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ABSTRACT

Local Information and Structures in Analysis and Modelling of

Complex Networks

by

Mingshan Jia

Abstracting entities and their interactions as nodes and links, networks are a

general representation for modelling and studying complex systems. Modelling re-

lational structures of the underlying data, rather than only a set of isolated en-

tities, allows us to build more accurate models for various types of domain data,

such as social relationships, molecular interactions, program executions, and many

more. Despite being powerful and ubiquitous, networks are also difficult to pro-

cess, mainly due to their complex topological structures. Therefore, the study of

network structure, especially local structure, has been the core theme of studying

complex networks. This dissertation aims to provide new understandings of how

local structure information is extracted and utilised in studying different types of

complex networks.

The dissertation includes three original works in the direction of local struc-

ture and information on top of a comprehensive survey. In the review, we propose

new taxonomies for graph structures that bring together the notions of centrality

measures, motifs, and other local-level metrics. For theoretical understanding, we

propose new metrics to quantify the formation of 3-node and 4-node subgraphs

and develop new motif patterns that are distinctive features in both network- and

node-level analysis. For methodological approaches, we propose the framework to

effectively encode edge attributes into the typed-edge graphlet degree vector, for

both sociocentric and egocentric networks. Moreover, for practical applications, the

proposed metrics and approaches are applied in many different types of complex net-



works and case studies. They are not only proven to be effective in multiple learning

and analytical tasks but also lead to new insights and interesting discoveries.

Dissertation directed by Professor Katarzyna Musial-Gabrys and Professor Bogdan

Gabrys

School of Computer Science, Data Science Institute, Complex Adaptive Systems

Lab, UTS



Acknowledgements

Although pursuing a PhD is not an easy path to take, looking back on the past

three years and nine months, it might be one of the best decisions I have ever made.

I am grateful that I did not give up in some very tough situations. It eventually led

me to meet my current supervisors and other wonderful people, who have advised

me, supported me, worked with me and motivated me.

First and foremost, I am eternally grateful to my supervisors, — Professor

Katarzyna Musial-Gabrys and Professor Bogdan Gabrys, for all the support and

guidance they have provided throughout my PhD study. They gave me the op-

portunity to continue my PhD at my most difficult time, and they have supported

me, encouraged me and trusted me ever since. They introduced me to the world of

network science and provided me with all kinds of advice, from idea selection and

experiment design to paper writing and rebuttal. They not only helped me improve

in academics, but also recommended me to participate in collaborative research

projects with other universities, and gave me multiple opportunities to participate

in teaching activities. Without them, I could not have achieved such an all-round

growth. Thank you, Professor Katarzyna Musial-Gabrys and Professor Bogdan

Gabrys.

Moreover, I would like to thank all the people who have advised me, worked with

me and helped me along my PhD journey. I want to thank my co-authors, Maité
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Chapter 1

Introduction

Complex systems across various domains, such as biology, ecology, physics and social

science, can be modelled as networks that abstract the interactions between system’s

components [16, 171]. Different from a simple grid graph or a line graph for image

or text modelling respectively, the complexity of networks comes from their intricate

topological structures. Therefore, understanding and exploiting graph structure, es-

pecially local structure, has always been a core theme in analysing complex networks

and underlies various analytical and representative applications such as node-type

classification [20, 115], link prediction [73, 120], anomaly detection [176, 6], and

graph representation learning [86, 80].

Among manifold research approaches, local structural measures are one of the

most important and influential ways of studying network topology. The study of

structural measures is so ubiquitous that they often appear in different terms, such

as the big family of centrality measures [148, 199, 43], the popular notion of mo-

tifs [163] and graphlets [161] and the set of subgraph formation measures such as

the clustering coefficient [232], the closure coefficient [241], the square clustering

coefficient [145], etc. These approaches, however, are still mostly limited to the

oversimplified description of complex system, i.e., static, undirected and unlabelled

networks and this thesis aims at addressing this limitation.

A preliminary and essential question to ask, when one ventures into the local

structures’ world, is what is local? Conventionally, it is assessed by the distance from

a focal node, such as within 4- or 5-hop from the focal node. However, a subgraph
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Table 1.1 : Number of different undirected and directed subgraphs, and their re-
spective orbits (orbits are all the unique positions of a subgraph), depending on the
size of the subgraphs[195].

Undirected Directed

k #Subgraphs #Orbits #Subgraphs #Orbits

2 1 1 2 3

3 2 3 13 27

4 6 11 199 667

5 21 58 9,364 44,210

6 112 407 1,530,843 9,031,113

build from all nodes within a certain distance from a focal node can still be very

complicated, simply because the number of nodes involved in it is theoretically

unlimited. For example, even in an egocentric network where all alters are only

1-hop way from the focal node, the number of alters is still unlimited, which could

result in complicated structures. Based on the current literature, the study of local

structure seldom surpasses 5 nodes. The inherent complexity in structures beyond 5

nodes renders them infeasible for enumerating all possible subgraphs and their orbits

(see Table 1). Therefore, our definition of local structure in complex networks is any

structure containing no more than 5 nodes. Among them, we focus particularly on

3-node and 4-node structures, not only because they are efficient to compute, but

also previous research has revealed that certain 3-node and 4-node structures are the

critical building blocks or motifs (recurrent and statistically significant subgraphs

or patterns of a larger graph) in different types of directed networks[163].

In parallel with the unremitting effort in studying graph structure, this thesis

aims to make contributions to the area in three aspects. First, when it comes to

the theoretical understanding of local structures, we first extend a recently proposed

approach that assesses the edge clustering phenomenon (which is also a 3-node sub-

graph formation problem) to more complicated network models, including directed

networks, weighted networks and signed networks. We then close a gap in measur-
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ing the formation of 4-cycle structure by proposing the quadrangle coefficients, and

further reveal their properties in various types of networks, and their correlations

with node degree.

When it comes to the contributions to methodological approaches, we develop

new methods for predicting missing links and classifying different types of networks

using the developed metrics; we further propose a novel framework to encode edge

type information in graphlets and generate a typed-edge graphlets degree vector,

which contains both rich structural information and edge attributes. Last but not

least, in the application area, through employing the proposed metrics and algo-

rithms in different types of complex networks and case studies, we uncover interest-

ing properties of those networks (such as the association of the perception of pain

and the type of social ties), and demonstrate the usages and performances of our

approaches in various analytical and machine learning tasks.

1.1 Aim, Objectives and Significance

The aim of this thesis is to provide new understandings, both the-

oretically and methodologically, on how local structure information is

extracted and utilised in studying different types of complex networks.

On one hand, local structures and motifs, are building blocks of complex net-

works and they provide enlightening insight into network properties, functioning and

analysis [172, 16]. There are fruitful results of their applications in biology, ecology,

physics, social science, and many other disciplines. Various kinds of motifs have been

found in different scenarios such as gene regulation, neurons, food webs, electronic

circuits and World Wide Web [163, 162]. Therefore, studying the formation of local

structures and motifs should be vital in understanding the property and functioning

of complex networks. On the other hand, real networks are often accompanied by

rich information about nodes and edges. And there are situations where we care
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more about edge attributes than node attributes, for example, the cost of traffic in

transportation networks [64], the type of interaction in biological networks [100] and

the specific relationship in social networks [27]. However, fewer works have focused

on leveraging edge attribute information in graph analysis, especially in the context

of graphlets. Therefore, we aim to propose a new framework that effectively and

meaningfully encodes edge attributes in complex networks.

Concretely speaking, first, we aim to deepen the understanding on subgraph

formation and propose new metrics to measure them. We then aim to propose

new structural approaches that also take link attributes into account. Finally, we

aim to apply the proposed metrics and algorithms in different types of analytical

and learning tasks in complex networks, such as node-type classification and link

prediction, and network classification.

To fulfill the research aim, the following objectives are expected to be achieved:

• Objective 1: To conduct comprehensive literature review, and propose new

taxonomies from the perspective of graph local structure.

• Objective 2: To advance the knowledge of assessing edge clustering in di-

rected networks. The recently proposed closure coefficient [241] provides a

new perspective on measuring local edge clustering. However, it cannot be

applied to complex directed networks. We will close this gap by proposing the

directed closure coefficient;

• Objective 3: To deepen the understanding of 4-node subgraph formation in

complex networks. In many types of networks, quadrangles or 4-cycles appear

at a much higher frequency than triangles, and become the most dominant

motifs. However, there lacks the angle of measuring the formation of quadran-

gles based on the outer-node based open-quadriads, and we aim to close this

gap;
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1. Conduct literature review
& Identify research gaps on
network local structure (O. 1)

2. Propose new metrics
or/and algorithms (O. 2,3,4)

3. Verify the correctness of
proposed metrics/algorithms
through designed test cases

4. Design and conduct
experiment on real-world
networks (O. 2,3,4)

6. Evaluate the performance of
proposed metrics/algorithms 
and analyse the result (O. 2,3,4)

5. Verify and validate the
experiment result

8. Apply new
metrics/algorithms in different
domains (O. 5)

• Global path based approaches

• Metric measuring 4-node structure
• Algorithm of node embedding for

edge-attributed networks

• Metric measuring 3-node structure

• Tasks: Node classification, link 
prediction, network classification,
community detection, clustering

• Datasets: benchmarks of different 
types of networks

• Baselines: traditional approaches 
and state-of-the art ones

• Subgraph count approaches
• Subgraph formation approaches

7. Verify the presentation of
experiment result

• Types of networks: social 
networks ,trust networks, food 
webs, citation networks, software
networks, web graphs, word 
adjacency network, etc.

• Specific Domains: Social networks 
of chronic pain patients; 
Friendship networks

• Message passing approaches

Figure 1.1 : Methodology

• Objective 4: To bring new knowledge into the study of edge-attributed net-

works – Motivated by real-world network dataset and heterogeneous graphlets,

we aim to propose a framework that can effectively and meaningfully embed

edge attribute information in graphlets.

• Objective 5: To verify the proposed approaches through their applications to

various types of real-world networks and specific case studies, such as the social

network of chronic pain patients, the friendship network of college students,

etc.
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1.2 Methodology

In order to attain the abovementioned objectives and close the research gaps, we

have devised our research methodology which consists of eight major modules, as

presented in Figure 1.1.

We first conduct a comprehensive literature review about network local struc-

tures, focusing on how the local information is extracted and applied in studying

complex networks. We propose a taxonomy of five categories, i.e., subgraph count

based measures, subgraph formation based measures, global path based measures,

message passing based measures, and hybrid measures. This fulfills our first objec-

tive.

Then, based on the identified research gaps, we will propose two novel metrics for

3-node structures and 4-node structures respectively, and an algorithm that encodes

edge attributes into graphlets (mapping back to our research objectives 2, 3 and

4 respectively). This stage also involves creating test cases to make sure that our

proposed methods are validly implemented. We then perform multiple tasks on

different types of real world networks, including node classification, link prediction,

and network classification. Traditional approaches and state-of-the art methods are

included as baseline approaches in these tasks.

To achieve the last objective 5, we apply our proposed metrics and algorithms in

the study of particular types of networks, such as the social network of chronic pain

patients and the friendship network of college students. An extra verification step

is introduced to ensure that 1) our experiment setups are valid and the comparison

is fair; 2) the dataset is valid (properly dealing without incorrect entries, repetitive

entries and missing values) and when conducting experiments on multiple types of

networks the dataset selection is balanced; and 3) our experiment result is valid.

Finally, we evaluate the experiment results and discuss the main findings, after ver-
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ifying that we present our results in an unbiased manner (choosing the appropriate

metrics and visualisation techniques). The three-step verification flow is shown in

Figure 1.2.

Experiment Setup

Dataset
Approach/
Method/
Algorithm

valid?
valid? balanced?

valid? unbiased?

Experiment Result
valid? 

Result 
Presentation

unbiased?

Figure 1.2 : Three verification steps in methodology

1.3 Thesis Organisation

This thesis is organised as follows:

• Chapter 2 : This chapter presents the literature review on graph structural

measures, including the discussion about the definitions of local measures and

global measures, the differences and similarities between motifs and graphlets,

and most importantly, our proposed taxonomies.

• Chapter 3 : This chapter proposes novel approaches of assessing edge clustering

in directed networks, including the novel metric of directed closure coefficient,

the new link prediction method based on source and target closure coefficient

and the utility of the four closure patterns. The content of this chapter is

published in CNA 2020 and Plos One (C-1 and J-1 in the list of publications

section).

• Chapter 4 : This chapter formulates the formation of quadrangles in complex

networks from a new perspective. The i-quad coefficient and the o-quad co-

efficient are proposed with the focal node at different positions. The content
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of this chapter is published in IEEE Transactions on Network Science and

Engineering (J-2 in the list of publications section).

• Chapter 5 : This chapter proposes the framework to encode edge type infor-

mation in graphlets, and generate a typed-edge graphlet degree vector. The

vector enables us not only to better understand edge-labelled networks but

also can be applied in node-level learning tasks. The content of this chapter

is published in CNA 2021 (C-2 in the list of publication section) and we are

invited to submit an extended work of it to Plos One.

• Chapter 6 : The final chapter summarises the content and contributions of this

thesis. Potential directions for future work are also given.
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Chapter 2

Literature Review

This section covers our literature review on local network structures. First, we in-

troduce the motivation for conducting this review. Then we discuss the basic notion

of local and global in the context of complex networks as well as the important con-

cepts of motifs and graphlets. Finally, we propose our taxonomy of graph structural

measures.

2.1 Motivation

Understanding and exploiting graph structure has always been a core theme in

analysing complex networks. The study of graph structures is so ubiquitous that

they often appear in different terms, such as the big family of centrality measures

[148, 199, 43], the popular notion of motifs [163] and graphlets [161] and the set

of subgraph formation measurements such as the clustering coefficient [232], the

closure coefficient [241], the square clustering coefficient [145], etc. How are these

measurements different from each other and what are their usages in analysing com-

plex networks? In this work, we aim to propose a new taxonomy and bring all

these concepts together with a focus on graph structure. Specifically, as shown

in Figure 2.1, we find most existing graph structural measures can be put in five

categories: (i) subgraph count based measures, (ii) subgraph formation based mea-

sures, (iii) global path based measures, (iv) message-passing based measures, and

(v) hybrid measures.

We now explain the logic behind our taxonomy. The first two categories both
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covers a local area of the whole network (within a certain distance from the focal

node, or with a limited number of nodes). The first category — subgraph count

based approaches — is built from counting the number of particular local structures.

For example, number of neighbours, local paths or subgraphs. The second category

— subgraph formation based approaches — is uniquely defined based on the ratio

of two subgraphs and thus bears the meaning of measuring the formation of certain

local structures. To have both of them in the taxonomy instead of combining them

in to one category is also to stress their differences.

Then, the third category expands its scope to the entire network. We name

it as global path based approaches instead of global approaches. This is because

all global approaches involves either the calculation of shortest paths or all paths

originating from a node to any node in the entire graph. Notice here that path is

also a particular type of graph. However, local path, such as 2-path or 3-path is in

the category of subgraph count based measures, whereas global path or unbounded

path is in another category. We choose to differentiate the third category with the

previous two categories from the perspective the covered scope.

Next, the fourth category — message passing based approaches — is based on

the idea of transmitting information along the edges. It is different form the above-

mentioned three categories because it does not calculate any types of subgraphs of

global paths. Instead, the structure is utilised in an implicit way. Every node is

initialised with an importance score. Then iteratively, each node updates its score

through aggregating the scores of its neighbours. Although these four categories

are largely different from each other, there are many approaches that combine them

together, which are naturally put into the fifth category — mixed approaches.
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Subgraph Count Based Approaches

Message Passing Based Approaches

Subgraph Formation Based Approaches

Mixed Approaches

Global Path Based Approaches
Structural Measures 

on Graphs

Figure 2.1 : Structural measures on graphs.

2.2 Preliminaries and Background

2.2.1 Local vs. Global

Before introducing the taxonomy of graph structural measures, it is helpful to

first define what is local and what is global. Previous works [53, 99, 158, 155] either

only focus on where the measures are defined on by dividing them into two or three

categories: one is at the ”local”, ”micro” or ”individual” level, the other is at the

”global”, ”macro” or ”aggregate” level, and sometimes a third level of ”mesoscopic”,

”quasi-local” or ”subnetwork”. Or they solely consider the range of information that

is involved in their computation. This, however, leads to some problems. For exam-

ple, betweenness centrality is defined at node-level, but it requires global information

to compute. Should it be termed as local measure or global measure? Similarly,

the average clustering coefficient is defined at network-level, but we only need local

information, dividing the number of triangles over the number of wedges, at each

node (then averaging over all nodes).

Therefore, we propose the following terms to distinguish both where the mea-

sures are defined on and the scope of information that is needed to calculate them:

• Local-level measure is a measurement defined on node-level or link-level (the



12

link here also includes non-existing link or potential link which is often used in

link prediction task). Thus, It can be further divided into node-level measure

and link-level measure.

• Network-level measure is a measurement defined for the whole network.

• Local structural measure is a measurement whose computation only involves

the nearby neighbourhood of a node, i.e., within a range of k-hop away from

a node. In most cases, k is less than or equal to 4. Many traditional measures

only cares about the immediate neighbourhood around a node, and we name

them as Strict-local structural measure.

• Global structural measure is a measurement that involves the global informa-

tion in computation. Specifically, this type of measurement almost always

involves the computation of paths between nodes in the network.

Now, when we revisit the previously mentioned betweenness centrality, it is both

a local-level measure and a global structural measure. The average clustering co-

efficient, on the other hand, is both a network-level measure and a local structural

measure. Some may argue that the average clustering coefficient involves the extra

step of averaging over all nodes. Indeed, it is n times the complexity of computing

the local clustering coefficient at a single node. However, when analysing networks,

local-level measures are often calculated at the entire network, looping over all nodes

or all edges. Moreover, any local-level measure can easily have an extended defini-

tion at network-level through aggregating over all nodes or edges. Therefore, when

defining a measure as local structural or global structural, we choose to exclude this

aggregation step and instead use the term network-level measure to distinguish it

from its unextended counterpart.
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2.2.2 Motifs vs. Graphlets

Next, we distinguish three similar concepts that are later used in our taxonomies,

i.e., subgraphs, motifs and graphlets. Subgraph, as the name implies, is a smaller

graph whose node set and edge set are subsets of those of the original graph. We

then recap the notions of motifs [163] and graphlets [161] according to the papers

that proposed them.

Network motifs [163] are subgraphs that recur much more frequently in the

real network than in an ensemble of randomised networks. They are defined at

network-level, in order to uncover the basic building blocks of directed networks

across domains. Subgraphs having a p-value less than 0.01 are deemed as motifs,

where p is the probability of the subgraph appearing more times in randomised

networks than in the real network. The statistical significance of a motif can also

captured by Z-score, which is calculated as :

Zi =
(
N real

i − N̄ rand
i

)
/ std

(
N rand

i

)
,

where N real
i is the number of subgraphs of type i in the real network, and N rand

i

is the number of subgraphs of type i in a randomised network. A natural downside

of this approach, however, is that it needs to generate a large number of random

networks (e.g. 100 or 1000) using certain configuration model. The original work

only focuses on 3-node and 4-node directed subgraphs, finding that particular sub-

graphs such as 3 node feed-forward loop, 3-node feedback loop, bi-fan, bi-parallel,

and 4-node feedback loop are significant building blocks in several different types of

directed networks (Table 2.1).

Graphlets [161], are nonisomorphic induced subgraphs around a focal node. In

the original work, it is defined for undirected networks. A key difference between
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Table 2.1 : Some 3-node and 4-node motifs in directed networks[163]. Motifs con-
taining bidirectional edges are not included.

Motif Designation Type of network

3-node feed-forward loop
Gene regulation network

Neural network
Electronic circuits (forward logic chips)

3-chain Food webs

3-node feedback loop
Gene regulation network

Neural network
Electronic circuits (forward logic chips)

Bi-fan

Gene regulation network
Neural network

Electronic circuits (forward logic chips)
Electronic circuits II

Bi-parallel
Neural network

Food webs
Electronic circuits (forward logic chips)

4-node feedback loop Electronic circuits II

motifs and graphlets is that graphlets are defined at node-level. The term auto-

morphism orbits, or orbits for short, are used to distinguish different positions of

the focal node in a subgraph. Therefore, when subgraph size is limited to a range

of 2 to 5 nodes, there are 73 different orbits on 30 different subgraphs. We recap

graphlets with their orbits in Figure 2.2 (in order to save some space, the majority

of 5-node graphlets are omitted). Different node colors within each subgraph are

used to distinguish different node orbits.

To summarise, motifs and graphlets are both small induced subgraphs, but they

are different in the following aspects (Figure 2.3): motifs are defined at network-level
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Compare to random networks Calculate on itself

Subgraph size: 3 - 4 Subgraph size: 2 - 5

Motifs Graphlets

Figure 2.3 : Motifs vs. Graphlets

while graphlets are defined at node-level; motifs are proposed for directed networks

while graphlets are for undirected networks; motifs are discovered from comparing

real networks to randomised networks with the same degree sequence while graphlets

are calculated on the network itself; lastly, motifs contain 3 - 4 nodes while graphlets

have 2 -5 nodes.

2.3 Graph structural measures

After introducing terms and notions, we propose the taxonomy of graph struc-

tural measures. We divide existing structural measures into five categories (Fig-

ure 2.1):

• Subgraph Count Based Approaches. These measures are defined based on the
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number of particular subgraph or subgraphs.

• Subgraph Formation Based Approaches. In this category, the measures are

defined by the ratio of the numbers of two subgraphs: one contains less edges

(or nodes) and is viewed as the formation base of another.

• Global Path Based Approaches. As the name implies, these measures are based

on unbounded paths. It involves the calculation of shortest paths or all paths

originating from a node to any node in the entire graph.

• Message Passing Based Approaches. Unlike previous categories, message passing-

based approaches utilise graph structural information in an implicit manner:

every node is initialised with an importance score. Then iteratively, each node

updates its score through aggregating the scores of its neighbours. Graph Neu-

ral Network approaches can be viewed as transforming this traditional message

passing approach into a learnable process.

• Hybrid Approaches. These measures are simply some combinations of the

previous four categories.

Evidently, the first two categories, i.e., subgraph count based approaches and

subgraph formation based approaches are local structural measures. Global path

based approaches, on the other hand, are global structural measures. Message pass-

ing based approaches are very different because they operate iteratively on all nodes

of the graph. However, at each iteration and at each node, it only gathers infor-

mation such as an influence or importance score, from its immediate neighbours.

In this sense, they can be viewed as local structural measures. Below are detailed

discussions about each category.
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2.3.1 Subgraph Count Based Approaches

Subgraph count based measures are based on the number of particular subgraph

or subgraphs. We further divide them into three subclasses, i.e., measures defined on

1-hop neighbours, measures defined on k-hop neighbours/local paths, and measures

defined on multi-subgraphs. Figure 2.4 gives the detailed categorisation. Color of

the block differentiates where the approach is defined on: grey is on node-level, blue

is on link-level, and orange is on network-level.

Subgraph 
Count

1-hop neighbs. Degree cent.

Local cent.

Graphlet Degree Subgraph centrality

Triad Signif. Profile/Subgraph Ratio Profile

Multi-subgraphs

ℎ-index/𝑔-index

local paths\
k-hop neighbs.

𝑘-core 𝑘-truss/CN

Local path index

Collective influence

𝜅-path cent. 𝜅-path edge cent.𝑘-betweenness cent.

Potential theory/Quad motifs index

Figure 2.4 : Subgraph count based measures.

2.3.1.1 1-hop neighbours

As the name implies, the calculation of this category only requires the immediate

neighbourhood around a node or a link.

– Degree centrality. Through calculating the number of nodes directly connected

to a node, degree centrality is an easy and straightforward way to assess the

importance or influence of the node[70]. In order to render it within the range of

(0,1], it is often normalised by the size of the network minus one. Mathematically,

the normalised degree centrality of node i is defined as:

ΘD(i) =
di

n− 1
. (2.1)
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Despite being so simple, degree centrality has been widely applied in various do-

mains. For example, in customer networks, degree centrality is used to find opin-

ion leaders [198], and in biomedical semantic networks, it is effective in selecting

crucial information for summarizing disease treatment [246]. Some interesting

extensions of the degree centrality include the in-degree/out-degree centrality in

directed networks, the strength centrality and weighted strength centrality in

weighted networks [34] and the cross-layer degree centrality in multi-layered net-

works [31].

– h-index/g-index. h-index is proposed to evaluate the impact of an individual’s

research output: A researcher has index h if h of his or her papers have at least h

citations [91]. It is then used as a centrality measure in networks, and named as

lobby index or l-index [119]. The l-index of a node is the largest integer k such

that the node has at least k neighbours with a degree of at least k. Egghe argued

that the influence of highly cited papers are underplayed in h-index, and proposed

g-index to overcome this disadvantage [57]. After ranking a researcher’s papers

according to their citations, g-index is defined as the highest rank g such that

the top g papers together have at least g2 citations. From its definition, g-index

is always greater than or equal to h-index. To address the same issue, e-index

is proposed to complement the h-index for excess citations[245]. Recently, local

h-index centrality is proposed to identify influential spreaders by simultaneously

considers the h-index values of the node and its neighbours [146]: ΘLH(i) =

h(i) +
∑

j∈Ni h(j).

– k-core [116]. Instead of only calculating the number of 1-hop neighbours at one

node (as in degree centrality) or at both the node and its neighbours (as in h-
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index), k-core or coreness takes into account the number of neighbours at every

node. Specifically, a k-core is defined as a subgraph in which all nodes of degree

smaller than k have been removed and the remaining nodes have a degree of at

least k. A node located in a higher k-core is deemed as more important than a

node in a lower k-core. k-core is calculated through the k-shell decomposition [35]

which incrementally (from 1 to k) removes nodes with degree less than k (which

in turn results in lowering the degree of remaining nodes) until no more nodes

need to be removed. Given that the degree centrality, h-index and coreness are

all based on the number of 1-hop neighbours, Lü et al. further revealed their

relationships through proposing the high-order h-indices [151]. Bae et al. further

propose a neighbourhood coreness that considers both the degree of a node and

the coreness of its neighbours [14]:

ΘNC(i) =
∑

j∈N(i)

ks(j). (2.2)

The assumption is that a node having more connections to the neighbours located

in the core of the network is more influential.

– k-truss/Common neighbours. k-truss is a subgraph where every edge is con-

tained in at least k−2 triangles[40, 227]. It is found through counting the number

of common neighbours of a pair of nodes that forms an edge, i.e., the number of

triangles that edge participates. A k-truss is also a (k + 1)-core. Counting com-

mon neighbours around a pair of nodes that has not formed an edge (a non-edge)

is also a basic approach in link prediction [144]. There is a big family of similar

approaches that is based on the number of neighbours around non-edges, such as

the Adamic-Adar index, the resource allocation index, the preferential attachment

index, among the others [158]. Notice that k-truss and Common Neighbours-like
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approaches are all on link-level. The block color is therefore blue in Figure 2.4.

2.3.1.2 local paths/k-hop neighbours

The group of methods in this category requires the calculation of local paths or

k-hop neighbours.

– k-betweenness centrality [26]. k-betweenness centrality or bounded-distance

betweenness centrality is a variation of the well-known betweenness centrality

that limits the length of shortest paths to a predefined value k. Specifically, the

k-betweenness centrality of any node i is calculated by:

ΘBk
(i) =

∑
s,t∈V

σk(s, t | i)
σk(s, t)

, (2.3)

where σk(s, t) is the number of shortest paths of length at most k between node

pair s and t, and σk(s, t | i) is the number of those paths that pass through node

i. The reason of proposing a bounded-distance betweenness centrality is that in

some networks, long paths are rarely used for propagation of influence.

– κ-path centrality [8]. Instead of limiting the length of shortest paths between

node pairs, κ-path centrality assumes that message traversals are along random

simple paths of length at most k, and proposes to calculate the sum of the prob-

ability that a message originating from any possible node goes through the focal

node. The κ-path centrality of node i is defined as:

ΘPk
(i) =

∑
s∈V

σk(s | i)
σk(s)

, (2.4)

where s are all the possible source nodes, σk(s | i) is the number of k-paths

originating from s and passing through i, and σk(s) is the overall number of k-
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paths originating from s. In order to calculate it more efficiently in large networks,

a randomised approximation algorithm called RA-κpath is also proposed. [8]

– κ-path edge centrality [47]. Moving κ-path centrality definition to link-level,

we then have the κ-path edge centrality. The k-path edge centrality of any given

edge e is defined as the sum of the frequency with which a message originated

from any possible node traverses e, assuming that the message traversals are along

random simple paths of length at most k:

ΘPk
(e) =

∑
s∈V

σk(s | e)
σk(s)

. (2.5)

Quite similar to Equation 2.5, only here σk(s | e) is the number of κ-paths origi-

nating from s that go over the edge e. The original κ-path edge centrality is very

expensive to compute in large networks with a big k, therefore two randomised

approximations have been further proposed, i.e., ERW-κpath and WERW-κpath

[47].

– Local centrality [38]. Local centrality, sometimes summarised as LocalRank

[148] utilises the information within a node’s 4-hop neighbourhood. Concretely,

the local centrality of node i is defined as:

ΘLR(i) =
∑

j∈N(i)

Q(j), Q(j) =
∑

k∈N(j)

R(k), (2.6)

where N(i) and N(j) are the set of 1-hop neighbours of node i and j, and R(k) is

the number of both 1-hop and 2-hop neighbours of node k. It is said to perform

better than betweenness centrality and almost as good as closeness centrality



22

to identify influential nodes under the setting of SIR model, with only a time

complexity of O(n⟨k⟩2).

– Collective influence [167]. Collective influence (CI) is another interesting method

that takes higher-order neighbourhood into consideration. The idea is to find those

nodes that will cause biggest drop in the “energy function” if being removed.

Specifically, level k collective influence of node i is defined as:

ΘCIk(i) = (di − 1)
∑

j∈Nk(i)

(dj − 1), (2.7)

where Nk(i) is k-hop neighbours of node i. After applying collective influence

score, the paper finds that a large number of previously neglected weakly con-

nected nodes (nodes of lower degree) emerges among the optimal influencers [167].

2.3.1.3 Multi-subgraphs

Methods of this category involves the count of multiple different subgraphs. They

can be at node-level, link-level or network-level.

– Graphlet degree [161]. As discussed in Section 2.2.2, graphlets are noniso-

morphic induced subgraphs around a node. Graphlet degree is a 73-dimensional

vector formed by all different orbits in the subgraphs of size 2-5 nodes. The pa-

per discovers that in protein-protein interaction(PPI) networks, nodes grouped

together under this measure belong to the same protein complexes, perform the

same biological functions and have the same tissue expressions. Some interesting

extensions of graphlets include the dynamic graphlets for temporal networks[98],

the directed graphlets for directed networks[12], the colored graphlets for het-

erogeneous networks[81], and the typed-edge graphlets for edge-labelled networks

[102].
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– Subgraph centrality [60]. Subgraph centrality focuses on subgraphs captured

by closed walks of different length around a given node. For example, when

the walk length is 4, three types of subgraphs are covered, which are 2-cliques,

2-paths, and 4-cycles. The number of closed walks of length k around node i

can be calculated from the ith diagonal entry of the kth power of the adjacency

matrix. When the walk becomes unbounded, the subgraph centrality of node i is

calculated by:

ΘS(i) =
∞∑
k=0

µk(i)

k!
, (2.8)

where µk(i) =
(
Ak

)
ii
. It is shown to be more discriminative than many popular

centrality measures such as the degree centrality, the betweenness centrality and

the eigenvector centrality.

– Local path index [149]. Extended from common neighbours, local path index

counts both the number of 2-paths and 3-paths between a pair of nodes. The

approach is proposed for link prediction, and therefore focuses on non-connected

node pairs. Concretely, the local path index of a node pair i and j is defined as:

ΘLP (i, j) = A2
ij + ϵA3

ij, (2.9)

where ϵ is a weigh parameter for 3-paths. The paper finds out that local path

index remarkably outperforms common neighbours and can reach a competitive

accuracy as Katz index where all paths are considered. Some other works compare

3-paths approaches against 2-paths approaches in link prediction and find out that

3-path approaches perform better in PPI networks and food webs [168, 120, 253].
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– Potential theory/Quad motifs index. Potential theory aims to predict links

in directed networks. By counting the numbers of 4 different directed 2-paths and

8 different directed 3-paths around a pair of nodes, the paper finds out that a

link has higher probability to appear if it could generate more bi-fan subgraphs

[249]. Very similar to the idea of potential theory, quad motifs index is proposed

to count particularly three types of directed open-quadriad (3-paths) subgraphs:

two of them are the bases for bi-parallel subgraphs and the other one is for bi-fan

[97]. Specifically, the quad motifs index of a pair of nodes i and j is defined as:

ΘQM(i, j) = α× sF (i, j) +
(1− α)

2
(sP1(i, j) + sP2(i, j)) , (2.10)

where sF (i, j) is the contribution from the bi-fan base while sP1(i, j) and sP2(i, j)

are the contributions from two bi-parallel bases. Together with the local path

index, it is interesting to see that 3-path subgraphs are of particular importance

in link prediction.

– Triad significance profile/Subgraph ratio profile [162]. Extended from net-

works motifs [163], triad significance profile (TSP) is constructed from normalised

Z scores of 13 different directed 3-node subgraphs.

TSP = {SP1, SP2, ..., SP13}, SPi = Zi/(ΣZ2
i )

1/2. (2.11)

Zi is in turn calculated from comparing with an ensemble of randomised networks

with the same degree sequence, i.e., Zi =
(
N real

i − N̄ rand
i

)
/ std

(
N rand

i

)
. Subgraph

ratio profile (SRP), on the other hand, is built from 6 undirected 4-node subgraphs
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(G3 to G8 in Figure 2.2) :

SRP = {SRP1, SRP2, ..., SRP6}, SRPi = ∆i/(Σ∆i
2)

1/2. (2.12)

Unlike TSP, SRP uses abundance of each subgraph relative to random networks,

i.e., ∆i = Nreali−⟨Nrandi⟩
Nreali+⟨N randi⟩+ε

. Previously seemingly unrelated networks are found to

belong to several superfamilies with very similar significance profile. Notice also

that these two approaches are defined on network-level, not on node or link-level

as we have seen often.

2.3.2 Subgraph Formation Based Approaches

Subgraph formation based measures view a subgraph being built from another

less complex subgraph, i.e., with one link, multiple links, or one node less. We further

divide them into three categories according to size of the subgraph, 3-node, 4-node

and 4-node plus (Figure 2.5). Most of these approaches are defined at node-level,

except that the edge clustering coefficient is at link-level and the interest clustering

coefficient is at network-level.

Subgraph
Formation

3-node

4-node

4-node +

Clustering coef. Closure coef.

Quadrangle coef. Square clustering coef.

HO closure coef.

Grid coef.

Edge clustering coef.

HO clustering coef. F HO clustering coef. Y

Interest clustering coef.

Weighted degree cent.

Figure 2.5 : Subgraph formation based measures.

2.3.2.1 3-node subgraph

3-node subgraph formation is the simplest situation since there is only one con-

nected 2-node subgraph, with a link connecting 2 nodes.

– Clustering coefficient [232]. Clustering coefficient is the first and most influen-

tial measure in this category. It measures the extent to which the neighbours of a



26

node connect to each other. From a structural formation perspective, it measures

the formation of triangles upon open-triads (also called wedges). Specifically, the

clustering coefficient of node i is defined as the ratio between the number of tri-

angles containing node i (denoted T (i)) and the number of open triads (denoted

OT (i)):

CC(i) =
T (i)

OT (i)
=

1
2

∑
j∈N(i) |N(i) ∩N(j)|

1
2
di (di − 1)

. (2.13)

Due to its significance and simplicity in definition, the clustering coefficient has

been widely applied in studying complex networks [186, 32, 204] and extended to

directed networks [63, 5], weighted networks [17, 177, 244] and signed networks

[129, 42].

– Closure coefficient [241]. Closure coefficient measures the formation of triangles

from a new perspective, i.e., with the focal node located at the end of an open-

triad. Different from the ordinary centre node perspective in clustering coefficient

(orbit 2 of G1 in Figure 2.2, denoted as G
(2)
1 ), the focal node in closure coefficient

serves as the end node of an open triad (orbit type G
(1)
1 ). The closure coefficient

of node i is calculated as the fraction of open triads (OTE(i)), where i serves as

the end node, that actually form triangles:

CE(i) =
2 · T (i)

OTE(i)
=

∑
j∈N(i) |N(i) ∩N(j)|∑

j∈N(i)(dj − 1)
. (2.14)

Despite this subtle difference in definition, the closure coefficient has very different

properties compared to the clustering coefficient. It has been extended to directed

networks [243, 103] and weighted networks [104].

– Edge clustering coefficient [228]. Defined on link-level, edge clustering coeffi-
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cient (ECC) evaluates to what extent nodes cluster around the focal edge. From

a structure formation view, it measures the formation of triangle upon this link.

The edge clustering coefficient of an edge eij is defined as:

Ce(i, j) =
T (i, j)

min (di − 1, dj − 1)
, (2.15)

where T (i, j) is the number of triangles that eij participates, and min (di − 1, dj − 1)

is the number of triangles that edge could possibly form. Based on ECC, a node

centrality measure is then defined as the sum of the edge clustering coefficients

of all edges connected to it, i.e., CN(i) =
∑

j∈Ni
Ce(i, j). This measure has been

proven to be more efficient for identifying essential proteins than many other

centrality measures.

– Weighted degree centrality [217]. Weighted degree centrality (WDC) is also

proposed to identify essential proteins. Although this name seems related with

degree centrality, it is in fact an extension of edge clustering coefficient. This

approach is different in that it takes into account not only the PPI graph data but

also the gene expression data. Specifically, a weight of an interaction is calculated

as:

Cw(i, j) = Ce(i, j) + r(i′, j′), (2.16)

where Ce(i, j) is the edge clustering coefficient from the graph data, and r(i′, j′)

is the Pearson correlation coefficient calculated from the gene expression data.

Similarly, the weighted degree centrality of a node is then defined as: ΘW (i) =∑
j∈Ni
Cw(i, j). This approach essentially integrates node features when analysing

networks.
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2.3.2.2 4-node subgraph

4-node subgraphs are much more complicated than 3-node subgraphs. There are

in total 6 different subgraphs and 11 different orbits in 4-node subgraphs (Figure 2.2).

– Quadrangle coefficients [106]. Many real networks (such as PPI networks,

neural networks and food webs) are naturally rich in quadrangles. Quadrangle

coefficients, or i-quad coefficient and o-quad coefficient, are thus proposed to mea-

sure the formation of quadrangles upon open-quadriads (3-paths). As there are

two orbits in an open-quadriad (G
(5)
3 and G

(4)
3 ), i-quad coefficient has the focal

node at G
(5)
3 while o-quad coefficient has the focal node at G

(4)
3 . Specifically, the

quadrangle coefficients of node i are defined as:

CI(i) =
2Q(i)

OQI(i)
, CO(i) =

2Q(i)

OQO(i)
, (2.17)

where Q(i) is the number of quadrangles; OQI(i) and OQI(i) are number of open-

quadriads with i as the inner node and outer node respectively. They are found

to be more efficient than 3-node measures in classifying networks and predicting

links.

– Grid coefficients [33]. Grid coefficients, including the primary grid coefficient

and the secondary grid coefficient, also aim to measure the formation of 4-cycles.

The primary grid coefficient measures the formation of “primary quadrilaterals”

upon a node and three of its 1-hop neighbours, which is essentially the formation

of chordal cycles (G7) from tailed-triangles (orbit G
(11)
6 ). Concretely, the primary

grid coefficient of node i is defined as:

CGp(i) =
Qp(i)

di(di − 1)(di − 2)/2
, (2.18)
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where Gp(i) is the number of chordal-cycles containing i and the denominator

being the number of possible chordal-cycles built from a node and its three neigh-

bours. The secondary coefficient measures the formation of “secondary quadrilat-

erals” from a node, two of its 1-hop neighbours and one of its 2-hop neighbours:

CGs(i) =
Qs(i)

di,2nddi(di − 1)/2
. (2.19)

Notice, however, in this definition the 2-hop neighbour could be at orbit G
(4)
3 or

at orbit G
(20)
10 . The latter essentially involves 5 nodes in total.

– Square clustering coef. As triangles (3-cycles) are absent in bipartite networks,

square clustering coefficient is proposed to measure the formation of 4-cycles in the

context of bipartite networks [145]. What is unusual about this approach is that

it views 4-cycles being built from node overlapping instead of node connection.

Specifically, the square coefficient of node i, with a pair of its neighbours m and

n, is calculated as:

CS(i|m,n) =
Qimn

(dm − ηimn)(dn − ηimn) + Qimn

, (2.20)

where Qimn is the number of 4-cycles containing nodes i, m, n; and ηimn = 1+Qimn

if m and n are not connected (or ηimn = 2 + Qimn if m and n are connected).

Zhang et al. [248] later proposed a modified version of square clustering coef-

ficient: CSZ
(i|m,n) = Qimn

(dm−ηimn)+(dn−ηimn)+Qimn
. With this minor change at the

denominator, 4-cycles are now built from connecting nodes. It is mainly applied

in community detection.

– Interest clustering coefficient [222]. Interest clustering coefficient is intro-
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duced to measure the “clustering of interest links” in directed social networks.

It argues that the best way of defining a relationship between two individuals is

through common interests, i.e., two individuals having links towards a common

neighbour will have higher chance to follow other common neighbours. From a

structural view, interest clustering coefficient essentially measures the formation

of bi-fan subgraphs (Table 2.1) upon open bi-fans:

CI =
4 ·# bifan

# open-bifan
. (2.21)

Note that this metric is defined at network-level. The paper finds out that the

interest clustering coefficient of Twitter is higher than the traditional directed

clustering coefficient, and further proves its usage in link recommendation.

2.3.2.3 Beyond 4-node subgraph

Some approaches are introduced with a variable subgraph size. In actual usage,

however, due to high complexity, they seldom surpass the size of 6 nodes.

– Higher-order clustering coefficientsF [72]. Fronczak et al. propose the higher

clustering coefficients to evaluate the probabilities that the shortest paths between

any two neighbours of node i equal k, when all paths passing through node i are

neglected. Particularly, a clustering coefficient of order k for node i is calculated

as:

CHF
(i | k) =

2E(i | k)

di(di − 1)
, (2.22)

where E(i | k) denotes the number of shortest paths of length k between i’s

neighbours. When k equals 1, it degrades to the standard clustering coefficient,

and when k equals 2, it measures the formation of 4-cycles. Note that each pair

of neighbours could have multiple shortest paths of the same length, and only one
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Table 2.2 : Metrics for 3-node and 4-node subgraph formation.
3-node/4-node
subgraph formation

Undirected networks Directed networks Weighted networks

clustering coef.[232] directed clustering coef.[63, 5]

wgted. clustering coef.
[17, 177, 244]
wgted. signed clustering coef.
[129, 42]
wgted. directed clustering coef.
[63]

closure coef.[241] directed closure coef. [243, 103] weighted closure coef. [104]

edge clustering coef.[228]

higher-order clustering
coef. (Fronczak)[72]
higher-order clustering
coef. (Abdo)[1]

No No

square clustering coef.
(Lind [145], Zhang [248])
i-quad coef. [106]
primary grid coef. [33]

No No

o-quad coef. [106] — weighted o-quad coef. [106]

higher-order clustering
coef. (Yin)[240]

No No

higher-order closure
coef. (Yin)[241]

No No
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of them should be counted so that the value of higher-order clustering coefficients

is bounded by 1.

– Higher-order clustering coefficientY [240]. The higher-order clustering coeffi-

cient proposed by Yin et al. is another generalisation of the traditional clustering

coefficient. It aims to measure the formation of higher-order cliques. Specifically,

a kth-order clustering coefficient of node i is defined as the probability that a

k-clique plus an edge incident to i (termed as k-wedge) forms a (k + 1)-clique:

CHY
(i | k) =

k · |Ck+1(i)|
|Wk(i)|

=
k · |Ck+1(i)|

(di − k + 1)|Ck(i)|
, (2.23)

where Ck+1(i) is the set of (k + 1)-cliques containing node i, and Wk(i) is the set

of k-wedges with i as the centre node. The properties of higher-order clustering

coefficient in random graph and small-world model have also been thoroughly

investigated [240].

– Higher-order closure coefficient [241]. Higher-order closure coefficient mea-

sures the formation of higher-order cliques from a different perspective, i.e., the

focal node being the end-node of a k-wedge (instead of the centre-node). The

kth-order closure coefficient of node i is thus defined as the fraction of end-node

based k-wedges that are closed (a closed k-wedge is a (k + 1)-clique):

CHE
(i | k) =

k · |Ck+1(i)|
|W ′

k(i)|
=

k · |Ck+1(i)|∑
j∈N(i) [Ck(j)− (k − 1)Ck(i)]

, (2.24)

where Ck+1(i) is the set of (k + 1)-cliques containing node i, and Wk(i)′ is the set

of k-wedges with i as the end-node. Higher-order closure coefficient is proven to

be useful in finding seeds for personalised PageRank community detection.
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An illustrative summary for most abovementioned approaches is given in Table 2.2.

2.3.3 Global Path Based Approaches

Global path based approaches require structural information across the whole

network, in the form of unbounded paths between nodes. One set of methods are

based on the paths from one node to all other nodes, such as the well known closeness

centrality and Katz index; another set of methods are based on paths between all

node pairs, represented by the betweenness centrality (Figure 2.6).

Global 
Path 

Betweenness cent.

Katz indexCloseness cent.

Heatmap cent. Reaching cent.

Edge Btw. cent.

Flow btw. cent./Communicability btw. cent.

Random-walk btw. cent.

Gravity cent./Gravity model
1-to-all

all-to-all

Figure 2.6 : Global path based measures.

2.3.3.1 One-to-all

The approaches of this type involve the paths from one node to all other nodes.

They are also referred as radial measures.

– Closeness centrality [70]. Being one of the most classic centrality measures,

closeness centrality is defined as the reciprocal of the average shortest path dis-

tance from a focal node i to all other nodes:

ΘC(i) =
|V | − 1∑

j∈V,j ̸=i d(i, j)
. (2.25)

Obviously, the original definition is not suitable for graphs with more than one

connected components. To address this problem, a modified version of closeness
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centrality is defined as [231]:

ΘC′(i) =
n− 1

|V | − 1

n− 1∑n−1
j=1 d(i, j)

, (2.26)

where n is the number of nodes in one connected component. Due to its intuitive-

ness in definition, closeness centrality keeps being applied and extended in various

fields. Some recent works include the neighbourhood closeness centrality in pre-

dicting essential proteins [139], and the backward/forward closeness in studying

global value chain [82].

– Katz index [112]. Unlike closeness centrality that focuses on shortest paths,

Katz centrality of a node considers all paths reaching other nodes, having longer

paths contributing less. Concretely, the Katz centrality of node i is calculated as:

ΘK(i) =
∑
j

∞∑
k=1

βkAk
ij, (2.27)

where k is path length and β is an attenuation parameter in range (0, 1
λ
), λ being

the largest eigenvalue of A. Further, the overall matrix M =
∑∞

k=1(β ·A)k is a

weighted ensemble of all paths. Thus, Mij represents the weighted sum of paths

from i to j in all possible hops. Note that this definition is naturally suitable

in directed networks and a recent work proposes to generate node embedding of

directed graph by performing singular value decomposition on Katz index matrix

[181].

– Gravity model [142] /Gravity centrality [152] . Inspired by Newton’s gravity

law formula, a gravity model is proposed by viewing the degree of a node as its
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mass and the shortest path length between two nodes as their distance:

ΘG(i) =
∑

j∈V,j ̸=i

di · dj
d(i, j)2

. (2.28)

In order to make it easier to compute in large networks, a modified version limits

the radius from the entire network to a certain length. Adopting a similar idea,

the gravity centrality is introduced by regarding the coreness of a node as its mass,

and the shortest path length between nodes as their distance:

Θ′G(i) =
∑

j∈Nk(i)

ks(i) · ks(j)
d(i, j)2

, (2.29)

where Nk(i) is the neighbourhood of node i within k-hops, and ks(i) is the coreness

of node i. The two approaches are shown to be effective in identifying influential

spreaders through analyses of the SIR model on real networks.

– Heatmap centrality [55]. Heatmap centrality measures the influence of a node

by comparing the farness of the node with the average farness of its neighbours.

Farness, the reciprocal of closeness, is defined as the sum of the lengths of shortest

paths from a node to all other nodes, i.e., f(i) =
∑

j∈V,j ̸=i d(i, j). Therefore, the

heatmap centrality of node i is quantified as:

ΘHM(i) = f(i)−
∑

j∈N(i) f(j)

|N(i)|
. (2.30)

The intuition of this metric is that if a node has smaller farness than its neighbours,

the probability of information passing through it is higher. Note that according to

heatmap centrality, a top-ranked node of influence should have the most negative

value. Although the definition of heatmap centrality is more related to closeness
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centrality, it is revealed that it is highly correlated with betweenness centrality.

– Reaching centrality [165]. Reaching centrality aims to rank the influence of

a node in directed networks. Intuitively, the reaching centrality of node i is

quantified as the proportion of nodes that can be reached by the node via outgoing

edges, i.e., the number of nodes with a directed distance from i, divided by |V |−1.

Further, a global reaching centrality is then defined as:

GRC =

∑
i∈V [Θmax

R −ΘR(i)]

|V | − 1
, (2.31)

where Θmax
R is the largest reaching centrality of all nodes. The meaning of GRC is

the difference between the maximum reaching centrality and the average reaching

centrality. Global reaching centrality is used as a hierarchy measure for directed

networks, and is shown to be capable of capturing the degree of hierarchy in both

synthetic and real networks.

2.3.3.2 All-to-all

The approaches here involve the count of paths between all node pairs, and

among them the ones that passing through a focal node or edge. They are also

referred to as medial measures.

– Betweenness centrality [69]. Betweenness centrality, or more precisely, shortest-

path betweenness centrality is one of the best-known centrality measures. The

betweenness centrality of node i is quantified as the sum of the fraction of all-pairs

shortest paths going through i:

ΘB(i) =
∑
s,t∈V

σ(s, t | i)
σ(s, t)

, (2.32)
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where σ(s, t | i) is the number of shortest paths between node pair s and t that

pass through node i, and σ(s, t) is the number of all shortest paths between s

and t. It is often normalised by (|V |−1)(|V |−2)
2

, in order to be compared in different

networks. Betweenness centrality has also been generalised to directed networks

[233] and weighted networks [178].

– Edge betweenness centrality [75]. With a small modification on the original

betweenness centrality, Girvan and Newman propose edge betweenness centrality,

in order to detect community structure in complex networks. The edge between-

ness centrality of an edge e is quantified as the sum of the fraction of all-pairs

shortest paths passing through e:

ΘB(e) =
∑
s,t∈V

σ(s, t | e)
σ(s, t)

, (2.33)

According to the definition, edges between communities will have large edge be-

tweenness. Therefore, the underlying communities of the network would be un-

covered by removing edges of high edge betweenness centrality. It has been widely

applied in community detection, and some recent applications include the study of

anti-vaccination sentiment on Facebook [93] and the analysis of microbial diversity

in marine sediment [96].

– Flow betweenness centrality [71]/ Communicability betweenness cen-

trality [59]. A major limitation of betweenness centrality is that it exclusively

focuses on shortest paths. In real situations, however, information often takes

a more circuitous path randomly or intentionally [214]. Flow betweenness ad-

dresses this issue by considering all paths between nodes. Specifically, the flow
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betweenness centrality of node i is defined as:

ΘF (i) =
∑
s,t∈V

ϕ(s, t | i)
ϕ(s, t)

, (2.34)

where ϕ(s, t | i) is the maximum flow between s and t that passes through i, and

ϕ(s, t) is the total flow between s and t. The maximum flow is in turn calculated

by the minimum cut capacity [66]. Having the notion of “capacity ” on links,

flow betweenness centrality is naturally suitable for weighted networks. Instead

of treating each path equally, communicability betweenness centrality proposes to

reduce weight for longer paths:

2

(n− 1)(n− 2)

∑
s,t∈V

∑∞
k=0

1
k!
µk(s, t | i)∑∞

k=0
1
k!
µk(s, t)

, (2.35)

where µk(s, t | i) is the number of paths between s and t passing i with length k,

and µk(s, t) is the number of paths between s and t with length k.

– Random-walk betweenness centrality [173]. Random-walk betweenness cen-

trality, also known as current-flow betweenness centrality, is another popular vari-

ant of betweenness centrality. It models information spreading in a network anal-

ogous to electrical current flow in a circuit. Concretely, the current-flow between-

ness centrality of node i is defined as the amount of current flowing through i,

averaged over all node pairs:

ΘCF (i) =

∑
s,t∈V I(s, t | i)

(1/2)n(n− 1)
, (2.36)

where I(s, t | i) is the current flowing from s to t that passes i. The paper

then proves that a message spreading along random walks is equivalent to above
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definition.

2.3.4 Message Passing Based Approaches

Abovementioned approaches depend solely on the topological information of a

network, such as the number of particular subgraphs, the ratio between two sub-

graphs, the length of shortest paths, or the number of paths. Message passing based

approaches further consider the information contained in each node. It is worth to

notice that the popular graph convolutional network is also based on this idea, i.e,

iteratively gathering information from nearby nodes.

Message 
Passing PageRank LeaderRank

Eigenvector cent.

HITS

Nonbacktracking cent. Alpha cent.

Figure 2.7 : Message passing based approaches.

– Eigenvector centrality [24]. Eigenvector centrality is another classic centrality

measure. The idea is that a node’s centrality depends on the centralities of its

neighbours:

x(i) = c
∑

j∈N(i)

x(j), (2.37)

where c is a normalisation constant. The equation is recursive and computed

by starting with a set of initial influence scores and iterating the computation

until it converges. In vectorisation form, i.e., x⃗ = cAx⃗, x⃗ is found to converge

to the dominant eigenvector of A and c converges to the reciprocal of the dom-

inant eigenvalue of A. Eigenvector centrality has some problems in very sparse

networks, i.e., the leading eigenvector is localised around nodes of highest degree

and diminishes the effectiveness to quantify nodes’ importance [123].
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– Nonbacktracking centrality [156]. Nonbacktracking centrality is proposed to

address the abovementioned localisation issue. Same as in eigenvector centrality, a

node’s centrality is the sum of its neighbours’ centralities, but now the neighbours’

centralities are calculated without the influence of this node. This is achieved by

using the nonbacktracking matrix [88]. Nonbacktracking matrix B, is a 2m× 2m

matrix, defined on the directed edges of the graph (undirected edges are converted

to bidirectional edges), and elements Bi→j,k→l = δil(1− δjk), where δ is Kronecker

delta. Then, ej→i of the leading eigenvector of B gives the centrality of node j

ignoring the contribution of i. Finally, the nonbacktracking centrality of node i

is x(i) =
∑

j Ajiej→i. Eigenvalues of nonbacktracking matrix is also found to be

useful in community detection [124].

– Alpha centrality [25]. When eigenvector centrality is applied in directed net-

works, a node’s centrality is determined by those who pointed at it. Thus, the

vector form becomes: x⃗ = 1
λ
AT x⃗. The problem is that nodes with no incom-

ing edges would have zero centrality value. Alpha centrality proposes to solve

this problem by taking into account the ”external status characteristics”. The

equation then becomes:

x⃗ = αAT x⃗ + e⃗, (2.38)

where e⃗ is a vector of the exogenous sources of characteristics and α is a parameter

which reflects the relative importance of topological structure versus exogenous

factors.

– PageRank [30]. PageRank, a popular variation of eigenvector centrality, is pro-

posed to rank the importance of web pages. Web pages and the links among them
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are modelled as a directed network, and a page should have high rank if the sum

of the ranks of pages that point to it is high. Specifically, the rank of page i is

calculated as:

r(i) = c
∑
j∈N in

i

r(j)

doutj

, (2.39)

where N in
i is the set of pages points to i (i’s in-neighbours), and doutj is out-degree

of page j. In order to deal with the “rank sink” problem, where several pages

form a loop without other outgoing links, a source of rank is introduced over all

pages (also viewed as a random jumping factor), denoted as vector e⃗. Therefore,

the rank of page i becomes: r(i) = c(
∑

j∈N in
i

r(j)
doutj

+ e(i)), and the corresponding

vector form is r⃗ = c(AT + e⃗× 1)r⃗. PageRank has also been extended in weighted

networks [236], on nonbacktracking matrix [9], and applied to many different areas

[76].

– HITS [118]. Unlike PageRank that focuses on pages having many incoming links,

HITS, abbreviated from hyperlink induced topic search, proposes to distinguish

two roles in the hyperlink structure, i.e., authorities and hubs. Authorities are

reliable information sources, and hubs are the websites pointing to them. Based

on the intuition that an authority should be pointed by hubs and a hub should

point to authorities, an authority weight and a hub weight of page i are thus

defined in a mutually dependent manner:

a(i) =
∑
j∈N in

i

h(j) h(i) =
∑

j∈Nout
i

a(j). (2.40)

The corresponding vector forms are: a⃗ = AT h⃗, and h⃗ = Aa⃗. a⃗ and h⃗ are

updated iteratively, and it is proven that a⃗ converges to the leading eigenvector

of ATA, and b⃗ converges to the leading eigenvector of AAT . Based on HITS,
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ARC (Automatic Resource Compilation) later proposes to incorporate textual

information around the link by assigning each link a weight [36], and Co-HITS

proposes to extend the idea to bipartite networks [48].

– LeaderRank [150]. In order to solve the abovementioned rank sink problem,

LeaderRank proposes to add a ground node that connects to other nodes via

bidirectional links. In the beginning, each node other than the ground node

is initialised by one unit of score, and the ground node is initialised by zero.

Then, same as PageRank, at each iteration, the score of node i is calculated as:

s(i)(t) = c
∑

j∈N in
i

s(j)(t−1)

doutj
. After the scores of all nodes reach steady state, the

score of the ground node will be distributed evenly to other nodes, and thus the

final score of node i is:

s(i) = s(i)c +
s(g)c

|V |
, (2.41)

where s(i)c is the steady score of node i, and s(g)c is the steady score of the ground

node. A major advantage of LeaderRank is that it has no additional parameter

that needs to be optimised. Some interesting extensions of LeaderRank include the

weighted LeaderRank that assigns degree-dependent weights onto links associated

with the ground node [141] and the adaptive LeaderRank that introduces H-index

into the weighted mechanism [238].

2.3.5 Hybrid Approaches

The methods in the fifth and final category are combinations of previously in-

troduced approaches.

– ClusterRank [37]. Previous studies have shown that large clustering coefficient

may slow the spreading process of disease in the entire network [58, 255]. Clus-
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CCPAHybrid degree cent.

Figure 2.8 : Hybrid Approaches.

terRank thus proposes to consider not only the number of a node’s neighbours,

but also the negative effect of local clustering when identifying influential nodes.

The ClusterRank score of node i is defined as:

ΘCR(i) = f(ci)
∑

j∈Nout
i

(doutj + 1), (2.42)

where ci =

∑
j∈Nout

i
|Nout(i)∩N(j)|

douti (douti −1) is a modified version of clustering coefficient in

directed networks. f(ci) is a function that negatively correlates with ci, for ex-

ample an exponential function f(ci) = 10−ci . Although ClusterRank is proposed

for directed networks, it can be easily extended to undirected networks [37] and

weighted networks [230]. Experiments on several real networks demonstrate that

ClusterRank score outperforms PageRank and LeaderRank at identifying influen-

tial nodes while being more efficient in computation.

– Local structural Centrality [74]. Aiming to evaluate the spreading ability

of nodes, local structural centrality essentially extends the local centrality (sec-

tion 2.3.1.2) by further considering the connections between higher-order neigh-

bours. The idea is that a node has better spreading ability when its neighbours are

better connected because a neighbour node can be affected directly by the source

node or indirectly by another neighbour node. The local structural centrality of
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node i is defined as:

ΘLS(i) =
∑
j∈Ni

(α|N1,2
j |+ (1− α)

∑
k∈N1,2

j

c(k)), (2.43)

where N1,2
j is the node set of 1-hop and 2-hop neighbours of node j, and c(k)

is the clustering coefficient of node k. α is a tunable parameter between 0 and

1, balancing direct and indirect spreading contribution. Notice that clustering

coefficient is worked as a negative part when evaluating spreading speed as in

ClusterRank, but a complementary part when measuring spreading ability here.

– Local triangle structure centrality [154]. Local triangle structure centrality

(LTSC) proposes to include the triangle proportion of a node, instead of its clus-

tering coefficient, when evaluating a node’s spreading ability. Triangle proportion

is able to indicate the location of a node, whether it is located in a denser or

sparser part of a network. LTSC partitions the spreading ability into two parts,

i.e., inner spreading ability and outer spreading ability. Specifically, the local

triangle structural centrality of node i is defined as:

ΘTS(i) =
∑
j∈Ni

(dj(1 + TP (j)) + (
∑
k∈Nj

dk − dj)), (2.44)

where TP (j) is the triangle proportion of node j, calculated by the number of

triangles containing j divided by the total number of triangles in the network.

For each neighbour j of a given node i, the part of dj(1 + TP (j)) is to measure

its inner spreading ability, and the part of
∑

k∈Nj
dk − dj is to measure its outer

spreading ability. Finally, the local triangle structure centrality of node i is the

sum of the spreading abilities of its neighbours.
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– Hybrid degree centrality [153]. The spreading probabilities of networks de-

scribing diseases, opinions, and rumours should obviously differ. Most existing

centrality measures, however, fail to take that into consideration. The perfor-

mance of centrality measures is sensitive to the spreading probability. Degree

centrality, for example, works best with modest spreading probabilities, while

local centrality (section 2.3.1.2) works better with higher ones [74]. In order to al-

leviate the sensitivity to different spreading probabilities, hybrid degree centrality

is introduced by integrating the degree centrality and a modified local centrality.

The hybrid degree centrality of node i is defined as:

ΘHD(i) = (β − p) · α ·ΘD(i) + p ·Θ′LR(i), (2.45)

where Θ′LR(i) = ΘLR(i) − 2
∑

j∈Ni
|Nj| is the modified local centrality, p is the

spreading probability, α and β are two tunable parameters. The part contributed

by degree centrality is viewed as near-source influence, and the part of modified

local centrality as distant influence.

– HybridRank [3]. HybridRank proposes to identify influential spreaders by com-

bining the neighbourhood coreness centrality (section 2.3.1.1) and eigenvector

centrality. The reason of integrating these two measures is that they both regard

a node as influential if the node is connected to other influential nodes. The

hybrid centrality of node i is defined as:

ΘHR(i) = ΘNC(i)×ΘE(i), (2.46)

where ΘNC(i) =
∑

j∈Ni
ks(j) is the neighbourhood coreness of i, and ΘE(i) is the



46

eigenvector centrality of node i. HybridRank algorithm further suggests that when

selecting influential spreaders, the neighbours of selected ones should be neglected

in order to maximise the spreading range. The effectiveness of HybridRank has

also been tested in real networks using SIR model.

– BridgeRank [205]. In order to lower the time complexity of closeness centrality

while keeping comparable performance, BridgeRank proposes to compute shortest

paths to just a few core nodes in the network. In BridgeRank algorithm, at

first, communities are identified by Louvain algorithm [22]. Then core nodes are

discovered through calculating betweenness centralities within each community

(one core node per community). Finally, the BridgeRank centrality of each node

is defined as a filtered closeness centrality to these core nodes:

ΘBR(i) =
1∑

j∈C d(i, j)
, (2.47)

where C is the set of identified core nodes in each community. The time com-

plexity is therefore reduced from O(|V |3) to O(|V |log|V |). A modified version

that allows multiple core nodes being selected in a community is also introduced

[205]. Other community structure based methods include k-medoid that uses in-

formation transfer probabilities between any node pairs [250], and the influence

maximization algorithm based on label propagation [252].

– CCPA [4]. Common neighbour and centrality based parameterised algorithm, or

CCPA, is an approach for link prediction. It aims to bring together two essen-

tial properties of nodes, i.e., common neighbours and closeness centrality. The
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similarity score between a pair of nodes i and j is defined as:

s(i, j) = α · (|Ni ∩Nj|) + (1− α) · |V |
d(i, j)

. (2.48)

|Ni ∩ Nj| is obviously the part of common neighbours. |V |
d(i,j)

, reciprocal of the

normalised distance between two nodes, is deemed as the closeness centrality of

them, since it has a similar form as the classic node closeness centrality. α ∈ [0, 1]

is a user defined parameter controlling the weight of the two parts. Experiments on

real-world datasets suggest that the change in performance (measured in average

AUC) caused by the change of α is not significant.

2.4 Discussion and Outlook

In this section, we highlight some critical challenges and research avenues for

future studies, and further discuss graph structural measures in different types of

networks.

Network data, besides the pure topological presence, are often accompanied by

rich information of node attributes and/or edge attributes, and they are also referred

to as labelled networks or attributed networks. Most structural measures, as the

name suggests, focus solely on capturing the part of topological properties. Theo-

retically, message passing approaches are able to include numeric node attributes,

such as the initial rank and source of rank in PageRank [30], or the endogenous

and exogenous status in alpha centrality [25]. In practice though, these features are

usually set to identical values for all nodes, for example, all ones for initial rank

and 0.15 for source of rank in PageRank. Multidimensional features are not sup-

ported in message passing approaches either. There are also attempts to integrating

node/edge attributes with other graph structural measures. For instance, degree

and betweenness centralities are combined with node attributes in studying crimi-
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nal networks [29]; nodes attributes are used as threshold in LRIC index [10]; and

node/edge attributes are fused into graphlets [201, 102]. It is also worth mentioning

that one reason of the popularity of graph neural network is that it naturally enables

integrating node attributes. Some recent works also propose to take edge attributes

into account in GNNs [79, 108, 39]. We believe there is still great potential for devel-

oping novel structural approaches that integrate rich information on nodes and/or

edges. Specifically, we find a research gap of leveraging edge attribute information

in graphlets, which will be presented in Chapter 5.

Next open problem is benchmarking. An approach is usually proposed for some

general tasks (such as ranking influential nodes, link prediction, network classifica-

tion, etc), and tested on limited datasets. Researchers may test their approaches for

different purposes on different datasets, but only report the most promising results.

Some benchmarking methods have been recently proposed, but they only focus on

some particular approaches with limited number of datasets [28, 11]. Therefore,

we are still in need of an extensive graph structural benchmark that encompasses

important graph analysis tasks and covers a diverse range of datasets. Further,

when it comes to identifying and ranking influential spreaders in complex networks,

susceptible-infected-recovered model (SIR) is dominantly chosen in most experiment

settings [14, 147, 153, 229]. The simplicity of SIR model makes it popular to use,

but also oversimplifies the complex spreading processes [221]. A recent study has

shown that SIR model is unable to forecast the actual spreading pattern of epidemic

in the long term [164]. Thus, it is desirable to test the performances of those identi-

fying and ranking approaches with more complicated spreading models, where upon

recovery there is no immunity (SIS model [185]), where immunity lasts only for a

short period of time (SIRS model [138]), and where the disease has a latent period

during which the person is not infectious (SEIS/SEIR model [140]).

Most approaches covered in the literature review assume that networks are static
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or time-independent. Many real-world networks, however, are in fact dynamic, nodes

and edges appearing and disappearing over time [95, 143]. In telecommunication net-

works, the connection between agents is often bursty and fluctuates across time; in

social networks, relationships among people are typically intermittent and recurrent;

in transportation networks, the frequency of public transport service is usually higher

in rush hours. This extra dimension of time adds richness and complexity to the

graph representation of a system, necessitating the development of more advanced

approaches that can leverage temporal information. Many studies have generalised

the classic graph structural measures to dynamic networks, including temporal de-

gree centrality[114], temporal clustering coefficient [175], temporal closeness and

betweenness centrality [113], temporal eigenvector centrality [218], temporal Katz

centrality [175], temporal motifs [121, 184] and temporal graphlets [98]. Despite the

large number of structural measures proposed for dynamic networks, there are still

many open questions to be tackled. For example, what is the impact of the tempo-

ral network’s structure on the dynamics of processes that occur on it; how to apply

temporal measures in inferring spreading chains in incomplete temporal networks,

etc. Furthermore, the previously introduced category of subgraph formation based

approaches is exactly based on the dynamic nature of networks — a particular lo-

cal structure is build from a less complex structure plus edges or nodes that would

appear in the future. We find two research gaps regarding the subgraph formation

approaches, which will be presented in Chapter 3 and Chapter 4.

Sometimes, systems are so complicated that multiple-layered networks are needed

to better represent and study them [49, 44, 117, 23, 21]. For example, a multilayer

social network incorporates both friendship and financial relationships among indi-

viduals; a multilayer brain network contains both anatomical brain layer and func-

tional brain layer; and a multilayer transportation network integrates all sorts of

transportation. Since interlayer connections cause new structural and dynamic cor-
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relations between components, neglecting them or simply aggregating over layers will

alter the original topological properties. Therefore, it is desirable to develop struc-

tural measures taking interlayer relationships into consideration. Not surprisingly,

fundamental single-layer approaches have been largely generalised to multilayer net-

works, such as multilayer degree, clustering coefficient, closeness and betweenness

centralities, [52, 31, 44, 23], multilayer motifs and graphlets [19, 50], multilayer eigen-

vector, PageRank and HITS centralities [46, 85, 45]. Some tailor-made approaches

for multilayer networks are also recently introduced, for example, the minimal-layers

power community index [18] and the singular vector of tensor centrality [226]. The

study of multilayer structures, however, is still in an early stage. There is still much

room for developing new cross-layer structural approaches that better model inter-

layer spreading processes [206] and capture multiplex dynamics and controllability

[107].

2.5 Conclusion

Since the emergence of network science, graph structural measures have been

practical and powerful tools for analysing and understanding graph data in vari-

ous domains. In this survey, we extensively reviewed the state-of-the-art progress in

graph structural measures and proposed to divide them into five categories, i.e., sub-

graph count measures, subgraph formation measures, global path measures, message

passing measures and hybrid measures. The first two categories are efficient to com-

pute as they only require local information; the third category, based on unbounded

paths over the entire network, is defined at global-level; the fourth category, utilises

graph structure in an implicit way, i.e., gathering information from neighbours in an

iterative manner; and the fifth category is a mix of previous categories. Finally, we

discussed four open problems indicating the major challenges and future research

directions of graph structural measures, which are limited work combining structure
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with attributes, limited benchmark data and processes, and limited work concern-

ing temporal and multilayer networks. We hope this comprehensive review and new

taxonomies of graph structural measures would bring new perspectives in under-

standing existing approaches and serve as a starting point for future approaches.

This work fulfils our first research objective. Based on the literature review, the

following three chapters aim to close gaps in graph local structural measures, es-

pecially on subgraph formation measures and approaches that deal with attributed

networks.
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Chapter 3

Directed Closure Coefficient

3.1 Introduction

Networks, abstracting the interactions between components, are fundamental in

studying complex systems in a variety of domains ranging from cellular and neural

networks to social, communication and trade networks [172, 16]. Small subgraph

patterns (also known as motifs [163] or graphlets [190]) that recur at a higher fre-

quency than those in random networks are crucial in understanding and analysing

networks. Motifs underlie many descriptive and predictive applications such as

community detection [75, 182, 211, 235], anomaly detection [176, 130], role analysis

[90, 169], and link prediction [249, 208].

Among them, 3-node connected subgraphs, which are the building blocks for

higher-order motifs, are explored most often. Further, the 3-clique, or the triadic

closure [56] from a temporal perspective, has been revealed to be a natural phe-

nomenon of networks across different areas [163, 110]. Nodes sharing a common

neighbour are more likely to connect with each other. For example, in an undi-

rected friendship network, there is an increased likelihood for two people having a

common friend to become friends [193]; in a directed citation network, a paper cites

two papers where one tends to cite the other [234]; and in a signed directed trust

network, when Alice distrusts Bob, Alice discounts anything recommended by Bob

[109].

The classic measure of a 3-clique formation is the local clustering coefficient

[232], which is defined by the percentage of the number of triangles formed with a
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node (referred to as node i) to the number of triangles that i could possibly form

with its neighbours. Note that in this definition, the focal node i serves as the

centre-node in an open triad [219]. To emphasize, an open triad is an unordered

pair of edges sharing one node. With a focus on node i, it describes the extent to

which edges congregate around it. The extensions of local clustering coefficient have

been thoroughly discussed for weighted networks [17, 177, 244], directed networks

[63] and signed networks [129, 42]. Another metric for 3-clique formation, with a

focus on an edge (referred to as eij connecting node i and j), is the edge clustering

coefficient [228] which evaluates to what extent nodes cluster around this edge. It

is calculated as the number of triangles containing eij, divided by the number of all

possible triangles eij could form with other edges incident to nodes i and j.

A recent study has proposed another interesting local edge clustering measure,

i.e., the local closure coefficient [241]. With the focal node i as the end-node of an

open triad, it is quantified as the percentage of two times the number of triangles

containing i to the number of open triads with i as the end-node. Conceptually,

the local clustering coefficient measures the phenomenon that two friends of mine

are also friends themselves, while the local closure coefficient is focusing on a friend

of my friend is also a friend of mine. This new metric has been proven to be a

useful tool in several network analysis tasks such as community detection and link

prediction [241]. Together with the two measures mentioned above, we propose a

classification diagram of all three local clustering measures (Figure 3.1).

The local closure coefficient is originally defined for undirected binary networks.

However, in real-world complex networks, the relationships between components can

be nonreciprocal (a follower is often not followed back by the followee), heterogeneous

(trade volumes between countries vary significantly), and negative (an individual can

be disliked or distrusted).
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Local clustering measures

Edge-based clustering measure:
Edge clustering coefficient

Node-based clustering measures

Centre-node based 
clustering measure:

End-node based 
clustering measure:

Local clustering coefficient Local closure coefficient

Figure 3.1 : Classification diagram of local clustering measures. In each of the two
node-based clustering measures, the focal node is painted in red, and the dotted
edge represents the potential closing edge in an open triad. In the edge-based
clustering measure, the focal edge is in red, and the dotted outline circle represents
the potential node that forms a triangle.

In this chapter, with an end-node focus, we propose the local directed closure

coefficient to measure local edge clustering in binary directed networks, and we

extend it for weighted directed networks and weighted signed directed networks.

Since in a directed 3-clique, each of the three edges can take either direction, there

are eight different triangles in total. According to the direction of the closing edge,

i.e., the edge that closes an open triad and forms a triangle, we classify them into two

groups (emanating from or pointing to the focal node, as shown in Figure 3.2(a)).

Based on that, we propose the source closure coefficient and the target closure

coefficient respectively.

Further, from a transitive perspective, we categorize all directed triangles into

four patterns: (i) a head-of-path pattern, where the focal node is at the beginning

of the length-2 path; (ii) a mid-of-path pattern, where the focal node serves as an

intermediate node in the length-2 path; (iii) an end-of-path pattern, where the focal

node is the endpoint of the length-2 path; (iv) a cyclic pattern, where the triads are

not transitive with the focal node in a cyclical path (Figure 3.2(b)). The definition

of the directed closure coefficient for each pattern is also given explicitly.
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(a). Two groups according to the direction of the closing edge

(b). Four groups according to the position of the focal node in the path

Figure 3.2 : Taxonomy of directed triangles. Two solid edges connecting nodes i, j
and k form an open triad, which is closed by a dotted edge connecting nodes i and
k. Focal node i, painted in red, is the end-node of an open triad. (a) Eight triangles
are classified into two groups according to the direction of the closing edge. First
row shows a group where the focal node serves as the source node of the closing
edge; second row is another group where the focal node serves as the target. (b)
Eight Triangles are classified into four groups from a transitive perspective. In six
transitive triads, three different patterns are distinguished by the position of node i
in a length-2 path (emphasized by grey curved arrows): head-of-path, mid-of-path,
and end-of-path patterns. The remaining two non-transitive triads are classified as
a cyclic pattern.

Our evaluations have revealed some interesting properties of the proposed metric.

Through a correlation analysis on various networks, it is shown that the directed

closure coefficient provides complementary information to the classical metric, i.e.,

the directed clustering coefficient. We also demonstrate how the four patterns can

be used in analysing different types of directed networks.

In a link prediction task, we propose two indices that include the source closure

coefficient and the target closure coefficient. We show that in most networks, adding

closure coefficients leads to better performance. Finally, the usage of the weighted

signed directed closure coefficient is illustrated through a case study. We see that it
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is a more accurate measure compared to its original counterpart.

In summary, the main contributions of this chapter are as follows:

• We propose the directed closure coefficient as a novel measure of edge cluster-

ing in directed networks;

• We extend the directed closure coefficient to weighted and signed networks;

• We propose the four closure patterns for end-node-based directed triangles.

• We formulate the source and target closure coefficients and propose an algo-

rithm of link prediction for directed networks;

• Theoretical end empirical studies demonstrate the intrinsic properties of the

proposed metrics and their utilities in multiple network analysis tasks.

This work attains research objectives 2 and 5.

3.2 Preliminaries

This section introduces the preliminary knowledge of our work, including the

classic clustering coefficient, its extension in directed networks, and the recently

proposed closure coefficient.

3.2.1 Clustering coefficient

The notion of local clustering coefficient was originally proposed bearing the

name clustering coefficient, in order to measure the cliquishness of a neighbourhood

in an undirected graph [232].

Let G = (V,E) be an undirected graph on a node set V (the number of nodes

is |V |) and an edge set E, without multiple edges and self-loops. The adjacency
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matrix of G is denoted as A = {aij}. aij = 1 if there is an edge between node i and

node j, otherwise aij = 0. We denote the degree of node i as di =
∑

j aij.

For any node i ∈ V , the local clustering coefficient is calculated as the number

of triangles formed with node i and its neighbours (labelled as T (i)), divided by the

number of open triads with i as the centre-node (labelled as OTc(i)):

Cc(i) =
T (i)

OTc(i)
=

1
2

∑
j

∑
k aijaikajk

1
2
di (di − 1)

. (3.1)

The subscript c here emphasizes that the focal node i serves as the centre-node of

an open triad. We assume that Cc(i) is well defined. Clearly, Cc(i) ∈ [0, 1].

In order to measure clustering at the network-level, the average clustering coef-

ficient is introduced by averaging the local clustering coefficient over all nodes (an

undefined local clustering coefficient is treated as zero): Cc = 1
|V |

∑
i∈V Cc(i).

Another frequently used measure of clustering at the network-level is the global

clustering coefficient [174], which is defined as the fraction of open triads that form

triangles in the entire network:

Cc =

∑
i

∑
j

∑
k aijaikajk∑

i∈V di (di − 1)
. (3.2)

Note that the global clustering coefficient is not equivalent to the average clustering

coefficient. In fact, they can be very distinct from each other.

3.2.2 Directed clustering coefficient

Fagiolo[63] proposed an extension of the local clustering coefficient to directed

networks, which takes into account all possible directed triangles formed around a

focal node. In total, there are eight different triangles (each of the three edges can

have two directions). When a directed open triad (or a directed triangle) contains



58

= +

= + + +

Figure 3.3 : Dealing with bidirectional edges. The first row shows that an open
triad with one bidirectional edge is counted as two unidirectional open triads; the
second row shows that a triangle with two bidirectional edges is counted as four
unidirectional triangles.

bidirectional edges, they are treated as a combination of open triads (or triangles)

with only unidirectional edges (Figure 3.3).

Let us denote A = {aij} as the adjacency matrix of a directed graph GD =

(V,E). aij = 1 if there is an edge from node i to node j, otherwise aij = 0. The

degree of node i is denoted as di, including both outgoing edges and incoming edges:

di = douti + dini =
∑

j aij +
∑

j aji. d↔i denotes the degree of bidirectional edges of i:

d↔i =
∑

j aijaji.

The local directed clustering coefficient is thus defined as the number of directed

triangles formed with node i and its neighbours (counted as unidirectional ones,

labelled as TD(i)), divided by twice the number of directed open triads with i as

the centre-node (labelled as OTDc (i)):

CDc (i) =
TD(i)

2OTDc (i)

=
(1/2)

∑
j

∑
k (aij + aji) (aik + aki) (ajk + akj)

di (di − 1)− 2d↔i
.

(3.3)

Note that OTDc (i) equals to (1/2) [di (di − 1)− 2d↔i ]. OTDc (i) is multiplied by

two because the edge closes a directed open triad can take two directions.

Similarly, the average directed clustering coefficient of the entire network is de-

fined as: CDc = |V |−1
∑

i∈V CDc (i).
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One might have expected the existence of a directed version of the global cluster-

ing coefficient. However, somewhat surprisingly, such a measure has not appeared in

the literature (Seshadhri et al.[209] introduced a global directed clustering measure,

but only for each type of directed triangles, including triangles with bidirectional

edges). We therefore give a definition here, which is a natural extension of the local

directed clustering coefficient.

Definition 1. The global directed clustering coefficient of a directed network,

denoted CDc , is defined as the fraction of directed open triads that form triangles in

the entire network:

CDc =
1
2

∑
i

∑
j

∑
k (aij + aji) (aik + aki) (ajk + akj)∑
i∈V (di (di − 1)− 2d↔i )

. (3.4)

The numerator here equals three times the number of directed triangles in the entire

network (each node of a triangle contributes an open triad with it as the centre-node).

3.2.3 Closure coefficient

Recently Yin et al.[241] proposed the local closure coefficient and thus closed a

gap in the clustering measure on undirected networks. Different from the ordinary

centre-node focus in the local clustering coefficient, this definition is based on the

end-node of an open triad. Recall that an open triad is an unordered pair of edges

sharing one node. For example, in an open triad ijk with two edges ij and jk, there

is no difference between (ij, jk) and (jk, ij).

Using the notations for undirected graph, the local closure coefficient of node

i is defined as two times the number of triangles formed with i (labelled as T (i)),

divided by the number of open triads with i as the end-node (labelled as OTe(i)):

Ce(i) =
2T (i)

OTe(i)
=

∑
j

∑
k aijaikajk∑

j∈N(i)(dj − 1)
, (3.5)
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where N(i) denotes the set of neighbours of node i. T (i) is multiplied by two for the

reason that each triangle contains two open triads with i as the end-node. When

a triangle is actually formed (e.g., with nodes i, j and k), the focal node i can be

viewed as the centre-node in one open triad (jik) or as the end-node in two open

triads (ijk and ikj). Obviously, Ce(i) ∈ [0, 1].

At the network-level, the average closure coefficient is then defined as the mean

of the local closure coefficient over all nodes (undefined local closure coefficient is

treated as zero): Ce = 1
|V |

∑
i∈V Ce(i). When we consider a random network where

each pair of nodes is connected with a probability p, its expected value is also p, i.e.,

E[Ce] = p.

Analogous to the global clustering coefficient (see Equation 3.2), we give a global

version of the closure coefficient.

Definition 2. The global closure coefficient of an undirected network, denoted

Ce, is defined as :

Ce =
2
∑

i∈V T (i)∑
i∈V

∑
j∈N(i)(dj − 1)

. (3.6)

The numerator is equal to six times the number of triangles in the entire network

(each node of a triangle contributes two open triads with it as the end-node), then

divided by twice the number of open triads constructed from the end-node in the

entire network.

This definition is actually equivalent to the global clustering coefficient (Equa-

tion 3.2) as globally the difference of the position of the focal node will not surface.

Proposition 1. In any undirected network, Ce = Cc.

Proof. Since globally the neighbourhood relationship is reciprocal,
∑

i∈V
∑

j∈N(i)(dj − 1)

can be written as
∑

j∈V
∑

i∈N(j)(dj − 1) which equals
∑

j∈V dj (dj − 1). Then we

have
∑

i∈V
∑

j∈N(i)(dj − 1) =
∑

i∈V di (di − 1). Thus, Ce = Cc.
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3.3 Closure Coefficient in Directed Networks

The local closure coefficient has been proven to be a useful metric in undirected

networks [241]. In this section, we provide a general extension of it to directed

networks, i.e., the local directed closure coefficient. We further propose the clo-

sure coefficients of particular patterns. Finally, we extend it into weighted directed

networks and signed weighted directed networks.

3.3.1 Closure coefficient in binary directed networks

Motivated by the closure coefficient and the directed clustering coefficient, we

aim to measure the directed 3-clique formation from the end-node of an open triad.

There are eight different directed triangles, and similarly a triangle (or an open

triad) with bidirectional edges is treated as a combination of triangles (or open

triads) with only unidirectional edges (Figure 3.3).

Using the notations from Section 3.2, we now give the definition of the closure

coefficient in directed networks.

Definition 3. The local directed closure coefficient of node i in a directed

network, denoted CDe (i), is defined as twice the number of directed triangles formed

with node i (labelled as TD(i)), divided by twice the number of directed open triads

with i as the end-node (labelled as OTDe (i)):

CDe (i) =
2TD(i)

2OTDe (i)

=

∑
j

∑
k (aij + aji) (aik + aki) (ajk + akj)

2
∑

j∈N(i) (aij + aji) (dj − (aij + aji))
.

(3.7)

When the neighbours of i are solely connected to i, the local directed closure

coefficient is undefined. In real-world networks, however, nodes with undefined

closure coefficient are very rare.
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TD(i) is multiplied by two since each triangle contains two open triads with i as

the end-node. OTDe (i) is multiplied by two because the closing edge of a directed

open triad can take two directions. Obviously, CDe (i) ∈ [0, 1]. When the adjacency

matrix A is symmetric (the network becomes undirected), Equation 3.7 reduces to

Equation 3.5, i.e., CDe (i) = Ce(i).

Similarly, in order to measure at the network-level, we propose the definition of

an average directed closure coefficient and a global directed closure coefficient.

Definition 4. The average directed closure coefficient of a directed network,

denoted CDe , is defined as the average of the local directed closure coefficient over all

nodes:

CDe =
1

|V |
∑
i∈V

CDe (i), (3.8)

in which an undefined local directed closure coefficient is treated as zero. In a ran-

dom network, where each directed edge occurs with a probability p, we also have

E[CDe (i)] = p.

Definition 5. The global directed closure coefficient of a directed network,

denoted CDe , is defined as:

CDe =
2
∑

i∈V TD(i)

2
∑

i∈V
∑

j∈N(i) (aij + aji) (dj − (aij + aji))
, (3.9)

where the numerator equals six times the number of directed triangles in the entire

network (each node of a triangle contributes two open triads with it as the end-node),

divided by twice the number of directed open triads across the network.

Similar to Proposition 1 and its proof, the global directed closure coefficient is

equivalent to the global directed clustering coefficient (Equation 3.4).

Proposition 2. In any directed network, CDe = CDc .
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3.3.2 Closure coefficients of particular patterns

In addition to a general measure, we propose to have a closer look at the directed

closure coefficients of particular patterns in order to gain a deeper understanding

and fully realise the potential of this metric.

First and foremost, we classify directed triangles into two groups according to

the direction of the closing edge: one group where the focal node serves as the source

node of the closing edge, another group where the focal node serves as the target

(Figure 3.2(a)). Two definitions are given accordingly.

Definition 6. For a given node i in a directed network, the source closure coef-

ficient, denoted Csrc
e (i), and the target closure coefficient, denoted Ctgt

e (i) are

defined as:

Csrc
e (i) =

∑
j

∑
k (aij + aji) (ajk + akj) aik

2
∑

j∈N(i) (aij + aji) (dj − (aij + aji))
,

Ctgt
e (i) =

∑
j

∑
k (aij + aji) (ajk + akj) aki

2
∑

j∈N(i) (aij + aji) (dj − (aij + aji))
.

Please note that Csrc
e (i)+Ctgt

e (i) = CDe (i). These two metrics evaluate the extent

to which the focal node is acting as the source node or the target node of the closing

edges in a triangle formation. Note that there are no analogous definitions for the

clustering coefficient because the closing edge is not incident to the focal node that

serves as the centre-node of the open triad. In the next section, we show how the

source/target closure coefficients can be used to improve the performance in a link

prediction task.

Secondly, several studies have shown that the three-node transitive closure (also

called the feedforward loop) prevails in many real-world networks [163, 63, 110].

Thus, we propose to categorize the eight directed triangles into four patterns from

a transitive perspective: three transitive patterns distinguished by the position of
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Figure 3.4 : Directed open triads. Upper row illustrates four different open triads
with the focal node i as the end-node. Two arrows of the superscript describe the
directions of two edges: First arrow depicts an edge from i to j (→) or from j to i
(←); second arrow depicts the direction of an edge between j and k with regard to i
(→ denotes an edge from j to k; ← denotes an edge from k to j). As a comparison,
lower row illustrates three different open triads with i as the centre-node. First
arrow depicts the edge direction between i and j while second arrow depicts the
edge direction between i and k. There are three instead of four since OT→←c is
equivalent to OT←→c .

the focal node in a length-2 path, plus one non-transitive pattern (Figure 3.2(b)).

Before introducing the definitions of directed closure coefficients of these four

patterns, we first characterize four types of directed open triads with the focal node

as the end-node, a comparison with centre-node focused triads is also provided

(Figure 3.4). Then we give the following definitions.

Definition 7. The local directed closure coefficients of four patterns, i.e., the head-

of-path closure coefficient, denoted Chead
e (i); the end-of-path closure coef-

ficient, denoted Cend
e (i); the mid-of-path closure coefficient, denoted Cmid

e (i)

and the cyclic closure coefficient, denoted Ccyc
e (i) are defined as:

Chead
e (i) =

2T head(i)

OT→→e (i) + OT→←e (i)

=

∑
j

∑
k aijaik (ajk + akj)∑

j∈N(i) aij (dj − (aij + aji))
,
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Cend
e (i) =

2T end(i)

OT←←e (i) + OT←→e (i)

=

∑
j

∑
k ajiaki (ajk + akj)∑

j∈N(i) aji (dj − (aij + aji))
,

Cmid
e (i) =

2Tmid(i)

OT→←e (i) + OT←→e (i)

=

∑
j

∑
k (ajiaikajk + akiaijakj)∑

j∈N(i)

(
aij

(
dinj − aij

)
+ aji

(
doutj − aji

)) ,

Ccyc
e (i) =

2T cyc(i)

OT→→e (i) + OT←←e (i)

=

∑
j

∑
k (ajiaikakj + akiaijajk)∑

j∈N(i)

(
aji

(
dinj − aij

)
+ aij

(
doutj − aji

)) .
As shown above, the numerator of each coefficient equals twice the number of

particular triangles; the denominator can be calculated with the neighbourhood

information of node i and the degree information of i’s neighbours.

The significance of defining closure coefficients of these four patterns are twofold.

First, at the node-level analysis, they can be applied directly to measure whether a

node of interest is more of an initiator (higher head-of-path closure coefficient), an

intermediary (higher mid-of-path closure coefficient) or a target (higher end-of-path

coefficient).

Secondly, at the network-level, they can also serve as interesting features. Adopt-

ing a similar approach which uses clustering signatures to classify networks [5], we

introduce a normalised closure coefficient of each pattern for a given node i:

C̃∗e (i) =
C∗e (i)

Chead
e (i) + Cmid

e (i) + Cend
e (i) + Ccyc

e (i)
,
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where ∗ = {head,mid, end, cyc}. We then average it over the entire network:

C̃∗e =
1

|V |
∑
i∈V

C̃∗e (i). (3.10)

This average normalised closure coefficient of each pattern can be used to describe

or analyse networks.

3.3.3 Closure coefficient in weighted networks

So far, the study is focusing on binary networks, where the value of every edge is

either 1 or 0. In many networks, however, we need a more accurate representation of

the relationships between nodes, such as the frequency of contact in a social network,

the traffic flow in a road network, etc. This is why we are also interested in giving

a definition of a closure coefficient for weighted networks.

We begin with weighted undirected networks. Several versions of weighted clus-

tering coefficients have been summarised in [207]. Among them, a definition given

by Onnela et al. [177] and another given by Zhang and Horvath [244] are often em-

ployed. After normalisation (maximum weight normalised to 1), the former takes

a geometric average of weights of actually formed triangles, divided by the number

of potential triangles, which implies all edges taking the maximum weight in the

denominator. The latter chooses a simple product of weights of formed triangles,

divided by the product of two weights of an open triad, implying the potential triadic

closing edge taking the maximum weight.

In our definition of weighted closure coefficient, similar to the method proposed

by Zhang and Horvath[244], we choose to only assign a maximum weight to the

closing edge. In a weighted graph GW described by its weight matrix W = {wij},

we suppose wij ∈ [0, 1] (normalised by the maximum weight), and the strength of

node i is si =
∑

j wij.
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Definition 8. The weighted closure coefficient of node i in a weighted network,

denoted CWe (i), is defined as:

CWe (i) =

∑
j

∑
k wijwikwjk∑

j∈N(i) wij (sj − wij)
. (3.11)

Obviously, CWe (i) ∈ [0, 1]. When the weight matrix becomes binary, Equa-

tion 3.11 degrades to Equation 3.5, i.e., CWe (i) = Ce(i).

In a similar approach, the definition of closure coefficient in weighted directed

networks can be extended from Equation 3.7. Let us denote W = {wij} as the

weight matrix of a weighted directed graph GW,D, wij ∈ [0, 1]. The strength of node

i is denoted by si (si =
∑

j wij +
∑

j wji).

Definition 9. The weighted directed closure coefficient of node i, denoted

CW,D
e (i), is defined as:

CW,D
e (i) =

∑
j

∑
k (wij + wji) (wik + wki) (wjk + wkj)

2
∑

j∈N(i) (wij + wji) (sj − (wij + wji))
. (3.12)

Last but not least, we discuss the closure coefficient in weighted signed networks.

In many settings, the weights of relationships can be both positive and negative, as

a person may trust or distrust others with different levels of intensity.

Let GW
±,D be a weighted signed directed graph. Its signed weight matrix is

denoted by W = {wij}, wij ∈ [−1, 1]. The absolute weight matrix is denoted

by P = {pij}, where pij = |wij|. And the strength of node i is indicated by s̄i

(s̄i =
∑

j pij +
∑

j pji).

Definition 10. The weighted signed directed closure coefficient of node i,
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denoted CW
±,D

e (i), is defined as:

CW
±,D

e (i) =

∑
j

∑
k (wij + wji) (wik + wki) (wjk + wkj)

2
∑

j∈N(i) (pij + pji) (s̄i − (pij + pji))
. (3.13)

Obviously, CW
±,D

e (i) varies in [−1, 1]. It is positive when positive triangles

formed around the focal node outweigh negative ones. It equals zero when no tri-

angles formed with the focal node or positive triangles and negative triangles are

balanced.

3.3.4 Computational efficiency

To end this section, we give a brief discussion about the computational efficiency

of the aforementioned metrics. For the sake of explanation and understanding, we

use the adjacency matrix of the network to present equations, which leads up to

O(|V |3) in computation.

In actual development, however, after conveniently obtaining the neighbourhood

information (both successors and predecessors in directed networks) of each node,

the computational cost is O(|V | · k̄2), where k̄ is the average degree of the network.

As in most real networks k̄ ≪ |V |, the computation of these proposed metrics is

therefore fast in large networks.

3.4 Experiments and Analysis

In this section, we evaluate the proposed directed closure coefficient in real-world

networks. First, we compare it with the classic directed clustering coefficient. Then,

we show how it can be applied in link prediction to improve the performance. We

finish with a case study in a weighted signed directed network.
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3.4.1 Directed closure coefficient in real-world networks

Datasets. We run experiments on 12 directed networks from different domains:

1. Six social networks.

(a) Two friendship networks. Ado-Health[166]: a positively weighted friend-

ship network created from a survey; Digg-Friends [94]: an online

friendship network of news aggregator Digg.

(b) Three trust networks. BTC-Alpha [126]: a weighted and signed trust

network of users on Bitcoin Alpha; Epinions [159]: a weighted and signed

trust network of online product rating site Epinions; Wiki-Vote[133]: a

network describing Wikipedia elections.

(c) One communication network. CollegeMsg[183]: a network comprised

of messages between students.

2. Two citation networks. Arxiv-HepPh[134]: a citation network from arXiv;

US-Patent[84]: a citation network of patents registered in the US.

3. Two online Q&A networks. AskUbuntu and StackOverflow[184]: two

networks from Stack Exchange.

4. Two other networks. Amazon[132]: a network describing co-purchased prod-

ucts on Amazon; Google[135]: a hyperlink network.

Table 3.1 lists some key statistics of these datasets. To better compare with Def-

inition 9 and Definition 10, we calculate the weighted directed clustering coefficient

and the weighted signed directed clustering coefficient following [244] and [42]:

CW,D
c (i) =

∑
j

∑
k (wij + wji) (wik + wki) (wjk + wkj)∑

j

∑
k (wij + wji) (wik + wki)

,
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Table 3.1 : Statistics of datasets, showing the number of nodes (|V |), the number
of edges (|E|), the average degree (k̄), the proportion of reciprocal edges (r), the
average directed clustering coefficient (CDc ), and the average directed closure coeffi-
cient (CDe ). Datasets having timestamps on edge creation are superscripted by (τ).
Positively weighted networks are superscripted by (+), and networks having both
positive and negative weights are superscripted by (±).

Network |V | |E| k̄ r CDc CDe

CollegeMsgτ 1,899 20,296 10.69 0.636 0.087 0.017

Ado-Health+ 2539 12,969 5.11 0.388 0.090 0.071

BTC-Alpha±,τ 3783 24,186 6.39 83.2 0.046 0.006

Wiki-Vote 7,115 104K 14.57 0.056 0.082 0.017

Epinions±,τ 132K 841K 6.38 0.308 0.085 0.010

Digg-Friendsτ 280K 1,732K 6.19 0.212 0.075 0.008

Arxiv-HepPh 34,546 422K 12.2 0.003 0.143 0.053

US-Patent 3,775K 16,519K 4.38 0.000 0.038 0.019

AskUbuntuτ 79,155 199K 2.51 0.002 0.028 2e-4

StackOverflowτ 2,465K 16,266K 6.60 0.002 0.008 2e-4

Amazon 403K 3,387K 8.40 0.557 0.364 0.234

Google 876K 5,105K 5.83 0.307 0.370 0.097

CW
±,D

c (i) =

∑
j

∑
k (wij + wji) (wik + wki) (wjk + wkj)∑

j

∑
k (pij + pji) (pik + pki)

.

We see from Table 3.1 that in all 12 networks, the average directed closure

coefficient is less than the average directed clustering coefficient. In these types

of networks, we may say that compared to a triangle formation from centre-node

based open triads, fewer triangles are formed from the end-node based open triads.

In some networks (Ado-Health and Amazon), the difference between them is not

very big; while in Q&A networks, the difference is more than 40 times.

From the scatter plots of the local directed closure coefficient and the local di-

rected clustering coefficient (Figure 3.5), we can see their relationship more clearly.

First, the Pearson correlation is positive but weak (ranging from 0.134 to 0.759).

Secondly, similar networks exhibit similar relationships between the two variables, as
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Figure 3.5 : Scatter plots of the local directed closure coefficient and the local
directed clustering coefficient, with the Pearson correlation coefficient.

Figure 3.6 : Average normalized closure coefficients of four patterns: head-of-path
(HoP), mid-of-path (MoP), end-of-path (EoP) and cyclic (CYC). The dominant
pattern in each network is labelled with its value.

in two trust networks BTC-Alpha and Epinions, in two citation networks Arxiv-

HepPh and US-Patent or in two Q&A networks AskUbuntu and StackOver-

flow.

Applying Equation 3.10 in these networks, we get their average normalized clo-

sure coefficients of four patterns (Figure 3.6). It can be seen that the dominant

pattern is either the head-of-path pattern or the end-of-path pattern, and that the

cyclic pattern is substantially suppressed in many networks. Note that the neutral

value of each pattern, corresponding to an undirected network, is 0.25.
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To understand the meaning of the dominant head-of-path pattern, we take the

trust network Wiki-Vote as an example. Consider three people A, B and C,

if A votes for B and B votes for C (or if A votes for B and C votes for B), A

would probably vote for C. Similarly, a dominant end-of-path pattern in two Q&A

networks implies that if C answers B’s question and B answers A’s question (or if

B answers A’s question and B answers C’s question), it is likely that C would also

answer A’s question.

3.4.2 Link prediction in directed networks

Many studies [144, 2, 254, 188, 112, 160] have shown that future interactions

among nodes can be extracted from the network topology information. The key idea

is to compare the proximity or similarity between pairs of nodes, either from the

neighbourhoods [2, 254], the local structures [188] or the whole network [112, 160].

Most existing methods, however, focus solely on undirected networks. In this

experiment, we show whether the information provided by the local directed closure

coefficient can be used to enhance the performance of link prediction approaches

for directed networks. As shown in [144], the neighbourhood based methods are

simple yet powerful. We choose three classic similarity indices extended for directed

networks as the baseline methods[251].

Let Nout(i) be the out-neighbour set of node i (consisting of i’s successors); Nin(i)

be the in-neighbour set (consisting of i’s predecessors). The set of all neighbours

N(i) is the union of the two: N(i) = Nout(i) ∪Nin(i). For an ordered pair of nodes

(s, t), the three baseline indices are defined below:

• Directed Common Neighbours index (DiCN)

DiCN(s, t) = |Nout(s) ∩Nin(t)|,
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• Directed Adamic-Adar index (DiAA)

DiAA(s, t) =
∑

u∈Nout(s)∩Nin(t)

1

log |N(u)|
,

• Directed Resource Allocation index (DiRA)

DiRA(s, t) =
∑

u∈Nout(s)∩Nin(t)

1

|N(u)|
.

Proposed indices. Combining the idea of the Common Neighbours index and

the source/target closure coefficients (Definition 6), we propose two indices to mea-

sure the directed closeness in directed networks.

Definition 11. For an ordered pair of nodes (s, t), the closure closeness index,

denoted CCI(s, t); and the extra closure closeness index, denoted ECCI(s, t)

are defined as:

CCI(s, t) = |Nout(s) ∩Nin(t)| · (Csrc
e (s) + Ctgt

e (t)),

ECCI(s, t) = |N(s) ∩N(t)| · (Csrc
e (s) + Ctgt

e (t)).

Different from the closure closeness index, the extra closure closeness index uses

the set of all neighbours, because the source closure coefficient of node s and the

target closure coefficient of node t can also bring in the direction inclination.

Setup. We model a directed network as a graph GD = (V,E). For networks

having timestamps on edges, we order the edges according to their appearing times

and select the first 50% edges and related nodes to form an “old graph”, denoted

Gold = (V ∗, Eold). For networks not having timestamps, we randomly choose 50%

edges and related nodes as Gold and repeat 10 times in the experiment (r1 = 10).

Let Enew be the set of future edges among the nodes in V ∗, which is also what
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Table 3.2 : Performance comparison of six methods on link prediction in directed
networks (Precision %). RP (second column) gives the probability that a random
prediction is correct. The best performance in each network is in bold type. The
number at the foot of certain datasets indicates the total repeated times. Weights
are ignored in this task.

Network RP DiCN DiAA DiRA CCI ECCI

CollegeMsgτ 0.30 2.546 2.763 3.533 3.395 3.730

Ado-Health(10) 0.10 8.404 8.406 8.304 10.23 11.07

BTC-Alphaτ 0.05 8.588 9.269 7.313 8.418 9.226

Wiki-Vote(10) 0.15 21.96 22.51 20.32 22.55 19.08

Epinionsτ(20) 0.37 3.613 3.662 3.531 3.490 5.106

Digg-Friendsτ(20) 0.33 6.649 6.709 6.685 7.135 5.569

Arxiv-HepPh(50) 0.16 20.35 21.51 20.72 20.07 21.49

US-Patent(1,000) 0.04 9.787 10.14 9.987 11.67 11.31

AskUbuntuτ
(10) 0.03 4.100 4.912 4.163 5.412 4.697

StackOverflowτ
(100) 0.16 7.433 8.129 7.472 8.792 6.388

Amazon(500) 0.06 23.71 27.94 27.43 26.76 29.46

Google(500) 1.19 44.48 52.32 50.29 49.39 46.24

Average over all networks 0.245 13.468 14.856 14.146 14.776 14.447

we aim to predict. Apparently, the total number of potential links on node set

V ∗ is: |V ∗|2 − Eold. We apply each prediction method to output a list containing

the similarity scores for all potential links in descending order, denoted Lp. An

intersection of Lp[0 : |Enew|] and Enew gives us the set of correctly predicted links,

denoted Etrue. The precision is then calculated by |Etrue|/|Enew|.

For large networks (|V | > 10K), we randomly sample 5K connected nodes on

GD and repeat the above procedures r2 times according to the size of the dataset.

Therefore, for large networks without timestamps we run r1 ∗ r2 = 10 ∗ r2 times in

the experiment. For instance, we sample 50 times in the dataset Amazon which

does not have timestamps. Thus the total repeated times equals 10 ∗ 50 = 500.

Results and discussion. We compare three baseline methods with two pro-
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posed methods (Definition 11) in Table 3.2. We see that the closure closeness index

(CCI) has recorded the highest precision in 5 networks, and the extra closure close-

ness index (ECCI) has recorded the highest precision in 4 networks. It suggests that

in most networks, including the local structure information of closure coefficient

leads to improvement in link prediction. Sometimes the improvement is signifi-

cant: In Ado-Health and Epinions, ECCI is over 30% better than the baseline

methods. In the other six networks (CollegeMsg, Digg-Friends, US-Patent,

AskUbuntu, StackOverflow and Amazon), the precision of CCI or ECCI is

over 5% higher than that of the baselines.

In order to offer a different perspective, we also calculated the average preci-

sion value over the 12 networks for each method. The result shows that the best

performance is from the traditional DiAA approach, which is slightly higher than

the CCI (around 0.5%) and ECCI approaches (less than 2%). However, we argue

that the average precision score could be biased by some rare but extra-large values.

For example, in the Google dataset, the traditional approach DiAA achieves a

very high precision of 52.32 compared to other methods, which is the main cause

of the higher average precision in DiAA. Therefore, to evaluate the performance of

different methods in different types of networks, the win count is a more meaningful

metric to use.

We also notice that in three networks (Wiki-Vote, Digg-Friends and Stack-

Overflow), where CCI records the highest precision, ECCI is, however, worse than

the baseline methods. This suggests that sometimes the information provided by

the extra neighbours without considering direction inclination conflicts with that

provided by the source/target closure coefficients. Finding a method that better

combines the information of common neighbours and closure coefficients is an inter-

esting avenue for future study.
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3.4.3 Case study in a weighted signed network

In this experiment, through a case study on the dataset of Bitcoin Alpha trust

network (BTC-Alpha) [127], we illustrate how the proposed weighted signed di-

rected closure coefficient and the four patterns can serve as features in network

analysis.

BTC-Alpha is a trust network on a blockchain asset trading platform, where

users rate other traders in a range of [−10, 10] in steps of 1, from total distrust to

total trust. This is a weighted signed directed network. A rating is a weighted edge

from the rater (the source node) to the ratee (the target node).

First, without considering weights on edges, we conduct a correlation analysis

of the directed closure coefficient with the node degree (left figure in Figure 3.7).

We find that the directed closure coefficient is positively related to node degree

(ρ = 0.714), implying big traders (who trade with a large number of people) tend

to form more trustful cliques. However, when we put back the weights, the Pearson

correlation score reduces to 0.265 (right figure in Figure 3.7). Big traders are not

significantly better in forming trustful cliques. At the same time, we detect some

nodes with negative closure coefficients, meaning the negative triangles outweigh the

positive ones around them. From the balance theory [89], we know that negative

triangles are rare in a trust relationship. Indeed, the percentage of such nodes is

about 3.6%.

With a closer look at the nodes whose closure coefficients are negative (left

figure in Figure 3.8), we find that these nodes have relatively small strength, and

the absolute value of closure coefficient is not large. It implies that distrusted cliques

are only formed around small traders, and the rated degree of distrust is not high.

This phenomenon aligns with the intuition that an untrustworthy trader cannot

build a large trading network. Interestingly, a detailed inspection of the nodes with
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Figure 3.7 : Two scatter plots of the network BTC-Alpha. Left one shows the
correlation between directed closure coefficient and node degree (weights ignored);
right one shows the correlation between weighted signed directed closure coefficient
and node strength (weights taken into account).

Figure 3.8 : Two local enlarged scatter plots between weighted signed directed
closure coefficient and node strength in the network BTC-Alpha. Left one is for
the nodes with a negative closure coefficient; right one is for the nodes with a closure
coefficient greater than 0.3.

a large closure coefficient (greater than 0.3) shows that only nodes with a small

strength form highly trusted cliques (right figure in Figure 3.8), i.e., a high-trust

group is often a relatively small group. This is because a trader with large strength

could be involved in too many trading relationships to build a high-trust network

around him/her.

Last, after calculating the four average normalized closure coefficients according

to Equation 3.10, we find that the dominant pattern of nodes with a negative closure

coefficient is the end-of-path pattern (Table 3.3). This implies that these traders

act more as the ones being rated in the formed cliques. In contrast, the dominant

pattern of nodes with a large closure coefficient (greater than 0.3) is the head-of

path pattern, implying these traders are more active in the assessment.
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Table 3.3 : Comparison of head-of-path closure coefficient (HoP), mid-of-path clo-
sure coefficient (MoP), end-of-path closure coefficient (EoP) and cyclic closure co-
efficient (CYC) on three node sets of the dataset BTC-Alpha. The value of the
dominant pattern (> 0.30) in each group is put in bold type.

Network (selected nodes) HoP MoP EoP CYC

BTC-Alpha (all nodes) 0.233 0.248 0.288 0.230

BTC-Alpha (CDe < 0) 0.202 0.246 0.320 0.233

BTC-Alpha (CDe > 0.3) 0.345 0.251 0.187 0.208

3.5 Additional Related Work Discussion

Yin et al.[242] proposed a family of eight metrics as the extension of the local

closure coefficient in directed networks. The key differences of our work are that 1)

we give a general definition of the local directed closure coefficient so that it can

be easily used as a metric to describe networks; 2) we propose the source closure

coefficient and the target closure coefficient, based on which two indices of directed

closeness are introduced to improve the performance on link prediction; and 3) we

extend it into weighted networks and weighted signed networks as well.

Fagiolo[63] also introduced four patterns when he proposed the directed clus-

tering coefficient. Similarly, Ahnert and Fink[5] proposed clustering signatures to

classify directed networks. The four patterns of the directed closure coefficient we

propose here are different in that our definitions are end-node based and therefore

asymmetric in nature.

3.6 Conclusion

In this chapter, we introduce the directed closure coefficient and its extension as

another measure of edge clustering in complex directed networks. To better use it,

we further propose the source/target closure coefficients and the closure coefficients

of four patterns.
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Through experiments on 12 real-world networks, we show that the proposed met-

ric not only provides complementary information to the classic directed clustering

coefficient but also helps to make some interesting discoveries in network analysis.

Furthermore, we demonstrate that including closure coefficients in link prediction

leads to significant improvement in most directed networks. We anticipate that the

directed closure coefficient can be used as a descriptive feature as well as in other

network analysis tasks.

This work fulfills research objectives 2 and 5.
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Chapter 4

Measuring The Formation of Quadrangles

4.1 Introduction

Complex systems across various domains, such as biology, ecology, physics and

social science, can be modelled as networks that abstract the interactions between

system’s components [16, 171, 170]. Different from a simple grid graph or a line graph

for image or text modelling respectively, the complexity of networks comes from their

intricate topological structures. Therefore, the study of network structure, especially

local structure, underlies a number of representative and analytical applications such

as representation learning of graphs [86, 80], node-type classification [20, 115], link

prediction [73, 120] and anomaly detection [176, 6].

One fundamental and classic statistical metric to assess the local structure of

complex networks is the local clustering coefficient [232, 63]. It is defined as the

percentage of the number of triangles formed with a focal node to the number of

triangles that the focal node could form with all its neighbours. Note that the focal

node here serves as the centre node in an open triad (the middle of a length-2 path).

Since many of the real-world networks are triangle-rich, the clustering coefficient

— a measure of triangle formation — has become a standard metric to describe

networks. It has also been used in numerous applications such as malware detection

[131], language learning [78] and structural role discovery [90].

A recent study has proposed another interesting measure of triangle formation,

i.e., the local closure coefficient [241]. With the focal node as the end node of an open

triad (the head of a length-2 path), it is quantified as the percentage of twice the
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Figure 4.1 : The i-quad coefficient and the o-quad coefficient in comparison with the
clustering coefficient and the closure coefficient. Letters c, e, i and o denote centre
node, end node, inner node and outer node respectively. Node in green colour is the
focal node in each subfigure. Number on node indicates the node’s distance from
the focal node in the open triad or the open quadriad, which might be closed by an
edge in dotted green line style.

number of triangles containing the focal node to the number of all length-2 paths

starting from the focal node. Specifically, the classic local clustering coefficient

measures the extent to which the 1-hop neighbours of a given node connect to each

other, while the local closure coefficient measures the extent to which the 2-hop

neighbours of a given node connect to the given node itself. This new metric has

been proven to be a useful feature in network analysis tasks such as community

detection and link prediction [241].

In many types of networks, however, quadrangles appear at a much higher fre-

quency than triangles, and thus become the most dominant motifs [163]. For in-

stance, in gene regulatory networks, logical circuits networks and neuron networks,

the over-represented ”bi-fan” structure (a specific directed quadrangle) serves to

carry information or signals from previous units to following ones; while in food

webs, the highly recurring ”bi-parallel” structure (another type of directed quad-

rangle) describes how energy flows in an ecosystem.

In order to better describe and analyse the local structure of networks, we propose
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two metrics quantifying the formation of quadrangles, i.e., the i-quad coefficient and

the o-quad coefficient. There are two definitions in that two categories of nodes —

the inner node or the outer node — can be distinguished from the node’s position in

an open quadriad (also called intransitive quadriad in some works [192]). The i-quad

coefficient, with the focal node functioning as the inner node of an open quadriad,

measures the extent to which the focal node’s 2-hop neighbours connect to its 1-

hop neighbours. The o-quad coefficient, having the focal node as the outer node of

an open quadriad, measures the extent to which the focal node’s 3-hop neighbours

connect to itself (Figure 4.1).

Although the focus in this chapter lies on the general unipartite networks, the

proposed i-quad and o-quad coefficients provide interesting insights into bipartite

networks as well. Suppose that in a recommender network where node type x denotes

users and node type y denotes movies, an edge between xi and yi represents user xi

likes movie yi. Take the i-quad coefficient for instance (Figure 4.2a), given x1, the

focal user, likes movies y1 and y2, while x2 likes y1, it measures whether x2 likes y2.

In other words, the i-quad coefficient gives the extent to which other users have a

similar preference as the focal user. Likewise, for the o-quad coefficient, given x2

likes y1 and y2, while x1, the focal node, likes y1, it measures whether x1 likes y2

(Figure 4.2b). That is to say, the o-quad coefficient gives the extent to which the

focal user shares a similar opinion with other users. Interestingly, this explanation

coincides with the idea of collaborative filtering [77, 215].

In addition to the basic network structure, a deeper understanding of complex

systems sometimes requires taking into account the intensity or the strength of

interactions between components. This is achieved by assigning weights to links. For

instance, in unipartite networks, weighted links are used to represent the frequency

of contact in a communication network, or the intensity of the traffic flow in a

transportation network; in bipartite networks, especially recommender networks,
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(a). i-quad coefficient (b). o-quad coefficient

Figure 4.2 : An example of the i-quad coefficient and the o-quad coefficient in
a movie recommender network. Circle nodes represent users, and square nodes
represent movies. Node x1, marked in green, is the focal node. Four nodes and
three solid links form an open quadriad, which if is closed by a dotted link will form
a quadrangle.

weights are added to indicate how much a person likes a product or how often he

or she purchases it. Accordingly, we introduce the weighted i-quad coefficient and

the weighted o-quad coefficient in order to unveil the quadrangle formation in real

weighted networks.

Our empirical study on 16 real-world networks from six domains has revealed

several basic and interesting properties of the two proposed coefficients. First, we

find that in most types of networks, the average o-quad coefficient is smaller than

the average i-quad coefficient, which is also demonstrated through their cumulative

density distributions. Secondly, we show that the o-quad coefficient has a strong

positive correlation with node degree, whereas the correlation between the i-quad

coefficient and node degree is very weak. We then provide a theoretical justification

of this phenomenon under the configuration model.

Last but not least, we illustrate how the proposed quadrangle coefficients can

be powerful features for network analysis and inference tasks. In a network classi-

fication task, we show that different types of real-world networks are significantly

better clustered by adding the two quadrangle coefficients. Furthermore, in a link

prediction task, we also show that the i-quad and o-quad coefficients can be used

as effective predictors to improve the performance, especially in food webs, protein-

protein interaction networks and infrastructure networks.
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To sum up, the main contributions of this chapter are as follows:

• In order to measure the formation of 4-cycles in complex networks, we propose

the i-quad coefficient and the o-quad coefficient, based on the inner node and

the outer node of an open quadriad, respectively;

• We further extend two quadrangle coefficients to weighted networks;

• Empirical studies reveal that the average o-quad coefficient is smaller than the

average i-quad coefficient in most types of networks;

• Theoretically, we prove that the o-quad coefficient tends to increase with node

degree while the i-quad coefficient does not change too much as the node degree

increases.

• Extensive experiments demonstrate that including the two coefficients leads to

significant improvement in both network-level and node-level analysis tasks.

This work attains research objectives 3 and 5.

The remainder of this chapter is organised as follows. Section 4.2 introduces

notations and background knowledge of clustering coefficient and closure coefficient.

Section 4.3 presents and exemplifies the proposed quadrangle coefficients, whereas

Section 4.4 provides details of the evaluation, including the datasets, experiment se-

tups, performance measures, experiment results and our findings. Section 4.5 briefly

contemplates the related works, and finally we conclude this chapter in Section 4.6.

4.2 Background and Motivating Example

This section first introduces the approaches that measure the formation of tri-

angles. Then, we illustrate how these coefficients are calculated in the case of a

small-scale network that serves as an example.
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4.2.1 Measuring Triangle Formation

As introduced in Section 3.2.1, the local clustering coefficient is proposed to

measure the cliquishness of a node’s neighbours, or more specifically, the degree

to which the neighbours of a node connects to each other. Barabási[16] gives the

following equation to calculate the local clustering coefficient of a given node i:

C(i) = L(i)
1
2
di(di−1)

, where L(i) represents the number of links between i’s neighbours.

When we examine this definition from the perspective of subgraph formation, the

denominator is in fact the number of open-triads, the numerator is the number of

triangles, and the ratio between them is the percentage of triads that form triangles.

Therefore, we give the following equation for defining the local clustering coefficient:

C(i) =
T (i)

OTC(i)
=

1
2

∑
j∈N(i) |N(i) ∩N(j)|

1
2
di (di − 1)

, (4.1)

which gives the fraction of open triads, that actually form triangles. Also notice

that here the focal node serves as the centre node of an open triad.

At the network-level, the average clustering coefficient is then defined as the

mean of the local clustering coefficient over all nodes:

C =
1

|V |
∑
i∈V

C(i). (4.2)

Then recently the local closure coefficient is proposed to measure the edge clus-

tering phenomenon from a novel perspective, by having the focal node at the end of

an open-triad. As introduced in Section 3.2.3, the local closure coefficient of node i

is defined as twice the number of triangles formed with i, divided by the number of

open triads with i as the end node. (denoted OTE(i)):

E(i) =
2T (i)

OTE(i)
=

∑
j∈N(i) |N(i) ∩N(j)|∑

j∈N(i)(dj − 1)
. (4.3)
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1 2

6543

7 8 9

1: basic food
2: detritus
3: prawns and shrimps
4: benthos
5: zooplankton herbivores

T(i) OTC(i) OTE(i) C(i) E(i)

 0 6 12 0 0

 0 6 12 0 0

 2 10 15 0.2 0.27

 0 3 9 0 0

 1 6 13 0.17 0.15

 1 6 12 0.17 0.17

 2 6 13 0.33 0.31

 4 10 15 0.40 0.53

 2 3 11 0.67 0.36

𝐶̅ = 0.21  𝐸ത = 0.20  C = E = 0.21 

Q(i) OQI(i) OQO(i) I(i) O(i)

 13 36 37 0.72 0.70

 13 36 37 0.72 0.70

 16 56 39 0.57 0.82

 7 18 31 0.78 0.45

 12 37 38 0.65 0.63

 10 34 36 0.59 0.56

 8 35 36 0.46 0.44

 9 52 36 0.35 0.50

 4 18 32 0.44 0.25

𝐼 ̅ = 0.59 𝑂ത = 0.56 I = O = 0.57

(b). Calculation of clustering/closure coef. (c). Calculation of i-quad/o-quad coef.

6: fish herbivores
7: other carnivores
8: fish carnivores
9: human

(a). A small food web

Figure 4.3 : A motivating example.

In other words, it is the fraction of open triads, where the focal node serves as

the end node, that actually form triangles. T (i) is multiplied by two because each

triangle contains two open triads with i as the end node.

And at the network-level, the average closure coefficient is then defined as the

mean of the local closure coefficient over all nodes (an undefined local closure coef-

ficient is treated as zero):

E =
1

|V |
∑
i∈V

E(i). (4.4)

4.2.2 A motivating example

We illustrate how the two coefficients of triangle formation are calculated via a

small yet real network. Figure 4.3a shows a simplified food web of the backwaters of

Kerala, India [191]. It is composed of 9 nodes and 18 edges. Each node represents a

species and each edge represents the flow of food energy from one species to another.

Figure 4.3b gives a detailed table of the number of triangles T (i), the number of

centre-node-based open triads OTC(i), the number of end-node-based open triads

OTE(i), the local clustering coefficient C(i) and the local closure coefficient E(i)
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for each node. Also, the last row gives the average clustering coefficient, the aver-

age closure coefficient and the global clustering/closure coefficient, all of which are

around 0.20.

Different from some triangle-rich networks, we find many more quadrangles than

triangles in this food web (23 versus 4), which motivates us to propose measuring

quadrangle formation instead. In the next section, new measures to quantify infor-

mation about quadrangles in complex networks are proposed, and we show how we

can leverage the fact that some networks are quadrangle and not triangle rich.

4.3 Two Quadrangle Coefficients

The clustering coefficient and the closure coefficient provide us two ways of mea-

suring triangle formation. In some networks however, we care more about the for-

mation of quadrangles. Also, triangles do not exist in bipartite networks and the

most basic enclosed structure in this representation of networks is quadrangle. In

this section, we first propose two coefficients measuring quadrangle formation, based

on two different positions of the focal node in an open quadriad. Then, we further

extend them to weighted networks.

4.3.1 I-quad coefficient

Recall that an open quadriad is a directionless length-3 path (Figure 4.1d). In

an open quadriad ijkl, for instance, where three edges exist between node pairs

(i, j), (j, k) and (k, l), we name nodes j and k as inner nodes. In contrast, nodes i

and l are outer nodes. Obviously, an inner node has a degree of two, and an outer

node has a degree of one. Further, an open quadriad with the focal node acting

as the inner node is called inner-node-based open quadriad of that node; an open

quadriad with the focal node acting as the outer node is named outer-node-based

open quadriad of that node.
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Conforming with the definition of the classic clustering coefficient which mea-

sures whether the two endpoints of a centre-node-based open triad are connected

by a closing edge, we propose the i-quad coefficient that measures whether the two

endpoints of an inner-node-based open quadriad are connected by a closing edge. It

is quantified as the fraction of inner-node-based open quadriads that actually form

quadrangles. Concretely, the i-quad coefficient of node i, denoted I(i), is defined

as twice the number of quadrangles formed with i (denoted as Q(i)), divided by the

number of open quadriads with i as the inner node (denoted as OQI(i)):

I(i) =
2Q(i)

OQI(i)

=

∑
j∈N(i)

∑
k∈(N(j)−i) |N(k) ∩N(i)− j|∑

j∈N(i)

∑
k∈(N(j)−i) |N(i)− j − k|

.

(4.5)

In the above equation, j is in i’s neighbour set, and k is in j’s neighbour set excluding

i. Q(i) is multiplied by two because each quadrangle can be viewed as constructed

from two open quadriads with i as the inner node. By definition, it is obvious that

I(i) ∈ [0, 1].

Then, we define the average i-quad coefficient at the network-level, as the

mean of the i-quad coefficient over all nodes (undefined ones are treated as zeros):

I =
1

|V |
∑
i∈V

I(i). (4.6)

In the case of a random network where each pair of nodes is connected with a

probability p, the expected value of the average i-quad coefficient is also p, i.e.,

E[I] = p.

An alternative way of measuring quadrangle formation at the network-level is

the global i-quad coefficient , which is defined as the fraction of inner-node-based
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(b). Two inner-node-based open quadriads

(c). Two outer-node-based open quadriads

(a). A quadrangle

Figure 4.4 : Two types of open quadriads in a quadrangle. Node i, depicted in
green, is the focal node, among four nodes i, j, k and l.

open quadriads that form quadrangles in the entire network:

I =

∑
i∈V

∑
j∈N(i)

∑
k∈(N(j)−i) |N(k) ∩N(i)− j|∑

i∈V
∑

j∈N(i)

∑
k∈(N(j)−i) |N(i)− j − k|

. (4.7)

The numerator of the above equation can be viewed as eight times the number

of quadrangles in the entire network (each node of a quadrangle contributes two

counts), then divided by twice the number of open quadriads with each node acting

as the inner node.

Although both the average i-quad coefficient and the global i-quad coefficient can

be used as metrics to describe quadrangle formation in the entire network, they are

calculated differently. The average i-quad coefficient adds up the i-quad coefficient

of every node then divides it by the number of nodes, giving each node equal weight.

In contrast, the global i-quad coefficient gives nodes that form numerous quadrangles

more weight, by first totalling the numerator of the i-quad coefficient then dividing

it by the sum of the denominator of the i-quad coefficient.
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4.3.2 O-quad coefficient

Inspired by the closure coefficient in measuring triangle formation, we move

the focal node from the inner node to the outer node of an open quadriad, thus

proposing the o-quad coefficient in order to measure the formation of quadrangle

from a different perspective.

The significance of introducing the o-quad coefficient is twofold. First, the o-

quad coefficient takes into account length-3 paths emanating from the focal node,

and therefore has a larger scope of the network structure. Second, when a quadrangle

is formed, the closing edge (the edge that closes the outer-node-based open quadriad)

is incident to the focal node. This leads to some special properties, comparing to

the i-quad coefficient where the closing edge is not incident to the focal node. We

show in Section 4.4 that the cumulative distribution curve of the o-quad coefficient is

above that of the i-quad coefficient, and that the o-quad coefficient tends to increase

with node degree.

In a similar way, the o-quad coefficient of node i, denoted as O(i), is defined

as the fraction of open quadriads with i as the outer node that are closed:

O(i) =
2Q(i)

OQO(i)

=

∑
j∈N(i)

∑
k∈(N(j)−i) |N(k) ∩N(i)− j|∑

j∈N(i)

∑
k∈(N(j)−i) |N(k)− j − i|

,

(4.8)

where OQO(i) is the number of outer-node-based open quadriads of node i, and Q(i)

is the number of quadrangles containing i. Q(i) is multiplied by two because each

quadrangle contains two open quadriads with i as the outer node. In a quadrangle,

the focal node can serve as the inner node in two open quadriads or as the outer

node in another two open quadriads (Figure 4.4). Obviously, O(i) ∈ [0, 1].

In order to measure at the network level, the average o-quad coefficient
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is defined by averaging the o-quad coefficient over all nodes (an undefined o-quad

coefficient is treated as zero):

O =
1

|V |
∑
i∈V

O(i). (4.9)

Analogous to the global i-quad coefficient, the global o-quad coefficient can

be defined as the fraction of outer-node-based open quadriads that form quadrangles

in the entire network:

O =

∑
i∈V

∑
j∈N(i)

∑
k∈(N(j)−i) |N(k) ∩N(i)− j|∑

i∈V
∑

j∈N(i)

∑
k∈(N(j)−i) |N(k)− j − i|

. (4.10)

As the equivalence between the global clustering coefficient and the global closure

coefficient, this definition of global o-quad coefficient is actually not different from

the global i-quad coefficient (Equation 4.7) since globally the difference of the posi-

tion of the focal node will not arise.

Revisiting the motivating example, Figure 4.3c gives a detailed table of the

number of quadrangles Q(i), the number of inner-node-based open quadriads OQI(i)

and the number of outer-node-based open quadriads OQO(i) of each node, based

on which the i-quad coefficient I(i) and the o-quad coefficient O(i) are calculated.

Also, the last row of this table gives the three network-level measures, i.e., the

average i-quad coefficient, the average o-quad coefficient and the global i-quad/o-

quad coefficient, which are more than 2.5 times larger than those metrics measuring

triangles formation.

4.3.3 Quadrangle coefficients in weighted networks

Until now, the discussion has been focused on binary networks, where the value

of each link is either one or zero. In many networks, however, we need a more

accurate representation of the relationships between nodes, such as the frequency of



92

contact in a communication network, or the rating of a product given by a consumer

in a recommender network, etc. This kind of information is usually expressed as a

strength of the relationship and we use weighted networks to represent it. Therefore,

we are interested in extending the two quadrangle coefficients to networks that allow

for weights of the relationships.

Several versions of weighted clustering coefficient have been proposed in order to

measure triangle formation in weighted networks [17, 177, 244, 207]. For example,

Onnela et al. [177] proposed to sum over the geometric averages of the three weights

in formed triangles, divided by the number of potential triangles. Alternatively,

Zhang and Horvath. [244] chose to sum simply over the products of the three

weights in formed triangles, divided by the total of products of the two weights of

all open triads, implying the triadic closing edges taking the maximum weight.

Adopting a strategy similar to the one proposed by Zhang and Horvath [244],

we introduce the weighted i-quad coefficient and the weighted o-quad coefficient

to measure quadrangles formation in weighted networks. Let GW = (V,E) be a

weighted graph without self-loops and multiple edges. The weight of a link between

any node i and j is denoted wij (wij ∈ [0, 1] after normalisation by the maximum

weight). For any node i ∈ V , the weighted i-quad coefficient, denoted as IW(i),

and the weighted o-quad coefficient , denoted as OW(i), are defined as:

IW(i) =

∑
j∈N(i)

∑
k∈(N(j)−i)

∑
l∈(N(i)∩N(k)−j)

wijwjkwilwlk∑
j∈N(i)

∑
k∈(N(j)−i)

∑
l∈(N(i)−j−k)

wijwjkwil

, (4.11)

OW(i) =

∑
j∈N(i)

∑
k∈(N(j)−i)

∑
l∈(N(i)∩N(k)−j)

wijwjkwilwlk∑
j∈N(i)

∑
k∈(N(j)−i)

∑
l∈(N(k)−j−i)

wijwjkwkl

. (4.12)

When the graph becomes binary (unweighted), i.e., wij = 1, the above two
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Figure 4.5 : Correlation of quadrangle coefficients and weighted quadrangle coeffi-
cients in three different networks. First row is the correlation of i-quad coefficient
I(i) and weighted i-quad coefficient IW(i), second row is the correlation of o-quad
coefficient O(i) and weighted o-quad coefficient OW(i). The weighted networks are:
(1) C-elegans, the neural network of the Caenorhabditis elegans worm [232]; (2) US-
Airport, the network of the 500 busiest commercial airports in the United States
[41]; (3) Soc-UCI, the social network of online community for students at University
of California, Irvine [179].

weighted quadrangle coefficients degrade to their unweighted versions (Equation 4.5

and Equation 4.8). The average weighted i-quad coefficient and the average weighted

o-quad coefficient are then defined respectively as: IW = 1
|V |

∑
i∈V IW(i), OW =

1
|V |

∑
i∈V OW(i).

We can see from Figure 4.5 that in different weighted networks, the correlation

of i-quad coefficient and weighted i-quad coefficient (and the correlation of o-quad

coefficient and weighted o-quad coefficient) is also different. In other words, when

weights are considered in calculating quadrangle coefficients, the weighted i-quad co-

efficient and the weighted o-quad coefficient capture different information compared

to their unweighted counterparts.

(a). C-elegans (b). US-Airport (c). Soc-UCI 

(d). C-elegans (e). US-Airport (f). Soc-UCI 
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4.3.4 Computational cost

At the end of this section, we give a brief discussion about the computational

efficiency of the above mentioned metrics. From Equation 4.5 and Equation 4.8, we

can see that to compute the i-quad coefficient or the o-quad coefficient for a single

node, the worst-case cost is O((kmax)3), where kmax is the maximum degree of the

network. Therefore, the worst-case cost for computing the two coefficients for every

node in a network is O(|V |·(kmax)3), which is not cheap. Fortunately, however, since

most real-world networks are scale-free and exhibit heavy-tailed degree distribution,

the actual cost is far less expensive than this. For example, it takes about 22.5

seconds to compute the average i-quad coefficient on the CORA citation network

which contains 23, 166 nodes and 89, 157 edges (test on Intel Xeon Gold 6238R @

2.2GHz with 180GB of RAM).

4.4 Experiments and Analysis

In this section, we analyse the proposed quadrangle coefficients on different types

of real-world networks and demonstrate their usage in some common applications∗.

4.4.1 Quadrangle coefficients in real-world networks

Datasets. We run experiments on 16 networks of six categories (collected from

Konect[128] and Snap[136]):

1. Food webs. FW-FloridaDry[223] and FW-LittleRock [157]: energy

transfer relationships collected from the cypress wetlands of South Florida

and the Little Rock Lake of Wisconsin. Nodes represent species and an edge

denotes that one species feeds on another (edge direction and weight are ig-

nored).

∗Our code is available at https://github.com/MingshanJia/explore-local-structure.

https://github.com/MingshanJia/explore-local-structure
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Table 4.1 : Statistics of datasets, showing the number of nodes (|V |), the number
of edges (|E|), the average degree (⟨k⟩), the average clustering coefficient (C), the
average closure coefficient (E), the average i-quad coefficient (I) and the average
o-quad coefficient (O). In order to facilitate comparison, the last four columns give
the quotient of C and E, the quotient of I and O, the quotient of I and C, and the
quotient of O and E respectively. Datasets having timestamps on edge creation are
superscripted by (τ).

Network |V | |E| ⟨k⟩ C E I O C/E I/O I/C O/E

FW-FloridaDry 128 2,106 32.91 0.335 0.261 0.428 0.353 1.280 1.213 1.280 1.351

FW-LittleRock 183 2,452 26.80 0.323 0.208 0.550 0.339 1.553 1.622 1.704 1.631

Soc-EmailEuτ 986 16,064 32.58 0.407 0.153 0.231 0.102 2.659 2.267 0.568 0.667

Soc-ClgMsgτ 1,899 13,838 14.57 0.109 0.022 0.081 0.029 5.082 2.806 0.744 1.347

Soc-BTCAlphaτ 3,783 14,124 7.47 0.177 0.020 0.058 0.013 8.937 4.448 0.326 0.655

Soc-TwitchFr 6,549 113K 34.41 0.222 0.029 0.109 0.034 7.557 3.202 0.493 1.163

PPI-Stelzl 1,706 3,191 3.74 0.006 0.002 0.038 0.021 3.827 1.806 6.332 13.416

PPI-Figeys 2,239 6,432 5.75 0.040 0.005 0.082 0.043 7.321 1.908 2.064 7.918

PPI-Vidal 3,133 6,726 4.29 0.064 0.025 0.040 0.018 2.531 2.291 0.632 0.698

PPI-IntAct 8,077 26,085 6.46 0.083 0.016 0.063 0.021 5.101 2.993 0.750 1.278

Cit-DBLPτ 12,590 49,651 7.89 0.117 0.026 0.060 0.014 4.529 4.175 0.510 0.553

Cit-Cora 23,166 89,157 7.70 0.266 0.100 0.107 0.047 2.667 2.285 0.402 0.469

Rd-NewYork 264K 365K 2.76 0.021 0.021 0.068 0.069 1.012 0.990 3.291 3.365

Rd-BayArea 321K 397K 2.47 0.017 0.016 0.038 0.038 1.020 0.992 2.284 2.350

QA-MathOvfl.τ 21,688 88,956 8.20 0.094 0.005 0.031 0.004 17.956 7.305 0.333 0.817

QA-AskUbuntuτ 138K 262K 3.81 0.015 5e-4 0.004 5e-4 31.708 7.867 0.243 0.981

2. Social networks. EmailEu[184]: a temporal email network from a European

research institution (a temporal edge denotes that an email is exchanged be-

tween two persons at a certain time); ClgMsg[183]: temporal online message

interactions between UCIrvine college students (a temporal edge means that

a message is exchanged between two students at a certain time); BTCAl-

pha [126]: a temporal who-trusts-whom network of users on a Bitcoin trading

platform Bitcoin Alpha (edge direction and weight are ignored); TwitchFr

[202]: a network of gamers who stream in French, where nodes are the users

and edges are mutual friendships between them.
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3. Protein-protein interaction (PPI) networks. Stelzl[213], Figeys[62], Vi-

dal[203] and IntAct[180]: four networks of interactions between proteins

in Homo sapiens. Nodes represent proteins and an edge denotes the physical

contact between two proteins in the cell.

4. Citation networks. DBLP[137] and Cora[216]: two academic publication

citation networks. DBLP contains temporal information on edges. Nodes

represent papers, and an edge means that one paper cites another paper (di-

rection is ignored).

5. Infrastructure networks. Rd-NewYork and Rd-BayArea[128]: two road

networks for New York City and San Francisco Bay Area. Nodes represent

intersections and endpoints, and the roads connecting them are represented

by edges.

6. Q&A networks. MathOvfl. and AskUbuntu[184]: two temporal Q&A

networks derived from Stack Exchange. Nodes represent users, and a temporal

edge means that one user answers another user’s question at a certain time

(edge direction is ignored).

Observations. Table 4.1 lists some key statistics including the proposed coeffi-

cients of these networks. We observe that in most types of networks (except road

networks), the average o-quad coefficient is smaller than the average i-quad coeffi-

cient. That is to say, for the majority of nodes in these types of networks, fewer

quadrangles are built from the outer-node-based open quadriads, compared to the

number of quadrangles constructed from the inner-node-based open quadriads. This

phenomenon is better revealed through the cumulative distribution function (CDF)

in Figure 4.6: the CDF curve of the o-quad coefficient is above that of the i-quad

coefficient when the coefficient value is small (except in Rd-NewYork).
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Figure 4.6 : Cumulative distribution curve of the i-quad coefficient I(i) (in green
colour) and the o-quad coefficient O(i) (in purple colour) in six real-world networks
of different types.

We can also observe that in all food webs, two PPI networks (PPI-Stelzl and

PPI-Figeys) and all road networks, the average i-quad coefficient is larger than the

average clustering coefficient (I > C); and the average o-quad coefficient is larger

than the average closure coefficient (O > E). In other words, these networks are

more inclined to form quadrangles than to form triangles, which leads us to the

following experiments.

4.4.2 Correlation with node degree

Since node degree is one of the most important and widely used concepts in

network science, we study how the two quadrangle coefficients vary with it. We

start by conducting an empirical analysis in real networks, followed by a theoretical

justification under the degree-preserving random graph model.
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We choose one network in each category and plot the correlation of quadrangle

coefficients and degree (Figure 4.7). We observe a strong positive correlation between

the o-quad coefficient and the node degree: the average o-quad coefficient is small

among nodes with small degree and becomes larger as the average node degree

increases. In contrast, the correlation between the i-quad coefficient and the degree

is weak: the average i-quad coefficient is large (compared to the average o-quad

coefficient) when the average node degree is small and does not change too much

as the average degree increases. Since most real-world networks are scale-free and

exhibit heavy-tailed degree distribution, it also explains why the average i-quad

coefficient is bigger than the average o-quad coefficient in most networks studied in

our work (Table 4.1).

To better understand the correlation between the quadrangle coefficients and the

node degree, we give a theoretical explanation under the configuration model [68].

Constrained by a given degree sequence, the configuration model generates a network

by placing edges between nodes uniformly at random. This can be achieved through

a stub-matching process, in which the probability of forming an edge between node i

and node j equals di ·dj/2m (assuming d2i ⩽ 2m for all i). Now we give the following

proposition.

Proposition 3. Let V be a set of n nodes with specific degrees d1, d2, ..., dn, on

which graph G is generated from the configuration model. Let m = 1
2

∑n
i=1 di denote

the number of edges and k̄ = (
∑

i d
2
i )/(

∑
i di) be the expected degree when a node is

chosen with probability proportional to its degree. As n → ∞, for any node i ∈ V ,

its local i-quad coefficient satisfies:

E[I(i)] =
(k̄ − 1)2

2m
,
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Figure 4.7 : Correlation of two quadrangle coefficients with node degree in six real-
world networks. Nodes are grouped into logarithmic bins in ascending order by
degree, then average i-quad and o-quad coefficients are calculated in each bin.

and its local o-quad coefficient satisfies:

E[O(i)] =
(di − 1) · (k̄ − 1)

2m
.

Proof. For any open quadriad with node i as an inner node, we denote one outer

node by k and another outer node by l (Figure 4.8a). The probability that this open

quadriad is closed equals the probability of having an edge between node k and l,

which is (dk − 1) (dl − 1) /2m in the configuration mode. The reason of subtracting

1 from dk and dl is that one stub of node k (and node l) has already been used in

forming the open quadriad.

Now, we show that as n → ∞, E [dk] = E [dl] = k̄. Via stub matching, any

node, other than node i and j, can form an edge with node j and thus become
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(a). Node i as an inner node (b). Node i as an outer node 

i

j

k

l

i

j

k

l

Figure 4.8 : Two types of quadrangle formation via stub matching. (a) Quadrangle
is potentially formed with the focal node i acting as the inner node. The closing
edge is between node k and l. (b) Quadrangle is potentially formed with the focal
node i acting as the outer node. The closing edge is between node i and l.

one outer node of the open quadriad. The probability of node k being this node

is proportional to its degree, which is dk∑
k∈V,k ̸=i,j dk

. Therefore, we have E [dk] =∑
k∈V,k ̸=i,j dk ·

dk∑
k∈V,k ̸=i,j dk

. When n→∞, E [dk] =
∑

k∈V dk · dk∑
k∈V dk

= k̄. Similarly,

we have E [dl] = k̄.

In short, we have:

E[I(i)] = E [(dk − 1) (dl − 1) /(2m)]

=
(E [dk]− 1) · (E [dl]− 1)

2m
=

(k̄ − 1)2

2m
.

Likewise, for any open quadriad with node i as an outer node, we denote the

other outer node by l (Figure 4.8b). And we have:

E[O(i)] = E [(di − 1) (dl − 1) /(2m)]

=
(di − 1) · (E [dl]− 1)

2m
=

(di − 1) · (k̄ − 1)

2m
.

Although Proposition 3 is given under the configuration model, we see from

Figure 4.7 that this property is well preserved in most real-world networks. Only

that in road networks, i.e., Rd-NewYork and Rd-BayArea, the average i-quad
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Figure 4.9 : Two-dimensional visualisation of K-means clustering on PCA-reduced
data, without and with quadrangle coefficients (left figure and right figure respec-
tively). Six clusters are labelled from 1 to 6, and painted in different colours. Cen-
troids of clusters are marked as black crosses. Data points are plotted in different
shapes and colours representing their ground truth categories, as shown in the leg-
end.

coefficient and the average o-quad coefficient are very similar (Table 4.1), and they

exhibit similar correlations with node degree. This is because the variance of node

degree is extremely small (less than one) in this type of network, resulting in di close

to k̄, and thus E[O(i)] close to E[I(i)].

4.4.3 Network classification

In this section, we exhibit how useful the proposed quadrangle coefficients are

in classifying different types of networks. Previous works have shown that nor-

malized number of triads and triangles (triad significance profile[162] and clustering

signatures[5]) are effective attributes in a network classification task. It motivated us

to use the two quadrangle coefficients in the network classification, as they represent

a normalized number of quadrangles.

We can see in Table 4.1 that the quotient of the average i-quad coefficient and

the average clustering coefficient (I/C), and the quotient of the average o-quad

(a). without quadrangle coefficients (b). with quadrangle coefficients

PPI PPI
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coefficient and the average closure coefficient (O/E) are contrasting in different

types of networks. It is intuitive to expect the two quadrangle coefficients will be

able to add useful discriminative information to a set of features, in addition to the

average clustering coefficient and the average closure coefficient, for improving of

the network classification accuracy.

Setup. We first prepare the data by using the three classic topological features of

undirected networks, i.e., the average node degree ⟨k⟩, the average clustering coeffi-

cient C and the average closure coefficient E. We then employ a K-means clustering

algorithm to partition the 16 networks into 6 clusters. The initial centroids are

chosen randomly, and we repeat the algorithm with different sets of initial centroids

for 1000 times, returning the best results in terms of homogeneity, completeness and

V-measure score [200]. The maximum number of iterations for a single run is set to

300. To compare, we keep the experiment setting unchanged, but add the proposed

quadrangle coefficients (i.e., the average i-quad coefficient I and the average o-quad

coefficient O) to the baseline features.

Results and discussion. The classification results are given in Table 4.2.

Homogeneity measures whether the samples from a single class belong to a sin-

gle cluster; completeness measures whether all members of a class are assigned to

the same cluster; V-measure score is the harmonic mean between homogeneity and

completeness. After adding the two quadrangle coefficients, we observe significant

improvement in all three measures (13% increase in homogeneity, 10% increase in

completeness and 15% increase in V-measure score). It indicates that the informa-

tion contained in the quadrangle coefficients are complementary to the information

contained in the clustering and closure coefficients, making them discriminative fea-

tures in classifying networks.

In order to further analyse the results, we adopt the Principal Component Anal-
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Table 4.2 : Homogeneity (Homo.), completeness (Compl.) and V-measure score of
the K-means clustering on 16 real-world networks, without and with the quadrangle
coefficients (first row and second row respectively).

Features Homo. Compl. V-measure

without quadrangle coefs. 0.700 0.764 0.707

with quadrangle coefs. 0.793 0.841 0.816

ysis (PCA) algorithm to compress the data to a two-dimensional space, and thus

visualise the classification results (Figure 4.9). We can see from Figure 4.9(a) that

the networks are poorly classified by just using three classic topological features

(without the two quadrangle coefficients). Only two road networks are correctly al-

located to cluster 2. Four PPI networks are separated into two clusters, resulting in

a low completeness score; and two food webs are grouped together with two social

networks, leading to a low homogeneity score. In contrast, when the quadrangle

coefficients are included in the feature set, these networks are better clustered, espe-

cially the types of networks that are relatively rich in quadrangles (Figure 4.9(b)).

Two food webs and two road networks are perfectly allocated to cluster 6 and cluster

2, respectively. In addition to that, four PPI networks are kept together within the

same cluster, increasing, therefore, the completeness score. We observe, however,

no obvious improvement in clustering social networks, citation networks and Q&A

networks. This is because quadrangles are relatively underrepresented in these types

of networks (for example, their average i-quad coefficients are less than their average

clustering coefficients).

Since two more dimensions are added in the comparison, is the result statistically

significant, i.e., would any added features lead to the same level of improvement?

To answer this question, we conduct a significance test on V-measure score. First,

we state the null hypothesis: adding two random features to the baseline feature set

will achieve at least the performance of adding two quadrangle coefficients. Then we
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generate two random features from a uniform distribution over 0 to 1, and append

them to the baseline feature set. As previously, we employ the same algorithm and

the same setup to group these networks and report the best V-measure score.

To get the distribution, we repeat the experiment 1, 000 times with 1, 000 differ-

ent sets of randomly generated features. There are only 26 out of 1, 000 sets that

achieve a score higher than 0.816. Thus, we have the p-value of the null hypothesis

equal to 0.026, meaning the probability of achieving such a result with random fea-

tures is 0.026. As this p-value is lower than the default threshold of 0.05, the null

hypothesis is confidently rejected and the statistical significance of the improvement

brought by adding quadrangle coefficients is proved.

4.4.4 Link prediction

As two new metrics measuring quadrangle formation, the i-quad coefficient and

the o-quad coefficient provide additional topological features for a node-level net-

work analysis and inference. As an example, we show their utilities in missing link

prediction, where significant improvement is brought by adding them.

Many studies have shown that common neighbours index and its variations such

as Adamic-Adar index and resource allocation index perform well in the link predic-

tion problem [144, 2, 254]. Besides, the clustering coefficient and the closure coeffi-

cient are proven to be useful features to improve the performance [7, 241]. Therefore,

we use these five features as the baseline features in our prediction model, and then

test the performance by adding the proposed i-quad and o-quad coefficients. XG-

Boost, the gradient boosted trees, is used as the prediction model due to its speed

and performance.

Setup. We model a network as a graph G = (V,E). For networks having times-

tamps on edges, we order the edges according to their appearing times and select the

first 70% edges and related nodes to form an “old graph”, denoted Gold = (V ∗, Eold).
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The remaining 30% edges filtered by node set V ∗ will form a “new graph”, denoted

Gnew = (V ∗, Enew). For networks not having timestamps, we randomly shuffle the

edges then perform the partition, and we repeat 100 times in order to assess variance

and reduce the impact of a single partition on the possible conclusions. The test set

is built by node pairs, that appear in the old graph, but do not form a link. Each

such pair of nodes indicates a positive or a negative example depending on whether

a link between them appears in the new graph.

The training set is built on the old graph, on which we fit four XGBoost models

with four sets of features: 1) baseline feature set which includes common neighbours,

Adamic-Adar, resource allocation, clustering coefficient and closure coefficient; 2)

baseline features plus i-quad coefficient; 3) baseline features plus o-quad coefficient;

4) baseline features plus both i-quad coefficient and o-quad coefficients. Then we

evaluate their prediction performances on the test set. For large networks (|V | >

10K), we perform a randomised breadth first search sampling [51] of 3K nodes on

the original graph and repeat 10 times.

Results and discussion. Since network link prediction is a highly unbalanced

task, we choose the Area Under the ROC Curve (ROC-AUC) as the metric and

report the prediction result on the test set, as shown in Table 4.3. First, we discover

that adding the i-quad (3rd column) or the o-quad coefficient (4th column) leads

to improvement in most networks. Furthermore, we find that adding the o-quad

coefficient outperforms adding the i-quad coefficient in 14 out of 16 networks. One

possible explanation of this phenomenon is that the o-quad coefficient looks 3-hop

away from the focal node, which is in line with the recent discovery that 3-hop paths

are more powerful predictors in link prediction [120, 253]. When both quadrangle

coefficients are added to the baseline features (5th column), the performance is im-

proved in all networks. The average ranking (last row) also shows that adding both

i-quad and o-quad coefficients at the same time leads to the best overall performance,
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Table 4.3 : Test set performance comparison measured in ROC-AUC score of four
XGBoost classifiers with different features. Second column lists the scores with
baseline features (BL), third column adds i-quad coefficient to baseline features,
fourth column adds o-quad coefficient to baseline features, and fifth column adds
both i-quad and o-quad coefficients to baseline features. An improvement of more
than 2% is put in bold type, and an improvement of more than 5% is indicated by
dagger. Last row gives the average (over the datasets) ranking of the four classifiers
for comparison, where smaller is better. A classifer receives rank 1 if it has the
highest ROC-AUC score, rank 2 if it has the second highest, and so on. If two
classifiers share the best score, they both get rank 1.5, and so on. The best ranking
is put in bold italic.

Network
w/ baseline

features (BL)

add I(i)

to BL

add O(i)

to BL

add I(i) &

O(i) to BL

FW-FloridaDry 0.6703 0.6779 0.6834 0.6886

FW-LittleRock 0.8077 0.8357 0.8421 0.8521†

Soc-EmailEuτ 0.9076 0.9070 0.9090 0.9084

Soc-ClgMsgτ 0.7831 0.7873 0.7879 0.7920

Soc-BTCAlphaτ 0.8588 0.8601 0.8679 0.8697

Soc-TwitchFr 0.9160 0.9176 0.9192 0.9202

PPI-Stelzl 0.6565 0.7778† 0.7809† 0.7764†

PPI-Figeys 0.8171 0.8644† 0.8668† 0.8650†

PPI-Vidal 0.7566 0.7973† 0.8009† 0.7992†

PPI-IntAct 0.8524 0.8808 0.8839 0.8842

Cit-DBLPτ 0.7294 0.7261 0.7336 0.7310

Cit-Cora 0.8700 0.8705 0.8726 0.8734

Rd-NewYork 0.5268 0.5529 0.5538† 0.5538†

Rd-BayAera 0.5218 0.5353 0.5353 0.5356

QA-MathOvfl.τ 0.8546 0.8554 0.8541 0.8551

QA-AskUbuntuτ 0.8746 0.8791 0.8765 0.8777

Avg. ranking 3.8 2.8 1.9 1.5

closely followed by just adding the o-quad coefficient.

Second, we find that the improvement is particularly significant in food webs,

protein-protein interaction networks and road networks (more than 2% in all eight
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networks of these three types, and more than 5% in five networks when both quad-

rangle coefficients are added). The common characteristic of these types of networks

is that they tend to have larger quadrangle coefficients compared to the clustering

and closure coefficients. In other words, the extra information brought by the pro-

posed coefficients is particularly useful in networks that are rich in quadrangles.

To give more statistical insight into these results, we adopt the non-parametric

Wilcoxon Signed-Rank Test [210] to quantify the difference between classifiers with

different feature sets, reporting the p-value where applicable. Note that this method

is rank-based and essentially tests the null hypothesis that two paired samples come

from the same distribution. In our setting, paired samples are paired columns from

the result table, and rejected null hypothesis means that we would expect one ap-

proach to outperform another in a new dataset.

We find that adding the i-quad coefficient, adding the o-quad coefficient, and

adding both of them to the baseline features all provide statistically significant

gains over only using the baseline feature set (p-values are far less than 0.001 for

all three). Moreover, the gains of adding the o-quad coefficient and adding both

quadrangle coefficients to baseline features over adding the i-quad coefficient to

baseline features are also critically different (p = 0.005, comparing adding the o-

quad coefficient with adding the i-quad coefficient; p = 0.003 comparing adding

both quadrangle coefficients with adding the i-quad coefficient). However, there

is no significant difference between adding the o-quad coefficient and adding both

quadrangle coefficients (p = 0.35). Accordingly, we create the critical difference

diagram in Figure 4.10.

4.4.5 Limitations and Future Directions

Now, we describe several limitations of our work and outline how these might be

overcome in future studies.
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1234

3.812clf1
2.781clf2 1.875clf3

1.531clf4

Figure 4.10 : Critical difference diagram of four classifiers with different feature sets.
Classifier 1 (clf1) uses baseline features; classifier 2 (clf2) uses baseline features plus
i-quad coefficient; classifier 3 (clf3) uses baseline features plus o-quad coefficient;
classifier 4 (clf4) uses baseline features plus i-quad and o-quad coefficients.

Directed edges. Our work currently is limited to undirected networks (un-

weighted or weighted). A natural extension is to further propose the directed quad-

rangle coefficients in a similar approach as in extending the clustering coefficient and

closure coefficient to directed networks [63, 105]. The complexity of this approach

comes from the 16 different directed quadrangles. Another possible direction is to

focus on one or two directed quadrangles that are proved to be more important in

many types of networks, such as the bi-fan or the bi-parallel structures [249, 97].

Network dynamics. Both the i-quad coefficient and the o-quad coefficient

are motivated by the view of network evolution — a closing edge appears between

the two endpoints of an existing open quadriad and forms a quadrangle. Their

definitions, however, do not take into consideration the dynamics of the network.

An interesting future direction is to develop the notion of temporal open quadriad,

meaning that an open quadriad is present at a certain timestamp while its two

endpoints are not connected by a closing edge. Then we can define the temporal

quadrangle coefficients as the fraction of temporal open quadriads that are closed

at a later time point. With extra temporal information, these counterparts could

therefore be more powerful in predicting future links.

Potential applications. Being new metrics of measuring quadrangle forma-

tion, the proposed coefficients could be promising in studying networks that are rich
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in quadrangles — discovering similarities among protein-protein interaction net-

works [125], detecting compartments in food webs [122], and exploring how robust

ecological systems are in the face of species loss [54]. More generally, the quadrangle

coefficients also have the potential to be applied in community detection, as shown

by the clustering and closure coefficients [241, 101]. Plus, although Graph Neu-

ral Networks have achieved state-of-the-art results in various applications, a recent

study has exposed their shortcomings in capturing network structures [237]. There-

fore, an interesting avenue is to incorporate the structural information brought by

the proposed coefficients in the message passing scheme.

4.5 Related Work

We here recapitulate some related works that proposed other metrics to measure

quadrangle formations in networks. Fronczak et al. [72] proposed a higher order

clustering coefficient for random networks. It is defined as Ci(x) = 2Ei(x)
ki(ki−1) , where i

is the focal node and x is the length of path. Ei(x) denotes the number of x-length

paths between the neighbours of i. When x equals 2, this definition deals with the

formation of quadrangles. The limitation of this definition is that the normalisation

only takes the degree of the focal node i into account while neglects the degree of

i’s neighbours. Since each pair of neighbours could have multiple length-2 paths

between them, the clustering value can be larger than one.

Aiming to measure the formation of 4-cycles, Caldarelli et al. [33] proposed

two grid coefficients, i.e., the primary grid coefficient and the secondary grid co-

efficient. The former is defined as: Gp(i) = Qp(i)
Zp(i)

, where Qp(i) is the number

of actual “primary quadrilaterals” containing node i, and Zp(i) is calculated by:

Zp(i) = ki(ki−1)(ki−2)(ki−1)
2

. With this definition, however, it actually deals with the

formation of 4-cycle with an extra diagonal edge. The secondary grid coefficient is

defined as: Gs(i) = Qs(i)/Zs(i), where Qs(i) is the number of actual “secondary
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quadrilaterals” containing node i, and Zs(i) is calculated by: Zs(i) =
ki,2ndki(ki−1)

2
.

A potential problem within this definition is that it does not rule out the possibil-

ity that the 2-hop neighbour connects to two other 1-hop neighbours, making the

formed structure containing five nodes.

Lind et al. [145] later proposed a square clustering coefficient in the context

of bipartite networks by taking into consideration the degree of the neighbours,

in other words, the length-2 paths starting from the focal node. It is defined as

C4,mn(i) = qimn

(km−ηimn)(kn−ηimn)+qimn
, where m and n are a pair of neighbours of the

focal node i, and qimn denotes the number of squares containing the three nodes.

What is uncommon about this definition is that it deems squares are formed via

node overlapping, which is not a standard approach. Zhang et al. [248] then modi-

fied the equation and proposed another more standard square clustering coefficient

for bipartite networks. Their definition is: C4,mn(i) = qimn

(km−ηimn)+(kn−ηimn)+qimn
. How-

ever, in both of these definitions, there is no notion of open quadriad introduced,

and the scope is limited within 2-hop distance from the focal node.

The proposed i-quad and o-quad coefficients are different from previous works in

that 1) the scope of the o-quad coefficient is larger since it takes into account length-

3 paths emanating from the focal node, whereas the square clustering coefficients

or the grid coefficients only calculate length-2 paths in the normalisation; 2) the

quadrangle coefficients proposed by us view a formed quadrangle as being built from

open quadriads via connecting two endpoints with one edge, which conform with

the classic clustering and closure coefficients (in their definitions a formed triangle is

viewed as being built from open triads). In contrast, two edges are required to form

a quadrangle in the grid coefficients; 3) the quadrangle coefficients are proposed for

the general unipartite networks on which multiple experiments are conducted. In

Figure 4.11, we provide a simple example to illustrate the five coefficients proposed

by previous works and the two quadrangle coefficients proposed by us.
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i
𝑂 𝑖 ൌ 1.0

𝐻 𝑖 ൌ  0.67
𝐺௣ 𝑖 ൌ  0, 𝐺௦ 𝑖 ൌ  0.33
𝑆௅ 𝑖 ൌ  0.67, 𝑆௓ 𝑖 ൌ  0.33

𝐼 𝑖 ൌ  0.5,

Figure 4.11 : An example of the coefficients proposed in related works, compared
with our proposed quadrangle coefficients. H(i) is the higher order clustering co-
efficient proposed by Fronczak et al.[72]; Gp(i) and Gs(i) are the primary grid co-
efficient and the secondary grid coefficient proposed by Caldarelli et al.[33]; SL(i)
is the square clustering coefficient proposed by Lind et al.[145]; SZ(i) is another
square clustering coefficient proposed by Zhang et al.[248]; I(i) and O(i) are the
two quadrangle coefficients proposed by us.

4.6 Conclusion

In this chapter, we introduced the i-quad coefficient and the o-quad coefficient

to measure quadrangle formation in networks, according to the different location of

the focal node in an open quadriad. We also extended them to weighted networks.

Through experiments on 16 real-world networks from six domains, we revealed that

1) in most types of networks, the average o-quad coefficient is smaller than the

average i-quad coefficient; 2) in food webs, protein-protein interaction networks and

road networks, the i-quad and o-quad coefficients are larger than the clustering

and closure coefficients respectively; 3) the o-quad coefficient tends to increase with

node degree while the i-quad coefficient does not change too much as the node degree

increases.

We also demonstrated that including the two coefficients leads to improvement

in both network-level and node-level analysis tasks, such as network classification

and link prediction. The improvement is especially significant in food webs, protein-

protein interaction networks and road networks in link prediction task. Additionally,

we plan to further consider the dynamics of time-varying networks and link directions

of directed networks when measuring quadrangle formation in the future. Due to the
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simplicity and interpretability in the definitions, we anticipate that the i-quad and

o-quad coefficients will become standard descriptive features and be incorporated in

other network mining tasks.

This work fulfills research objectives 3 and 5.
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Chapter 5

Typed-Edge Graphlets

5.1 Introduction

Underlying the formation of complex networks, topological structure has always

been a primary focus in network science. Among numerous analytical approaches,

graphlets [190] have gained considerable ground in a variety of domains. In biology,

it is revealed that proteins performing similar biological functions have similar local

structures depicted by the graphlet degree vector [161]. In social science, egocentric

graphlets are used to represent the patterns of people’s social interactions [220].

More broadly, the notion of graphlets is introduced in computer vision to capture

the spatial structure of superpixels [247], or in neuroscience to identify structural

and functional abnormalities [13].

However, the original graphlets concept is unable to capture the richer informa-

tion in networks that contain different types and characteristics of nodes or edges.

Specifically, there are situations in which we are more interested in edge-labelled

networks. For example, in a routing network where edges represent communication

links, the label of each edge indicates the cost of traffic over that edge and is used to

calculate the routing strategy. Or in an egocentric social network, the different types

of social relationships between the ego and the alters are essential in analysing ego’s

behaviour and characteristics. Some studies have extended graphlets to attributed

networks (also called heterogeneous networks). Still, they either only deal with dif-

ferent types of nodes [201] or are not capable of encoding specific type information

in graphlets [197, 81].
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In this work, we introduce an approach to embedding edge type or edge attribute

information in graphlets, named Typed-Edge Graphlets Degree Vector, or TyE-GDV

for short. We employ both the classic graphlets degree vector [161] (GDV) and

the proposed TyE-GDV to represent and analyse 303 egocentric social networks

of chronic pain patients. The real-life data is collected from three chronic pain

leagues in Belgium. Each patient selects up to ten connections and each edge is

labelled with one social relationship type. After grouping the patients into four

groups according to their self-perceived pain grades, we find that patients with

higher grades of pain have more star-like structures (3-star graphlets) in their social

networks, while patients in lower pain grades groups form more 3-cliques, tailed-

triangles, 4-chordal-cycles and 4-cliques. With the additional edge type information

provided by TyE-GDV, we further discover that the outnumbered 3-star graphlet

in higher pain grade patients is mainly formed of friends or healthcare workers; and

that in 3-cliques and 4-cliques, friends and colleagues appear more frequently among

patients with lower pain grades.

We further apply TyE-GDV into a node classification task. The dataset contains

demographic attributes, detailed information about chronic pain (duration, diagno-

sis, pain intensity, etc.), and other related data such as the physical functioning

score, depression score, social isolation score, etc. We show that the edge-type en-

coded graphlet features depicted by TyE-GDV are more distinctive than the classic

non-typed graphlet features given by GDV in telling apart patients of different pain

grades.

To summarise, the main contributions of this chapter are as follows:

• In order to effectively encode edge type information, we propose a novel frame-

work to generate a Typed-Edge Graphlet Degree Vector;

• We further modify the TyE-GDV framework so that it is applicable for ego-
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Figure 5.1 : Graphlets of size 2–4 nodes with enumeration of orbits.

centric networks;

• We extend colored graphlets and heterogeneous graphlets approaches for edge-

typed networks.

• Case study on chronic pain patients shows that particular types of social re-

lationships bear more importance in understanding the effect of chronic pain

and could lead to more effective therapeutic interventions.

This work attains research objective 5.

The remainder of this chapter is organised as follows. Preliminary knowledge

is provided in Section 5.2. Our proposed approach is introduced in Section 5.3.

Experiments, results and analysis are presented in Section 5.5. And finally we

conclude in Section 5.6 and discuss future directions.

5.2 Background and Preliminaries

In this section, we introduce the concepts of graphlets and graphlets in the

context of egocentric networks.
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5.2.1 Graphlets and orbits

Graphlets are small non-isomorphic induced subgraphs of a network [190]. Non-

isomorphic means that two subgraphs need to be structurally different, and induced

means that all edges between the nodes of a subgraph must be included. With a

range of size from 2 to 5 nodes, there are 30 different graphlets in total. And, when

the non-symmetry of node position is taken into consideration, there are 73 different

local structures, which are also called automorphism orbits [161]. Simply put, orbits

are graphlets that distinguish the position of a focal node (we use orbits and node-

orbit graphlets interchangeably in this work). For any given node, a vector of the

frequencies of all 73 orbits is then defined as the node’s Graphlet Degree Vector

(GDV). GDV or normalised GDV is often used as node feature to measure the

similarities or differences among all nodes. We summarise node-orbits graphlets of

size 2 to 4 nodes in Figure 5.1(a). Take G6 for example, orbit-11 touches orbit-0

three times, orbit-2 twice, orbit-3 once and orbit-11 itself once. Thus, its GDV has

3 at the 0th coordinate, 2 at the 2nd coordinate, 1s at the 3rd and 11th coordinates,

and 0s at the remaining coordinates.

The original notion of orbits is at node-level, distinguishing node position when

counting graphlets. Hočevar and Demšar later propose to count graphlets at link-

level and introduce the notion of edge orbits [92]. Figure 5.1(b) gives all edge orbits

of size 2 to 4 nodes. Apparently, edge orbits are different from node orbits. For

example, there is only one edge orbit in graphlet G1, but two node orbits in it.

We also refer to edge orbits as edge-orbit graphlets in this work. The concept of

heterogeneous graphlets is built upon edge orbits, and we will discuss more about

it in Section 5.4.
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tailed‐triangle 4‐clique3‐clique2‐path 3‐star2‐clique 4‐chordal‐cycle

Figure 5.2 : 7 egocentric graphlets of 2 to 4 nodes. Ego node is painted in black.

5.2.2 Egocentric graphlets

In social network analysis, egocentric networks are sometimes of particular in-

terest when we care more about the immediate environment around each individual

than the entire world [189]. We may want to learn why some people behave the way

they do, or why some people develop certain health problems. Since the notion of

graphlets is defined at node-level, it is naturally suitable to be applied in egocentric

networks, with two modifications. First, some graphlets that do not meet the re-

quirement of being an egocentric network are excluded. For example, in graphlets

of size up to 4 nodes (Figure 2.2), G3 and G5 are eliminated because any node in

them serving as an ego cannot reach all other nodes with 1-hop. Second, there is

no need to distinguish different orbits in egocentric graphlets because only one orbit

can act as an ego. Therefore, there are in total 7 egocentric graphlets of size 2 to

4 nodes, which are 2-clique, 2-path, 3-clique, 3-star, tailed-triangle, 4-chordal-cycle

and 4-clique (Figure 5.2).

5.3 Typed-Edge Graphlet Degree Vector

This section describes the framework for generating edge-type embedded graphlet

degree vector.

The original concept of graphlets manages to capture rich connectivity patterns

in homogeneous networks. However, many real-world networks are more complex

by containing different types of nodes and edges, making them heterogeneous net-
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Algorithm 1: Typed-Edge Graphlet Degree Vector (TyE-GDV).

input : preprocessed graph G = ⟨V,E, Te⟩, set of node-orbits O, node set
V ′.

output: dictionary dic of vectors for all nodes ∈ V ′.
1 initialise: dic = {};
2 foreach i ∈ V ′ do
3 initialise a 2d-vector vec of size |O| × |Te| with zeros;
4 foreach o ∈ O do
5 Le = GetEdgeList(o);
6 Update(vec, o, Le)

7 dic[i] = vec;

Algorithm 2: Update Vector.

1 Function Update
input : 2d-vector vec, type of node orbit o, edge list Le.

2 foreach e ∈ Le do
3 τe = GetType(e);

/* o and τe are used as indices in vec. */

4 vec[o][τe] increase by 1;

works. Specifically, edge type information is crucial in that it indicates the specific

relationship between the nodes. For example, in the dataset of this study, each

chronic pain patient describes their egocentric social network, including up to ten

actors, and each edge is labelled with 1 of 13 types of social relationships. In or-

der to analyse edge-labelled networks at a finer granularity, we propose to embed

edge-type information in graphlets. The original graphlet degree vector counts the

occurrences of each type of graphlet, and as a result, a one-dimensional vector is

created. Here, we propose to construct a two-dimensional vector by counting each

type of edge touched by each type of graphlet.

To begin with, we give the formal definition of an edge-labelled network.

Definition 12. An edge-labelled network G is a triple ⟨V,E, Te⟩, where V = {v1, v2, ..., vn}

is the set of nodes, E = {eij} ⊂ V × V is the set of edges where eij indicates an

edge between nodes vi and vj, and Te is the set of edge types, where τeij denotes the
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type of edge eij.

The first step of the framework is graph preprocessing, in which the set of edge

types is mapped to integers ranging from 0 to |Te|. For instance, the 13 types of

social relationships in the targeted dataset are denoted from 0 to 12 (τe ∈ [0, 12]).

Also, the set of orbits O is mapped to integers ranging from 0 to |O|. In this work,

we consider all possible orbits up to 4 nodes (Figure 5.1(a)). Therefore, there are

15 orbits coded from 0 to 14 (o ∈ [0, 14]).

Algorithm 3: Code Snippet for Orbit-6, 9 and 10.

1 foreach i ∈ V ′ do
2 initialise a 2d-vector vec of size |O| × |Te| with zeros;
3 foreach u ∈ Ni do
4 foreach v, w ∈ C(Nu, 2) do
5 if v /∈ Ni ∧ w /∈ Ni ∧ v /∈ Nw then
6 Update(vec, τo6 , [eiu, euv, euw]); ▷ orbit-6
7 if v /∈ Ni ∧ w /∈ Ni ∧ v ∈ Nw then
8 Update(vec, τo9 , [eiu, euv, euw, evw]); ▷ orbit-9
9 if v ∈ Ni ∧ w /∈ Ni ∧ v /∈ Nw then

10 Update(vec, τo10 , [eiu, euv, euw, eiv]);
11 if v /∈ Ni ∧ w ∈ Ni ∧ v /∈ Nw then
12 Update(vec, τo10 , [eiu, euv, euw, eiw]); ▷ orbit-10

13

Algorithm 1 shows the approach of generating a two-dimensional vector of size

|O| × |Te|, i.e., the Typed-Edge Graphlet Degree Vector (TyE-GDV) for any nodes

of interest. Specifically, after initialisation, for each node in a given node set V ′

and for each type of the 15 node-orbit graphlets, the vector is updated through

the Update function (Algorithm 2). The calculation of each orbit in Algorithm 1

is omitted for a more concise expression. To demonstrate the detailed process, we

give a program snippet for calculating orbit-6, 9 and 10 in Algorithm 3. C(Nu, 2)

denotes all possible 2-combinations of the set of neighbours of node u. The use of

combinations is to avoid repetitive calculation. Due to the preprocessing step, o

and τe are conveniently used as indices when updating the vector. At the end of
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Algorithm 4: Typed-Edge Ego-Graphlet Degree Vector (TyE-EGDV).

input : preprocessed graph G = ⟨V,E, Te⟩, set of egocentric node-orbits O,
node set V ′.

output: dictionary dic of vectors for all nodes ∈ V ′.
1 initialise: dic = {};
2 foreach i ∈ V ′ do
3 initialise a 2d-vector vec of size |O| × |Te| with zeros;
4 foreach u ∈ Ni do
5 Update(vec, o0, eiu); ▷ 2-clique

6 foreach u, v ∈ C(Ni, 2) do
7 if v /∈ Nu then
8 Update(vec, o1, [eiu, eiv]); ▷ 2-path
9 else

10 Update(vec, o2, [eiu, eiv, euv]); ▷ 3-clique

11 foreach u, v, w ∈ C(Ni, 3) do
12 if u /∈ Nv ∧ u /∈ Nw ∧ v /∈ Nw then
13 Update(vec, o3, [eiu, eiv, eiw]); ▷ 3-star
14 else if v ∈ Nu ∧ w /∈ Nu ∧ w /∈ Nv then
15 Update(vec, o4, [eiu, eiv, eiw, euv]);
16 else if w ∈ Nu ∧ v /∈ Nu ∧ v /∈ Nw then
17 Update(vec, o4, [eiu, eiv, eiw, euw]); ▷ tailed-tri
18 else if w ∈ Nv ∧ u /∈ Nv ∧ u /∈ Nw then
19 Update(vec, o4, [eiu, eiv, eiw, evw]);
20 else if u ∈ (Nv ∩Nw) ∧ w /∈ Nv then
21 Update(vec, o5, [eiu, eiv, eiw, euv, euw]);
22 else if v ∈ (Nu ∩Nw) ∧ w /∈ Nu then
23 Update(vec, o5, [eiu, eiv, eiw, euv, evw]); ▷ 4-chord-cyc
24 else if w ∈ (Nu ∩Nv) ∧ v /∈ Nu then
25 Update(vec, o5, [eiu, eiv, eiw, euw, evw]);
26 else
27 Update(vec, o6, [eiu, eiv, eiw, euw, evw, euv]); ▷ 4-clique

28 dic[i] = vec;

Algorithm 1, a dictionary of nodes as keys and their corresponding TyE-GDV as

values is returned. For example, if an orbit-9 is detected and its four edges are of

type ‘0’, ‘1’, ‘2’ and ’2’, vector elements at coordinates (9, 0), (9, 1), (9, 2) and (9, 2)

will increase by 1. Obviously, the time complexity of generating TyE-GDV is the

same as counting graphlets.

As discussed earlier in Section 5.2.2, egocentric networks are sometimes of special

interest, especially when edge type information is included (as in our case study

dataset of chronic pain patients). With the restriction of being egocentric, there
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are fewer orbits in graphlets that need to be considered. Therefore, we also propose

a tailor-made version of the framework for egocentric networks, called TyE-EGDV

(see Algorithm 4). C(Ni, 2) and C(Ni, 3) denotes all possible 2-combinations and

3-combinations of the set of neighbours of node i. Note that in TyE-EGDV, there

are in total 7 orbits in O, instead of 15. Therefore, the algorithm is more efficient

in both time and space.

5.4 Typed-Edge Degree, Colored Graphlets and Heteroge-

neous Graphlets

Since node degree is the simplest network structural metric, a naive way of

encoding edge type information in network structure is first to have the notion of

typed-edge degree. Formally, the typed-edge degree of node i with edge type t, i.e.,

dti, is defined as the number of edges of type t that are connected to i. Then, a

typed-edge degree vector (TyE-DV), can be defined as a vector containing typed-

edge degrees of all types.

Some other approaches that also aim to take node type and/or edge into con-

sideration include the colored motifs [197], colored graphlets [81] and heterogeneous

graphlets [201]. Colored motifs, as the name suggests, extended G-Tries algorithm

that counts motifs [196] by including the information of node or edge type. This

approach, however, is at network-level and is therefore not suitable for node-level

analysis.

Colored graphlets approach [81] is at node-level, and proposes to distinguish

different graphlets according to all combinations of node types. Although the paper

claims that this approach also works with typed edges, they did not theoretically

or experimentally demonstrate that. The paper alleges that the total number of

combinations equals to 2T − 1, where T is the total number of possible node types.
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This is incorrect as it fails to take graph size into consideration. We give the amended

equation for calculating the number of combinations in a given graphlet g:

C(g) =

min(K(g),T )∑
n=1

(
T

n

)
, (5.1)

where K(g) is the number of nodes of the graphlet when T refers to node type,

and number of edges when T is edge type. We then develop a colored graphlets

approach for edge-typed networks, named ColoredE-GDV, which is also applied to

case studies in the next section.

The recently proposed heterogeneous graphlets approach [201] also considers

node type in graphlets. It is different from the colored graphlets approach in two

ways. First, heterogeneous graphlets are computed at link-level. It distinguishes the

position of a given edge, instead of a given node (refer to the notion of edge-orbit

graphlets in Section 5.2.1). The benefit of a link-based computation is that it is

more time-efficient in sparse networks than node-based approaches. The downside,

apparently, is that it is not suitable for node-level analysis. Second, heterogeneous

graphlets propose to use combinations with repetitions of node types, rather than

just combination, when distinguishing different graphlets. The total number of

possible heterogeneous graphlets is calculated as:

H(g) =
T∑

n=1

(
T

n

)
·
(
K(g)− 1

n− 1

)
=

(
T + K(g)− 1

K(g)

)
. (5.2)

Similarly, K(g) is the number of nodes of the graphlet when T refers to node type,

and number of edges when T is edge type. Since repetition is allowed in heteroge-

neous graphlets, the number of possible heterogeneous graphlets is larger than that

of colored graphlets.

In order to extend the idea of heterogeneous graphlets to node-level analysis
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and to deal with typed edges, we propose a node-based typed-edge heterogeneous

graphlets approach, named HeteroE-GDVN (the original link-based typed-node ap-

proach is noted as HeteroN-GDVL). The approach of HeteroE-GDVN is demon-

strated through Algorithm 5. We see clearly that its time complexity stays the

same as counting untyped graphlets, but the space complexity grows fast with the

number of edge types.

Algorithm 5: Node-based Heterogeneous Graphlets Degree Vector
(Hetero-GDVN)

input : preprocessed graph G = ⟨V,E, Te⟩, set of node-orbits O, node set
V ′.

output: dictionary dic of vectors for all nodes ∈ V ′.
1 initialise: dic = {};
2 LTe = [0, 1, ..., |Te| − 1];
/* range of edge number of graphlets of size 2 - 4 nodes */

3 for k ← 1 to 6 do
4 Lk = [GetCombWithRep(LTe , k)];

5 foreach i ∈ V ′ do
6 for o← 0 to |O| − 1 do
7 initialise veco;

8 foreach o ∈ O do
9 k = GetNumOfEdge(o);

10 Le = GetEdgeList(o);
11 tup = (Sort(Le));
12 veco[GetIndex(Lk, tup)] increase by 1;

13 vec = [vec0, vec1, ..., vec|O|−1];
14 dic[i] = vec;

Although the above approaches seem powerful to capture all possible combi-

nations (or combinations of repetitions) of different types of nodes or edges, their

numbers of possible graphlets, which are also their space complexities, grow near-

exponentially with the number of node or edge types. For example, with 9 node

types, in colored graphlets approach, there are 255 possible colored graphlets for a

graphlet of 4 nodes; and in heterogeneous graphlets approach, there are 495 possible

graphlets. In comparison, the space complexity grows linearly with the number of

edge types in the proposed TyE-GDV approach. Moreover, out of this large number
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of possible graphlets, only a tiny percentage of them actually exists in real networks.

For example, in Cora citation network [216], only 19 heterogeneous graphlets exist

out of 210 possible ones in a 4-clique graphlet.

In order to utilise the colored graphlets and heterogeneous graphlets approaches

in egocentric networks, we further develop their egocentric versions, and apply them

in the chronic pain case study. With fewer node orbits to consider, egocentric

colored graphlets and egocentric heterogeneous graphlets are faster and more space-

saving than the original ones. The implementation of these algorithms is available

at https://github.com/MingshanJia/explore-local-structure.

To conclude this section, we summarise the time and space complexities of four

main approaches in Table 5.1. Colored-GDV, HeteroE-GDVN and TyE-GDV share

the same time complexity because they are all node-based algorithms. Hetero-GDVL

as the only link-based algorithm, could be faster in sparse networks. When it comes

to space complexity, the proposed TyE-GDV grows linearly with the number of edge

types, while the other three methods grow near exponentially with it.

Approach Time complexity Space complexity

Colored-GDV [81] O
(
|V | · kmax

S−1) O(|V | · |O| · 2|Te|)
Hetero-GDV L[201] O

(
|E| · kmax

S−2) O
(
|E| · |Oe| · KC|Te|+K−1

)
HeteroE-GDVN O

(
|V | · kmax

S−1) O
(
|V | · |O| · KC|Te|+K−1

)
TyE-GDV O

(
|V | · kmax

S−1) O(|V | · |O| · |Te|)

Table 5.1 : Time and space complexities of four approaches that deal with edge type
information. S is the maximum number of nodes in graphlets, K is the maximum
number of edges in graphlets, |Oe| is the number of edge-orbit graphlets.

5.5 Experiments and Analysis

In this section, we apply the proposed method to analyse egocentric social net-

works of chronic pain patients. Our code is available at https://github.com/

https://github.com/MingshanJia/explore-local-structure
https://github.com/MingshanJia/explore-local-structure
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MingshanJia/explore-local-structure.

5.5.1 Dataset

The dataset is collected from chronic pain patients of the Flemish Pain League,

the League for Rheumatoid Arthritis and the League for Fibromyalgia [224]. Each

patient uses the graphical tool GENSI [212] to generate their egocentric social net-

works containing up to 10 alters. The types of relationship between the ego and the

alters are explicitly given (all 13 types of social relationships are listed in Table 5.2).

Participants were also asked to fill out a sociodemographic/pain questionnaire. After

excluding inconsistent and incomplete entries, 303 patients’ egocentric social net-

works and their sociodemographic/pain characteristics constitute the final dataset.

The average age of all patients is 53.5± 12 years (248 females and 55 males).

Relationship Type Total number of occurs.

Partner T-1 222
Father/Mother T-2 209
Brother/Sister T-3 293
Children/Grandchildren T-4 493
Friend T-5 506
Family-in-law T-6 207
Other family T-7 142
Neighbour T-8 69
Colleague T-9 57
Healthcare worker T-10 233
Member of organisations T-11 74
Acquaintance T-12 15
Other T-13 17

Table 5.2 : Edge type and total number of occurrences of each type in all networks.

Figure 5.3 gives some basic information about these egocentric networks, in-

cluding the ego nodes’ degree distribution and their edge-type distribution. The

edge-type distribution is calculated by summing over all ego nodes on each type of

the edges, which is also shown in the third column of Table 5.2. From the degree

distribution (Figure 5.3a), we know that most patients (62%) have 10 social con-

tacts in their networks. However, we don’t expect degree being a discriminative

https://github.com/MingshanJia/explore-local-structure
https://github.com/MingshanJia/explore-local-structure
https://github.com/MingshanJia/explore-local-structure
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Figure 5.3 : Degree distribution and edge type distribution of all patients.

feature in the following analysis because 10 alters is the upper limit in the dataset.

The edge-type distribution (Figure 5.3b) informs us that “friend” and “children”

are the most frequent types appearing in these networks. In contrast, edges of types

“neighbour”, “colleague” and “member of organisations” are underrepresented; “ac-

quaintance” and “other” are almost negligible simply because if somebody is asked

to name 10 contacts, they will name strongest contacts and there is no space for

”acquaintance” or ”other” relationships.

Furthermore, pain grades are calculated by means of the Graded Chronic Pain

Scale (GCPS), which assesses both pain intensity and pain disability [225]. Patients

are then classified into 5 grades based on their average intensity and disability scores:

grade-0 no pain; grade-1 low intensity and low disability; grade-2 high intensity and

low disability; grade-3 moderate disability regardless of pain intensity; and grade-4

high disability regardless of pain intensity. Because all participants are chronic pain

patients, their GCPS grades range from grade-1 to grade-4. Specifically, we have 21

patients of grade-1, 33 patients of grade-2, 67 patients of grade-3 and 182 patients

of grade-4. In this work, we aim to explore whether the graphlets and typed-edge

graphlets are beneficial to recognising GCPS grades of chronic pain patients.
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5.5.2 Analysing pain grades via GDV and TyE-GDV

Previous studies have revealed that social interactions play an important role in

the perception of pain [111]. For example, a strong association was found between

perceived social support and pain inference [65]; and improvements in social isolation

lead to significant improvements in patients’ emotional and physical functioning [15].

Usually, the social context of a patient is measured by means of the Patient Reported

Outcome Measurement Information System (PROMIS ®)[83] or the Social Support

Satisfaction Scale (ESSS) [194]. These measurements, however, are not based on

patients’ actual social networks and therefore cannot provide insights on the impact

of network structures or specific types of interactions. To cope with this issue,

we apply the classic graphlets and the proposed typed-edge graphlets to analyse

patients’ social networks.

Figure 5.4 : Parallel coordinates plot of average GDV of different GCPS grades.
Each coordinate represents the average number of graphlets belonging to that type.

First, we calculate the average Graphlet Degree Vectors of patients from each

GCPS grade. A parallel coordinates plot shows the average degrees of all seven

egocentric graphlets at each grade (Figure 5.4). We see that patients of higher-grade

pains (grade 3 and grade 4) have more star-like structures (3-star graphlets) in their
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social networks, and patients of lower pain grades (grade 1 and grade 2) form more

3-cliques, tailed-triangles, 4-chordal-cycles and 4-cliques. A worse connected star-

like structure indicates a more isolated social environment, and a better connected

structure such as the 3-clique or the 4-clique could be a sign of better social support.

These findings are consistent with the previously mentioned studies [111, 65, 15] and

provide further evidence that a patient’s social network could inform the perceived

pain grade. In addition, we find that the number of connections (2-cliques) does not

help distinguish pain grades. This may result from the limited number of contacts

in the dataset. Still nevertheless, another work also found that the size of a patient’s

egocentric social network is not significantly related to changes in pain [61]. This

also explains why more complicated network structures should be considered in the

analysis of patients’ social networks.

Further, in order to investigate the relationship between the types of interactions

and the pain grades, we employ the Typed-Edge Graphlet Degree Vector and focus

on two particular graphlets, i.e. the poorly connected 3-star graphlet and the well

connected 4-clique graphlet. These two graphlets are chosen because they present

distinct differences between patients of lower pain grades and patients of higher pain

grades. For each of the graphlets, we calculate the average TyE-GDV of patients

from every pain grade and generate a parallel coordinates plot (Figure 5.5). We find

that in the 3-star graphlet (Figure 5.5a), higher-grade pain patients have significantly

more edges of type ‘5’ (friend) and type ‘10’ (healthcare worker) than lower-grade

pain patients. In other words, friends and healthcare workers are not well connected

in higher-grade pain patients. It thus provides the potential for interventions that

increase the social involvements of a patient’s friends and healthcare workers to

improve the management of chronic pain.

Then from the average TyE-GDV of the 4-clique graphlet (Figure 5.5b), we

observe that lower-grade pain patients have more edges of type ‘5’ (friend) than
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Figure 5.5 : Parallel coordinates plot of average TyE-GDV of different GCPS grades
for two graphlets. Each coordinate represents the average number of edges belonging
to that type.

higher-grade pain patients (5.2 compared to 3.2). That is to say, friends appear

more often in these tightly connected groups among patients of lower-grade pain.

The importance of the friend relationship is revealed in both 3-star and 4-clique

graphlets. As pointed out by other studies [67, 239], patients with severe chronic

pain may be at risk of deterioration in their friendships and are in need of supportive

behaviours from friends. Another marked contrast between the higher-grade and

lower-grade pain patients is in edge type ‘9’ (colleague). Colleagues hardly appear

(0.24 on average) in these closely connected structures among the former group,

whereas more than one colleague (1.1 on average) emerges among the latter group.
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It may reflect the adverse effects of severe chronic pain on patients’ professional

activities [87]. To give an intuitive understanding of the structural differences, we

give two actual examples from the dataset as the social network prototypes of pain

grade-1 and pain grade-4, respectively (Figure 5.6).

Figure 5.6 : Prototypes of GCPS grade-1 and GCPS grade-4.

This experiment shows that the extra information brought by TyE-GDV provides

us with more insights into the relationship between patients’ social link types and

their pain grades. Therefore, it has implications for how therapeutic interventions

could be improved by increasing particular types of social connections.

5.5.3 Predicting pain grades

We now apply the proposed TyE-GDV, and the extended egocentric versions of

colored graphlets (ColoredE-GDV) and heterogeneous graphlets (HeteroE-GDVN)

approaches in a typical machine learning task.

Node classification is one of the most popular and widely adopted tasks in net-

work science [20], where each node is assigned a ground truth category. Here, we

aim to predict the GCPS grade of chronic pain patients. In order to test the utility

of the propsoed approaches, we fit six sets of features into a random forest classifier.

The first set includes patients’ demographic attributes, pain-related descriptions and
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physical/psychological well-being indicators. Since it contains no structural infor-

mation, we identify it as raw feature set. The second set includes the raw features

plus the typed-edge degree vector (TyE-DV). The third set includes the raw features

plus the classic GDV. The third set includes the raw features plus the proposed TyE-

GDV. The fifth set includes the raw features plus the colored graphlets degree vector

(ColoredE-GDV), and the sixth set includes the raw features plus the heterogeneous

graphlets degree vector (HeteroE-GDVN).

As the dataset is not large and the distribution of four grades is not balanced

(see Section 5.5.1), we adopt a stratified 5-fold cross-validation [187] to evaluate

the classification performance with different sets of features. Also, because decision

tree-based models are inherently stochastic, we repeat the above step 500 times and

report the mean metric score.

Macro F1
(Mean ± Std)

Gain over raw feat.
(Mean)

Time in sec.
(Sum)

Stratified 0.248 ± 0.024 — 3
Raw feat. 0.578 ± 0.005 — 116
Raw feat. + TyE-DV 0.600 ± 0.005 3.8% 130
Raw feat. + GDV 0.597 ± 0.008 3.3% 138

Raw feat. + ColoredE-GDV 0.608 ± 0.006 5.2% 2091
Raw feat. + HeteroE-GDVN 0.638 ± 0.006 10.4% 8230
Raw feat. + TyE-GDV 0.619 ± 0.004 7.1% 252

Table 5.3 : Prediction results in average macro-F1 score (± standard deviation),
average gain over raw features, and total running time of 500 repetitions.

We report the average macro-F1 scores of three models in Table 5.3. The macro-

F1 score is chosen because this is a multi-class classification problem and the dis-

tribution of the four classes is unbalanced. A naive classifier (Stratified) is also

added in the table, which generates predictions by respecting the class distribution

in the training set. We see clearly that the bottom three approaches that encode

type information in graphlets (raw features plus ColoredE-GDV, raw features plus



132

Approach GDV TyE-DV TyE-GDV ColoredE-GDV HeteroE-GDV

Len. of vector 7 13 91 12367 38870

Table 5.4 : Comparison of vector length of different approaches.

HeteroE-GDVN, and raw features plus TyE-GDV) perform better than the set of

raw features plus TyE-DV and the set of raw features plus GDV. Recall that TyE-

DV captures edge type information but with very limited structural information,

and GDV, on the other hand, captures the rich structural information but without

edge type information. This evidently shows that combining edge type information

and rich structural information could lead to more distinctive features in network

learning tasks.

We also observe large differences in the running time of those methods. The

running time of the set of raw features plus ColoredE-GDV, and especially the set

of raw features plus HeteroE-GDVN are many times higher than other methods. This

is because our dataset has 13 types of edges and the lengths of vectors generated from

these two methods grow near exponentially with |Te|. Correspondingly, the speed of

the machine learning algorithm will slow down as the feature vector becomes larger.

Table 5.4 gives the vector lengths of all five approaches. Note that there is no edge

type information between alter nodes in many egocentric networks, including this

case study dataset, our implementations of ColoredE-GDV and HeteroE-GDVN has

excluded all the impossible combinations. Overall speaking, the proposed TyE-GDV

achieves competitive performance while maintaining a small vector length.

5.6 Conclusion

In this chapter, we proposed to embed edge type information in graphlets and

introduced the framework for calculating Typed-Edge Graphlets Degree Vector for

both sociocentric and egocentric networks. Moreover, we extended the colored
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graphlets approach and the heterogeneous graphlets approach to edge-typed net-

works and egocentric networks. After applying GDV and TyE-GDV to the chronic

pain patients dataset, we found that 1) a patient’s social network structure could in-

form their perceived pain grade; and 2) particular types of social relationships, such

as friends, colleagues and healthcare workers, could bear more importance in under-

standing the effect of chronic pain and therefore lead to more effective therapeutic

interventions. We also showed that the rich structural information combined with

the edge type information results in significant improvement of a typical machine

learning task that predicts patients’ pain grades.

This work fulfills research objectives 4 and 5.
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Chapter 6

Conclusion and future works

This thesis focuses on furthering the understanding of local structures and local

information in complex networks, by proposing new approaches to measuring 3-node

and 4-node structure formation, as well as algorithms encoding rich edge attributes

in graphlets.

For measuring the formation of 3-node local structures, we introduced the di-

rected closure coefficient and its patterns to measure directed triangle formation from

an end-node perspective. Through extensive experiments, we demonstrated that,

at network-level, including the four closure patterns leads to significant improve-

ment in classifying different types of directed networks; while at link-level analysis,

the source and target coefficients can be fused together with common neighbours

as effective predictors, especially in food webs, software networks, web graphs and

word adjacency networks. To deepen the understanding of the 4-cycle structure,

we proposed i-quad and o-quad coefficients in order to better describe and analyse

networks that contain fewer triangles and are rich in quadrangles. We then revealed

empirically that the average o-quad coefficient is smaller than the average i-quad

coefficient in most types of networks; and that the i-quad and o-quad coefficients

are significantly larger than the traditional clustering coefficient. We also prove

theoretically that under a configuration model, the o-quad coefficient increases with

node degree while the i-quad coefficient does not change too much as the node de-

gree varies. For encoding edge attributes in complex networks, we proposed a new

framework to effectively generate a typed-edge graphlet degree vector for each node.
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The approach is applied to a recently collected dataset of chronic pain patients.

We uncovered that a patient’s social network structure could indeed inform his/her

perceived pain grade, and that specific types of social relationships, such as friends,

colleagues and healthcare workers, are more important in influencing the perception

of pain.

To summarise, our contributions are:

• We proposed new taxonomies for various graph structural measures (attained

objective 1);

• We proposed a new approach to assessing the edge clustering phenomenon in

directed networks (attained objective 2);

• We proposed new metrics for measuring quadrangle formation in complex

networks (attained objective 3);

• We proposed a new framework for effectively embedding edge type information

in graphlets (attained objective 4);

• We applied our approaches to different types of real-world networks, and

proved their performance in multiple learning and analysis tasks (attained

objective 5).

For future studies, we plan to investigate further the local structures and infor-

mation in a more complicated dynamic network model that adds the dimension of

time, and a multilayered network model that integrates data from different sources.

In addition, we plan to focus on applying the promising approaches of graph lo-

cal structure to more real-world problems. For example, we will continue our joint

study of chronic pain patients by exploring the possible relationships between local

structures in social networks and the mental/physical well-beings (such as the degree
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of depression/anxiety, and the ability to participate in social roles and activities).

We will also commence another joint research project about disrupting organised

criminal networks through studying the rich-labelled local structures.
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