UNIVERSITY OF TECHNOLOGY SYDNEY Faculty of Engineering and Information Technology

Local Information and Structures in Analysis and Modelling of Complex Networks

by

Mingshan Jia

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

Sydney, Australia

July 2022

Certificate of Authorship/Originality

I, Mingshan Jia, declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Mingshan Jia

Production Note: Signature: Signature removed prior to publication. Date: July 2022

ABSTRACT

Local Information and Structures in Analysis and Modelling of Complex Networks

by

Mingshan Jia

Abstracting entities and their interactions as nodes and links, networks are a general representation for modelling and studying complex systems. Modelling relational structures of the underlying data, rather than only a set of isolated entities, allows us to build more accurate models for various types of domain data, such as social relationships, molecular interactions, program executions, and many more. Despite being powerful and ubiquitous, networks are also difficult to process, mainly due to their complex topological structures. Therefore, the study of network structure, especially local structure, has been the core theme of studying complex networks. This dissertation aims to provide new understandings of how local structure information is extracted and utilised in studying different types of complex networks.

The dissertation includes three original works in the direction of local structure and information on top of a comprehensive survey. In the review, we propose new taxonomies for graph structures that bring together the notions of centrality measures, motifs, and other local-level metrics. For theoretical understanding, we propose new metrics to quantify the formation of 3-node and 4-node subgraphs and develop new motif patterns that are distinctive features in both network- and node-level analysis. For methodological approaches, we propose the framework to effectively encode edge attributes into the typed-edge graphlet degree vector, for both sociocentric and egocentric networks. Moreover, for practical applications, the proposed metrics and approaches are applied in many different types of complex networks and case studies. They are not only proven to be effective in multiple learning and analytical tasks but also lead to new insights and interesting discoveries.

Dissertation directed by Professor Katarzyna Musial-Gabrys and Professor Bogdan Gabrys

School of Computer Science, Data Science Institute, Complex Adaptive Systems Lab, UTS

Acknowledgements

Although pursuing a PhD is not an easy path to take, looking back on the past three years and nine months, it might be one of the best decisions I have ever made. I am grateful that I did not give up in some very tough situations. It eventually led me to meet my current supervisors and other wonderful people, who have advised me, supported me, worked with me and motivated me.

First and foremost, I am eternally grateful to my supervisors, — Professor Katarzyna Musial-Gabrys and Professor Bogdan Gabrys, for all the support and guidance they have provided throughout my PhD study. They gave me the opportunity to continue my PhD at my most difficult time, and they have supported me, encouraged me and trusted me ever since. They introduced me to the world of network science and provided me with all kinds of advice, from idea selection and experiment design to paper writing and rebuttal. They not only helped me improve in academics, but also recommended me to participate in collaborative research projects with other universities, and gave me multiple opportunities to participate in teaching activities. Without them, I could not have achieved such an all-round growth. Thank you, Professor Katarzyna Musial-Gabrys and Professor Bogdan Gabrys.

Moreover, I would like to thank all the people who have advised me, worked with me and helped me along my PhD journey. I want to thank my co-authors, Maité Van Alboom, Liesbet Goubert and Piet Bracke. Thanks to you and my supervisors, we have conducted an exciting cross-disciplinary study about chronic pain. I want to thank Professor Wei Liu and Dr Yi Zhang for being on my candidature assessment panel. I also thank Professor Pasquale De Meo for the interesting and insightful discussions on multiple research topics.

Next, I want to express my gratitude to my colleagues and friends, who have

always been so kind and helpful whenever I seek advice or help. Their knowledge, diligence and perseverance are also what motivate me to move forward. Thank you, Joakim Skarding, Mohamad Barbar, Guanping Xiao, Bin Wang, Xiaolin Zhang, Yanbin Liu, Xiaohan Zhang, and Yu-Xuan Qiu.

Finally and most importantly, I would like to thank my family. It is your everlasting love and support that allow me to start this wonderful journey and make me fearless in the face of all difficulties. Thank you, my parents Lingxiang Feng, Zilai Jia, my wife Yuanyuan Liu, and my son Yiqian Jia. This is dedicated to you.

> Mingshan Jia Sydney, Australia, 2022

List of Publications

Journal Papers

- J-1. M. Jia, B. Gabrys and K. Musial, "Directed closure coefficient and its patterns," in Plos one 16.6 (2021): e0253822.
- J-2. M. Jia, B. Gabrys and K. Musial, "Measuring Quadrangle Formation in Complex Networks," in IEEE Transactions on Network Science and Engineering, vol. 9, no. 2, pp. 538-551, 1 March-April 2022.

Conference Papers

- C-1. M. Jia, B. Gabrys and K. Musial, "Closure Coefficient in Complex Directed Networks." International Conference on Complex Networks and Their Applications. Springer, Cham, 2020.
- C-2. M. Jia, M. Van Alboom, L. Goubert, P. Bracke, B. Gabrys, K. Musial. "Analysing Ego-Networks via Typed-Edge Graphlets: A Case Study of Chronic Pain Patients." International Conference on Complex Networks and Their Applications. Springer, Cham, 2021.
- C-3. M. Jia, M. Van Alboom, L. Goubert, P. Bracke, B. Gabrys, K. Musial. "Analysing Egocentric Networks via Local Structure and Centrality Measures: A Study on Chronic Pain Patients." 2022 International Conference on Information Networking (ICOIN). IEEE, 2022.

Contents

	Cer	tificate		ii
	Abs	stract		iii
	Ack	mowledg	gments	v
	List	t of Pub	lications	vii
	List	t of Figu	ires	xii
1	Int	troduc	ction	1
	1.1	Aim, C	Objectives and Significance	. 3
	1.2	Method	lology	. 6
	1.3	Thesis	Organisation	. 7
2	Lit	teratu	re Review	9
	2.1	Motiva	tion \ldots	. 9
	2.2	Prelimi	inaries and Background	. 11
		2.2.1	Local vs. Global	. 11
		2.2.2	Motifs vs. Graphlets	. 13
	2.3	Graph	structural measures	. 15
		2.3.1	Subgraph Count Based Approaches	. 17
		2.3.2	Subgraph Formation Based Approaches	. 25
		2.3.3	Global Path Based Approaches	. 33
		2.3.4	Message Passing Based Approaches	. 39

		2.3.5	Hybrid Approaches	2
	2.4	Discuss	sion and Outlook	7
	2.5	Conclu	sion \ldots \ldots \ldots \ldots 5	0
3	Di	rected	Closure Coefficient 52	2
	3.1	Introdu	nction $\ldots \ldots 52$	2
	3.2	Prelimi	$naries \ldots 5$	6
		3.2.1	Clustering coefficient	6
		3.2.2	Directed clustering coefficient	7
		3.2.3	Closure coefficient	9
	3.3	Closure	e Coefficient in Directed Networks	1
		3.3.1	Closure coefficient in binary directed networks 6	1
		3.3.2	Closure coefficients of particular patterns	3
		3.3.3	Closure coefficient in weighted networks	6
		3.3.4	Computational efficiency	8
	3.4	Experin	ments and Analysis	8
		3.4.1	Directed closure coefficient in real-world networks	9
		3.4.2	Link prediction in directed networks	2
		3.4.3	Case study in a weighted signed network	6
	3.5	Additio	onal Related Work Discussion	8
	3.6	Conclu	sion $\ldots \ldots .$	8
Л	ገ / ፲		ng The Formation of Quadrangles	n
4	IVL	easuri	ng The Formation of Quadrangles 80	J
	4.1	Introdu	action	0
	4.2	Backgr	ound and Motivating Example 8	4
		4.2.1	Measuring Triangle Formation	5

		4.2.2	A motivating example
	4.3	Two Q	uadrangle Coefficients
		4.3.1	I-quad coefficient
		4.3.2	O-quad coefficient
		4.3.3	Quadrangle coefficients in weighted networks
		4.3.4	Computational cost
	4.4	Experin	ments and Analysis
		4.4.1	Quadrangle coefficients in real-world networks
		4.4.2	Correlation with node degree
		4.4.3	Network classification
		4.4.4	Link prediction
		4.4.5	Limitations and Future Directions
	4.5	Related	l Work
	4.6	Conclu	sion
5	Ty	ped-E	Edge Graphlets 113
	5.1	Introdu	action $\ldots \ldots 113$
	5.2	Backgr	ound and Preliminaries
		5.2.1	Graphlets and orbits
		5.2.2	Egocentric graphlets
	5.3	Typed-	Edge Graphlet Degree Vector
	5.4	Typed-	Edge Degree, Colored Graphlets and Heterogeneous Graphlets . 121
	5.5	Experin	ments and Analysis
		5.5.1	Dataset
		5.5.2	Analysing pain grades via GDV and TyE-GDV

	5.5.3 Predicting pain grades	. 130
	5.6 Conclusion \ldots	. 132
6	Conclusion and future works	134
	Bibliography	137

List of Figures

1.1	Methodology	5
1.2	Three verification steps in methodology	6
2.1	Structural measures on graphs.	9
2.2	Graphlets and their orbits [160]	13
2.3	Motifs vs. Graphlets	13
2.4	Subgraph count based measures	15
2.5	Subgraph formation based measures	23
2.6	Global path based measures	31
2.7	Message passing based approaches.	37
2.8	Hybrid Approaches	41
3.1	Classification diagram of local clustering measures.	52
3.2	Taxonomy of directed triangles	53
3.3	Dealing with bidirectional edges	55
3.4	Directed open triads	62
3.5	Scatter plots of the local directed closure coefficient and the local	
	directed clustering coefficient, with the Pearson correlation coefficient.	68

3.6	Average normalized closure coefficients of four patterns:	
	head-of-path (HoP), mid-of-path (MoP), end-of-path (EoP) and	
	cyclic (CYC). The dominant pattern in each network is labelled	
	with its value	69
3.7	Two scatter plots of the network BTC-ALPHA.	73
3.8	Two local enlarged scatter plots between weighted signed directed	
	closure coefficient and node strength in the network BTC-ALPHA	74
4.1	The i-quad coefficient and the o-quad coefficient in comparison with	
	the clustering coefficient and the closure coefficient	78
4.2	An example of the i-quad coefficient and the o-quad coefficient in a	
	movie recommender network.	79
4.3	A motivating example.	83
4.4	Two types of open quadriads in a quadrangle	86
4.5	Correlation of quadrangle coefficients and weighted quadrangle	
	coefficients in three different networks	90
4.6	Cumulative distribution curve of the i-quad coefficient $I(i)$ (in green	
	colour) and the o-quad coefficient $O(i)$ (in purple colour) in six	
	real-world networks of different types	94
4.7	Correlation of two quadrangle coefficients with node degree in six	
	real-world networks.	95
4.8	Two types of quadrangle formation via stub matching. \ldots	97
4.9	Two-dimensional visualisation of K-means clustering on	
	PCA-reduced data, without and with quadrangle coefficients (left	
	figure and right figure respectively)	97
4.10	Critical difference diagram of four classifiers with different feature sets.	104

4.11	An example of the coefficients proposed in related works, compared
	with our proposed quadrangle coefficients
5.1	Graphlets of size 2–4 nodes with enumeration of orbits
5.2	7 egocentric graphlets of 2 to 4 nodes. Ego node is painted in black 113
5.3	Degree distribution and edge type distribution of all patients 122
5.4	Parallel coordinates plot of average GDV of different GCPS grades.
	Each coordinate represents the average number of graphlets
	belonging to that type
5.5	Parallel coordinates plot of average TyE-GDV of different GCPS
	grades for two graphlets. Each coordinate represents the average
	number of edges belonging to that type
5.6	Prototypes of GCPS grade-1 and GCPS grade-4