
UNIVERSITY OF TECHNOLOGY SYDNEY

Faculty of Engineering and Information Technology

Local Information and Structures in Analysis and 
Modelling of Complex Networks

by

Mingshan Jia

A Thesis Submitted
in Partial Fulfillment of the
Requirements for the Degree

Doctor of Philosophy

Sydney, Australia

July 2022



Certificate of Authorship/Originality

I, Mingshan Jia, declare that this thesis, is submitted in fulfilment of the require-

ments for the award of Doctor of Philosophy, in the Faculty of Engineering and

Information Technology at the University of Technology Sydney.

This thesis is wholly my work unless otherwise referenced or acknowledged. In

addition, I certify that all information sources and literature used are indicated in

the thesis.

This document has not been submitted for qualifications at any other academic

institution.

This research is supported by the Australian Government Research Training

Program.

Mingshan Jia

Signature:

Date: July 2022

Production Note:

Signature removed 
prior to publication.



ABSTRACT

Local Information and Structures in Analysis and Modelling of

Complex Networks

by

Mingshan Jia

Abstracting entities and their interactions as nodes and links, networks are a

general representation for modelling and studying complex systems. Modelling re-

lational structures of the underlying data, rather than only a set of isolated en-

tities, allows us to build more accurate models for various types of domain data,

such as social relationships, molecular interactions, program executions, and many

more. Despite being powerful and ubiquitous, networks are also difficult to pro-

cess, mainly due to their complex topological structures. Therefore, the study of

network structure, especially local structure, has been the core theme of studying

complex networks. This dissertation aims to provide new understandings of how

local structure information is extracted and utilised in studying different types of

complex networks.

The dissertation includes three original works in the direction of local struc-

ture and information on top of a comprehensive survey. In the review, we propose

new taxonomies for graph structures that bring together the notions of centrality

measures, motifs, and other local-level metrics. For theoretical understanding, we

propose new metrics to quantify the formation of 3-node and 4-node subgraphs

and develop new motif patterns that are distinctive features in both network- and

node-level analysis. For methodological approaches, we propose the framework to

effectively encode edge attributes into the typed-edge graphlet degree vector, for

both sociocentric and egocentric networks. Moreover, for practical applications, the

proposed metrics and approaches are applied in many different types of complex net-



works and case studies. They are not only proven to be effective in multiple learning

and analytical tasks but also lead to new insights and interesting discoveries.

Dissertation directed by Professor Katarzyna Musial-Gabrys and Professor Bogdan

Gabrys

School of Computer Science, Data Science Institute, Complex Adaptive Systems

Lab, UTS
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