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Abstract

Particle Induced X-Ray Emission (PIXE) is a spectroscopic technique where char-
acteristic X-Rays are generated from a sample by the impact of high energy parti-
cles. PIXE is typically performed with protons in a particle accelerator at energies
in excess of 1MeV and is used for the detection of trace elements due to the lower
background compared to complementary techniques such as Scanning Electron
Microscope (SEM) Energy Dispersive Spectroscopy (EDS). PIXE performed at
energies of less than 1MeV is sometimes used to enhance sensitivity to light el-
ements, however very low energy PIXE (VLE-PIXE) performed at energies avail-
able to a commercial focused ion beam microscope of <30keV was considered
impossible due to the extremely low X-Ray production at these energies.

In this research, VLE-PIXE was made possible by doping a hydrogen focused ion
beam with a small proportion of a heavier ion species such as Ar or Xe. The
characteristic X-Ray signal was shown to increase dramatically, allowing trace el-
ement analysis in the low parts per million range, offering performance compara-
ble to proton only PIXE performed at much higher energies. This thesis outlines
the implementation, characterisation, and application of the doped beam VLE-
PIXE technique in a commercial focused ion beam microscope utilising available
hardware and little to no modification to the instrument.

An investigation into the beam doping technique led to an interpretive model
which considers various physical mechanisms which may be responsible for the
increased performance which includes: the formation of quasi-molecules be-
tween the heavy projectile ion and the target atom, the suppression of non-
radiative transitions, and vacancy lifetime modification due to multiple ionisation.
These mechanisms may arise from the coincident impact of protons and a heavy
ion species upon the same region of the sample.

The ions backscattering from the surface during VLE-PIXE analysis were also
analysed to provide additional information regarding the sample thickness and
composition. This leads to the possibility of several new techniques such as si-
multaneous doped beam VLE-PIXE and backscattered ion spectroscopy for real-
time tomography, or endpointing during Focused lon Beam (FIB) milling.
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