

Privacy-Preserving and Fairness in Machine Learning

by Tao Zhang

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Tianqing Zhu

University of Technology Sydney Faculty of Engineering and Information Technology January 2022

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Tao Zhang declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Computer Science, Faculty of Engineering and Information at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note: SIGNATURE: Signature removed prior to publication.

[Your Name]

DATE: 06th January, 2021

PLACE: Sydney, Australia

ACKNOWLEDGMENTS

First and foremost, I am extremely grateful to my supervisors, Prof. Tianqing Zhu and Prof. Wanlei Zhou, for their invaluable advice, continuous support, and patience during my PhD study. Their immense knowledge and plentiful experience have encouraged me all the time in my research and daily life. In particular, I am really grateful to Prof. Tianqing for giving me a lot of guidance on how to do research, giving me the space to work on the research that I am interested in, and showing support for my internship.

I would also like to thank Dr Dayong Ye for his technical support on my research and for his invitation to coffee chat almost every week. I would like to thank Dr Angela Huo for being my co-supervisor. I would like to thank Prof. Philip Yu, who gave me suggestions for research and helped me polish papers. I want to thank all external collaborators: Ping Xiong, Zahir Tari, and Philip Yu. Thanks for the insightful discussion and valuable advice from them. Additionally, I would like to express gratitude to all staff in the School of Computer Science for helping PhD students solve issues.

I am fortunate to have been a part of our research group - Cyber Privacy and Safety. I also owe plenty of thanks to my research friends who helped me during my research and daily life during my PhD study: Steven Cheng, Sheng Shen, Mengde Han, Tingting Liao, Congcong Zhu, Yuan Zhao, Chi Liu, Zhuowei Wang, Yanbin Liu, and so many others. It is such an honour to work with all of you. Special thanks to Jing Li; he is always willing to discuss research with me, and he has given me a lot of inspiration.

It is important to strike a balance with life outside the hard work of the lab. I would like to thank my tennis buddies: Jack, Neo, Kenyo, Jason, Jianqiao, Alexander, Huipeng Xue and many others. Special thanks to my friend Steven Holley, who let me understand many aspects of Australia. Most importantly, I am grateful for my family's unconditional, unequivocal, and loving support. Tao Zhang Sydney, Australia January 2022

DEDICATION

To myself ...

ABSTRACT

Machine learning is widely deployed in society, unleashing its magic in a wide range of applications following the progress of big data and computing power. However, society is beginning to realize that machine learning models designed to help human beings in various tasks may also have a negative impact on human beings, especially in terms of privacy and fairness. In terms of privacy, data are increasingly collected from human beings, and when these data are used for machine learning, data privacy might be compromised. In terms of fairness, machine learning, as a useful decision-making tool, is widely used to allocate resources and opportunities for humans. Many studies have shown that decisions made by these models may be biased against certain populations. Machine learning has passed the stage of only considering model performance, and ethical issues have a decisive impact on the use of machine learning. This thesis mainly studies how to design a fair and private machine learning model to foster private and fair machine learning and develops methods broadly covering different aspects of privacy and fairness to enhance the trade-off between fairness, privacy and model accuracy. Specifically, it makes the following contributions.

- We propose a correlation reduction scheme with feature selection selecting features considering data correlation and utility. The proposed scheme involves five steps to manage the extent of data correlation, preserve privacy, and support accuracy in the model outputs.
- We present a framework of fair semi-supervised learning in the pre-processing phase, including pseudo labeling, re-sampling, and ensemble learning to improve accuracy and decrease discrimination. We also propose a framework of fair semi-supervised learning in the in-processing phase. The objective function includes a loss for both the classifier and label propagation and fairness constraints over

labeled and unlabeled data.

- We study the balance between accuracy, privacy and fairness in deep learning by designing two different early stopping criteria to help analysts choose when to stop training a model to achieve their ideal trade-off.
- We investigate how adversarial examples will skew model fairness. We formulate the problem as an optimization problem: maximizing the model bias with the constraint of the number of adversarial examples and the perturbation scale.

Keywords: Machine learning, Differential privacy, Algorithmic fairness

TABLE OF CONTENTS

Li	st of	Figure	2S	xiv
Li	st of	Tables	i de la constante de la constan	xix
Li	st of	Public	eations	xxi
1	Intr	oducti	ion	1
	1.1	Privat	e Machine Learning	2
	1.2	Fair M	fachine Learning	3
	1.3	Privat	e and Fair Machine Learning	4
	1.4	Resear	rch Objectives and Challenges	5
	1.5	Thesis	S Outline	7
2	Bac	kgroui	nd	9
	2.1	Differe	ential Privacy in Machine Learning	9
		2.1.1	Notation	9
		2.1.2	Differential Privacy	9
		2.1.3	Differentially Private Machine Learning	12
	2.2	Fairne	ess in Machine Learning	15
		2.2.1	Discrimination Sources	15
		2.2.2	Fairness Metrics	17
		2.2.3	Discrimination Removal Methods	18
	2.3	Intera	ction between Privacy and Fairness	21
		2.3.1	Simultaneous Enforcement of Privacy and Fairness	21
		2.3.2	Mutual Impact of Privacy and Fairness	21

3	Cor	related	l Differential Privacy: Feature Selection in Machine Learning	22			
	3.1	Introd	uction	22			
	3.2	Prelin	ninaries	24			
		3.2.1	Differential Privacy	24			
		3.2.2	Feature Selection	25			
	3.3	Exam	ple of Traffic Monitoring	25			
	3.4	The E	xtent of Data Correlation	27			
		3.4.1	Correlated Degree	27			
		3.4.2	Correlated Sensitivity	28			
	3.5	Correl	ation Reduction Based on Feature Selection	29			
		3.5.1	Overview of the Method	29			
		3.5.2	The Proposed CR-FS Scheme	29			
		3.5.3	Discussion	33			
	3.6	Exper	iments	34			
		3.6.1	Experimental Setup	34			
		3.6.2	Experiments for Data Analysis	36			
		3.6.3	Experiments for Data Publishing	39			
		3.6.4	Discussion	42			
	3.7	Summ	nary	42			
4	Fair	ness i	n Semi-supervised Learning:				
	Unlabeled Data Help to Reduce Discrimination 4						
	4.1	Introd	uction	43			
	4.2	Backg	round	45			
		4.2.1	Notations	45			
		4.2.2	Fairness Metrics	46			
		4.2.3	Discrimination Sources	47			
		4.2.4	Bias, Variance and Noise	48			
	4.3	The P	roposed Method	48			
		4.3.1	Overview of the Fairness-enhanced Sampling Framework	48			
		4.3.2		49			
		4.3.3	How to Sample	50			
		4.3.4	How to Train the Model	51			

		4.3.5	Discussion
	4.4	Discri	mination Analysis
	4.5	Exper	iment \ldots \ldots \ldots \ldots 56
		4.5.1	Experiments on Real Data 56
		4.5.2	Experiments on Synthetic Data
		4.5.3	Discussion and Summery
	4.6	Relate	ed Work
		4.6.1	Pre-processing Methods 67
		4.6.2	In-processing Methods
		4.6.3	Post-processing Methods 68
		4.6.4	Comparison with Other Work
	4.7	Summ	ary
5	Fair	rness C	Constraints in Semi-supervised Learning 70
	5.1	Introd	uction
	5.2	Prelin	ninaries
		5.2.1	Notations
		5.2.2	Graph-base Regularization
		5.2.3	The Proposed Framework
		5.2.4	Fair SSL of Logistic Regression 76
		5.2.5	A Case of SVM
		5.2.6	Discussion
	5.3	Exper	iment
		5.3.1	Experimental Setup 81
		5.3.2	Experimental Results of Disparate Impact
		5.3.3	Experimental Results of Disparate Mistreatment 86
		5.3.4	Discussion and Summary
	5.4	Relate	ed Work
		5.4.1	Fair Supervised Learning 92
		5.4.2	Fair Unsupervised Learning 93
		5.4.3	Comparing with Other Work
	5.5	Summ	nary

v	Dun	moning	Learning model i invacy, i an ness, and need acy with Larry	
	Stop	pping (Criteria	95
	6.1	Introd	uction	95
	6.2	Backg	round	97
		6.2.1	Notation	97
		6.2.2	Fairness Metrics	98
		6.2.3	Differential Privacy	99
		6.2.4	Early Stopping Criteria	101
	6.3	Prelin	ninary Studies	101
		6.3.1	Preliminary Experiments	101
		6.3.2	Results	102
	6.4	Early	Stopping Criteria Methods	104
		6.4.1	Stopping Criterion 1	105
		6.4.2	Stopping Criterion 2	106
	6.5	Theor	etical Analysis	107
		6.5.1	The Impact of DP-SGD on Gradient	107
		6.5.2	The Impact of DP-SGD on the Training Process	109
		6.5.3	The Changes of the Discrimination Level in the Validation Set	
			and Test Set	110
	6.6	Exper	iment	111
		6.6.1	Experimental Setup	111
		6.6.2	Accuracy and Discrimination Level with SGD and DP-SGD \ldots	113
		6.6.3	Effect of Hyperparameters	115
		6.6.4	The Effect of Stopping Criteria	117
		6.6.5	Discrimination Levels in Validation and Test Sets	118
		6.6.6	Positive Prediction Rate and True Positive Rate	119
		6.6.7	Discussion and Summary	121
	6.7	Relate	ed work	124
		6.7.1	Differentially Private Machine Learning	124
		6.7.2	Fair Machine Learning	125
		6.7.3	Comparison with Other Work	126
	6.8	Summ	ary	126

6 Balancing Learning Model Privacy, Fairness, and Accuracy with Early

7	Rev	isiting	Model Fairness via Adversarial Examples	127
	7.1	Introd	luction	127
	7.2	Relate	ed Work	130
	7.3	Vulne	erability of Model Fairness to Adversarial Attacks	131
		7.3.1	Vulnerability of Individual Fairness	131
		7.3.2	Vulnerability of Group Fairness	133
	7.4	Metho	bd	135
		7.4.1	Problem Formulation	135
		7.4.2	Adversarial Attack on Individual Fairness	135
		7.4.3	Adversarial Attack on Group Fairness	137
	7.5	Exper	iment	139
		7.5.1	Experimental Setup	140
		7.5.2	Experimental Results	141
	7.6	Summ	nary	144
8	Con	clusio	n and Future Work	145
	8.1	Conclu	sion	145
	8.2	Futur	e Work	146
Bi	bliog	raphy		147

LIST OF FIGURES

FIG	URE P	age
1.1	The interaction between accuracy, privacy and fairness in learning models .	5
3.1	Data correlation for different number of features	36
3.2	Privacy-Accuracy trade-off in SVM for different datasets	37
3.3	Privacy-Accuracy trade-off in LR for different datasets	38
3.4	MAE performance for count queries	40
3.5	MAE performance for mean queries	41
4.1	The three phases of the fairness-enhanced sampling framework: 1) where	
	to sample, 2) how to sample and 3) how to train the model. Step 1 is to	
	generate a new training dataset which consists of the original dataset and	
	the pseudo labeled dataset. Step 2 is to construct multiple fair datasets	
	through re-sampling. Step 3 is to train a model with each of the fair datasets	
	through ensemble learning to produce the final predictions.	49
4.2	The trade-off between accuracy (Red) and discrimination level (Blue). (a) LR	
	in Health dataset; (b) SVM in Health dataset; (c) LR in Bank dataset; (d)	
	SVM in Bank dataset; (e) LR in Adult dataset; (f) SVM in Adult dataset. The	
	X-axis is the sample ratio $ ho$, which denotes that the percentage of $ ho$ unlabeled	
	data are sampled from the unlabeled dataset and then pseudo labeled for	
	training	59

60

83

- 4.3 The impact of ensemble learning on the accuracy (Red) and discrimination level (Blue) on (a) LR in Health dataset; (b) SVM in Health dataset; (c) LR in Bank dataset; (d) SVM in Bank dataset; (e) LR in Adult dataset; (f) SVM in Adult dataset. Initially, there is not an obvious link between accuracy and discrimination level. However, as the ensemble size grows, the accuracy and discrimination levels begin to converge. Each point is an average of 50 times.
- 4.5 Comparison with original scheme (ORI), uniform sampling (US) and preferential sample (PS) with (a) LR in Health dataset; (b) SVM in Health dataset;
 (c) LR in Bank dataset; (d) SVM in Bank dataset; (e) LR in Adult dataset; (f) SVM in Adult dataset. With the fairness-enhanced sampling method (FS), discrimination decreases without much cost of accuracy or accuracy increases without much cost of discrimination.
- 5.1 The trade-off between accuracy and discrimination in proposed method Semi (Red), FS (Blue), US (Blue cross), PS (Yellow cross) and FES (Green cross) under the fairness metric of disparate impact with LR and SVM in two datasets. As the threshold of covariance c increases, accuracy and discrimination increase. The results demonstrate that our method achieves a better trade-off between accuracy and discrimination than other methods.
- 5.2 The impact of the amount of unlabeled data in the training set on accuracy (Red) and discrimination level (Blue) under the fairness metric of disparate impact with LR and SVM in two datasets. The X-axis is the size of unlabeled dataset; the left y-axis is accuracy, and right y-axis is discrimination level.
 85
- 5.3 The trade-off between accuracy and discrimination in proposed method Semi (Red), FS (Blue) with LR and SVM in two datasets under the metric of overall misclassification rate. As the threshold of covariance c increases, accuracy and discrimination increase. The results demonstrate that our method using unlabeled data achieves a better trade-off between accuracy and discrimination. 87

5.4	The trade-off between accuracy and discrimination in the proposed method	
	Semi (Red), FS (Blue) with LR and SVM in two datasets under the metric of	
	false negative rate. As the threshold of covariance c increases, accuracy and	
	discrimination increase.	88
5.5	The trade-off between accuracy and discrimination in proposed method Semi	
	(Red), FS (Blue) with LR and SVM in two datasets under the metric of	
	false positive rate. As the threshold of covariance c increases, accuracy and	
	discrimination increase.	90
5.6	The impact of the amount of unlabeled data in the training set on accuracy	
	(Red) and discrimination level (Blue) under the fairness metric of overall	
	mistreatment rate with LR and SVM in two datasets. The X-axis is the	
	size of unlabeled dataset; the left y-axis is accuracy, and the right y-axis is	
	discrimination level.	91
6.1	Challenges in private and fair deep learning: 1) Privacy comes at the cost of	
	accuracy; 2) Fairness comes at the cost of accuracy; 3) Privacy could affect	
	model fairness	96
6.2	Training with SGD (Blue) and DP-SGD (Red) in the Bank dataset.	103
6.3	Training with SGD (Blue) and DP-SGD (Red) in UTK Face dataset. Figure	
	3 shows that, with DP-SGD, more variations appear during the training in	
	terms of accuracy and discrimination levels.	104
6.4	Training with SGD (Blue) and DP-SGD (Red) in the Health dataset.	114
6.5	Training with SGD (Blue) and DP-SGD (Red) in the IMDB dataset. Figure	
	6.5 shows that, with DP-SGD, more variations appear during the training in	
	terms of accuracy and discrimination levels.	115
6.6	Training with SGD (Dark blue) and DP-SGD (other colors; $\sigma \cdot C = 1$ and C	
	varies) in the IMDB dataset. Figure 6.6 shows that clipping bound has an	
	impact on discrimination levels.	116
6.7	Training with SGD (Dark blue) and DP-SGD (other colors; $C = 1$ and σ	
	varies) in the IMDB dataset. Figure 7 shows that the noise scale does not	
	produce a distinctive difference in discrimination levels	117

6.8	Discrimination level of demographic parity (a) and equal odds (b) on valida-	
	tion set (Blue) and test set (Red) in the Bank dataset. Figure 6.8 shows the	
	changes of discrimination level is similar in validation and test set in the	
	Bank dataset.	119
6.9	Discrimination level of demographic parity (a) and equal odds (b) on valida-	
	tion set (Blue) and test set (Red) in the Health dataset. Figure 6.9 shows the	
	changes of discrimination level is similar in validation and test set in the	
	Health dataset.	120
6.10	Discrimination level of demographic parity (a) and equal odds (b) on valida-	
	tion set (Blue) and test set (Red) in the UTK Face dataset. Figure 6.10 shows	
	the trend of discrimination level is similar in validation and test set. \ldots	120
6.11	Discrimination levels on the validation set (Blue) and test set (Red) in the	
	IMDB dataset. Figure 6.11 shows the trend of discrimination levels is similar	
	in both sets.	121
6.12	Training with SGD (Blue) and DP-SGD (Red) in the Health dataset. (a)	
	Positive predication rate in Group 1 (Solid line) and Group 2 (Dotted line) (b)	
	True positive rate in Group 1 (Solid line) and Group 2 (Dotted line). Figure	
	6.12 shows how PPR and TPR change in two groups in the Health dataset.	122
6.13	Training with SGD (Blue) and DP-SGD (Red) in the Bank dataset. (a) Posi-	
	tive prediction rate in the protected group (solid line) and unprotected group	
	(Dotted line) (b) True positive rate in protected group (solid line) and unpro-	
	tected group (Dotted line). Figure 6.13 shows how PPR and TPR change in	
	two groups in the Bank dataset	122
6.14	Training with SGD (Blue) and DP-SGD (Red) in the IMDB dataset. (a)	
	Positive prediction rate in Group 1 (Solid line) and Group 2 (Dotted line) (b)	
	True positive rate in Group 1 (Solid line) and Group 2 (Dotted line). Figure	
	$6.14\ {\rm shows\ how\ PPR}$ and TPR change in two groups in the IMDB dataset	123
6.15	Training with SGD (Blue) and DP-SGD (Red) in the UTK Face dataset. (a)	
	Positive predication rate in Group 1 (Solid line) and Group 2 (Dotted line) (b)	
	True positive rate in Group 1 (Solid line) and Group 2 (Dotted line). Figure	
	6.15 shows how PPR and TPR change for two groups in the UTK Face dataset.	123

Two examples in the group 1 with negative predicted labels are perturbed	
into adversarial examples. These original examples are similar to their	
adversarial examples but are being treated differently by the model. This	
violates individual fairness, and furthers skews the demographic information	
in group fairness	129
An example of group adversarial bias	134
Group adversarial bias and individual group adversarial bias on the Ger-	
man and Bank datasets with increasing perturbation scale ϵ . Results show	
that adversarial examples in our proposed methods can significantly skew	
individual fairness and group fairness more than baselines.	143
The mean of the perturbation norm on the German and Bank datasets with	
an increasing number of adversarial examples ϵ in Fig. 7.4 (a) and 7.4 (b).	
The result of the group adversarial bias on the German and Bank datasets	
with the growing number of adversarial examples in Fig. 7.4 (c) and 7.4 (d).	143
	into adversarial examples. These original examples are similar to their adversarial examples but are being treated differently by the model. This violates individual fairness, and furthers skews the demographic information in group fairness

LIST OF TABLES

TABLE		Page
2.1	Notations	10
3.1	Users' locations at different times	26
3.2	The sum counts of users' locations	26
3.3	Number of features in different stages	35
4.1	Two discriminatory datasets tested on the discriminatory test dataset in ORI	
	method and the proposed fairness-enhanced method (FS) with LR and SVM.	
	We show accuracy (Acc), discrimination level (Dis) and the number of data	
	points of each group in the discriminatory test dataset after classification	65
4.2	Two discriminatory datasets tested on the fair test dataset in ORI method	
	and the proposed fairness-enhanced method (FS) with LR and SVM. We show	
	accuracy (Acc), discrimination level (Dis) and the number of data points of	
	each group in the fair test dataset after classification.	65
5.1	The impact of fairness constraints on different datasets in terms of accuracy	
	(Acc) and discrimination level (Dis) under the fairness metric of disparate	
	impact with LR in the Health dataset	84
5.2	The impact of fairness constraints on different datasets in terms of accuracy	
	(Acc) and discrimination level (Dis) under the fairness metric of disparate	
	impact with LR in the Titanic dataset	84
5.3	The impact of fairness constraints on different datasets in terms of accuracy	
	(Acc) and discrimination level (Dis) under the fairness metric of overall	
	misclassification rate with LR in the Bank dataset.	89

5.4	The impact of fairness constraints on different datasets in terms of accuracy	
	(Acc) and discrimination level (Dis) under the fairness metric of overall	
	misclassification rate with LR in the Titanic dataset.	89
6.1	Accuracy, discrimination levels and training epoch for the two early stopping	
	criteria with different parameters on the UTK Face dataset	118
6.2	Accuracy, discrimination level and training epoch for the two early stopping	
	criteria with different parameters on the IMDB dataset	119
7.1	Description of datasets	140
7.2	Results for all datasets and all methods concerning fairness metrics and	
	perturbation metrics	142

LIST OF PUBLICATIONS

PUBLISHED PAPERS :

- Tao Zhang, Tianqing Zhu, Kun Gao, and Wanlei Zhou. 2021. "Balancing Privacy, Fairness, and Accuracy with Early Stopping Criteria", in IEEE Transactions on Neural Networks and Learning Systems, doi: 10.1109/TNNLS.2021.3129592.
- Tao Zhang, Tianqing Zhu, Jing Li, Mengde Han, Wanlei Zhou and Philip Yu, "Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce Discrimination," in IEEE Transactions on Knowledge and Data Engineering, doi: 10.1109/TKDE.2020. 3002567.
- Tao Zhang, Tianqing Zhu, Ping Xiong, Huan Huo, Zahir Tari and Wanlei Zhou, "Correlated Differential Privacy: Feature Selection in Machine Learning," in IEEE Transactions on Industrial Informatics, vol. 16, no. 3, pp. 2115-2124, March 2020, doi: 10.1109/TII.2019.2936825.
- Tao Zhang, Dayong Ye, Tianqing Zhu, Tingting Liao, and Wanlei Zhou, 2020. "Evolution of cooperation in malicious social networks with differential privacy mechanisms". Neural Computing and Applications, pp.1-16.
- 5. **Tao Zhang**, Tianqing Zhu, Renping Liu, and Wanlei Zhou, 2020. "Correlated data in differential privacy: Definition and analysis". Concurrency and Computation: Practice and Experience, p.e6015.
- Chen, Xin, Tao Zhang, Sheng Shen, Tianqing Zhu, and Ping Xiong. "An Optimized Differential Privacy Scheme with Reinforcement Learning in VANET." Computers and Security (2021): 102446.

- Minghao Wang, Tianqing Zhu, **Tao Zhang**, Jun Zhang, Shui Yu, and Wanlei Zhou, 2020. "Security and privacy in 6G networks: New areas and new challenges". Digital Communications and Networks, 6(3), pp.281-291.
- Xiuting Gu, Tianqing Zhu, Jie Li, **Tao Zhang**, and Wei Ren. "The Impact of Differential Privacy on Model Fairness in Federated Learning." In International Conference on Network and System Security, pp. 419-430. Springer, Cham, 2020.

SUBMITTED PAPERS :

- Tao Zhang, Tianqing Zhu, Mengde Han, Jing Li, Wanlei Zhou and Philip Yu, 2020.
 "Fairness Constraints in Semi-supervised Learning". arXiv preprint: 2009.06190.
- 2. **Tao Zhang**, Tianqing Zhu, Jing Li, and Wanlei Zhou. 2021. "Revisiting Model Fairness via Adversarial Examples", submitted to IEEE Transactions on Neural Networks and Learning Systems.
- 3. Xin Chen, **Tao Zhang**, Ping Xiong, Sheng Shen. 2021. "Trajectory privacy-preserving with multiple obfuscation over road networks in VANET", submitted to Journal of Information Security and Applications.