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were tested under air-saturated conditions. The excitation power density is 61 mW cm-2. 

Digital photos of TTA-501 (1M KOH) with HCl (d) and recovered state by KOH (e). 84 

Figure 5-10. Aqueous TTA systems applied as temperature sensors. (d) Temperature-

sensitive TTA upconversion in water (orange) and PBS (cyan) with inverse intensity 

evolution compared with traditional TTA systems. (e) The relative temperature sensing 

sensitivity calculated from data in (d) according to equation (5-6), 𝑆𝑟 = (𝛿𝑄/𝛿𝑇)/𝑄 (5-

6). Q is the integral upconversion intensity. The error bars in a, b and c indicate the 

standard deviation of three measurements. The concentrations of acceptor and donor are 

5 mM and 0.1 mM, respectively. The samples were tested under air-saturated conditions. 

The excitation power density is 61 mW cm-2. ................................................................ 85 

 

 



 

xvii 

 

List of Tables 

Table 2-1. Parameters in the internal transition. ....................................................... 25 

Table 3-1. The parameters of four kinds of UCNPs (NaYF4,20%Yb,2%Er) used for 

building DNN-OA-VT model. ...................................................................................... 36 

Table 5-1. Feeding ratio of different aqueous/organic TTA samples. ...................... 74 

Table 5-2. Aqueous TTA samples with different kinds of electrolytes. ................... 75 

 



 

xviii  

 

Abstract 

Upconversion materials have attracted enormous attention for a broad range of 

applications in biological imaging, energy-related light harvesting, and sensing, due to 

their unique physicochemical properties. However, the comprehensive understanding and 

characterization of upconversion nanoparticles for novel applications remain challenging.  

In this thesis, we set four goals to refresh the present characterization and provide a wider 

and deeper cognition of these upconversion nanoparticles. After the delicate design of 

optical setups and nanomaterials, we realized the super resolution enhancement, optical 

force sensitivity improvement, Rayleigh scattering modulation, and a new water-soluble 

molecular upconversion probe.  

Experimentally and theoretically, we upgrade the nanoscopy by exploiting the unique 

nonlinearity of upconversion nanoparticles using conventional confocal microscopy. We 

realize three-dimensional attoNewton-level optical force of optical via revolutionizing the 

configuration, data collection and accuracy analysis based on the property of 

upconversion nanoparticles. We refresh the morphology-independent method of 

engineering Rayleigh scattering at the nanoscale level based on the resonance effect of 

upconversion nanoparticles. We develop water-soluble molecular upconversion materials 

based on the ionic equilibrium of upconversion dyes. Based on the improved 

characterization of upconversion materials, as well as the technologies, we anticipate the 

potential applications in future, such as, deep tissue imaging, monitoring the interaction 

in the limit region (e.g., attoNewton level), and multiplexed scattering microscopy of cell 

dynamics. 
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