leave-it price for buyer B at the price J�1

B (0).

In addition, it is easy to see that the optimal ↵�mechanism is a take-it-or-leave-it

price for buyer A at price J↵�1
A (0). Finally, the unconditional payment G(0) can

induce buyer A to refer buyer B whenever he exists. ⌅

Proof for proposition 3.7

In the resale stage, buyer A with valuation vA chooses the resale price r to maximize

his payo↵:

max
r

FB(r)vA + [1� FB(r)] r (3.78)
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FOC yields:

fB(r)vA + [1� FB(r)]� fB(r)r = 0 (3.79)

) r = J�1
B (vA) (3.80)

From the point view of the seller, the possibility of resale modifies buyer A’s valuation

to FB[J
�1
B (vA)]vA + {1 � FB[J

�1
B (vA)]}J

�1
B (vA). Denote this modified valuation as

w with c.d.f K(w) and p.d.f k(w). The seller’s problem is to choose a price p to

maximize her revenue:

max
p

(1� x) · {[1�K(p)] p] + x {[1�K(p)] p} (3.81)

The first order condition is that :

(1� x) {[1�K(p)]� fA(p)p}+ x {[1�K(p)]� k(p) · p} = 0 (3.82)

This implies that the optimal take-or-leave-it price for the seller satisfies:

⇢
p�

1� FA(p)

fA(p)

�
=

x

1� x


1�K(p)

fA(p)
�

k(p)p

fA(p)

�
(3.83)

It su�ces to show that in the � �mechanism the allocation between buyer A and

buyer B is di↵erent from that in the optimal mechanism. In the optimal resale

mechanism the allocation is determined by the comparison between vA and JB(vB);

in our optimal mechanism the allocation is determined by the comparison between

vA and JB(vB). Since we assume atomless distribution, vA = JA(vA) cannot hold

for all vA, from which the proposition follows. ⌅
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Conclusion

In Chapter 2, we propose a desirable choice rule in the environment where each

student may have multiple privileged types and have weak priorities over these types.

We further show that the proposed sequential reservation choice rule is strategy-

proof, can be implemented in polynomial times and is bilaterrally substitutable.

One interesting direction for the future exploring is to compare the minimum quotas

(reserves) to other kinds of a�rmative action policies in the multi-dimensional type

case. For example, it is popular in some area of the world that if a student belongs to

a particular privileged group, she will have bonus points. Suppose a student belongs

to multiple privileged group, one intuitive way to implement the a�rmative action

policy is simply to sum up the bonus points of each privileged type. It is interesting

to explore who will be better o↵ and who will be worse o↵ in this implementation

compared to in the sequential reservation choice rule.

In Chapter 3, we investigate the optimal mechanism for a seller who wants to sell

one indivisible good. She can incentivize the exisiting buyer to refer his privately

known potential buyers to participate in the competition for winning the good. We

identify the optimal way to incentivize the existing buyer to refer. Based on this

chapter, we can think of a general framework of mechanism deisn of referral. We can

categorize all the mechanism design problems involving referral into three scenar-

ios. First, referring is strategically substitutable to the existing agents. Examples

include auction as including a new bidder intensifies the competition among the cur-
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rent bidders. Second, strategically neutral. The popular referral refunding program

serves as a typical example. Introducing a new friend to the seller will not cause

strategic behavior among the buyers. The last scenario is strategically complemen-

tary. For instance, in the public good provision case, an additional agent will reduce

the average cost of providing the public good. We can compare the optimal mechods

to induce referral among these three scenarios. Exploring the results in this general

mechanism setting can be an interesting direction for the future research.
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