Doped Beam Very Low Energy Particle Induced X-Ray Emission

By Daniel Totonjian

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

Under the supervision of Milos Toth and John A. Scott

University of Technology Sydney Faculty of Science July 2022 ii

Certificate of original authorship

I, Daniel Totonjian declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Faculty of Science at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by an Australian Research Council Linkage Grant and the Australian Government Research Training Program.

Signature of Student:

Production Note: Signature removed prior to publication.

Date: February 2022

iv

Acknowledgements

I would first like to thank my supervisors for patiently supporting me throughout my PhD, providing lengthy intellectual discussions, and expert guidance to shape my future work and studies. In particular I would like to thank Milos Toth who has supported me from the very beginning of my undergraduate studies to the end of my PhD, and John Scott who has helped shaped me into the scientist I am today. I would also like to thank Igor Aharonovich for providing support and guidance throughout my studies.

I would like to thank the members of my research group who have nurtured me over the years, teaching me new skills, methods, and techniques, and for creating a welcoming environment in which to thrive.

I would also like to thank my collaborators at Thermo Fisher Scientific and ETP by Adaptas for funding my research and providing exciting new projects and opportunities throughout my PhD.

I would finally like to thank my family for providing me love and support over the years and my Bungalow family for keeping me grounded and sane throughout my studies.

vi

Contents

De	eclara	ation		ii
Ac	cknov	vledge	ments	iv
Та	ble o	f Conte	ents	x
GI	ossa	ry		xi
Li	st of	Figure	s >	cviii
Ał	ostra	ct		хх
Li	st of	Tables		хх
1	Intro	oductio	on and Background	1
	1.1	Introdu		1
	1.2	Descr	ption of Chapters	4
	1.3	Backg	round Information	5
		1.3.1	lon Sources	5
		1.3.2	Ion Beam Characterisation	16
		1.3.3	Ion Solid Interactions	21
		1.3.4	Particle Induced X-Ray Emission	32
		1.3.5	Backscattering Spectroscopy	69
2	Imp	lement	ation and Characterisation of an H_2 and Doped H_2 FIB Sour	<mark>ce</mark> 75
	2.1	Beam	Implementation	76
		2.1.1	Gas Delivery System	76
		2.1.2	Plasma Source	79
	2.2	Beam	Characterisation	80
		2.2.1	Beam Splitting	80
		2.2.2	Beamlet Identification	82
		2.2.3	Beam Component Currents	85

		2.2.4	Pure and Doped Hydrogen Beams	89
	2.3	Beam	Scattering	91
		2.3.1	Beam Skirt Visualisation	97
	2.4	Optim	ised Operating Parameters	99
3	Sigr	nal Gen	eration and Spectral Artefacts 1	01
	3.1	Hydro	gen Contribution to PIXE Spectra 1	102
		3.1.1	Proton Contribution	102
		3.1.2	Hydrogen Molecule Contribution	104
	3.2	Investi	igation of Spurious Signal Contributions	108
		3.2.1	Charging Effects	108
		3.2.2	Beam Skirt Contribution	110
		3.2.3	Electron Contribution	112
		3.2.4	Backscattered lons	113
	3.3	Detect	tor Artefacts and Contributions	115
		3.3.1	Detector Noise Peak	115
		3.3.2	Detector Window Signal	117
	3.4	EDS N	Aapping Capability	118
	3.5	Optim	ised VLE-PIXE Parameters	121
4	Dop	ed Bea	m VLE-PIXE Trace Element Analysis 1	23
4	Dop 4.1	ed Bea Comp	Im VLE-PIXE Trace Element Analysis1arison of Doped Beam VLE-PIXE to SEM-EDS1	23 123
4	Dop 4.1	ed Bea Comp 4.1.1	Im VLE-PIXE Trace Element Analysis1arison of Doped Beam VLE-PIXE to SEM-EDS1NIST SRM 654b1	23 123 124
4	Dop 4.1	ed Bea Comp 4.1.1 4.1.2	Im VLE-PIXE Trace Element Analysis1arison of Doped Beam VLE-PIXE to SEM-EDS1NIST SRM 654b1NIST SRM 12421	23 123 124 127
4	Dop 4.1	ed Bea Comp 4.1.1 4.1.2 4.1.3	Im VLE-PIXE Trace Element Analysis 1 arison of Doped Beam VLE-PIXE to SEM-EDS 1 NIST SRM 654b 1 NIST SRM 1242 1 Comparison of Limits of Detection Between Doped Beam 1	23 123 124 127
4	Dop 4.1	ed Bea Comp 4.1.1 4.1.2 4.1.3	Im VLE-PIXE Trace Element Analysis1arison of Doped Beam VLE-PIXE to SEM-EDS1NIST SRM 654b1NIST SRM 12421Comparison of Limits of Detection Between Doped BeamVLE-PIXE and SEM-EDS1	23 123 124 127 130
4	Dop 4.1	ed Bea Comp 4.1.1 4.1.2 4.1.3 4.1.4	Im VLE-PIXE Trace Element Analysis 1 arison of Doped Beam VLE-PIXE to SEM-EDS 1 NIST SRM 654b 1 NIST SRM 1242 1 Comparison of Limits of Detection Between Doped Beam 1 VLE-PIXE and SEM-EDS 1 Advantages and Disadvantages of VLE-PIXE and SEM-EDS 1	23 123 124 127 130 132
4	Dop 4.1 4.2	ed Bea Comp 4.1.1 4.1.2 4.1.3 4.1.4 Comp	Im VLE-PIXE Trace Element Analysis1arison of Doped Beam VLE-PIXE to SEM-EDS1NIST SRM 654b1NIST SRM 12421Comparison of Limits of Detection Between Doped Beam1VLE-PIXE and SEM-EDS1Advantages and Disadvantages of VLE-PIXE and SEM-EDS1arison of Doped Beam VLE-PIXE Performance to LE-PIXE	23 123 124 127 130 132
4	Dop 4.1 4.2	ed Bea Comp 4.1.1 4.1.2 4.1.3 4.1.4 Comp and P	Im VLE-PIXE Trace Element Analysis1arison of Doped Beam VLE-PIXE to SEM-EDS1NIST SRM 654b1NIST SRM 12421Comparison of Limits of Detection Between Doped BeamVLE-PIXE and SEM-EDS1Advantages and Disadvantages of VLE-PIXE and SEM-EDSarison of Doped Beam VLE-PIXE Performance to LE-PIXEIXE1	23 123 124 127 130 132
4	Dop 4.1 4.2 4.3	ed Bea Comp 4.1.1 4.1.2 4.1.3 4.1.4 Comp and Pl X-Ray	Im VLE-PIXE Trace Element Analysis 1 arison of Doped Beam VLE-PIXE to SEM-EDS 1 NIST SRM 654b 1 NIST SRM 1242 1 Comparison of Limits of Detection Between Doped Beam 1 VLE-PIXE and SEM-EDS 1 Advantages and Disadvantages of VLE-PIXE and SEM-EDS 1 arison of Doped Beam VLE-PIXE Performance to LE-PIXE 1 IXE 1 Production Cross Sections 1	23 123 124 127 130 132 133
4	Dop 4.1 4.2 4.3	ed Bea Comp 4.1.1 4.1.2 4.1.3 4.1.4 Comp and Pl X-Ray 4.3.1	Im VLE-PIXE Trace Element Analysis1arison of Doped Beam VLE-PIXE to SEM-EDS1NIST SRM 654b1NIST SRM 12421Comparison of Limits of Detection Between Doped BeamVLE-PIXE and SEM-EDS1Advantages and Disadvantages of VLE-PIXE and SEM-EDSarison of Doped Beam VLE-PIXE Performance to LE-PIXEIXE1Production Cross Sections1XRPCS Calculation1	23 123 124 127 130 132 133 134
4	Dop 4.1 4.2 4.3	ed Bea Comp 4.1.1 4.1.2 4.1.3 4.1.4 Comp and Pl X-Ray 4.3.1 4.3.2	Im VLE-PIXE Trace Element Analysis1arison of Doped Beam VLE-PIXE to SEM-EDS1NIST SRM 654b1NIST SRM 12421Comparison of Limits of Detection Between Doped BeamVLE-PIXE and SEM-EDS1Advantages and Disadvantages of VLE-PIXE and SEM-EDSarison of Doped Beam VLE-PIXE Performance to LE-PIXEIXE1Production Cross Sections1XRPCS Calculation1Calculated XRPCS1	23 123 124 127 130 132 133 134 135
4	Dop 4.1 4.2 4.3 4.4	ed Bea Comp 4.1.1 4.1.2 4.1.3 4.1.4 Comp and Pl X-Ray 4.3.1 4.3.2 Conclu	Im VLE-PIXE Trace Element Analysis1arison of Doped Beam VLE-PIXE to SEM-EDS1NIST SRM 654b1NIST SRM 12421Comparison of Limits of Detection Between Doped BeamVLE-PIXE and SEM-EDS1Advantages and Disadvantages of VLE-PIXE and SEM-EDSarison of Doped Beam VLE-PIXE Performance to LE-PIXEIXE1Production Cross Sections1XRPCS Calculation1Calculated XRPCS1	23 123 124 127 130 132 133 134 135 138 146
4	Dop 4.1 4.2 4.3 4.4 Role	ed Bea Comp 4.1.1 4.1.2 4.1.3 4.1.4 Comp and Pl X-Ray 4.3.1 4.3.2 Conclu	Im VLE-PIXE Trace Element Analysis1arison of Doped Beam VLE-PIXE to SEM-EDS1NIST SRM 654b1NIST SRM 12421Comparison of Limits of Detection Between Doped BeamVLE-PIXE and SEM-EDS1Advantages and Disadvantages of VLE-PIXE and SEM-EDSarison of Doped Beam VLE-PIXE Performance to LE-PIXEIXE1Production Cross Sections1XRPCS Calculation1Calculated XRPCS1Jusions1	23 123 124 127 130 132 133 134 135 138 146 47
4	Dop 4.1 4.2 4.3 4.4 Role 5.1	ed Bea Comp 4.1.1 4.1.2 4.1.3 4.1.4 Comp and Pl X-Ray 4.3.1 4.3.2 Conclu e of Hea VLE-P	Immunum VLE-PIXE Trace Element Analysis 1 arison of Doped Beam VLE-PIXE to SEM-EDS 1 NIST SRM 654b 1 NIST SRM 1242 1 Comparison of Limits of Detection Between Doped Beam 1 VLE-PIXE and SEM-EDS 1 Advantages and Disadvantages of VLE-PIXE and SEM-EDS 1 arison of Doped Beam VLE-PIXE Performance to LE-PIXE 1 IXE 1 Production Cross Sections 1 XRPCS Calculation 1 Calculated XRPCS 1 Jusions 1 IVE Response to Magnetic Field Strength 1	23 123 124 127 130 132 133 134 135 138 146 147
5	Dop 4.1 4.2 4.3 4.4 Role 5.1	ed Bea Comp 4.1.1 4.1.2 4.1.3 4.1.4 Comp and Pl X-Ray 4.3.1 4.3.2 Conclu e of Hea VLE-P 5.1.1	Immunum VLE-PIXE Trace Element Analysis 1 arison of Doped Beam VLE-PIXE to SEM-EDS 1 NIST SRM 654b 1 NIST SRM 1242 1 Comparison of Limits of Detection Between Doped Beam 1 VLE-PIXE and SEM-EDS 1 Advantages and Disadvantages of VLE-PIXE and SEM-EDS 1 arison of Doped Beam VLE-PIXE Performance to LE-PIXE 1 IXE 1 Production Cross Sections 1 XRPCS Calculation 1 Calculated XRPCS 1 Jusions 1 PIXE Response to Magnetic Field Strength 1 Current Change vs. Magnetic Field Strength 1	23 123 124 127 130 132 133 134 135 138 146 147 150
4	Dop 4.1 4.2 4.3 4.4 Role 5.1	ed Bea Comp 4.1.1 4.1.2 4.1.3 4.1.4 Comp and Pl X-Ray 4.3.1 4.3.2 Conclu e of Hea VLE-P 5.1.1 5.1.2	Immulation VLE-PIXE Trace Element Analysis 1 arison of Doped Beam VLE-PIXE to SEM-EDS 1 NIST SRM 654b 1 NIST SRM 1242 1 Comparison of Limits of Detection Between Doped Beam 1 VLE-PIXE and SEM-EDS 1 Advantages and Disadvantages of VLE-PIXE and SEM-EDS 1 Advantages and Disadvantages of VLE-PIXE and SEM-EDS 1 IXE 1 Production Cross Sections 1 XRPCS Calculation 1 Calculated XRPCS 1 Jusions 1 PIXE Response to Magnetic Field Strength 1 Current Change vs. Magnetic Field Strength 1 Electron Contributions 1	23 123 124 127 130 132 133 134 135 138 146 147 147 150
4	Dop 4.1 4.2 4.3 4.4 5.1 5.2	ed Bea Comp 4.1.1 4.1.2 4.1.3 4.1.4 Comp and Pl X-Ray 4.3.1 4.3.2 Conclu e of Hea VLE-P 5.1.1 5.1.2 Influer	Immulation Immulation Arison of Doped Beam VLE-PIXE to SEM-EDS Immulation NIST SRM 654b Immulation NIST SRM 1242 Immulation Comparison of Limits of Detection Between Doped Beam VLE-PIXE and SEM-EDS VLE-PIXE and SEM-EDS Immulation Advantages and Disadvantages of VLE-PIXE Performance to LE-PIXE Immulation Production Cross Sections Immulation XRPCS Calculation Immulation Calculated XRPCS Immulation Jsions Immulation PIXE Response to Magnetic Field Strength Immulation Current Change vs. Magnetic Field Strength Immulation Current Change vs. Magnetic Field Strength Immulation Ince of Dopant Species on VLE-PIXE Performance Immulation	23 123 124 127 130 132 133 134 135 138 146 147 150 151

CONTENTS

	5.4	Heavy Ion VLE-PIXE Spectra	164
		5.4.1 Nitrogen VLE-PIXE Spectra	164
		5.4.2 Argon VLE-PIXE Spectra	166
		5.4.3 Xenon VLE-PIXE Spectra	169
	5.5	Sum of Undoped VLE-PIXE Spectra	170
	5.6	Optimised Doped Beam VLE-PIXE Parameters	171
	5.7	Conclusions	172
6	Inte	rpretation of Doped Beam VLE-PIXE Enhancement Mechanism	173
	6.1	Possible Enhancement Mechanisms	173
		6.1.1 Suppression of Non-radiative Transitions	174
		6.1.2 Electronic Energy Shifts	176
		6.1.3 Vacancy Lifetime Modification	177
	6.2	Calculation of Collision Parameters	178
		6.2.1 Screened Coulomb Potential	178
		6.2.2 Impact Parameter	179
		6.2.3 Distance of Closest Approach	181
		6.2.4 Collision Time	186
	6.3	Coincident Collision Monte-Carlo Simulation	189
	6.4	Vacancy Lifetimes	193
		6.4.1 Projectile Vacancy Lifetimes	193
		6.4.2 Target Vacancy Lifetime	194
		6.4.3 Vacancy Peak Width Narrowing	196
	6.5	An Interpretive Model	198
	6.6	Model Limitations	200
	6.7	Conclusions	201
7	Bac	kscattered Ion Spectroscopy	203
	7.1	Sample Preparation and Characterisation	203
	7.2	Cu Film Thickness Analysis With LEIS	205
		7.2.1 Simulation of LEIS Spectra Using SIMNRA	207
		7.2.2 Detector Damage	209
	7.3	Conclusions	210
8	Con	nclusions and Outlook	211
	8.1	Thesis Summary	211
	8.2	Future Work	213
		8.2.1 Validation of the doped beam VLE-PIXE Technique	213
		8.2.2 Endpointing and Real-Time Tomography	214
		8.2.3 Sample Damage	215

	8.2.4	Backscattering Spectroscopy	216
	8.2.5	Simultaneous Backscattering Spectroscopy and Doped Bear	n
		VLE-PIXE	216
Append	dix A		219
A.1	UHR I	Field Lorentz force	219
A.2	Curre	nt Measuring Devices	221
	A.2.1	Standard Faraday Cup	221
	A.2.2	Isolating Faraday Cup	222
	A.2.3	Beam Scanning Method	226
A.3	Xe Sc	attering Spot Burn	228
A.4	NIST	SRM EDS Characterisation	229
A.5	Beam	Overlap Vs. Magnetic Field Strength	234
A.6	Doped	d Beam Characterisation	238
A.7	Pseuc	lo-Voigt Peak Fits	240
A.8	Additio	onal MO Correlation Diagrams	249
Bibliog	raphy		253

Glossary

- **PIXE** Particle Induced X-Ray Emission
- **VLE-PIXE** Very Low Energy PIXE
- **SEM** Scanning Electron Microscope
- **EDS** Energy Dispersive Spectroscopy
- FIB Focused Ion Beam
- **IBA** Ion Beam Analysis
- **BSI** Backscattered lons
- PFIB Plasma Focused Ion Beam
- LMIS Liquid Metal Ion Source
- **GFIS** Gaseous Field Ionisation Source
- **ICP** Inductively Coupled Plasma
- **PWBA** Plane Wave Born Approximation
- eECusPSShsR exact, Energy corrected, Coulomb corrected, united-separated, Perturbed Stationary State, hartree-slater, Relativistic correction
- **XRPCS** X-Ray Production Cross Section
- MO Molecular Orbital
- SDD Silicon Drift Detector
- LOD Limit of Detection
- SNR Signal To Noise Ratio
- RF Radio Frequency

amu Atomic Mass Unit or Dalton

- TMP Turbo Molecular Pump
- IGP Ion Getter Pump
- SRM Standard Reference Material
- C-K Coster-Kronig
- LEIS Low Energy Ion Scattering
- **QCM** Quartz Crystal Monitor
- AFM Atomic Force Microscope

List of Figures

1.1	Potential diagram of a Hydrogen atom adsorbed to a tungsten surface	6
1.2	Image of a typical wetted needle type LMIS	7
1.3	The atomically sharp pyramidal tip of the helium GFIS source	8
1.4	Operating principle of a Townsend DC discharge plasma	9
1.5	Operating principle of a capacitatively coupled plasma	10
1.6	Operating principle of inductively coupled plasma	11
1.7	Schematic of a typical ICP source	12
1.8	Schematic of a Duoplasmatron ion source	13
1.9	Schematic of (a) magnetron and (b) Penning ion sources	14
1.10	Schematic of a laser plasma ion source instrument	15
1.11	Diagram of a virtual source determination for (a) a point source	
	such as an LMIS (b) a plane source such as an ICP plasma source	17
1.12	Simplified schematic of a FIB optical setup for a point ion source	
	and bulk ion source	19
1.13	Spot size vs. current for a variety of ion sources	20
1.14	Nuclear and Electronic stopping power of protons and Ga ions,	
	calculated using SRIM.	23
1.15	Backscattered ion energy vs. angle for a 30keV proton on a range	
	of target masses.	24
1.16	Sticking probability vs. ion kinetic energy and the respective ther-	
	mal temperature	26
1.17	Inter-relation of neutralisation and ionisation processes	27
1.18	Energy diagrams of possible neutralisation or ionisation processes	28
1.19	Ion-target excitation and ionisation processes.	30
1.20	Siegbahn notation convention for X-Ray transitions	33
1.21	Auger, Coster-Kronig and Super Coster-Kronig transitions	44
1.22	Factors contributing to the experimental X-Ray cross section cal-	
	culation	46
1.23	Molecular orbital diagram of water	50

1.24	Combination of in-phase and out of phase atomic orbitals to form	
	bonding and anti-bonding molecular orbitals	51
1.25	Ar-Ar molecular orbital diagram as a function of internuclear distance	52
1.26	Ionisation cross sections of various light and heavy ions	53
1.27	Representation of the shift in MO X-Ray energy with changing in-	
	ternuclear distance for the C-C system	56
1.28	Bremsstrahlung contributions to a PIXE spectrum	60
1.29	A comparison between the characteristic X-Ray spectra of a bronze	
	sample taken using EDS and PIXE	61
1.30	Schematic of a Silicon Drift Detector	62
1.31	An example of a pulse-counting histogram spectrum.	63
1.32	X-Ray window and support support grids	65
1.33	Example of a convolution of a Lorentzian and Gaussian function to	
	achieve a Voigt function. From ([1])	68
1.34	Experimental calculation of signal to noise ratio.	70
1.35	Schematic of ion backscattering from a heavy atom at the surface,	
	and at depth t	72
1.36	Example of a shadow cone and a blocking cone	73
1.37	Experimental reconstruction of a Pt(110) surface using angle de-	
	pendent ion backscattering	74
21	Diagnostic page for the plasma system of the PEIB with a Hydro-	
	gen plasma ignited	77
2.2	Images of the Helios Hydra PFIB hardware	78
2.3	Schematic of the FIB interaction with the magnetic immersion field.	80
2.4	Measured and predicted lateral deviation of the primary H_{a}^{+} species	
	as a function of relative magnetic field strength	81
2.5	90 second spot-burn irradiation of 1.22nA. 30keV separated hydro-	-
	gen ion beam, with likely species labelled.	82
2.6	Example of beam component mass identification software	84
2.7	Beamlet current scan of a 650pA, H_2 beam from a 200W plasma	
	with peaks labelled.	86
2.8	Beamlet current scans vs. plasma source RF power	87
2.9	Beam composition vs. beam current	88
2.10	Beam compositional current measurement of Hydrogen beam after	
	overnight pumping, and using shorter pumping cycle designed to	
	achieve a lightly doped hydrogen beam.	90
2.11	A rough schematic of the vacuum systems of an LMIS FIB, and a	
	plasma FIB	92

LIST OF FIGURES

2	2.12	Schematic of the inadvertent scattering of ions into the Faraday	
		cup due to interaction with gas molecules	93
2	2.13	Column scattering current of a 2nA, 2keV Xe beam, chamber pres-	
		sure, and lower FIB column pressure as a function of pump-down	0.4
~		time.	94
2	2.14	Schematic of the experiment performed to measure the current	
		contained within the beam skirt relative to the current contained	00
_		In the primary beam and beam tails.	96
2	2.15	Chamber scattering current of a 2nA, 2kev Xe beam, chamber	
		pressure, and lower FIB column pressure as a function of pump-	07
~			97
2	2.16	A tilted SEM image of a 2keV, 40nA Xe beam spot-burn taken dur-	~~
		Ing microscope chamber pump-down.	98
З	3.1	False colour SEM images of the spot-burns created as a result of	
		the beam component contribution experiment	102
З	3.2	Hydrogen contribution to VLE-PIXE spectra	103
З	3.3	Energy spectrum of atomic, and molecular deuterium fragments	
		reflected from a gold surface	105
З	3.4	Undoped hydrogen beam VLE-PIXE spectra of the AI film vs. ac-	
		celerating voltage.	106
З	3.5	Equivalent reference proton accelerating voltage for given hydro-	
		gen molecular fragments with a specified initial energy.	108
З	3.6	VLE-PIXE spectra from a positively biased, and a negatively biased	
		Cu substrate	109
З	3.7	Schematic of the beam skirt species isolation experiments	111
З	8.8	The X-Ray signal collected from a Pt aperture sample at 8keV,	
		50nA with negative, and a positive C2 lens voltage	113
З	3.9	30keV VLE-PIXE spectra of an Mg, Cu and Au sample demonstrat-	
		ing the scaling of the BSI signal with target mass.	114
З	3.10	VLE-PIXE spectra of a Cu sample taken using the windowed and	
		windowless EDS detector.	114
З	3.11	Spectra of the X-Ray detector noise peak	116
З	3.12	SEM-EDS spectrum demonstrating the presence of the spurious	
			117
З	3.13	Doped beam VLE-PIXE elemental map of an MoS_2 flake on Si	119
4	l.1	Beam composition prior to SRM 654b trace element analysis	125
4	1.2	NIST SRM 654b: Comparison of a VLE-PIXE spectrum with a	
		SEM-EDS spectrum	126

4.3	Beam composition prior to SRM 1242 trace element analysis	128
4.4	NIST SRM 1242: Comparison of a VLE-PIXE spectrum with a	
	SEM-EDS spectrum	129
4.5	Comparison of limits of detection for SEM-EDS and H/Xe doped	
	beam VLE PIXE produced with the beam composition shown in	
	figure 4.1a	132
4.6	An example of the automated peak finding and fitting routine utilised	
	during the XRPCS calculations	137
4.9	Calculated XRPCS for selected elements in the SRM 654b, com-	
	pared to analytical, empirical, and ECPSSR cross sections. The	
	beam composition used for the calculated XRPCS is given in fig-	
	ure 4.1a	140
4.11	Calculated XRPCS for selected elements in the SRM 1242, com-	
	pared to analytical, empirical, and ECPSSR cross sections. The	
	beam composition used for the calculated XRPCS is given in fig-	
	ure 4.3a	142
4.12	Ionisation cross sections of various light and heavy ions	144
51	VLE-PIXE spectra of the NIST SBM 654b vs relative magnetic	
0.1	field strength	148
5.2	Beamlet current measurement vs. relative magnetic field strength	150
5.3	Current dependence of VLE-PIXE spectra	152
5.4	X-Ray spectra taken on the SRM 654b during co-irradiation of a	
	hydrogen beam and an electron beam	153
5.5	(a) Pseudo-Voigt fit and (b) residual plot of a Xe doped VLE-PIXE	
	spectrum demonstrating the lack of contribution from electron Brems	strahung
	background at low energies.	155
5.7	Doped hydrogen beam spectra vs relative magnetic field strength .	157
5.8	Influence of dopant species on VLE-PIXE performance	158
5.9	VLE-PIXE spectra vs. proportion of dopant species	162
5.10	VLE-PIXE spectra vs. proportion of dopant species	163
5.11	Isolated region of figure 5.9b. Unidentified peaks arising as a result	
	of Ar interaction with the sample are labelled in magenta.	164
5.12	Nitrogen beam VLE-PIXE spectra	165
5.13	Argon beam VLE-PIXE spectra	167
5.14	Argon MO peak shift vs. accelerating voltage	168
5.15	Xenon beam VLE-PIXE spectra	169
5.16	A comparison of the $>99\%$ purity VLE-PIXE spectra for each beam	
-	species at 30keV accelerating voltage.	170

LIST OF FIGURES

5.17	Reproduction of the Xe/H doped beam VLE-PIXE spectrum from figure 5.7a using a sum of the individual beam component spectra.	171
6.1	Example measurement for the calculation of enhancement factors for a doped beam relative to an undoped beam. Peak height ratio is denoted by a magenta arrow.	176
62	Diagram of kinetic scattering utilising a screeped Coulomb potential	180
6.3	Calculated impact parameters as a function of scattering angle for	100
	the Ar \rightarrow Ar system over a range of accelerating voltages	180
6.4	Calculated kinetic parameters for dopant ion species on a variety of targets	182
6.5	Molecular orbital correlation diagrams for the N-N, Ar-Ar, and Xe-	
	Xe systems	184
6.6	Coulomb potential energy and projectile energy as a function of inter-nuclear distance	187
6.7	Example outputs of the Monte-Carlo simulation	191
6.8	Example of the Gaussian and Lorentzian functions generated by	
	the pseudo-Voigt fit of a Ti K α X-Ray peak with the Lorentzian peak	
	width fixed to the natural linewidth of the Ti K α peak.	197
6.9	Cartoon of a possible combined enhancement model	199
7.1	Atomic force microscope thickness measurements of a 10nm and	
	30nm thermally evaporated Cu film	204
7.2	Calculated kinematic scattering vs angle for a 30keV proton beam	
	on the elements analysed in these experiments	205
7.3	Energy corrected LEIS spectra for Cu films on Si	206
7.4	LEIS spectra of the 6.7nm Cu film on Si as a function of accelerat-	
	ing voltage.	207
7.5	Simulated and fitted LEIS spectra of Cu films on Si	208
<u>8</u> 1	Schematic of simultaneous backscattering spectroscopy and doped	
0.1	beam VLE-PIXE	217
A.1	A schematic of a standard Faraday cup.	221
A.2	The working principle of an isolating Faraday cup.	223
A.3	Schematic drawing of the isolating Faraday cup design.	223
A.4	The final assembly of the isolating Faraday cup device	224
A.5	A schematic of the isolating Faraday cup electrical setup.	224
A.6	Faraday cup performance verification experiments.	225
A.7	Schematic of the scanning method used to acquire spectra.	226

A.8	Beamlet compositional current scan of an H ⁺ peak demonstrating	
	the difference in the stage and beam scanning methods.	227
A.9	Spot burn of a 2nA, 2keV Xe beam taken during chamber pump-	
	down used to determine the size of the primary beam spot, beam	
	tails and beam skirt.	228
A.10	EDS spectra of NIST SRM 654b	231
A.11	EDS Spectra of NIST SRM 1242	233
A.12	Images of irradiation spots vs relative magnetic field strength	237
A.13	Beam component currents before and after experimental exposures	239
A.14	Quantified beam component currents before and after experimen-	
	tal exposures	239
A.15	Pseudo-Voigt fits for selected elements in the SRM 654b using a	
	lightly doped H/Xe beam. The beam composition used is given	
	in figure 4.1a. Lorentzian widths are fixed to natural linewidths as	
	determined from [2]	244
A.16	Pseudo-Voigt fits for selected elements in the SRM 1242 using a	
	lightly doped H/Xe beam. The beam composition used is given	
	in figure 4.3a. Lorentzian widths are fixed to natural linewidths as	
	determined from [2]	248
A.17	H-H MO correlation diagram	249
A.18	N MO correlation diagram	249
A.19	Ar MO correlation diagrams	251
A.20	Xe MO correlation diagrams	252

List of Tables

1.1	Comparison of ion beam metrics for an LMIS, GFIS and PFIB	21
2.1	Percentage composition of an H_2 beam from a 200W plasma $\ .$.	86
4.1	NIST SRM 654b certified concentration values	124
4.2	NIST SRM 1242 certified concentration values	128
4.3	SRM 654b calculated signal to noise ratios and limits of detection .	131
4.4	SRM 1242 calculated signal to noise ratios and limits of detection .	131
4.5	Comparison of various PIXE and LE-PIXE LOD values from literature	.133
4.6	Extracted peak positions, heights, and Gaussian and Lorentzian widths for example pseudo-Voigt fit in figure 4.6b	136
5.1	Z_1/Z_2 ratios for the dopants used throughout the VLE-PIXE experiments compared to the elements identified in the SRM 654b. Bold numbers denote Z_1/Z_2 ratios which exceed a value of 1	160
6.1	Fluorescence yields for X-Ray transitions compared to their maxi- mum theoretical and observed enhancement factors	175
6.2	Calculated distances of closest approach for the ion species used in the VLE-PIXE experiments	185
6.3	Calculated collision times for ion species used in VLE-PIXE exper-	
	iments	188
6.4	Average number of coincidences per second, per nA of beam curren	t192
6.5	Calculated vacancy lifetimes for the ion species used in the VLE-	104
66	K shell vacancy lifetimes compared to collision times for protons	194
0.0	N. Ar. and Xe. on the various elements in the SBM 654b	195
6.7	The ratio of K shell vacancy lifetimes to collision times for the vari-	
	ous ion species.	196
7.1	Thickness measurements of the various copper films taken using	
	the AFM+QCM method and LEIS.	209

Abstract

Particle Induced X-Ray Emission (PIXE) is a spectroscopic technique where characteristic X-Rays are generated from a sample by the impact of high energy particles. PIXE is typically performed with protons in a particle accelerator at energies in excess of 1MeV and is used for the detection of trace elements due to the lower background compared to complementary techniques such as Scanning Electron Microscope (SEM) Energy Dispersive Spectroscopy (EDS). PIXE performed at energies of less than 1MeV is sometimes used to enhance sensitivity to light elements, however very low energy PIXE (VLE-PIXE) performed at energies available to a commercial focused ion beam microscope of \leq 30keV was considered impossible due to the extremely low X-Ray production at these energies.

In this research, VLE-PIXE was made possible by doping a hydrogen focused ion beam with a small proportion of a heavier ion species such as Ar or Xe. The characteristic X-Ray signal was shown to increase dramatically, allowing trace element analysis in the low parts per million range, offering performance comparable to proton only PIXE performed at much higher energies. This thesis outlines the implementation, characterisation, and application of the doped beam VLE-PIXE technique in a commercial focused ion beam microscope utilising available hardware and little to no modification to the instrument.

An investigation into the beam doping technique led to an interpretive model which considers various physical mechanisms which may be responsible for the increased performance which includes: the formation of quasi-molecules between the heavy projectile ion and the target atom, the suppression of non-radiative transitions, and vacancy lifetime modification due to multiple ionisation. These mechanisms may arise from the coincident impact of protons and a heavy ion species upon the same region of the sample.

The ions backscattering from the surface during VLE-PIXE analysis were also analysed to provide additional information regarding the sample thickness and composition. This leads to the possibility of several new techniques such as simultaneous doped beam VLE-PIXE and backscattered ion spectroscopy for realtime tomography, or endpointing during Focused Ion Beam (FIB) milling.