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ABSTRACT

Machine learning is widely deployed in society, unleashing its magic in a wide range of

applications following the progress of big data and computing power. However, society

is beginning to realize that machine learning models designed to help human beings in

various tasks may also have a negative impact on human beings, especially in terms of

privacy and fairness. In terms of privacy, data are increasingly collected from human

beings, and when these data are used for machine learning, data privacy might be

compromised. In terms of fairness, machine learning, as a useful decision-making tool,

is widely used to allocate resources and opportunities for humans. Many studies have

shown that decisions made by these models may be biased against certain populations.

Machine learning has passed the stage of only considering model performance, and

ethical issues have a decisive impact on the use of machine learning. This thesis mainly

studies how to design a fair and private machine learning model to foster private

and fair machine learning and develops methods broadly covering different aspects

of privacy and fairness to enhance the trade-off between fairness, privacy and model

accuracy. Specifically, it makes the following contributions.

• We propose a correlation reduction scheme with feature selection - selecting

features considering data correlation and utility. The proposed scheme involves

five steps to manage the extent of data correlation, preserve privacy, and support

accuracy in the model outputs.

• We present a framework of fair semi-supervised learning in the pre-processing

phase, including pseudo labeling, re-sampling, and ensemble learning to improve

accuracy and decrease discrimination. We also propose a framework of fair semi-

supervised learning in the in-processing phase. The objective function includes

a loss for both the classifier and label propagation and fairness constraints over

vii



labeled and unlabeled data.

• We study the balance between accuracy, privacy and fairness in deep learning by

designing two different early stopping criteria to help analysts choose when to

stop training a model to achieve their ideal trade-off.

• We investigate how adversarial examples will skew model fairness. We formulate

the problem as an optimization problem: maximizing the model bias with the

constraint of the number of adversarial examples and the perturbation scale.

Keywords: Machine learning, Differential privacy, Algorithmic fairness
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