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ABSTRACT

Machine learning is widely deployed in society, unleashing its magic in a wide range of

applications following the progress of big data and computing power. However, society

is beginning to realize that machine learning models designed to help human beings in

various tasks may also have a negative impact on human beings, especially in terms of

privacy and fairness. In terms of privacy, data are increasingly collected from human

beings, and when these data are used for machine learning, data privacy might be

compromised. In terms of fairness, machine learning, as a useful decision-making tool,

is widely used to allocate resources and opportunities for humans. Many studies have

shown that decisions made by these models may be biased against certain populations.

Machine learning has passed the stage of only considering model performance, and

ethical issues have a decisive impact on the use of machine learning. This thesis mainly

studies how to design a fair and private machine learning model to foster private

and fair machine learning and develops methods broadly covering different aspects

of privacy and fairness to enhance the trade-off between fairness, privacy and model

accuracy. Specifically, it makes the following contributions.

• We propose a correlation reduction scheme with feature selection - selecting

features considering data correlation and utility. The proposed scheme involves

five steps to manage the extent of data correlation, preserve privacy, and support

accuracy in the model outputs.

• We present a framework of fair semi-supervised learning in the pre-processing

phase, including pseudo labeling, re-sampling, and ensemble learning to improve

accuracy and decrease discrimination. We also propose a framework of fair semi-

supervised learning in the in-processing phase. The objective function includes

a loss for both the classifier and label propagation and fairness constraints over

vii



labeled and unlabeled data.

• We study the balance between accuracy, privacy and fairness in deep learning by

designing two different early stopping criteria to help analysts choose when to

stop training a model to achieve their ideal trade-off.

• We investigate how adversarial examples will skew model fairness. We formulate

the problem as an optimization problem: maximizing the model bias with the

constraint of the number of adversarial examples and the perturbation scale.

Keywords: Machine learning, Differential privacy, Algorithmic fairness
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INTRODUCTION

Machine learning (ML) is a type of artificial intelligence (AI) that allows software

applications to become more accurate in predicting results without explicit programming,

and ML plays an increasingly important role in our daily lives. The possibility is that

you use ML in one way or another without you even knowing it. Due to the speed

and efficiency of the decision-making process, many aspects of our daily life decisions

are outsourced to machine learning algorithms. Examples include face recognition

[35], recommendation systems [39], self-driving cars [68], disease detection [106], loan

application [41], and etc.

However, society has begun to realize that machine learning models designed to

assist human beings in various tasks could also have a negative impact on human

beings, especially in privacy and fairness. Privacy leakage in machine learning happens

when information from the training dataset or the model is inferred by adversaries.

As data are increasingly collected from human activities, such as social networks and

wearable devices, data contain personal information. When the information is used for

machine learning, privacy is likely to be leaked by privacy attacks [114]. For example,

the genetic information of patients can be extracted from a machine learning model

when an adversary only knows a person’s name and facial recognition system [53].

Meanwhile, fairness has attracted tremendous attention. More than 20 fairness

metrics are defined in machine learning [15, 45, 92, 146]. Basically, discrimination in
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machine learning refers to when an individual person is treated in a disadvantage

way compared with other individuals or groups. The main source of discrimination is

data, and training a model with biased data will lead to a discriminated model. In fact,

almost all large datasets generated by systems based on learning models are biased. For

example, Chouldechova [31] found evidence of racial bias in the recidivism prediction

tool where black defendants are more likely to be assessed with high risk than white

defendants.

Given the widespread use of machine learning to support decisions over loan allo-

cations, insurance coverage, and many other basic precursors to equity, privacy and

fairness in machine learning have become significantly important issues. Thus, how

to design machine learning algorithms that keep data private and treat individuals

equally is critical. In the following, I will introduce more detailed information in three

lines: private machine learning, fair machine learning and private and fair machine

learning.

1.1 Private Machine Learning

Over the last decade, the connection between humans and data has never been so

inseparable. Meanwhile, the era of big data poses new challenges to human data man-

agement, especially in data privacy. Privacy-preserving has been adopted by academia

and industry to protect individual privacy when datasets are used for training models. In

order to guarantee data privacy, privacy-preserving mechanisms are designed to retain

data utility while ensuring that the original information will not be disclosed to other

individuals or groups. Popular privacy-preserving mechanisms consist of three types

of privacy preservation techniques: cryptographic techniques [3], differential privacy

[47], and anonymization techniques [97]. Among these privacy techniques, differential

privacy is one of the most promising privacy models to protect data privacy in machine

learning. The notion of differential privacy was firstly proposed by Dwork et al. [47],

which provides a rigorous mathematical framework for defining and protecting privacy.

A common method to achieve differential privacy is to add noise to randomize model out-

puts. It ensures that the adversary cannot distinguish the participation of the individual

in the computation even if the adversary knows some background information.

In terms of the position where random noise is added in machine learning, existing
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research can be classified into four types: input perturbation, output perturbation, objec-

tive perturbation and gradient perturbation. Input perturbation means that individual

data are randomly perturbed to some extent before they are handed over to the model

for learning or analysis to prevent the model from acquiring real data [54]. Output

perturbation is a method of adding noise to the optimal parameters obtained from

empirical risk minimization [24, 108], and objective perturbation is a method of adding

noise to the objective function [25, 56]. Later, differentially private stochastic gradient

(DPSGD) was proposed. In DPSGD, noise is added in the process of solving the optimal

model parameters using the gradient descent method, ensuring that the entire process

meets differential privacy [1, 125, 144].

1.2 Fair Machine Learning

Machine learning is now in wide use as a decision-making tool in many areas, such as

job employment, risk assessment, loan approvals and many other basic precursors to

equity. However, the popularity of machine learning has raised concerns about whether

the decision-making algorithms make are fair to all individuals. Obermeyer et al. found

prejudice in health care systems where black patients assigned the same level of risk by

the algorithm are sicker than white patients [105]. Recent findings show that unfair

machine learning algorithms will affect legal justice, healthcare, and other aspects of

human beings. As we move towards a world of machine-assisted predictions for human

beings, the fairness of machine learning has become a very cardinal issue. In the future,

our ability to design machine learning algorithms that treat all groups equally may

be one of the most influential factors in allocating resources and opportunities. As the

influence and scope of these risk assessments increase, academics, policymakers, and

journalists have raised concerns that the statistical models from which they are derived

might inadvertently encode human biases.

Over the past few years, many research have been devoted to designing fairness

metrics, such as statistical fairness [15, 31, 146], individual fairness [45, 72, 92] and

causal fairness [78, 83]. These approaches and algorithms can be roughly divided into

three categories: pre-processing methods, in-processing methods and post-processing

methods. Pre-processing methods adjust data distribution [15, 74] or learn new fair

representations [94, 124, 147], to relieve some of the tension between accuracy and
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fairness. In-processing methods add constraints or regularizers to restrict the correlation

between labels and sensitive/protected attributes, i.e., traits that can be targeted for

discrimination [75, 81, 146]. Post-process methods calibrate training results [60]. These

studies mainly focus on addressing the two most crucial fundamental issues in machine

learning fairness: how to formalize the concept of fairness in the context of machine

learning tasks, and how to design effective algorithms to achieve an ideal compromise

between accuracy and fairness.

1.3 Private and Fair Machine Learning

Privacy and fairness are two social concerns in machine learning, and they have a

connection with each other. In some situations, privacy, fairness and accuracy are

considered at the same time when implementing machine learning models. For example,

in recidivism prediction applications, demographic groups (such as black defendants

and white defendants) should undergo similar processing, that is, similar prediction

accuracy. Meanwhile, participating in training data means that the individual might

have committed a crime, which is very sensitive and needs to be kept confidential.

Therefore, it is important to study the interaction between privacy, fairness and privacy.

Two perspectives are studied in the interaction between privacy and fairness: 1)

simultaneous enforcement of privacy and fairness, 2) mutual impact of privacy and

fairness. In the first perspective, the goal is to guarantee privacy and fairness at the same

time on machine learning tasks. For example, [40, 139] proposed differentially private

fair algorithms in logistic regression. [67] studied fair learning under the constraint of

differential privacy in the equalized odds. In the second perspective, it is found that

implementing privacy mechanisms, such as differential privacy will have a disparate

impact on groups or implementing fairness methods is likely to lead to disparate

privacy leakage between groups. For example, Chang et al. studied privacy risks of

group fairness through the lens of membership inference attacks [22]. The impact of

differential privacy is studied on fair and equitable decision-making [113].
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Figure 1.1: The interaction between accuracy, privacy and fairness in learning models

1.4 Research Objectives and Challenges

In this section, we first introduce research objectives in private and fair machine

learning, and then present research objectives and challenges. As shown in Figure 1.1,

model accuracy, privacy and fairness interact with each other. Privacy and fairness are

usually at the cost of model accuracy, and meanwhile implementing privacy/fairness

methods may affect model fairness/privacy. This thesis will focus on enhancing the

trade-off in private/fair learning and analysing the interactions between the three.

Detailed objectives and challenges are listed in the following.

• Objective 1: Privacy leakage in correlated training sets. Our first research

objective is to study privacy leakage in correlated training sets. Data collected

from real-world is likely to have correlations, such as temporal correlation and

social correlation. Existing differentially private machine learning algorithms

have not considered the impact of data correlation in the training set, which may

lead to more privacy leakage than expected in real-world applications.

Challenges. Correlated datasets usually perform a large sensitivity when using

differential privacy, which leads to a shape decrease in data utility. How to decrease
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a large amount of noise incurred by differential privacy in correlated training

sets, so as to achieve an ideal trade-off between privacy and data utility is very

challenging.

• Objective 2: Fairness in semi-supervised learning. In real-world machine

learning tasks, data size is an important factor in deciding the model performance.

Labeling data takes time and effort, and therefore how training the model with a

combination of labeled and unlabeled data is a vital area of development. Like the

other learning settings, achieving the balance between accuracy and fairness is a

key issue. According to recent studies, increasing the size of the training set can

create a better trade-off. This finding sparked an idea over whether the trade-off

might be improved via unlabeled data. Unlabeled data are easy to use and, if they

could be used as training data, we may be able to make a better trade-off between

fairness and accuracy via semi-supervised learning.

Challenges. To achieve this goal, two challenges are ahead of us: 1) how to achieve

fair learning from both labeled and unlabeled data; and 2) how to give labels for

unlabeled data to ensure that the learning is towards a fair direction.

• Objective 3: Simultaneous enforcement of privacy and fairness in deep
learning. Privacy and fairness are two social concerns when applying machine

learning models into practice. Implementing privacy methods in the training

model will have an impact on model fairness, and vice versa. In some situations,

privacy, fairness and accuracy are considered at the same time when implementing

machine learning tasks, such as health care systems. How to enforce privacy and

fairness simultaneously is a significant issue to be addressed.

Challenges. Unfortunately, privacy and fairness are usually at the cost of model

accuracy. Meanwhile, deep learning is much more complex than traditional ma-

chine learning models when dealing with privacy and fairness issues. Challenges

include how to define what a good balance between the three is; how to achieve

efficient and effective means of fine-tuning the balance between this three.

• Objective 4: Fairness attack via adversarial examples. Our last objective

is to study the vulnerability of fairness via adversarial examples so that we can

have a better understanding of the connection between fairness and adversarial
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attacks. Existing literature has largely ignored fairness robustness. The fairness

of classifiers is often evaluated on sampled datasets, and can be unreliable for

various reasons, including biased examples, and missing and/or noisy attributes.

Evaluating model fairness is the key to determining the effectiveness of bias

removal methods and improving model fairness in dynamic learning systems.

Challenges. This is challenging to define individual adversarial bias and group

adversarial bias; explain the vulnerability of individual fairness and group fairness

to adversarial attacks; and maximize model bias with a fixed perturbation scale

on limited adversarial examples.

1.5 Thesis Outline

This section aims to build the structure of the thesis. In terms of three research problems:

correlated differential privacy, fairness in semi-supervised learning and interaction

between privacy and fairness in machine learning, the content of each chapter is

organised as follows:

• Chapter 2 presents a literature survey on the development of differentially private

machine learning, fair machine learning, and private and fair machine learning,

including notations, relevant concepts and emerging techniques in this area.

• Chapter 3 addresses the privacy issue for correlated datasets. We propose a corre-

lation reduction scheme with differentially private feature selection considering

the issue of privacy loss when data have correlations in machine learning tasks.

The proposed scheme involves five steps with the goal of managing the extent of

data correlation, preserving privacy, and supporting accuracy in the prediction

results.

• Chapter 4 studies how labeled data help to reduce discrimination. We present a

framework of fair semi-supervised learning in the pre-processing phase, including

pseudo labeling to predict labels for unlabeled data, a re-sampling method to

obtain multiple fair datasets and lastly, ensemble learning to improve accuracy

and decrease discrimination.
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• Chapter 5 focuses on fairness in semi-supervised learning. We develop a framework

for fair semi-supervised learning, which is formulated as an optimization problem.

This includes classification loss to optimize accuracy, label propagation loss to

optimize unlabled data prediction, and fairness constraints over labeled and

unlabeled data to optimize the fairness level.

• Chapter 6 studies the balance between accuracy, privacy and fairness in deep

learning. We conduct a series of analyses, both theoretical and empirical, on the

impacts of implementing DP-SGD in deep neural network models through gradient

clipping and noise addition. Based on observations, we designed two different

early stopping criteria to help analysts choose the optimal epoch at which to stop

training a model so as to achieve their ideal trade-off. Extensive experiments show

that our methods can achieve an ideal balance between accuracy, fairness and

privacy

• Chapter 7 investigates how adversarial examples will skew model fairness. we

study the vulnerability of individual fairness and group fairness to adversarial

attacks. We further propose a general adversarial fairness attack framework

capable of twisting model bias through a small subset of adversarial examples. We

formulate this problem as an optimization problem: maximizing the model bias

with the constraint of the number of adversarial examples and the perturbation

scale.

• Chapter 8 is the conclusion of the thesis, and gives some possible suggestions and

extensions for future research.

To maintain readability, each chapter is organized in a self-contained format. Some

contents, such as definitions and related work are introduced in related chapters.

8
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2
BACKGROUND

2.1 Differential Privacy in Machine Learning

2.1.1 Notation

Let D be a dataset with N data examples D = {(xi, yi)}N
i=1, where x ∼ X contains attribute

information and y ∼ Y denotes the label. Two datasets D and D′ are referred to as

neighboring datasets when they differ in one example. Consider a function f : X →Y ,

which maps training examples x to discrete labels y ∈ Y . Differenial privacy (DP)

provides a randomization mechanism M that can perturb the output of the function f ,

and the noisy output is denoted as Ŷ . Table 2.1 lists the notations used in this chapter.

2.1.2 Differential Privacy

Differential Privacy is a privacy model which ensures that changing one record in the

dataset will not affect too much of the output. The model is achieved by differential

mechanisms which calibrating some noise to the output. DP is a widely used privacy

model in machine learning to bound the leakage about the presence of specific data

point [25].

9
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Table 2.1: Notations

Notations Meanings
D dataset
D′ neighbouring dataset
N the number of data examples
x attributes
z sensitive attribute
y labels
ŷ perturbed label

M randomization mechanism
f function(or model)
q query
ϵ privacy budget
δ broken probability
Ω outcome set
∆q sensitivity of a query
φ output of exponential mechanism
s score function
σ noise scale
w model parameter
ŵ perturbed model parameter
L loss function
r learning rate
T the number of training epochs
l the number of iterations
b batch size
n noise value
g gradient
ĝ perturbed gradient
C clipping bound
d distance metric
M distance function
C clipping bound
γ the probability of positive predictions
Γ discrimination level

10
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Definition 2.1. (ϵ,δ-Differential privacy) [47] Given neighboring datasets D and D′

that differ in one data point, an algorithm M satisfies (ϵ,δ)-differential privacy for any

possible outcome Ω

(2.1) Pr[M (D) ∈Ω]≤ exp(ϵ) ·Pr[M (D′) ∈Ω]+δ,

where ϵ is privacy budget which determines privacy level, and δ is a broken probability.

The lower ϵ and δ represent the higher privacy level.

Definition 2.2. (Sensitivity) [47] For a query q : D −→ R, and neighboring datasets D
and D′, the sensitivity of q is defined as

(2.2) ∆q =max
D,D′ ||q(D)− q(D′)||.

where || · || denotes L1 or L2 norm. Sensitivity measures the maximal difference between

neighboring datasets.

DP mechanisms are referred to as the mechanisms that can generate randomized

noise to satisfy the requirement in DP. Here, we introduce the most popular mecha-

nisms in differential privacy: laplace mechanism, exponential mechanism and Gaussian

mechanism.

Definition 2.3. (Laplace mechanism) [48] For any query q: D −→ R over a dataset D,

the following mechanism provides ϵ-differential privacy if

(2.3) M (D)= q(D)+Laplace(∆q/ϵ)

The Laplace noise is denoted as Laplace(·) and is drawn from a Laplace distribution.

Definition 2.4. (Exponential mechanism) [48] Given a score function s(D, q(D)) of a

dataset D, the exponential mechanism M satisfies ϵ-differential privacy if

(2.4) M (D)=
(
return φ∝ exp(

ϵs(D, q(D))
2∆q

)
)

where score function s(D, q(D)) is used to evaluate the quality of an output q(D) and

∆q is the sensitivity.
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Definition 2.5. (Gaussian mechanism) [48] Gaussian mechanism adds zero-mean

Gaussian noise with variance ∆q2σ2 in each coordinate of the output q(D)

(2.5) M (D)= q(D)+N (0,∆ f 2σ2),

where σ denotes the noise scale. It satisfies (ϵ,δ)-differential privacy if ϵ ∈ [0,1], δ ≥
c∆q/ϵ, and c2 ≥ 2ln(1.25/δ).

DP provides an elegant combination properties, which makes more complex algo-

rithms and data analysis possible by combining multiple differentiated private blocks.

Theorem 2.1. (Sequential composition) [48] Suppose that a set of privacy mechanisms
M={M1, ...,Mm}, gives ϵi differential privacy (i = 1,2...,m), and these mechanisms are
sequentially performed on a dataset. M will provides (

∑
i ϵi)-differential privacy for this

dataset.

Theorem 2.2. (Parallel composition) [48] Suppose that a set of privacy mechanism
M={M1, ...,Mm}, gives ϵi differential privacy (i = 1,2...,m), and these mechanisms are
performed on the disjoint subsets of an entire dataset. M will provide max(ϵi)-differential
privacy for this dataset.

2.1.3 Differentially Private Machine Learning

2.1.3.1 Basic Knowledge of Machine Learning

According to the different applications of data processing and analysis, machine learning

models can be divided into traditional machine learning methods based on statistical

learning theory such as linear regression, logistic regression (LR) and support vector

machine (SVM), and various neural networks models. For most cases, empirical risk

minimization (ERM) is the most commonly used model learning strategy. The basic idea

is to search the optimal model parameters w that minimize empirical risk in the whole

parameter domain to find the best model fw mapping between every data examples

(X ,Y ). The definition is as follows

Definition 2.6. (Empirical risk minimization) Given a model fw, dataset D and loss

function L , the empirical risk loss is defined as

(2.6) JD( fw)= 1
N

N∑
i=1

L ( fw(x), y)+λR(w).
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where the loss function L ( fw) is used to measure the difference between the label y
and the classifier prediction fw(x); a regularizer term R(w) is ususally added to the

loss J( fw) to avoid overfiting from the training data D; λ is a parameter to control

the trade-off between classification loss and regularization loss. The optimized model

parameters w are solved by minimizing empirical loss via gradient descent. Stochastic

gradient descent (SGD) is a widely used method to update the model parameters by

computing average gradient on a batch of data examples iteratively. In each iteration l,
a batch of data points b are sampled from D and the model parameters are updated by

the following rule

(2.7) wl+1 = wl − r∇wl ,

where r is the learning rate and ∇wl is the gradient of the average loss over a batch of

data points. Given a number of T training epochs, the number of iterations is l = TN
b .

Due to the simple structure of traditional machine learning models, when designing

the loss function L , it will be made as a convex function as much as possible in order to

obtain an optimal solution. Deep learning models introduce a large number of non-linear

factors, and the objective function is often a non-convex function, so it is easy to fall into

a local optima solution. In addition, deep learning also has problems such as a large

number of parameters, a large number of iterations, and slow convergence. Therefore,

the privacy-preserving methods of the above two types of models are different. In the

following, we introduce existing DP methods for these two types of models.

2.1.3.2 Differentially Private Machine Learning Methods

Many works have been studied on differentially private machine learning. In terms of

the position where random noise is added in the training process, we classify existing

research into four types: 1) input perturbation, 2) output perturbation, 3) objective per-

turbation and 4) gradient perturbation. The first three methods are used for traditional

machine learning models, and the fourth method is mainly for neural network models.

Input Perturbation Input perturbation means that individual data are randomly

perturbed to some extent before they are handed over to the model for learning or

analysis to prevent the model from acquiring real data [54]. Two situations are consid-

ered: 1) Global privacy, that is, personal data is collected centrally first, and then the
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collector disturbs the sensitive dataset when publishing data; 2) Local privacy means

that individuals first disturb the data at the local and then send it to the collector. The

former has proved to have great limitations in early studies [6]. In the latter, because

the global data distribution is unknown to users, the perturbation mechanism based

on global sensitivity is no longer applicable. Thus, local differential privacy (LDP) is

proposed for different data types and various data mining tasks [142].

Output Perturbation The second method is output perturbation, which refers to

adding noise directly to the optimal parameters obtained by minimizing empirical risk,

as shown in the following

(2.8) ŵ = argmin
w

J( fw)+n

where n denotes noise generated by DP mechanisms. Output perturbation directly adds

noise to the real output of the algorithm, so it is the most intuitive perturbation method,

and the noise level depends on the sensitivity of argmin
w

J(w) and privacy budget.

When the objective function J(w) of empirical risk minimization satisfies continuous

differentiable and convex function, argmin
w

J(w) can be obtained with the proof that the

output perturbation method satisfies the requirement of DP [24, 108]. However, when

the objective function is non-convex, this method is not applicable.

Objective Perturbation Objective perturbation is to minimize the empirical risk

by introducing random noise into the objective function expression, ensuring that the

optimization process meets difference privacy [25, 56]. The objective function with noise

is as follows

(2.9) L̂ = J( fw)+nTw

The value of variable n is generated from DP mechanisms, and the noise level only

depends on privacy budget. However, objective perturbation also requires continuous

differentiable and convex function so that DP is satisfied.

To solve this issue, a method is proposed to approximately computing objective

function by Taylor expansions. In the method, Laplace noise is added to each coefficient.

Although this method is successfully applied to the logistic regression model, it is

difficult to expand this method to a more general model because the approximate

polynomial method is only for a specific objective function.
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Gradient Perturbation Gradient perturbation refers to introducing random noise in

the process of solving the optimal model parameters by gradient descent method, and en-

suring that the whole process meets difference privacy. [126] firstly derived differentially

private stochastic gradient descent mechanisms and test them empirically in logistic

regression. In order to ensure the computational efficiency of the algorithm, stochastic

gradient descent is often used in practical applications, and the basic implementation of

gradient perturbation is in the following

(2.10) wl+1 = wl − r(∆wl +n)

where n is usually generated from Gaussian mechanism. The most popular gradient

perturbation method is proposed by Abadi et al [1]. The method mainly includes two

steps: gradient clipping and noise addition. The first step is that a clipping bound C is

used on the l2 norm of the gradient updates gl(xi) with the batch size b. The second step

aggregates clipped gradients ḡl , and adds Gaussian noise N (0,σ2C2) to the aggregation.

Since each update of ĝl is differentially private, the final model parameters are also

differentially private in terms of the composition property of differential privacy. In

this method, differential privacy noise is added to the iterative update of gradients and

ensuring that the entire process meets differential privacy [1, 144].

2.2 Fairness in Machine Learning

2.2.1 Discrimination Sources

Discrimination may exist in many forms, some of which may lead to the unfairness of

different downstream learning tasks. In [100], the authors discuss the sources of bias in

machine learning, different sources that may affect AI applications, and description to

inspire future solutions to each of discrimination sources. Here, we introduce some of

the most general discrimination sources.

Historical discrimination Historical discrimination occurs when there is a discrep-

ancy between the world itself and the values or goals in the model to be encoded and

propagated. It can stem from cultural stereotypes among people, such as social class,
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race, nationality and gender. For example, men are considered to have better leadership

than women, and the result is that men are more likely to get promotion than women.

Measurement Discrimination Measurement discrimination comes from the way we

choose, utilize, and measure specific features. The selected set of features and labels may

miss important factors, or bring in group or input-related noise that causes different

performance. For example, a minority community are given more police force, and thus

a higher arrest rate occurs in this community. However, it is unfair to say that people

from this community is more dangerous because there is a difference in how the arrest

rate is measured.

Representation Discrimination Representation discrimination occurs when the

data used to train the algorithm does not accurately represent the problem space. As

a consequence, the model generalizes to fit the majority groups much than minority

groups. For example, face recognition tasks show a better performance in the white

than the black because the training set contains more white people images than black

peoples images.

Aggregation Discrimination Aggregation discrimination can arise during model

construction when different populations are improperly grouped together. In many

applications, the groups of interest are heterogeneous, so a single model is unlikely to

fit all subgroups. For example, diabetes patients have quite different symptoms across

gender and race, and these factors will lead to different meanings and importance. When

a clinical aid model is trained on the data that is monitored of diabetes in complicated

ways across gender and race, a single model is unlikely to be the best suited for all

people.

Evaluation Discrimination Evaluation discrimination occurs during the model

iteration and evaluation. This can happen when a test or external benchmark unequally

represents each group in the population. Evaluation discrimination may also occur due

to the use of performance metrics that are not appropriate for the way the model is

used.
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2.2.2 Fairness Metrics

More than 20 fairness metrics have been proposed to define what is fairness in machine

learning [19]. Here, we mainly focus on individual fairness and group fairness.

Individual Fairness Individual fairness is formalized by viewing machine learning

models as maps between input and output metric spaces and defining individual fairness

as Lipschitz continuity of machine learning models. The definition is given as follows.

Definition 2.7. (Individual Fairness) [45] A model f : X → Y is individually fair if

for all xi, x j ∈ X , we have M( f (xi), f (x j))≤ d(xi, x j).

where M is a distance function that measures the difference in the probabilities. Individ-

ual fair models require that any two data examples xi, x j that are at distance d(xi, x j),

and map to distributions f (xi) and f (x j), respectively, such that the statistical distance

between f (xi) and f (x j) is d(xi, x j) at most. The distance metric d on the input space

depends on the machine learning tasks because it encodes the intuition as to which

users are similar.

Group Fairness In group fairness, we first need to know what sensitive attributes

are. Research focuses on different intuitive concepts of "unfair decisions", which are

usually considered to be based on a certain personal attribute, such as gender, race,

age, sexual orientation, political and religious orientation, which can influence people’s

decisions in different ways. These attributes are considered as protected or sensitive

attributes.

Data examples xi ∼ X contain the information of k unprotected attributes, and

the protected attribute z (also called sensitive attribute). When considering a binary

protected attribute, D is divided into the advantaged group and the disadvantaged

group. The advantaged group is referred to as the group that has better performance

in terms of a fairness metric, and vice versa. For example, if the protected attribute is

‘Sex’ and the learning task is face recognition, the dataset can be divided into black and

white groups. Because the white group has better performance, the white group is the

advantaged group and the black group is the disadvantaged group. The training goal is

to learn a mapping fw over the dataset D to well approximately mapping between input

X and output Y in a fair way.
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Definition 2.8. (Demographic parity) [15] A classification model satisfies demo-

graphic parity if

(2.11) Pr( ŷ= 1|z = 1)= Pr( ŷ= 1|z = 0),

where ŷ is the predicted label.

Definition 2.9. (Equal opportunity) [60] Equal opportunity requires that the true

positive rates are equal in different groups, which is presented as

(2.12) Pr( ŷ= 1|z = 1, y= 1)= Pr( ŷ= 1|z = 0, y= 1).

Definition 2.10. (Equal odds) [60] Equal odds requires that the predicted result of a

classifier is independent of the sensitive attribute on the condition of true positive class

and false positive rate, which is given as

(2.13) Pr( ŷ= 1|z = 1, y= 0)= Pr( ŷ= 1|z = 0, y= 0),

(2.14) Pr( ŷ= 1|z = 1, y= 1)= Pr( ŷ= 1|z = 0, y= 1).

Definition 2.11. (Discrimination level) Let γz(D, fw) denote the probability of posi-

tive predictions of group z on a model fw training with a dataset D in terms of a fairness

metric. The discrimination level Γ(D, fw) on a model fw training with a dataset D is

measured by the difference between groups:

(2.15) Γ(D, f )= |γ0(D, fw)−γ1(D, fw)|.

Take demographic parity as an example, we have γ1(D, fw) = Pr( ŷ = 1|z = 1), and the

discrimination level is Γ(D, fw)= |Pr( ŷ= 1|z = 1)−Pr( ŷ= 1|z = 0)|.

2.2.3 Discrimination Removal Methods

Discrimination removal methods are generally classified into three streams.
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2.2.3.1 Fair Supervised Learning

Methods for fair supervised learning include pre-processing, in-processing and post-

processing methods.

Pre-processing Pre-processing methods recognize that the bias is often the data itself,

where the distribution of sensitive attributes is biased, discriminatory, or unbalanced. In

pre-processing, discrimination is eliminated by guiding the distribution of training data

towards a fairer direction [73] or by transforming the training data into a new space

[16, 52, 124, 147, 151]. Commonly used methods in pre-processing include re-sampling

[73, 130], re-weighting [15, 73], adversarial learning [52, 94], causal methods [78, 83]

and transformation [59, 147]. The main advantage of pre-processing methods is that it

does not require changes to the machine learning algorithm, so it is very simple to use.

In-processing In-processing methods recognize that the learning model is often

affected by important features and other data distribution effects, or try to find a

balance between multiple model goals. In-processing techniques include adversarial

learning [49, 148], constraint optimization [4, 43, 57, 145, 146], and regularization

[5, 66, 75]. For example, [57, 145, 146] designed the convex fairness constraint, called

decision boundary covariance to achieve fair classification for classifiers. This category

is more flexible for optimizing different fair constraints, and solutions using this method

are considered to be the most robust. In addition, these methods have shown good

results in terms of accuracy and fairness.

Post-processing The post-processing methods recognize that the output of models

may be unfair to one or more of the protected attributes for different groups. Post-

processing techniques include calibration [90, 111], threshold [60, 79, 91]. For example,

In [60], a learned classifier is modified to adjust the decisions to be non-discriminatory

for different groups by adjusting the threshold. Post-processing does not need changes

in the classifier and only needs to access prediction and sensitive attribute information,

without access to actual algorithms and models. This makes them suitable for black-box

scenarios, which do not include the exposure of the entire machine learning pipeline.
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2.2.3.2 Fair Unsupervised Learning

Chierichetti et al. [30] was the first to study fairness in clustering. Their solution,

under both k-center and k-median objectives, required every group to be (approximately)

equally represented in each cluster. Many subsequent works have since been undertaken

on the subject of fair clustering. Among these, Rosner et al. [116] extended fair clustering

to more than two groups. Chen et al. [118] consider the fair k-means problem in the

streaming model, define fair coresets and show how to compute them in a streaming

setting, resulting in a significant reduction in the input size. Bera et al. [11] presented

a more generalized approach to fair clustering, providing a tunable notion of fairness

in clustering. Chen et al. [29] proposed a notion of proportionally fair clustering where

all possible large-scale groups have the right to choose their centers according to the

concept of proportional fair clustering. Kleindessner et al. [80] studied a version of

constrained spectral clustering incorporating the fairness constraints.

2.2.3.3 Fair Semi-supervised Learning

Existing fair learning methods mainly focus on supervised and unsupervised learning,

and cannot be directly applied to semi-supervised Learning (SSL). As far as we know,

only [32, 104] has explored fairness in SSL. Chzhen et al. [32] studied Bayes classifier

under the fairness metric of equal opportunity, where labeled data is used to learn the

output conditional probability, and unlabeled data is used to calibrate the threshold

in the post-processing phase. However, unlabeled data is not fully used to eliminate

discrimination, and the proposed method only applies to equal opportunity. In [104],

the proposed method is built on neural networks for SSL in the in-processing phase,

where unlabeled data is marked labels with pseudo labeling. In this thesis, we proposed

a pre-processing framework that includes pseudo labeling, re-sampling and ensemble

learning to remove representation discrimination in semi-supervised learning [149].

We also propose solutions for a margin-based classifier in the in-processing stage, as

in-processing methods have demonstrated good flexibility in both balancing fairness

and supporting multiple classifiers and fairness metrics.
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2.3 Interaction between Privacy and Fairness

Privacy and fairness interact closely with each other not only because some tasks involve

privacy and fairness issues together, but also because implementing one usually will

have an impact on the other. In the following, we will introduce existing work in these

two lines.

2.3.1 Simultaneous Enforcement of Privacy and Fairness

Several papers have studied the privacy and fairness issues in machine learning si-

multaneously. Differentially private and fair logistic regression models are proposed in

[40, 139]. Jagielski et al. studied fair learning under the constraint of differential privacy

with equal odds [67]. In [38], a notion of approximate fairness is proposed in the finite

sample access setting and presents a private PAC learner that is differentially private

and satisfies approximate fairness with high probability. In [115], a new variational

approach is proposed to learn private and fair representations which are based on the

Lagrangians of a new formulation of the privacy and fairness optimization problems.

2.3.2 Mutual Impact of Privacy and Fairness

The impact of DP-SGD on model accuracy has been considered in [9, 138]. Pannekoek et

al. explored the impact of differential privacy and fairness constraints on the privacy-

utility-fairness in different conditions [107]. The impact of differential privacy is studied

on fair and equitable decision-making [113]. Chang et al. studied privacy risks of group

fairness through the lens of membership inference attacks, and find that fairness comes

at the cost of privacy, and this cost is not distributed equally [22]. Recent studies

[21, 101, 103] have demonstrated that model fairness can be skewed by data poison

attacks. Mehrabi et al. [101] and Chang et al. [21] studied data poisoning attacks against

group-based fair machine learning. Nanda et al. proved that it might be easier for an

attacker to target a particular group, resulting in a form of robustness bias [103].
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3
CORRELATED DIFFERENTIAL PRIVACY: FEATURE

SELECTION IN MACHINE LEARNING

In the first main chapter of the thesis, we work on a privacy issue in machine learning.

Machine learning requires a large amount of data, and data are increasing collected from

human activities. In some scenarios, data examples have correlations and correlated

data used for industrial applications can disclose more private information in machine

learning algorithms when using differential privacy. This chapter presents a correlation

reduction scheme based on feature selection that helps to improve data utility when

applying differentially private machine learning algorithms.

3.1 Introduction

Machine learning becomes an indispensable and efficient tool to provide services for

human beings in industrial applications, such as the Internet of Things (IoT) [119] and

smart cities [61]. One main data source used for machine learning in the industry is

from human activities. For example, human data are often collected via smartphones

and these data are analyzed to provide some services in smart cities, such as traffic

monitoring [143] and smart health [123]. Data collected from humans usually contain

some sensitive information, such as location information and health data in the above
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examples. When these data are used for machine learning, individual privacy can be

leaked [55].

As a popular technique for privacy-preserving, differential privacy was first proposed

by Dwork et al. [47]. Since then, differential privacy has attracted considerable attention

because it provides a rigorous mathematical framework for preserving privacy. Recently,

differential privacy is widely used to protect privacy in industrial informatics, such as

location privacy protection [141] and smart grids [51], [152]. Many works have addressed

the privacy issue in machine learning with differential privacy. For example, Chaudhuri

et al. provided an output perturbation where the model is trained and then adds noise

to the output [23] and an objective perturbation mechanism where a carefully designed

linear perturbation item is added to the original loss function [25]. Yang et al. proposed

a differentially private feature selection scheme [140] and Abadi et al. considered the

privacy issue with differential privacy in deep learning [1]. However, previous works

have not considered the data correlation when designing differentially private machine

learning algorithms.

In the definition of differential privacy, data within a dataset are assumed to be

independent. This is a somewhat faulty assumption since data in industrial applications

are always correlated beginning from when the data is first generated, such as temporal

datasets in monitoring systems. Intuitively, when some of the records in a dataset are

correlated, deleting one record may have a great impact on the other records, which could

reveal more information to an adversary than expected. Kifer and Machanavajjhala’s

study on data correlations [76] confirms this observation, and the finding has launched a

new stream of research on how to preserve privacy in correlated datasets when they are

released to the public. For example, Liu et al. introduced dependent differential privacy

with a defined parameter, called dependence coefficient, to describe data correlation

[88]. A second privacy framework was designed, called Pufferfish, which is flexible and

can provide a privacy guarantee for various data sharing needs [77].

Overall, the contributions of this chapter can be summarized as follows:

• 1) We proposed a differentially private feature selection based on feature im-

portance. The proposed method can select features privately while retaining a

desirable data utility.

• 2) We propose a correlation reduction scheme based on feature selection to reduce
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data correlation in correlated datasets. This helps to reduce the correlated sensi-

tivity when implementing differentially private machine learning algorithms, and

thus improves data utility.

• 3) Experiments validate the effectiveness of our proposed feature selection scheme.

The results show improved data utility for both data analysis and data publishing.

3.2 Preliminaries

3.2.1 Differential Privacy

Differential privacy is a rigorous privacy model [47]. In brief, given two datasets D
and D′ that contain a set of records, these are referred to as neighbouring datasets

when they differ in one record. Let D denote a dataset with a number of N data records

(or data examples), and each data record has a number of K features. A query q is a

function that maps the record r ∈ D into outputs q(D) ∈Ω, where Ω is the whole set of

outputs.

Definition 3.1. (ϵ-Differential privacy) [47] Given neighboring datasets D and D′

that differ in one data point, an algorithm M satisfies (ϵ)-differential privacy for any

possible outcome Ω

(3.1) Pr[M (D) ∈Ω]≤ exp(ϵ) ·Pr[M (D′) ∈Ω],

where ϵ is privacy budget which determines privacy level.

Definition 3.2. (Sensitivity) [47] For a query q : D −→ R, and neighboring datasets D
and D′, the sensitivity of q is defined as

(3.2) ∆q =max
D,D′ ||q(D)− q(D′)||.

where || · || denotes L1 or L2 norm. Sensitivity measures the maximal difference between

neighboring datasets.

Definition 3.3. (Laplace mechanism) [48] For any query q: D −→ R over a dataset D,

the following mechanism provides ϵ-differential privacy if

(3.3) M (D)= q(D)+Laplace(∆q/ϵ)
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The Laplace noise is denoted as Laplace(·) and is drawn from a Laplace distribution

with the probability density function p(x|λ)= 1
2λ e−|x|/λ, where λ relate to the sensitivity

and the privacy budget.

Theorem 3.1. (Sequential composition) [48] Suppose that a set of privacy mechanisms
M={M1, ...,Mm}, gives ϵi differential privacy (i = 1,2...,m), and these mechanisms are
sequentially performed on a dataset. M will provides (

∑
i ϵi)-differential privacy for this

dataset.

3.2.2 Feature Selection

Feature selection is a method for selecting the attributes in a dataset (such as columns

in tabular data) that are most relevant to the prediction [20]. In other words, feature

selection largely acts as a filter that sifts out features that are less useful to solving a

problem. With feature selection, both the efficiency and the accuracy of the predicted

results can be improved.

In this chapter, we adopt feature importance to select features. Feature importance is

a method of ranking features based on random forests. Feature importance is measured

according to the mean decrease in impurity, which is defined as the total decrease in

node impurity averaged over the forest. This score can be computed automatically for

each feature after training and scaling the results so that the sum of importance for all

features is equal to 1. One strength of the random forest is that it is easy to measure

which features are relatively more important to the results. With this method, we are

able to select the most important features in the dataset.

3.3 Example of Traffic Monitoring

In this section, we present the issue of correlated data in differential privacy with a

detailed industrial example of traffic monitoring and show how correlated data can

degrade the level of privacy in industry applications.

The traffic monitoring is one of most used technologies in smart cities. Location

information of users in a region are collected by a trusted server and the aggregate

information of the dataset (i.e., the counts of users at each location) is continuously

released to the public. Some users in the region may have a form of social relationship,
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perhaps family members. In this case, some users may have the same location informa-

tion during some time and hence the records of user information can be correlated in

the dataset.

As shown in Table 3.1, the user’s locations are recorded at different time points. It is

assumed that users only appear in one location at each time point, and it is observed

that user1 and user2 take the same route from time point t = 1 to t = 4 (they may

have social relationships). In this case, if one were to change the location of user1, the

location of user2 would also change. In this way, the records for user1 and the records

for user2 are correlated.

Table 3.1: Users’ locations at different times

user
t

1 2 3 4

u1 loc2 loc2 loc3 loc4
u2 loc2 loc2 loc3 loc4
u3 loc1 loc4 loc5 loc2
u4 loc4 loc5 loc2 loc5

Table 3.2: The sum counts of users’ locations

loc
t

1 2 3 4

loc1 1 0 0 0
loc2 2 2 1 1
loc3 0 0 2 0
loc4 1 1 0 2
loc5 0 1 1 1

Table 3.2 shows that the some counts at different locations are always 2. In terms of

the Laplace mechanism, adding the amount of Lap(1/ϵ) noise to perturb each count in

Table 2 can achieve ϵ-DP at each time point. However, the expected privacy guarantee

may breach with correlated records in the dataset. With background information of who

has the relationship in a certain region, an attack can infer the location information of

user1 and user2 at different time points. Consequently, after releasing private count of

user’s locations, the location information of user1 and user2 may not be ϵ- differentially

private as expected. Instead, it is 2ϵ-differentially private since changing one user’s

location will change the count 2.
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In summary, this example shows that correlated data in a dataset will disclose more

information than expected when these data are used for machine learning algorithms in

industrial applications. Essentially, adding more noise to a correlated dataset is a way

to guarantee differential privacy. Such a case reveals the level of challenge in industries

when dealing with correlated data in situations where differential privacy must be

satisfied, but high-quality query results must be maintained.

3.4 The Extent of Data Correlation

3.4.1 Correlated Degree

Inspired by [155], we have incorporated the notion of correlated degree θi j ∈ [−1,1] to

denote the extent of correlation between record i and record j. When |θi j| > 0, record

i and record j have a positive correlation and vice versa. When |θi j| = 1, record i and

record j are fully correlated and When θi j = 0, there is no relationship. When there are

a number of l records in a dataset, it is possible to list the relationship for all records

and form a correlated degree matrix Λ.

(3.4) Λ=


θ11 θ12 · · · θ1N

θ21 θ22 · · · θ2N
...

... . . . ...

θN1 θN2 · · · θNN


A threshold θ0 is defined so as to select strongly correlated records. For a given θ0, the

value of the correlated degree is

(3.5) θi j =
θi j, θi j ≥ θ0,

0, θi j < θ0,

A correlated degree matrix can describe the correlations of the whole dataset and, once

analyzed, the curator will hold all knowledge of the data correlations. Data privacy

can still be protected, even when the adversary is privy to the entire correlated degree

matrix, if enough noise is added to mask the highest impact of deleting one record using

correlated differential privacy.
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3.4.2 Correlated Sensitivity

Global sensitivity can only measure the maximal number of correlated records but does

not consider the extent of the data correlation. Hence, the notion of correlated sensitivity

is introduced to measure the extent of the impact on other records from changing one

record. As mentioned earlier, global sensitivity adds extra noise by simply multiplying

the maximal number of correlated records. Whereas, correlated sensitivity is able to

model the correlations in a more exact way.

Definition 3.4. (Correlated sensitivity) For a query q, correlated sensitivity is based on

the correlated degree and the number of correlated records, which is defined as

(3.6) ∆CSq =max
i∈⨿

N∑
j=0

|θi j|{∥(q(D j)− q(D− j)∥1}

where ⨿ is the set of records in a dataset, and θi j is the correlated degree between record

i and record j. D j and D− j are neighboring datasets that differ by record j. Correlated

sensitivity lists all the sensitivity of records with the query q. With correlated sensitivity,

the maximal effect on all records of a dataset can be measured when one record is deleted.

For any query q, the perturbed answer is calibrated with the equation,

(3.7) q̂(D)= q(D)+Laplace(
∆CSq

ϵ
)

For any query q, the correlated sensitivity is smaller than the global sensitivity. The

global sensitivity is denoted as ∆GSq =max
i∈⨿

∑l
j=0{l∥(q(D j)− q(D− j)∥1}, where l denotes

the number of correlated records. Since we use the correlated degree θi j ∈ [−1,1] to

describe the extent of data correlation, the correlated sensitivity is no larger than the

global sensitivity.

We note that the correlated degree θi j is related to every feature in record i and

record j. When deleting features in the dataset, the extent of correlation between record

i and record j will also be changed. Thus, after describing the extent of data correlation

in a dataset, we use feature selection to reduce data correlation.
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3.5 Correlation Reduction Based on Feature
Selection

3.5.1 Overview of the Method

In our method, we select features in terms of three principles: 1) the accuracy of training

results; 2) the privacy of feature selection; 3) the reduction of the data correlation. As

Fig. 1 shows, the proposed correlation reduction based on feature selection scheme

(CR-FS) involves five steps: 1) removing collinear features; 2) removing unimportant

features; 3) choosing features with differential privacy; 4) obtaining the useful feature

set B; and 5) adjusting the features that can reduce data correlation within the dataset.

Each of these methods is described in detail in the following sections.

3.5.2 The Proposed CR-FS Scheme

Following traditional feature selection, we propose the Algorithm I that selects features

with differential privacy. For a given dataset, feature selection is a crucial step before

executing a machine learning algorithm, especially with high-dimensional datasets.

Many features in the dataset are entirely irrelevant, insignificant, or are collinear,

which will have a negative impact on the result. Additionally, retaining more features

typically leads to a higher degree of data correlation, which, with differential privacy,

negatively impacts the privacy level. Hence, our goal is to select a subset of features

with relatively lower levels of data correlation while maintaining good utility for data

publishing and analysis.

3.5.2.1 Removing Collinear Features

The first step is to filter out the collinear features that can decrease generalization

performance on the test set due to less model interpretability and high variance. Usually,

the extent of collinearity between features is calculated by the absolute magnitude of

the Pearson’s correlation coefficient. The calculation of Pearson’s correlation coefficient

is

(3.8) ρm,n = E[( fm −µ fm)( fn −µ fn)]
σ fmσ fn
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Algorithm 1 Differentially private feature selection scheme
Input: Dataset, Tc f , T f i,Tmv, ϵ1;
1: Calculate feature collinearity according to Eq. 3.5;
2: if ρm,n ≤ Tc f then
3: Remove fm or fn;
4: end if
5: Remove unimportant features with T f i;
6: Remove missing values with Tmv
7: Calculate the hk by Random forest;
8: Calculate the sensitivity ∆h according to Eq. (3.10);
9: for hk ∈ {h1, ...,hK }: do

10: Add Laplace noise ĥk = hk +Lap(∆hq
ϵ1

);
11: end for
12: Do the normalization hk = ĥk/

∑K
k=1 ĥk;

13: for hk ∈ {h1, ...,hK }: do
14: Delete features one by one according to the sequence of feature importance;
15: Calculate model predictions;
16: end for
17: Find the useful feature set B = { f1, f2, ... fk} and the adjusted feature set: A =

{ fk+1, ..., fK };
18: Add or delete features from the adjust feature set A according to Algorithm 2;
Output: Useful feature set B, an adjusted feature set A ;

Where fm and fn are two random features in the dataset; µ fm and µ fn are the mean of

fm and fn; σ fm and σ fm are the standard deviation of features fm and fn. In our scheme,

we set a threshold of Tc f ∈ [0,1] to identify collinear features and remove the features

with a collinearity of greater than Tc f .

3.5.2.2 Removing Unimportant Features

The second step is to remove unimportant features, including 1) features of zero impor-

tance and features of low importance; 2) features with a high percentage of missing

values; and 3) features with a single value. Zero and low importance features can be

identified using the feature importance threshold, denoted as T f i ∈ [0,1]. Features with

an importance value of lower than T f i will be removed. The threshold for missing values

is defined as Tmv ∈ [0,1], and features with a percentage of missing values greater than

Tmv will be removed.
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3.5.2.3 Choosing Features with Differential Privacy

We adopt feature importance h in Random forest to calculate the feature weight for each

feature. Neighboring data is obtained when record r i is deleted, the feature importance

can be calculated by Random forest and the feature importance hi
1,hi

2, ...,hi
N are sorted

in an increasing order. Based on this, we introduced the notion of record sensitivity of

feature importance.

Definition 3.5. (Record sensitivity of feature importance) For a query q, the record

sensitivity of feature importance of r i can be defined as,

(3.9) ∆hk = ||hi
k −hi

1||1

Definition 3.6. (Sensitivity of feature importance) For a query q, the sensitivity of fea-

ture importance is determined by the maximal record sensitivity of feature importance,

(3.10) ∆hq =max
i∈⨿

(∆hk)≤ 1

where ⨿ is a set of records related to a query q. It is easy to know the sensitivity of

feature importance is ∆hq ≤ 1, since the range of feature importance is from 0 to 1. We

apply Laplace mechanism to add noise to the feature importance. The perturbed feature

importance can be denoted as,

(3.11) ĥk = hk +Lap(
∆hq

ϵ
)

Since the sum of the feature importance
∑K

k=1 hk = 1, we normalize the perturbed

feature importance as follow,

(3.12) hk = ĥk/
N∑

k=1
ĥk

The new sequence of feature importance can be denoted as h1 < h2 < ...< hK .
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3.5.2.4 Select Features Based on Model Accuracy

The third step is to find the useful feature set. The useful feature set B contains the

features that will produce the best prediction results by the machine learning algorithm.

In our method, the less important features are deleted one by one in the order of feature

importance until the best chance of accurate predictions is achieved. Practically, finding

useful feature set with this method demands far less computational overhead than other

methods. The features that have not been selected for the useful feature set are stored

as the adjusted feature set. These features can be used later for a tradeoff between

utility and privacy. The useful feature set B can be denoted as B = { f1, f2, ..., fk} and the

adjusted feature set A can be denoted as { fk+1, fk+2, ..., fK }.

3.5.2.5 Adjust Features Based on Data Correlations

The final step is to adjust some features based on the useful feature set B in order

to reduce data correlation over the whole dataset, as a way to balance the tradeoff

between utility and correlated sensitivity. Basically, the correlated sensitivity of a

dataset is irrelevant to the number of features. This means that more features of a

dataset may have a lower correlated sensitivity and less features may have a higher

correlated sensitivity. Useful feature set B can achieve a good data utility without

privacy guarantee, yet it may have a higher correlated sensitivity and a high correlated

sensitivity has a huge impact on utility for data publishing and data analysis. In other

words, if the goal is to generate a differentially private dataset with good data utility,

the process of feature selection should also consider correlated sensitivity.

Algorithm 2 shows the adjusted feature selection scheme, which includes backward

and forward feature selection methods. The forward feature selection adds features

one by one from the adjusted feature set A to useful feature set B. The correlated

sensitivity is calculated according to Eq. 3.6, and then Laplace noise is added according

to Eq. 3.7. Training with these added features can obtain the feature set A1, which

provides optimal performance. However, sometimes adding a large number of features

only slightly increases performance, particularly with high dimension datasets, while

too many features can lead to a less interpretive model. Hence, when a set of added

features appears to be more or less equally good, then it makes sense to choose the

simplest feature set. We set a threshold T to evaluate the difference of training results.
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Algorithm 2 Adjusted feature selection scheme
Input: Useful feature set B, adjusted feature set A , ϵ2,θ0;

1: for fk ∈ { fk+1, ..., fK }: do
2: Add features to the useful feature set B from the adjusted feature set A ;
3: Calculate the correlated sensitivity of new datasets according to Eq. 3.6;
4: Add Laplace noise Lap = ∆CSq

ϵ2
;

5: Train on the dataset and get predicted results;
6: end for
7: Obtain the adjusted feature set A1 that has the best performance;
8: for fk ∈ { f1, ..., fk}: do
9: Delete features from the useful feature set B one by one;

10: Calculate the correlated sensitivity of new datasets according to Eq. 3.6;
11: Add Laplace noise Lap = ∆CSq

ϵ2
;

12: Train on the dataset and get predicted results;
13: end for
14: Obtain the adjusted feature set A2 that has the best prediction;
15: if s(A1)≥ s(A2) then
16: A1 is the adjusted feature set A ;
17: else
18: A2 is the adjusted feature set A ;
19: end if
Output: Adjusted feature set A ;

If the difference of training results is smaller than T, we select the simplest feature set

that has the smallest number of predictors.

In backward feature selection, features in set are deleted one by one according

to their feature importance. By comparing the training results with different deleted

features, feature set A2 is generated, which has the best performance. Similar to forward

feature selection, when a set of deleted features appears to be more or less equally good,

it makes sense to choose the simplest feature set. We also use the threshold T to

select the simplest feature set. Ultimately, the adjusted feature set A is determined by

comparing the training result s(A1) and s(A2).

3.5.3 Discussion

useful feature subset B and adjusted feature set A , represent the balance between

utility and correlated sensitivity. Adding the adjusted features is likely to degrade data
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utility somewhat, but these extra features serve to reduce the correlated sensitivity of

the dataset, which offsets the reduction in utility. The overall result is a feature selection

scheme that strikes a balance that leads to less data correlation while maintaining good

data utility for data analysis and data publishing.

Our proposed scheme has three advantages. First, feature importance is a compu-

tationally efficient method for generating the useful feature set compared to some of

the other existing methods. Feature importance is the variable that provides the guide

to select which features are best to add or delete. Second, with differential privacy, we

can choose features privately. Third, with the consideration of data correlation, we can

select features that has less data correlation in the whole dataset and thus reduce the

correlated sensitivity and improve the data utility of the dataset.

3.6 Experiments

Our evaluation experiments involve four real-world datasets in terms of both data

analysis and data publishing tasks [153]. Utility for data analysis is tested with two

machine learning algorithms: LR and linear SVM. Utility for data publishing is tested

on count and mean queries.

3.6.1 Experimental Setup

3.6.1.1 Dataset

The experiments involve four datasets, which have different extent of data correlation

and different number of features.

• Adult Dataset: Adult Dataset is from the UCI Machine Learning repository. After

data preprocessing, we extract 3000 records with 12 features.

• Breast cancer Dataset: This dataset can be found on UCI Machine Learning

Repository. After data preprocessing resulted in 569 records with 20 features.

• Titanic Dataset: This dataset comes from a Kaggle competition where the goal was

to analyze which sorts of people were likely to survive the sinking of the Titanic.

After data preprocessing, we extract 891 records with 9 features.
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• Porto Seguro Dataset: Porto Seguro is a well-known auto and homeowner insur-

ance company. After preprocessing, we extract 1770 records with 37 features.

3.6.1.2 Comparison

For better comparisons, four schemes are considered in the experiments.

• A non-private scheme, where the dataset has no privacy protection.

• The group scheme, where noise is added by multiplying the number of correlated

records, as proposed by Chen et al. in [27].

• The Zhu scheme, where noise is added according to the correlated sensitivity

[155].

• The proposed scheme, where noise is added according to the CR-FS scheme defined

in this chapter.

3.6.1.3 Parameters

For correlation knowledge between records, no dataset suggests pre-defined knowledge

of any correlated data. We use Pearson correlation coefficient to construct the correlated

degree matrix, where a correlation exists for record i and record j if θi j ≥ θ0. θ0 is set to

0.9 for Adult Dataset, Breast cancer Dataset and Breast cancer Dataset and θ0 in Porto

Seguro Dataset is set to 0.7. For correlation knowledge between features, the Pearson

correlation coefficient threshold T f i is set to 0.9. The missing value threshold Tmv is set

to 0.2. The threshold of feature importance T f i is set to 0.9.

Table 3.3: Number of features in different stages

Original dataset After data preparation B A

Adult 15 12 8 12
Breast cancer 32 20 10 17
Titanic 12 9 7 9
Porto seguro 59 37 14 28

35



CHAPTER 3. CORRELATED DIFFERENTIAL PRIVACY: FEATURE SELECTION IN
MACHINE LEARNING

(a) Adult (b) Breast Cancer

(c) Titanic (d) Porto Seguro

Figure 3.1: Data correlation for different number of features

3.6.2 Experiments for Data Analysis

One aim of our proposed scheme is to improve utility for data analysis, which we

evaluate according to the accuracy of the predicted results. For this set of experiments,

we choose two machine learning algorithms - LR and linear SVM - and test the output

perturbation to assess data utility.

Fig. 3.1 shows that, according to the Pearson correlation coefficients, data correlation

varies with the number of features. Data correlation generally decreases with a growing

number of features but eventually stabilizes. For example, Figs. 3.1b and 3.2c show that

data correlation becomes stable at 17 features with the Breast Cancer dataset and at

8 features with the Titanic dataset. This observation indicates that data correlation

across the entire dataset can be reduced while preserving a suitable number of features
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(a) Adult (b) Breast cancer

(c) Titanic (d) Porto Seguro

Figure 3.2: Privacy-Accuracy trade-off in SVM for different datasets

for data analysis because more features mean less correlation.

Table 3.3 shows the number of features in each dataset at different stages of the

proposed scheme. It is noted that useful feature set B will always contain more features

than the adjusted feature set A and, as shown in the table, the adjusted feature set

A have less data correlation than the useful feature set B, demonstrating that more

features reduce correlation in a correlated dataset.

Figs. 3.2 and 3.3 show the performance of linear SVM and LR on different datasets

with the four schemes. In most cases, LR has better accuracy than linear SVM. For

example, Fig. 3.2 (a) shows that when ϵ= 1, LR have an accuracy of around 0.675 versus

linear SVM’s 0.645. Accuracy with the non-private scheme remains constant as the

privacy budget increases and also performed better than the other schemes. This result
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demonstrates that imposing any form of privacy requirement on a dataset degrades

data utility.

For the private schemes, the proposed scheme outperforms both the group and Zhu

schemes in all circumstances. Figs. 3.2 and 3.3 show the level of improvement, especially

Fig. 3.2 (b). ϵ= 1, the proposed scheme scores an accuracy of around 0.97 compared to

around 0.85 for the Zhu scheme. We attribute the improved performance of our scheme

to the adjusted features. These additional features reduce data correlation but have

little impact on the prediction results. Less data correlation means less noise needs to be

added, which leads to better data utility. Other schemes do not reduce data correlation;

they only consider how to accurately describe the data correlations, without considering

that data correlation actually impedes accuracy.

(a) Adult (b) Breast cancer

(c) Titanic (d) Porto Seguro

Figure 3.3: Privacy-Accuracy trade-off in LR for different datasets
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Additionally, baselines present closed curves with the first three datasets because

the Pearson coefficient is set to a high-value θ0 = 0.9. This results in a similar correlated

sensitivity for both schemes and, consequently, a similar level of noise is added. However,

with the Porto Seguro dataset, we set the Pearson coefficient to θ0 = 0.7. Hence, there

is a minor gap in performance. Also worthy of note is that the accuracy of prediction

results varied for different datasets. This is due to the amount of data correlation in each

dataset; higher correlation means more noise must be added, which reduces accuracy.

3.6.3 Experiments for Data Publishing

The second aim of our scheme is to improve the utility for data publishing, which we

evaluate with both count and mean queries. Mean absolute error (MAE) is used as the

metric to assess both results, but different calculation formulas are defined to analyze

the base results and the impact of varying the privacy budget. The accuracy of common

queries is measured by MAE, which is given as,

(3.13) MAE = 1
|q|

∑
qi∈q

|q̂i(x)− qi(x)|

where qi(x) is the true aggregation result for one query, and q̂i(x) is the perturbed

aggregation result calculates through different schemes. A low MAE indicates a low

error and, thus, a better data utility.

To analyze how the proposed scheme performs with different privacy budgets, we

also define a second MAE containing two components. One component measures the

noise added due to correlated sensitivity, and the other measures the errors introduced

by adding the adjusted features. These features have an impact on a new query object

that can emerge as errors when comparing the adjusted dataset to the original. This

MAE is defined as

(3.14) MAE = 1
|q|

∑
qi∈q

|q̂i(x)− (qi(x)− qo
i (x))|

where q̂i(x) and qo
i (x) are the true aggregation result on the useful feature set B and

the adjust feature set A , respectively.

Fig. 3.4 shows the impact of varying privacy budgets on the performance of count

queries in terms of MAE. With the proposed scheme, the MAE decreases as the privacy
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(a) Adult (b) Breast cancer

(c) Titanic (d) Porto Seguro

Figure 3.4: MAE performance for count queries

budget grows before stabilizing toward the end. This result demonstrates that a lower

privacy requirement has better data utility. Moreover, the MAE for the proposed scheme

is significantly smaller than the other schemes, which means that the proposed scheme

does indeed improve data utility. For example, Figs. 3.4 (a) and 3.4 (b) at ϵ= 0.2 show

an MAE of around 18 for the Adult dataset and 17 for the Titanic dataset using our

proposed scheme, whereas the group and Zhu schemes return an MAE of around 110

and 200 on these same datasets - an enormous increase over the proposed scheme.

Again, we attribute these results to reduced data correlation after adding the adjusted

features.

In terms of the other schemes, the MAE for the Zhu scheme is slightly lower than

for the group scheme most of the time for the same reason as explained in the data
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(a) Adult (b) Breast cancer

(c) Titanic (d) Porto Seguro

Figure 3.5: MAE performance for mean queries

analysis experiments. Moreover, the MAE for the Zhu scheme decreases faster as the

privacy budget increases from 0.1 to 0.4 than when the budget increases from 0.4 to 1.

This again shows that a higher privacy requirement creates a higher data utility cost.

The results of varying the privacy budgets with mean queries are similar, as shown

in Fig. 3.5. However, the MAE is much smaller than for the count queries. This is

because, after data normalization, the scale of data falls within [−1,1]; therefore, each

record has a similar mean value. As a result, the outcomes of mean queries are much

smaller than for count queries. In addition, the MAE for our proposed scheme is not

always better than the group or Zhu schemes - for example, when ϵ< 0.2. This shows

that adding the adjusted features can introduce additional errors. Hence, the quality of

the query results in the proposed scheme depends on the type of queries and the dataset
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itself but, overall, our proposed scheme returns a lower MAE than the other schemes.

3.6.4 Discussion

The key to the CR-FS scheme is to reduce data correlation in the whole dataset while

maintaining a good utility for data analysis and data queries. We add differential private

noise in two places: feature selection and data training and still can achieve desirable

performance. This is because the fact that sensitivity of feature selection is smaller

than 1, and the sequence of feature importance will not change much. That is to say,

there is a high probability that more important features are still more important and

less important features are still less important. In this way, a higher probability that

important features are kept for training and less important features are used to reduce

data correlation.

For data analysis, we select features in step 5 according to the accuracy of predicted

results, thus the selected features can have less correlation across the whole dataset

and achieve desirable accuracy results. For data queries, the correlation in the whole

dataset is also reduced with the proposed CR-FS scheme. However, as we noted in

Figures 3.4 and 3.5, the MAE is not always better than other schemes. This is because

the sensitivity is related to the type of queries and the dataset itself. Deleted or added

features in the dataset can reduce the data correlation, which may bring in a new error

with regard to different queries.

3.7 Summary

In this chapter, we identified the privacy issue of the data correlation in machine

learning, which may result in more privacy loss than expected in industrial applications.

We propose a novel feature selection scheme CR-FS to reduce data correlation with little

compromise to data utility. The proposed CR-FS scheme includes steps that consider the

accuracy of predicted results, privacy-preserving and the data correlation in the dataset.

Our proposed algorithm strikes a better trade-off between data utility and privacy

leaks for correlated datasets. The method’s performance is evaluated via extensive

experiments, and the results prove that our proposed CR-FS scheme provides better

data utility for both data analysis and data queries compared to previous schemes.
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4
FAIRNESS IN SEMI-SUPERVISED LEARNING:

UNLABELED DATA HELP TO REDUCE DISCRIMINATION

Machine learning not only has privacy problems, but also may produce discrimination.

Fairness in machine learning has become a very important issue as we move forward

in the world of machine-assisted prediction for humans. The ability to design machine

learning algorithms that treat all groups equally may be one of the most influential

factors in allocating resources and opportunities to humans. In this chapter, we focus on

fairness in semi-supervised learning and investigate if unlabeled data help to reduce

discrimination. More specifically, we propose a fairness-enhanced sampling framework

that combines pseudo labeling, re-sampling and ensemble learning to achieve fair

semi-supervised learning in the pre-processing phase.

4.1 Introduction

Machine learning is now in wide use as a decision-making tool in many areas, such as

job employment, risk assessment, loan approvals and many other basic precursors to

equity. However, the popularity of machine learning has raised concerns about whether

the decisions algorithms make are fair to all individuals. For example, Chouldechova

found evidence of racial bias in recidivism prediction tool where black defendants are
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more likely to be assessed with high risk than white defendants [31]. Obermeyer et al.

found prejudice in health care systems where black patients assigned the same level of

risk by the algorithm are sicker than white patients [105]. These findings show that

unfair machine learning algorithms will affect legal justices, health care, and other

aspects of human beings.

Over the past few years, much research has been devoted to designing fairness

metrics, such as statistical fairness [15, 31, 146], individual fairness [45, 72, 92] and

causal fairness [78, 83]. These approaches and algorithms can be roughly divided into

three categories: pre-processing methods, in-processing methods and post-processing

methods. Pre-processing methods adjust data distribution [15, 74] or learn new fair

representations [94, 124, 147], to relieve some of the tension between accuracy and

fairness. In-processing methods add constraints or regularizers to restrict the correlation

between labels and sensitive/protected attributes, i.e., traits that can be targeted for

discrimination [75, 81, 146]. Post-process methods calibrate training results [60]. These

studies mainly focus on addressing the two most crucial fundamental issues in machine

learning fairness: how to formalize the concept of fairness in the context of machine

learning tasks, and how to design effective algorithms to achieve an ideal compromise

between accuracy and fairness.

However, almost all methods of achieving fairness are mostly for either supervised

learning or unsupervised learning, and fair semi-supervised learning (SSL) has rarely

been considered. Realistically though, training data is often a combination of labeled

and unlabeled samples, so a semi-supervised solution has high practical value. Also,

since the ideal is a lofty goal, the trade-off between accuracy and fairness is still an

ongoing pursuit. [26] showed that increasing the amount of training data is likely to

produce a better trade-off between accuracy and fairness. This insight inspired us to

wonder whether using unlabeled data to augment the training set might give us a kind

of control value with which to balance fairness and accuracy. Unlabeled data is abundant

and, if it could be used as training data, we could adjust the size of the training set as

required to meet accuracy vs. fairness thresholds. We may even be able to avoid the

need to make a compromise between fairness and accuracy entirely. This leaves fair

semi-supervised learning with two challenges: 1) How to make use of unlabeled data to

achieve a better trade-off between accuracy and fairness; and 2) How to alleviate the

impact of noise, which is common to semi-supervised learning.
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To tackle these challenges, we propose a framework to achieve fair SSL in the pre-

processing phase. The solution to the trade-off challenge is to use unlabeled data to

reduce representation discrimination. (Representation discrimination is due to certain

parts of the input space under-represented.) Therefore, the first two steps in our frame-

work are pseudo labeling and re-sampling. The first step is to use pseudo labeling as an

SSL method to predict labels for unlabeled data. The second step involves dividing the

dataset into groups based on the protected attribute and the label and then obtaining

fair datasets by re-sampling the same number of data points in each group. When

unlabeled data is used as training data, it is likely to obtain more under-represented

data points from unlabeled data to reduce representation discrimination, and thus to

make a little compromise between fairness and accuracy. The issue of noise induced

by (incorrectly) predicting labels for unlabeled data is addressed by the third step in

the framework: ensemble learning. Predicting unlabeled data will induce some noise

in the labels of unlabeled data. Ensemble learning helps to reduce label noise and the

variance of the training model, and to produce more accurate final predictions.

In summary, the contributions of this chapter are listed below.

• First, we use unlabeled data to reduce representation discrimination, and thus

achieve a better trade-off between accuracy and discrimination.

• Second, we propose a fairness-enhanced sampling (FS) framework that combines

pseudo labeling, re-sampling and ensemble learning for fair SSL in the pre-

processing phase.

• Third, we theoretically analyze the sources of discrimination in SSL via bias,

variance and noise decomposition, and conduct experiments with both real and

synthetic data to validate the effectiveness of our proposed FS framework.

4.2 Background

4.2.1 Notations

Let Dl be a dataset with N1 data points Dl =
{(

xi, zi, yl,i
)}N1

i=1, where xi ∼ X contains

the information of k unprotected attributes; zi denotes the protected attribute (also
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called sensitive attribute), and yl,i ∈ {0,1} ∼ Y denotes the label. Let Du be a dataset

with N2 data points Du = {(
xi, zi, yu,i

)}N2
i=1, where yu,i denotes the potential label for the

unlabeled data. For ease, assume the protected attribute is binary valued. For example,

if the protected attribute is race, the value might be either ’white’ (z = 0) or ’black’

(z = 1).

Our objective is to learn a mapping f (·) over a discriminatory dataset Dl and Du,

in which the classification result is independent of protected attributes. Performance

is measured by both accuracy and the level of discrimination in the results. The ideal

classifier should have a high accuracy without discrimination.

4.2.2 Fairness Metrics

Fairness is often evaluated with respect to protected/unprotected groups of individuals

defined by attributes, such as gender or age. Here, we have opted for demographic parity

as the fairness metrics in this chapter.

Definition 4.1. (Demographic parity) [15] Demographic parity requires that the

probability of a classifier’s prediction be independent of any sensitive attributes, where

the probability of the predicted positive labels in a group z is defined as follows:

(4.1) γ1( ŷ)= Pr( ŷ= 1|z = 1)

(4.2) γ0( ŷ)= Pr( ŷ= 1|z = 0)

where ŷ denotes the predicted label.

Definition 4.2. (Discrimination level) The discrimination level γ in terms of demo-

graphic parity can be evaluated by the difference between groups,

(4.3) Γ( ŷ)= |γ0( ŷ)−γ1( ŷ)|
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4.2.3 Discrimination Sources

Discrimination can exist in every stage of machine learning. Roughly, discrimination

sources can be divided into two lines: data discrimination and model discrimination

[127]. Our proposed FS method is able to reduce the representation discrimination in

the data.

4.2.3.1 Data Discrimination

Data discrimination includes historical discrimination, representation discrimination,

and measurement discrimination. Historical discrimination occurs when there is a

discrepancy between the world itself and the values or goals in the model to be encoded

and propagated. It can stem from cultural stereotypes among people, such as social

class, race, nationality, and gender. Representation discrimination occurs when the

data used to train the algorithm does not accurately represent the problem space.

As a consequence, the model generalizes to fit the majority groups much more than

minority groups. Measurement discrimination comes from the way we choose, utilize,

and measure specific features. The selected set of features and labels may miss important

factors, or bring in a group or input-related noise that causes different performance.

4.2.3.2 Model Discrimination

Model discrimination includes aggregation discrimination, evaluation discrimination,

and deployment discrimination. Aggregation discrimination can arise during model

construction when different populations are improperly grouped together. In many

applications, the groups of interest are heterogeneous, so a single model is unlikely

to fit all subgroups. Evaluation discrimination occurs during the model iteration and

evaluation. This can happen when a test or external benchmark unequally represents

each group in the population. Evaluation discrimination may also occur due to the use of

performance metrics that are not appropriate for the way the model is used. Deployment

discrimination occurs after the model is deployed when the system is used or interpreted

in an inappropriate way.
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4.2.4 Bias, Variance and Noise

Following [26], our analysis of discrimination is based on bias, variance and noise decom-

position. First, we present the definition of the main prediction. The main prediction for a

loss function L and set of training sets D is defined as, ym(x,a)= argmin
y′

ED[L(y, y′)|X =
x, A = a], where y is the true value; y′ is the predicted label with the minimum average

loss relative to all the predictions. The expectation is taken with respect to the training

sets in D.

Definition 4.3. (Bias,variance and noise) Following [42], the bias B, variance V and

noise N at a point (x, z) are defined as,

B( ŷ, x, z)= L(y∗(x, z), ym(x, z))(4.4)

V ( ŷ, x, z)= ED[L(ym(x, z), ŷ(x, z)](4.5)

N( ŷ, x, z)= ED[L(y∗(x, z), y(x, z)](4.6)

where y∗ is the optimal prediction that achieves the smallest expected error.

The bias-variance-noise decomposition is suitable for discrimination analysis because

the loss is related to the misclassification rate. Loss function can be decomposed into the

false positive rate and false negative rate. When these rates are known, true positive

rate and true negative rate can also be calculated. This means that many fairness

metrics, such as demographic parity and equal opportunity, might be explained via bias,

variance and noise decomposition.

4.3 The Proposed Method

4.3.1 Overview of the Fairness-enhanced Sampling Framework

Figure 4.1 shows the general description of the fairness-enhanced sampling framework

in the pre-precessing phase. The framework consists of three steps: 1) pseudo labeling,

2) re-sampling and 3) fair ensemble learning. The first step is to predict labels for

unlabeled data as more data points in the protected group are likely to be found in

unlabeled data. The second step is to construct new datasets that is able to represent

all groups equally when the datasets are used for training. In this way, representation
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Figure 4.1: The three phases of the fairness-enhanced sampling framework: 1) where
to sample, 2) how to sample and 3) how to train the model. Step 1 is to generate a new
training dataset which consists of the original dataset and the pseudo labeled dataset.
Step 2 is to construct multiple fair datasets through re-sampling. Step 3 is to train a
model with each of the fair datasets through ensemble learning to produce the final
predictions.

discrimination can be removed from training datasets. The third step is to train multiple

base models based on multiple fair datasets and final predicted results are obtained

from multiple base models. Ensemble learning is able to reduce the label noise that is

induced via pseudo labeling, and the model variance. Each of these steps is discussed in

more detail in the following.

4.3.2 Where to Sample

The goal of this step is to use a labeled dataset and part of an unlabeled dataset to

construct a new training dataset, as shown in Figure 4.1. Suppose we have a labeled

dataset Dl and a large unlabeled dataset Du. First, we use the labeled dataset and part

of the unlabeled dataset to generate a new training dataset. With a sample ratio of ρ,

we take random samples from the unlabeled dataset Du and form sampled unlabeled

datasets Dsu. Then we use pseudo labeling to predict the labels for unlabeled data as if

they were true labels. Pseudo labeling is a simple and efficient method to implement

SSL [85]. The procedure, as shown in Algorithm 1, is as follows.

1) Set a split rate s ∈ (0,1) and split the labeled dataset into training and test dataset,

denoted as the original training dataset and test dataset. 2) Select a learning model

and, train the model on the original training dataset to produce a trained model. 3)

Use the trained model on Dsu to predict the output (or pseudo label), and the pseudo

labeled dataset is obtained. We do not know if these predictions are correct, but we
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now have predicted labels, which is our goal in this step. 4) Concatenate the original

training dataset and pseudo labeled dataset to form a new training dataset Dnew.

Pseudo-labeling is an easy-to-implement and efficient semi-supervised learning method

Algorithm 3 Pseudo labeling
Input: Labled dataset Dl , unlabeled dataset Du, split rate s, sample ratio
ρ

Split Dl into the training dataset and the test dataset;
Sample Dsu from Du
Select a learning model and train the model on the training dataset;
Obtain the trained model
Use the trained model to predict labels for Dsu;
Combine the original training dataset and the pseudo labeled dataset to create Dnew;

Output: New training dataset Dnew

and, by the above method, can take advantage of unlabeled data to both: a) increase the

size of the training set; and b) create more data samples representing minority groups

to produce fairer training sets. Moreover, the learning model can be any models, such as

logistic regression, neural networks, etc.

4.3.3 How to Sample

In this step, the goal is to sample multiple fair datasets from the new training datasets to

ensure fair learning. The rationale for this method is that, since the classifier is trained

on non-discriminatory data, its prediction may also be non-discriminatory [73]. For

simplicity, this analysis covers a binary classification task with one protected attribute,

and applies demographic parity as the fairness metric. Our method can certainly be

applied to cases with multiple sensitive attributes, subjected to the fairness metrics.

Based on this setup, the dataset is divided into four groups according to the pro-

tected attribute and labeled-values: 1) Protected group with positive labels (GPP), 2)

Unprotected group with positive labels (GUP ), 3) Protected group with negative labels

(GPN ), and 4) Unprotected group with negative labels (GUN ). These divided groups can
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be denoted as follows,

GPP = {x ∈ D|z = 1, y= 1}(4.7)

GUP = {x ∈ D|z = 0, y= 1}(4.8)

GPN = {x ∈ D|z = 1, y= 0}(4.9)

GUN = {x ∈ D|z = 0, y= 0}(4.10)

where y= 1 denotes the positive class and y= 0 denotes the negative class. z = 1 denotes

that the data point is in the protected group and z = 0 denotes that the data point is in

the unprotected group. To ensure fair learning in the pre-processing phase, the number

of data points in the training set for each group should be the same, otherwise, the

model will fall prey to data discrimination. In the case of discrimination, the size of each

group is different. Our aim is to adjust the data points by sampling to reach the same

size in each group.

Algorithm 2 describes the process of how to obtain multiple fair datasets, and the

procedure is as follows: First, we compute the size of the groups GPP , GUP , GPN , GUN .

The sample size is denoted as |G|, which means that the number of |G| data points will

be sampled from each group. Here, there are two cases: 1) When |G i| ≥ |G|, |G| data

points are sampled randomly from the group G i. 2) When |G i| < |G|, |G| data points

are oversampled from the group G i. Then we can obtain the fair dataset Ds f which

consists of the number of data points equally for each of the four groups. Repeating

this procedure K times produces K fair datasets with some commonalities and some

differences due to the random sampling, which is desirable for ensemble learning. The

next step is to learn from these multiple fair datasets to achieve more accurate and less

discriminatory results.

4.3.4 How to Train the Model

In this step, the goal is to achieve more accurate and less discriminatory training results

on multiple fair datasets Ds f . After obtaining multiple Ds f , we choose a learning model

to train multiple Ds f and apply ensemble learning to combine the learning results.

Ensemble learning in machine learning exploits the independence between base models

to improve the overall performance. In this case, we use Bagging [14] to combine the
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Algorithm 4 Fair re-sampling
Input: New training dataset Dnew, sensitive attribute z, sample times K , sample size
|G|, sample ratio ρ

Divide the dataset into four groups GPP , GPN , GUP , GUN
Calculate the size of all groups |G i|
for k ∈ K do

if |G i| ≥ |G| then
Sample randomly the number of |G| data points from the group i

end if
if |G i| ≤ |G| then

Oversample the number of |G| data points from the group i
end if
Obtain fair datasets Ds f ,i

end for
Obtain multiple fair datasets Ds f ,1,Ds f ,2, ...,Ds f ,K

Output: Fair datasets Ds f

decisions from multiple base models learned on multiple fair datasets to improve the

accuracy and decrease the discrimination.

Algorithm 3 describes the fair ensemble learning. With the new training dataset

Dnew from Algorithm 1 and fair datasets Ds f ,1,Ds f ,2, ...,Ds f ,K from Algorithm 2,

train each fair dataset on its own model fk(Ds f ,k) in parallel. The final model will

average the outputs based on the aggregation of predictions from all base models. The

predictions obtained from most base models are predicted as final predictions, which

are presented as,

(4.11) f (·)= argmaxy∈Y

K∑
k=1

I(y= fk(Ds f ,k))

where I(·) is the indicator function, and K is the ensemble size, i.e., the number of fair

datasets.

Having some diversity across the datasets is crucial for ensemble learning. In our

approach, the randomness of the fair datasets reflects in two places: 1) randomly

sampling the unlabeled dataset Du, and subsequently, the pseudo labeled dataset

process in Algorithm 1; and 2) randomly sampling |G| data points for all groups from

Dnew when constructing each fair dataset.

With ensemble learning, the discrimination level is determined by final predictions.
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We redefine the discrimination level in ensemble learning as γEn = |Pr( f (·) = 1|z =
1)−Pr( f (·)= 1|z = 0)|. Overall, a combination of multiple base models helps to decrease

discrimination resulting from variance and noise and is able to give a more reliable

prediction than a single model.

Algorithm 5 Fair ensemble learning
Input:Dataset, sample times K , sample size |G|, split rate s, sample ratio
ρ

Execute Algorithm 1 to obtain the new training dataset Dnew
for k ∈ K do

Execute Algorithm 2 to obtain the fair dataset Ds f ,k
Train the selected model on the fair dataset Ds f ,k and obtain the base model fk(·)

end for
Make predictions using the final model with ensemble size K in Eq.(12)

Output: Accuracy Acc, Discrimination level γ

4.3.5 Discussion

In reviewing the complete framework, there are several benefits to this approach, which

are worth highlighting.

• Many semi-supervised learning methods can be used to predict labels for unlabeled

data, such as graph-based learning and transductive support vector machines

[155]. We choose pseudo labeling because it is a commonly used semi-supervised

learning technique, which is efficient and easy to implement.

• The proposed FS framework only removes representation discrimination. However,

it is likely that many types of discrimination exist in machine learning, such as

historical discrimination, and measurement discrimination. Other discrimination

can be removed by in-processing or post-processing methods, based on our proposed

FS framework.

4.4 Discrimination Analysis

Following [26], we analyze the fairness of the predictive model via bias, variance, and

noise decomposition. The source of discrimination can be decoupled as discrimination
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in bias Bz( ŷ), discrimination in variance Vz( ŷ) and discrimination in noise Nz. The

expected discrimination level Γ( ŷ) of a classifier f learned from a set of training set D is

defined as, Γ̄( ŷ)= |ED[Γ0( ŷ)−Γ1( ŷ)]|.

Lemma 4.1. The discrimination with regard to group z ∈ Z is defined as,

(4.12) γz( ŷ)= B̄z( ŷ)+ V̄z( ŷ)+ N̄z

When the protected group and unprotected group is given, the discrimination level

is calculated as,

(4.13) Γ̄= |(B̄0 − B̄1)+ (V̄0 − V̄1)+ (N̄0 − N̄1)|

and each of the component of Eq. (39) are calculated as,

B̄z( ŷ)= ED[B(ym, x, z)|Z = z](4.14)

V̄z( ŷ)= ED[cv(x, z)V (ym, x, z)|Z = z](4.15)

N̄z = ED[cn(x, z)L(y∗(x, z), y)|Z = z](4.16)

where cv(x, z) and cn(x, z) are parameters related to the loss function. For more details,

see the proof in [26].

Lemma 4.2. The discrimination learning curve Γ̄( ŷ,k) := |γ̄0( ŷ,k)−γ̄1( ŷ,k)| is asymptotic
and behaves as an inverse power law curve, where k is the size of the training set [26].

Theorem 4.1. Unlabeled data is able to reduce discrimination with the proposed FS
framework, if (|V̄z( ŷ)sl |− |V̄a( ŷ)ssl |)− N̄z,p ≥ 0.

Proof. To prove the above theorem, we shall prove that the discrimination level in SSL

Γ̄ssl is lower than the discrimination level in supervised learning Γ̄sl . In the following,

we will analyze the discrimination in SSL in terms of discrimination in bias B̄z( f )ssl ,

discrimination in variance V̄z( ŷ)ssl , and discrimination in noise N̄z,ssl .

Discrimination in Bias Bias measures the fitting ability of the algorithm itself, and

describe accuracy of the model. Hence, bias in discrimination B̄z( ŷ)= ED[B(ym, x, z)|Z =
z] only depends on the model. When the same model is trained on the original training

dataset and new training dataset, discrimination in bias is the same in supervised

learning and SSL, which can be expressed as |B̄( ŷ)sl |− |B̄( ŷ)ssl | = 0.

54



CHAPTER 4. FAIRNESS IN SEMI-SUPERVISED LEARNING:
UNLABELED DATA HELP TO REDUCE DISCRIMINATION

Discrimination in Variance Discrimination in variance V̄z( ŷ) can be reduced with

extra unlabeled data in the training dataset. Lemma 2 states that the discrimination

level Γ̄( ŷ,n) decreases with the increasing size of training data n. In our proposed FS

framework, unlabeled data is pseudo-labeled, and the new training dataset consists

of the original training dataset and the pseudo labeled dataset. The size of the new

training dataset can be guaranteed to be larger than the size of the original training

by adjusting the sampling size. Also, using Bagging to combine all the base models

to obtain the final predictions helps to construct the aggregate model with a lower

variance, thus reducing the discrimination in variance B̄z. Hence, we conclude that

|V̄z( ŷ)ssl |− |V̄z( ŷ)sl | ≤ 0.

Discrimination in Noise Unlabeled data introduces more discrimination in noise

because pseudo labeling contains discrimination from the trained model. Thus, noisy

labels from pseudo labeling in the unprotected group is more than that in the protected

group. We divide the discrimination in noise in SSL into discrimination in noise in

labeled data N̄z,l and discrimination in noise in pseudo labeled data N̄z,p, which is

expressed as,

(4.17) N̄z,ssl = N̄z,l + N̄z,p

Discrimination in noise in labeled data N̄z,l is the same as the discrimination in noise

in supervised learning N̄z,sl . Then we analyze the discrimination in noise due to pseudo

labeled data N̄z,p, including four mislabeled cases,

N̄y=0,z=0 = EDun[ ŷ∗p = 1|y= 0, z = 0](4.18)

N̄y=0,z=1 = EDun[ ŷ∗p = 1|y= 0, z = 1](4.19)

N̄y=1,z=0 = EDun[ ŷ∗p = 0|y= 1, z = 0](4.20)

N̄y=1,z=1 = EDun[ ŷ∗p = 0|y= 1, z = 1](4.21)

where ŷ∗p is the optimal predicted label of unlabeled data via pseudo labeling. The noise

in the protected group is N̄1,p = N̄y=0,z=1 + N̄y=1,z=1 and the noise in the unprotected

group is N̄0,p = N̄y=0,z=0 + N̄y=1,z=0. The model contains discrimination because the

model is trained on a dataset without any fairness guarantees, and thus the model will

bring discrimination in pseudo labeling. In this way, discrimination in noise in pseudo

labeled data N̄z,p can be measured as,

N̄z,p = |N̄1,p − N̄0,p|(4.22)
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To relieve the noise from pseudo labeling, we use Bagging - a robust model that is

resilient to class label noise since the errors incurred by the noise can be compensated

by the combined predictions of other learners.

Based on the analysis above, we conclude that when |V̄z(Ŷ )ssl −∆V̄z(Ŷ )sl |− N̄z,p ≥ 0,

unlabeled data is able to reduce discrimination with the proposed FS framework. Unla-

beled data do not change discrimination in bias. However, they do reduce discrimination

in variance, and they increase discrimination in noise, but bagging reduces discrimina-

tion both in variance and discrimination in noise. ■

4.5 Experiment

In this section, we demonstrate our framework by performing experiments on real-world

and synthetic datasets. The goal of our experiments is three folds. The first is to show

how the framework makes use of unlabeled data to achieve a better trade-off between

accuracy and discrimination. The second is to explore the impact of factors, such as

ensemble times and sampling size, on the training results. And, third, we show the

distinct difference in discrimination level when the model is tested with discrimination

test dataset and fair test dataset.

4.5.1 Experiments on Real Data

The aim of real-world datasets is to assess the effectiveness of our method to achieve a

better trade-off between accuracy and discrimination with unlabeled data. We also show

the benefit of ensemble learning, the impact of the sampling size, and the comparison

with other methods.

4.5.1.1 Experimental Setup

Dataset The experiments involve three real-world datasets: the Health dataset 1, the

Bank dataset 2, the Adult dataset 3.
1https://foreverdata.org/1015/index.html
2https://archive.ics.uci.edu/ml/datasets/bank+marketing
3http://archive.ics.uci.edu/ml/datasets/Adult
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• The target of Health dataset is to predict whether people will spend any day in

the hospital. In order to convert the problem into the binary classification task,

we simply predict whether people will spend any day in the hospital or not. Here,

’Age’ is the protected attribute and two groups are divided at ≥65 years. After

data pre-processing, the dataset contains 10000 records with 132 features.

• The Bank dataset contains a total of 31,208 records with 20 attributes and a

binary label, which indicates whether the client has subscribed to a term deposit

or not. Again, ’Age’ is the protected attribute.

• The target of Adult dataset is to predict whether people’s income is larger than

50K dollars or not, and we consider "Gender" as the protected attribute. After data

pre-processing, the dataset contains 48,842 records with 18 features.

Parameters The protected attribute is excluded from the prediction model during

the training to ensure equity across groups. The protected attribute is only used to

evaluate the discrimination measurement in the testing phase. In the above of three

real-world datasets, data are all labeled. First, we split the whole dataset randomly into

two halves: one half is used as labeled dataset, and we remove the labels from the other

half to serve as the unlabeled dataset. In the labeled data, we set the split rate s = 0.8,

which means 80% of the data are used for training and 20% of the data are used for

testing. The sample size ns equals the minimum size of four groups in three datasets.

The final result is an average of 50 results run in the new training datasets. For

each run, we generate K = 200 fair datasets and construct with K = 200 base models

to make the final predictions. We use 5-fold cross-validation on the original training

dataset and test dataset.

Baseline Given our method is a pre-processing method, we compare it to two other

pre-processing methods and the method without any fair process.

• Original (ORI): The original dataset is used for training without fairness guaran-

tees.

• Uniform Sampling (US) [73]: The number of data points in each group is equalized

through oversampling and/or undersampling.
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• Preferential Sampling (PS) [73]: The number of data points in each group is

equalized by taking samples near the borderline data points.

4.5.1.2 Trade-off Between Accuracy and Discrimination

Figure 4.2 shows the accuracy and discrimination level varies given different sample

ratios ρ with logistic regression (LR) and support vector machine (SVM) on three

datasets. As shown, accuracy generally increases with growing size of unlabeled data.

For example, LR has an accuracy of around 0.728 when ρ = 0.1 with the Adult dataset,

which increases to 0.745 when ρ = 1. This indicates that the unlabeled data helps to

improve the accuracy to some extent. Also, we note that accuracy relates to the training

models and the choice of training models relates to the datasets. The discrimination

level has different performances in different training models. For example, with the

Adult dataset, the discrimination level initially increases and then steadily decreases

till the end in LR. The discrimination level is steady and has a slight increase in SVM.

This observation indicates that unlabeled data can help to reduce the discrimination

for some models, like LR. Similar to accuracy, the discrimination level relates to the

training models and our experiments show that LR is more friendly in discrimination

than SVM. The choice of sample ratio depends on the quality of the dataset itself as well

as the requirement of the learning task. Accuracy could be improved with unlabeled

data, while discrimination level depends on the reduction of discrimination in variance

and increase of discrimination in noise that unlabeled data could bring in the training.

4.5.1.3 The Impact of Ensemble Learning

Figure 4.3 shows the impact of ensemble learning on accuracy and discrimination level

with LR and SVM on three datasets. In ensemble learning, we sample the percentage of

ρ = 1 unlabeled data from the unlabeled dataset, and generate the new training dataset.

With LR, the accuracy typically increases and then steadies till the end, whereas, with

SVM accuracy fluctuates before steadying at some lower, equal or higher rate. This is

because the errors in variance and noise reduction as the ensemble size increases.

In terms of discrimination levels, both methods show fluctuations at first before

stabilizing on all three datasets. The changes in discrimination levels have no obvious

correlations to accuracy prior to convergence. This is reasonable because training results
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Figure 4.2: The trade-off between accuracy (Red) and discrimination level (Blue). (a) LR
in Health dataset; (b) SVM in Health dataset; (c) LR in Bank dataset; (d) SVM in Bank
dataset; (e) LR in Adult dataset; (f) SVM in Adult dataset. The X-axis is the sample
ratio ρ, which denotes that the percentage of ρ unlabeled data are sampled from the
unlabeled dataset and then pseudo labeled for training.
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Figure 4.3: The impact of ensemble learning on the accuracy (Red) and discrimination
level (Blue) on (a) LR in Health dataset; (b) SVM in Health dataset; (c) LR in Bank
dataset; (d) SVM in Bank dataset; (e) LR in Adult dataset; (f) SVM in Adult dataset. Ini-
tially, there is not an obvious link between accuracy and discrimination level. However,
as the ensemble size grows, the accuracy and discrimination levels begin to converge.
Each point is an average of 50 times.
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having the same accuracy does not mean the same discrimination level. Also, without

a sufficient ensemble size, training on fair datasets will introduce some variance and

noise to the final result. Overall, an ample ensemble size helps to improve accuracy and

decrease discrimination. The appropriate ensemble size is K = 200 or so. This is because

accuracy increases and discrimination fluctuates before K = 200, and broadly accuracy

and discrimination become steady after K = 200 for three datasets.

4.5.1.4 The Impact of Sample Size

Figure 4.4 shows the impact of sample size on accuracy and discrimination level with

LR and SVM on three datasets. Overall, it is observed that accuracy increases quickly in

the early stages and then becomes stable as the sample size grows. This is because more

data help to improve the generalization ability, but extra data do not help when the

amount of data is enough to fit the model. Unlike accuracy, discrimination level depends

on the amount of label noise that unlabeled data may bring when the sample size

increases. For example, discrimination decreases in the Health dataset and increases

a litter in the Bank dataset. This means that, with an increasing of sample size, little

label noise is brought into the Health dataset, and consequently discrimination level

decreases. Also, it is note that LR is more sensitive to sample size than SVM. The choice

of sample size depends on the quality of the dataset and the training task requirement.

Generally, a larger sample size can improve accuracy, reduce discrimination in bias and

increase discrimination in noise.

4.5.1.5 Comparison with other methods

Figure 4.5 shows the results from a comparison of our proposed FS method with and

the other three schemes in terms of the accuracy and discrimination level on the three

datasets. The training dataset of other methods is the original training dataset and the

training dataset of our method is the new training dataset that consists of the original

training dataset and pseudo labeled dataset (ρ=1). The test dataset is the same. The

results show that our method is able to push the discrimination to very low values while

achieving a fairly high accuracy compared with other schemes. Specifically, in the Adult

dataset, the discrimination level under LR is around 0.215 with the original method

and around 0.022 with the preferential sampling method, and the proposed FS method
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Figure 4.4: The impact of sample size on accuracy (Red) and discrimination level (Blue)
on (a) LR in Health dataset; (b) SVM in Health dataset; (c) LR in Bank dataset; (d) SVM
in Bank dataset; (e) LR in Adult dataset; (f) SVM in Adult dataset. An increasing in the
sampling size leads to an increase in accuracy and may help to reduce discrimination
level.
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can decrease discrimination to 0.019 with better accuracy than the preferred sampling

method. This indicates that the proposed FS method is able to reduce discrimination

better than other methods.

4.5.2 Experiments on Synthetic Data

We first describe how to generate synthetic datasets and the goal of synthetic datasets

is to show the effectiveness of our method in the discriminatory test dataset and fair

test dataset. Here, the discriminatory test dataset refers to the test dataset whose data

points are not equally presented in each group, and the fair test dataset refers to the

test dataset whose data points are equally presented in each group. We show the distinct

difference in discrimination on two types of test datasets.

4.5.2.1 Synthetic Data Setup

We generate 22,000 binary class labels and a protected attribute a with a uniform

random distribution, and assign a 2-dimensional feature vector to each label by drawing

samples from two different Gaussian distributions: p(x|y= 1)= N([2;2], [5,1;1,5]) and

p(x|y = −1) = N([−2;−2],[10,1;1,3]). The size of each group in the synthetic dataset

is roughly the same. Then we randomly sample 2,000 data points from the synthetic

dataset as a fair test dataset, and split the remaining dataset randomly into two halves:

one half is to be used as the labeled dataset and the other half with labels removed to

serve as the unlabeled dataset.

Note that the synthetic dataset is a fair dataset, and the discriminatory dataset is

generated by calibrating data points in the group GPP based on the synthetic dataset.

Discriminatory dataset 1 (DA 1) is generated by sampling 2,000 data points randomly

in the group GPP and data points do not change in other groups. Discriminatory dataset

2 (DA 2) is generated by sampling 3,000 data points randomly in the group GPP and

data points do not change in other groups. In each discriminatory dataset, we sample

2,000 data points as the discriminatory test dataset and the remaining as the training

dataset.
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Figure 4.5: Comparison with original scheme (ORI), uniform sampling (US) and pref-
erential sample (PS) with (a) LR in Health dataset; (b) SVM in Health dataset; (c) LR
in Bank dataset; (d) SVM in Bank dataset; (e) LR in Adult dataset; (f) SVM in Adult
dataset. With the fairness-enhanced sampling method (FS), discrimination decreases
without much cost of accuracy or accuracy increases without much cost of discrimination.
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Test with discriminatory test dataset
Method Acc Dis GPP GUP GPN GUN

LR

DA 1 (ORI) 0.8815 0.2705 183 586 626 605
DA 2 (ORI) 0.8875 0.3642 104 628 642 626
DA 1 (FS) 0.8825 0.2076 232 537 627 604
DA 2 (FS) 0.8730 0.2890 159 573 642 626

SVM

DA 1 (ORI) 0.8825 0.2664 188 581 629 602
DA2 (ORI) 0.8880 0.3724 102 630 649 619
DA 1 (FS) 0.8825 0.2097 231 538 628 603
DA 2 (FS) 0.8745 0.3130 149 583 655 476

Table 4.1: Two discriminatory datasets tested on the discriminatory test dataset in ORI
method and the proposed fairness-enhanced method (FS) with LR and SVM. We show
accuracy (Acc), discrimination level (Dis) and the number of data points of each group
in the discriminatory test dataset after classification.

4.5.2.2 Synthetic Data Tested with Discriminatory and Fair Datasets

Table 4.1 shows that our method is able to reduce discrimination level when training

datasets have different discrimination levels. For example, more data points are classi-

fied into the Protected group with positive labels GPP after implementing our method,

and discrimination level of DA 1 reduces from 0.2705 to 0.2076 in LR. It is also note that

accuracy does not decrease much with the proposed FS method. For example, accuracy

of DA 2 reduces from 0.8825 to 0.8730 in LR.

Test with fair test dataset
Method Acc Dis GPP GUP GPN GUN

LR

DA1 (ORI) 0.8701 0.0484 438 556 492 514
DA 2 (ORI) 0.8535 0.1018 376 618 483 523
DA 1 (FS) 0.8790 0.0161 474 520 496 510
DA 2 (FS) 0.8810 0.0062 471 523 483 523

SVM

DA1 (ORI) 0.8700 0.0483 441 553 495 511
DA 2 (ORI) 0.8525 0.1118 372 622 489 517
DA1 (FS) 0.8790 0.0168 474 520 496 510
DA 2 (FS) 0.8775 0.0272 460 534 493 513

Table 4.2: Two discriminatory datasets tested on the fair test dataset in ORI method
and the proposed fairness-enhanced method (FS) with LR and SVM. We show accuracy
(Acc), discrimination level (Dis) and the number of data points of each group in the fair
test dataset after classification.
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We test the biased datasets with the proposed FS method on the fair test dataset

with LR and SVM, and results are shown in Table 4.2. With the proposed FS method,

discrimination level decreases and accuracy increases. More specifically, discrimination

level decreases from 0.1018 to 0.0062 and accuracy increases from 0.8535 to 0.8810

in the DA 2. Discrimination level with the discriminatory test dataset is much higher

than with the fair test dataset. We attribute this to the evaluation bias. Discriminatory

dataset and discriminatory test data have the same data distribution, and thus the

size of each group in the discriminatory test dataset is not equal. Even if the trained

classifier is fair, the result may still be unfair. In real-world datasets, test datasets are

sampled from the whole datasets and thus can contain evaluation bias.

4.5.3 Discussion and Summery

4.5.3.1 Discussion

We discuss on how the proposed FS framework is able to reduce discrimination in

terms of discrimination decomposition into discrimination in bias, variance and noise.

Discrimination in bias depends on the model choice. As we observe in the experiments,

very broadly, LR can achieve a lower discrimination level than SVM. Discrimination

in variance relates to the training data. Unlabeled data help to reduce discrimination

in variance by increasing the size of training data. Ensemble learning helps to reduce

discrimination in variance by averaging the training results from base models. An

appropriate unlabeled data size, sample size and ensemble size in our framework is

able to help reduce more discrimination in variance. Discrimination in noise depends

on the quality of data. Training with unlabeled data may bring discrimination in noise.

However, ensemble learning offsets this effect. When the same model is used, the benefit

of unlabeled data in discrimination reduction depends on the impact of unlabeled data

on discrimination in variance and discrimination in noise.

4.5.3.2 Summary

From these experiments, we see that the FS framework is able to reduce representation

discrimination with a better trade-off between accuracy and discrimination. In the

proposed FS framework, discrimination reduction in variance is usually more than the
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discrimination incurred by label noise. However, all the factors in the framework, model

choice, unlabeled data size, ensemble size, sample size - each make their own particular

contribution to increasing accuracy while ensuring fair representation.

4.6 Related Work

In recent years, much research on fair machine learning has been undertaken. The

following subsections summarize the three main streams of this work.

4.6.1 Pre-processing Methods

Pre-processing methods eliminate the discrimination by adjusting the training data

by ways of suppression, reweighing or sampling to obtain fair datasets before training

[15, 17, 73]. Also, learning fair intermediate representations in the pre-process phase

has received much attention. [147] was the first to open up fair machine learning by

learning fair intermediate representations. The basic idea is that mapping the training

data to a transformed space where as much useful information as possible is retained,

but the dependencies between sensitive attributes and class labels are removed. Many

researchers have subsequently studied fair representation learning with different meth-

ods, such as adversary learning [52, 94, 99, 124, 148]. These methods are based on using

a classifier to predict sensitive attributes as adversarial components. The advantage

of pre-precessing methods is that these methods can apply to all algorithms and tasks.

Note that pre-processing approaches cannot be employed to eliminate discrimination

arising from the algorithm itself.

4.6.2 In-processing Methods

In-processing methods avoid discrimination with fair constraints [75] used regularizer

term to penalize discrimination to enforce non-discrimination in the learning objective.

[43, 145, 146] designed fairness constraints to achieve fair classification, where the

fairness constraint is enforced by weakening the correlation between sensitive attribute

and labels. In [4, 36], the constrained optimization problem is formulated as a two-player

game and fairness definitions are formalized as linear inequalities. Other recent works
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have a similar spirit to enforcing fairness by adding constraints to the objective [5, 82].

The advantage of in-processing methods is that the level of fairness and accuracy can

be controlled by the threshold of fairness constraints. However, fairness constraints are

often irregular and need to be relaxed for optimization, and thus the solution may not

be convergent. In addition, individual fairness can also be regarded as in-processing

methods [45, 46, 154].

4.6.3 Post-processing Methods

A third approach to achieving fairness is post-processing, where a learned classifier

is modified to adjust the decisions to be non-discriminatory for different groups. [60]

proposed an approach to use of post-processing to ensure fairness criteria of equal

opportunity and equal odds and subsequent work include [79, 91] However, it is not

guaranteed to find the most accurate fair classifier [135], and requires test-time access

to the protected attribute, which might not be available.

4.6.4 Comparison with Other Work

Existing fair methods focus on supervised and unsupervised learning, and these methods

cannot be applied to SSL directly. As far as we know, only [33, 104] considered fair SSL.

In [33], data is used to learn the output conditional probability, and unlabeled data

is used for calibration in the post-processing phase. This method is to eliminate the

aggregation discrimination, while the proposed FS method is to reduce representation

discrimination. In [104], the proposed method is built on neural networks for SSL in the

in-processing phase, and this method is to reduce measurement discrimination. In [73],

representation discrimination is reduced by uniform sampling and preferential sampling,

while in some cases not enough data in minority groups can be sampled to generate a fair

dataset. Our work makes use of unlabeled data to form fairer datasets and theoretically

analyze the discrimination via decomposition in bias, variance and noise. In this chapter,

we study the fair SSL based on labeled and unlabeled data in the pre-processing phase

and our goal is to use labeled data to reduce representation discrimination, and in turn

achieve a better trade-off between accuracy and discrimination.
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4.7 Summary

In this chapter, we use unlabeled data to achieve a better trade-off between accuracy

and discrimination in the pre-processing phase. To achieve this, we developed a three-

pronged strategy, where each component makes an important contribution to decreasing

discrimination and/or improving the accuracy of the final predictions. Pseudo labeling

in a semi-supervised setting exploits unlabeled data, on the premise that more training

data is likely to reduce discrimination. A re-sampling method leads to multiple sampled

fair datasets, and training on fairly-sampled will result in a fairly trained model. Lastly,

ensemble learning is applied to improve the quality of the final predictions. Theoretical

analysis and our experimental results show that our method delivers what it promises

- unlabeled data is a viable option to achieve a better trade-off between accuracy and

discrimination. Model choice, unlabeled data size, ensemble size and sampling size are

factors that affect training results.
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5
FAIRNESS CONSTRAINTS IN SEMI-SUPERVISED

LEARNING

In the last chapter, we studied how unlabeled data help with a better trade-off between

model accuracy and fairness in the pre-processing phase. In real-world practice, control-

ling the trade-off between accuracy and fairness is important. However, pre-processing

methods are not able to control the level of fairness, while in-processing methods can

control the level of fairness by adjusting the fairness constraint. Therefore, we continue

to study fairness in semi-supervised learning in this chapter, but from the perspective

of in-processing.

5.1 Introduction

Machine learning algorithms, as useful decision-making tools, are widely used in society.

These algorithms are often assumed to be paragons of objectivity. However, many studies

show that the decisions made by these models can be biased against certain groups

of people. For example, Abid et al. observed that large-scale language models capture

undesirable racial bias [2] and Vigdor et al. [131] reported gender bias in the credit

ranking of Apple card. These events prove that discrimination can arise from machine

learning, and one of the most important discrimination sources is data, including data
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collection (imbalanced training set) and data preparation (biased content in the training

set) [127].

In recent years, many fairness metrics have been proposed to define what is fairness

in machine learning. Popular fairness metrics include statistical fairness [31, 146],

individual fairness [45, 46, 72] and casual fairness [83, 136]. Meanwhile, a great many

algorithms have been developed to address fairness issues for both supervised learning

settings [60, 124, 146] and unsupervised settings [8, 28, 30, 116]. Generally, these

studies have focused on two key issues: how to formalize the concept of fairness in the

context of machine learning tasks, and how to design efficient algorithms that strike a

desirable trade-off between accuracy and fairness. What is lacking is the research that

considers semi-supervised learning (SSL) scenarios.

In real-world machine learning tasks, big data used for training is necessary and is

often a combination of labeled and unlabeled data. Therefore, fair SSL is a vital area of

development. Like the other learning settings, achieving a balance between accuracy

and fairness is a key issue. According to [26], increasing the size of the training set

can create a better trade-off. This finding sparked an idea over whether the trade-off

might be improved via unlabeled data. Unlabeled data is abundant in the era of big data

and, if it could be used as training data, we may be able to make a better compromise

between fairness and accuracy. To achieve this goal, two challenges are ahead of us: 1)

how to achieve fair learning from both labeled and unlabeled data; and 2) how to give

labels for unlabeled data to ensure that the learning is towards a fair direction.

To solve these challenges, we propose a framework of fair SSL that can support mul-

tiple classifiers and fairness metrics. The framework is formulated as an optimization

problem, where the objective function includes a loss for both the classifier and label

propagation, and fairness constraints over labeled and unlabeled data. Classifier loss is

to optimize the accuracy of training results; label propagation loss is to optimize the

label predictions on unlabeled data; the fairness constraint is to adjust the fairness level

as desirable. The optimization includes two steps. In the first step, fairness constraints

enforce weights update towards a fair direction. This step can be solved by a convex

problem and convex-concave programming when disparate impact and disparate mis-

treatment are used as fairness metrics respectively. In the second step, updated weights

further direct labels assigned to unlabeled data in a fair direction by label propagation.

Labels for unlabeled data can be calculated in a closed form. In this way, labeled and
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unlabeled data are used to achieve a better trade-off between accuracy and fairness.

With this strategy, we can control the level of discrimination in the model and, therefore,

provide a machine learning framework that offers fair SSL. Our approach incorporates a

wide range of fairness definitions such as disparate impact and disparate mistreatment,

which is guaranteed to yield an accurate fair classifier.

With the aim of achieving fair SSL, the contributions of this chapter are three-fold.

• First, we propose a framework that is able to achieve fair SSL that supports

multiple classifiers and fairness metrics of disparate impact and disparate mis-

treatment. This framework enables the use of unlabeled data to achieve a better

trade-off between fairness and accuracy.

• Second, we propose algorithms to solve optimization problems when disparate

impact and disparate mistreatment are integrated as fairness metrics in the

graph-based regularization.

• Third, we consider different cases of fairness constraints on labeled and unlabeled

data, and analyze the impacts of these constraints on the training results. This

helps us how to control the fairness level in practice.

• Forth, we theoretically analyze the sources of discrimination in SSL, and conduct

extensive experiments to validate the effectiveness of our proposed method.

5.2 Preliminaries

5.2.1 Notations

Let X = {x1, ..., xk}T ∈RN×(k+1) denote the training data matrix, where N is the number

of data point and k is the number of unprotected attributes; z = {z1, ...zN } ∈ {0,1}N

denotes the protected attribute, e.g., gender or race. Labeled dataset is denoted as

Dl = {xi, zi, yl,i}
N1
i=1 with N1 data points, and yl = {yl,1, ..., yl,N1}T ∈ {0,1}N1 is the label for

the labeled dataset. Unlabeled dataset is denoted as Du = {xi, zi}
N2
i=1 with N2 data points,

and yu = {yu,1, ..., yu,N2}T ∈ {0,1}N2 is the predicted labeled for the unlabeled dataset.

Given the whole dataset, an adjacent matrix is denoted as A = θi j ∈RN×N ,∀i, j ∈
1, ..., N, (N = N1+N2), where θi j is the weight to evaluate the relationship of two data
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points. The degree matrix DDM is constructed as a diagonal matrix whose i-th diagonal

element is dii = ∑N
j=1θi j. We use L to denote Laplacian matrix, calculated as L =

DDM −A. Our objective is to learn a classification model f (·) with the model parameters

w (or W) and yu over discriminatory datasets Dl and Du that delivers high accuracy

with low discrimination.

5.2.2 Graph-base Regularization

In graph-based regularization, the goal is searching for a function f on the graph. f
has to satisfy two criteria simultaneously: 1) it should be as close to the given labels

as possible, and 2) it should be smooth on the entire constructed graph. Graph stores

the geometric structure in the data (such as similarity or proximity) and uses this

structure as a regularizer to infer labels of unlabeled data. Generally, the graph-based

regularization methods adopt the following objective function,

(5.1) L =LC +αLR

where LC is the classification loss; α is a balancing parameter; LR is a graph-based

regularizer. Different methods can have different variants of the regularizer. In this

work, we consider Laplacian regularizer as it is the most common used regularizer,

which is calculated by,

(5.2) LR =∑
i, j

θi j|| f (xi)− f (x j)||2.

Here, θi j is a graph-based weight. The edges in the graph between each pair of data

points i and j are weighted. The closer the two points are in Euclidean space di j, the

greater the weight θi j. In this work, we chose a Gaussian similarity function to calculate

the weights, given as follows:

(5.3) θi j = exp

(
−

d2
i j

σ2

)
= exp

−∑
d

(
xd

i − xd
j

)2

σ2


where σ is a length scale parameter. This parameter has an impact on the graph

structure; hence, the value of σ needs to be selected carefully [133].
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5.2.3 The Proposed Framework

We formulate the framework of fair SSL as follows, including the classification loss, the

label propagation loss and fairness constraints.

min
w,yu

LC(w,yu)+αLR(yu) s.t. s(w)≤ c(5.4)

where LC is the classification loss between predicted labels and true labels; LR is

the loss of label propagation from labeled data to unlabeled data; α is a parameter to

balance the loss; s(w) is the expression of fairness constraints; and c is a threshold.

5.2.3.1 Classification Loss

A classification loss function evaluates how well a specific algorithm models the given

dataset. When different algorithms are used to train datasets, such as logistic regression

or neural networks, a corresponding loss function is applied to evaluate the accuracy of

the model.

5.2.3.2 Label Propagation Loss

According to [132], when Laplacian regularizer is used, the label propagation loss for

JL through SSL can be expressed as,

(5.5) JL =min
yu

Tr(yTLy)

where Tr denotes the trace, and the vector y = [yl ;yu] ∈ Rk includes labels of labeled

and unlabeled data.

5.2.3.3 Fairness Constraints

Adding fairness constraints is a useful method to enforce fair learning with in-processing

methods. In SSL, labeled data and unlabeled data have different impacts on discrimi-

nation because of two reasons: 1) predicting labels for unlabeled data will bring noise

to the labels; 2) labeled data and unlabeled data may have different data distributions.

Therefore, the discrimination inherently in unlabeled data is different from the discrim-

ination in labeled data. For these reasons, we impose fairness constraints on labeled

and unlabeled data to measure discrimination to see the disparate impact of fairness
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constraints on labeled and unlabeled data. We consider four cases of fairness constraints

enforced on the training data:

• 1. Labeled data: s1(w)≤ c.

• 2. Unlabeled data: s2(w)≤ c.

• 3. Combined labeled and unlabeled data: s1(w)≤ c1 (for labeled data) and s2(w)≤
c2 (for unlabeled data).

• 4. Mixed labeled and unlabeled data: s(w)≤ c.

where c is a discrimination threshold, that is adjusted to control the trade-off between

accuracy and fairness. Note that many fairness constraints [4, 145, 146] have been

proposed to enforce various fairness metrics, such as disparate impact and disparate

mistreatment, and these fairness constraints can be used in our framework. The basic

idea to design fairness constraints is that using the covariance between the users‚Äô

sensitive attributes and the signed distance between the feature vectors restricts the

correlation between sensitive attributes and classification results. This can be described

as,

(5.6) |1
k

gw (z− z̄) | ≤ c

where gT
w ∈Rk is a vector that denotes the signed distance between the feature vectors

and the decision boundary of a classifier. The form of gw is different in fairness metrics,

and we list them in the following,

• Disparate impact

(5.7) gw =wTX

• Overall misclassification rate

(5.8) gw =min
(
0,yTywT X

)
• False positive rate

(5.9) gw =min
(
0,

1−yT

2
ywT X

)
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• False negative rate

(5.10) gw =min
(
0,

1+yT

2
ywT X

)

5.2.4 Fair SSL of Logistic Regression

In this section, we propose algorithms to solve the optimization problem (10) with a

binary logistic regression (LR) classifier. (Other margin classifiers can also be applied in

our method, and we give another example of support vector machines in the supplemen-

tal material.) The classifier is subjected to the fairness metric of demographic parity

with mixed labeled and unlabeled data. The objective function of LR is defined as,

(5.11) L LR
C =− ln(p)y− ln(1−p)(1−y)

where p = 1
1+e−wT X

is the probability distribution of mapping X to the class label y; 1
denotes a column vector with all its elements being 1. Given the logistic regression loss,

the label propagation loss and the fairness metric, the optimized problem (5.5) adopts

the form,

(5.12)
min
w,yu

− ln(p)y− ln(1−p)(1−y)+αTr(yTLy)

s.t. |1
k

gw (z− z̄) | ≤ c

5.2.4.1 Disparate impact

First, we solve the optimization problem with disparate impact as the fairness metric.

The optimization of problem (5.12) includes two parts: learning the weights w and

predicted labels of unlabeled data yu. The basic idea of the solution is that because of

the fairness constraint, the weight w is updated towards a fair direction, and using the

updated w to update yu also ensures that yu is directed towards fairness. The problem

is solved by updating w and yu iteratively as follows.

Solving w when yu is fixed, the problem (5.12) becomes

(5.13)
min

w
− ln(p)y− ln(1−p)(1−y)

s.t. |1
k

wT X (z− z̄) | ≤ c
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Note that problem (5.13) is a convex problem that can be written as a regularized

optimization problem by moving fairness constraints to the objective function. The

optimal w∗ can then be calculated by using KKT conditions.

Solving yu when w is fixed, the problem (5.12) becomes

(5.14) min
yu

− ln(p)y− ln(1−p)(1−y)+αTr(yTLy)

Given that problem (5.14) is also a convex problem, the optimal yu can be obtained

from the deviation of yu in problem (20). In order to calculate yu conveniently, we

split Laplacian matrix L into four blocks after the l-th row and the l-th column: L =[
L ll L lu

Lul Luu

]
. The deviation of Eq.(5.14) is then calculated w.r.t. yu and setting to zero,

we have

(5.15) α(2yuLuu +Lulyl+ (ylL lu)T)− [(ln(p))T + (ln(1−p))T]= 0

Note that L is a symmetric matrix and, after simplification, the closed updated form of

yu can be derived from

(5.16) yu =−L−1
uu(Lulyl+ 1

2α
[(ln(p))T + (ln(1−p))T])

Note that the computed optimal yu is decimals, and it cannot be used to update w
directly because only integers are allowed to optimize w in the next update. Due to this,

we need to convert yu from decimals to integers to update w. Before using yu to update

the next w, the value of yu,i ∈ yu, i = 1, ...,ku is set to,

(5.17) yu,i =
1, yu,i ≥ T

0, yu,i < T

where T is the threshold that determines the classification result. Then, the optimiza-

tion problem (5.12) can be solved by optimizing w and yu iteratively. Algorithm 1
summarizes the solution of optimization problem (5.12) with the disparate impact.

5.2.4.2 Disparate mistreatment

Disparate mistreatment metrics include overall misclassification rate, false positive

rate and false negative rate. For simplicity, the overall misclassification rate is used to
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Algorithm 6 The algorithm of the optimizing problem (5.12) with disparate impact
Input: Labeled dataset Dl , unlabeled dataset Du, fairness thresholds c
Parameter: T, σ
Initialize: Given initial values of yu by label propagation
Output: w and yu

1: Calculate the adjacent matrix A according to Eq.(5.3)
2: repeat
3: Fix yu and update w with KKT
4: Fix w and update yu by Eq.(5.16)
5: Set yu,i ∈ yu to 0 or 1 by Eq. (5.17)
6: until The optimization problem (5.12) convergs

analyze disparate mistreatment. However, false positive rate and false negative rate

can also be analyzed easily, and the result of three disparate mistreatment metrics are

presented in the experiment.

With the overall misclassification rate as the fairness metric, the objective function

is denoted as,

(5.18)
min

w
− ln(p)y− ln(1−p)(1−y)+αTr(yTLy)

s.t. |1
k

gw(x) (z− z̄) | ≤ c

Note that fairness constraints of disparate mistreatment are non-convex, and the

solution to the optimization problem (5.18) is more challenging than the optimization

problem in (5.12). Next, we convert these constraints into a Disciplined Convex-Concave

Program (DCCP). Thus, the optimization problem (5.18) can be solved efficiently with

the recent advances in convex-concave programming [121].

The fairness constraint of disparate mistreatment can be split into two terms,

(5.19)
1
k
|∑

D0

(0− z̄)gw+∑
D1

(1− z̄)gw| ≤ c

where D0 and D1 are the subsets of the labeled dataset Dl and unlabeled dataset Du

with values z = 0 and z = 1, respectively. k0 and k1 are defined as the number of data

points in the D0 and D1, and thus z̄ can be rewritten as z̄ = 0∗k0+1∗k1
k = k1

k . Then the

fairness constraint of disparate mistreatment can be rewritten as,

(5.20)
k1

k
|∑

D0

gw+∑
D1

gw| ≤ c
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Solving w when yu is fixed, the problem (5.18) becomes

(5.21)

min
w

− ln(p)y− ln(1−p)(1−y)

s.t.
k1

k
|∑

D0

gw+∑
D1

gw| ≤ c

The optimization problem (5.18) is a Disciplined Convex-Concave Program (DCCP) for

any convex loss, and can be solved with some efficient heuristics [121].

Solving yu when w is fixed, the problem (5.18) becomes

(5.22) min
yu

− ln(p)y− ln(1−p)(1−y)+αTr(yTLy)

The solution of Eq. (5.22) is the same as the solution of Eq. (5.15). The closed form of yu

can be obtained via Eq. (5.16), and then the optimization problem (5.18) can be solved

by updating yu and w iteratively. Algorithm 2 summarizes this process.

Algorithm 7 The algorithm of the optimizing problem (5.18)
Input: Labeled dataset Dl , unlabeled dataset Du, fairness thresholds c
Parameter: T, σ
Initialize:Given initial values of yu by label propagation
Output: w and yu

1: Calculate the adjacent matrix A according to Eq.(5.3)
2: Choose a metric in disparate mistreatment
3: repeat
4: Divide D into D0 and D1
5: Calculate k0 and k1
6: Fix yu and update w with DCCP
7: Fix w and update yu by Eq.(5.16)
8: Set yu,i ∈ yu to 0 or 1 by Eq. (5.17)
9: until The optimization problem (5.18) convergs

5.2.5 A Case of SVM

SVM can also be applied in our framework. SVM uses a hyperplane wT X = 0 to classify

data points. The loss function of SVM is defined as,

(5.23) L SV M
1 = 1

K

(
1− y

(
wT X

))
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Based on SVM loss, the label propagation and the fairness metrics, the objective function

is given as,

(5.24)
min
w,yu

1
K

(
1− y

(
wT X

))
+αTr(yTLy)

s.t. | 1
K

gw (z− z̄) | ≤ c

Disparate impact and disparate mistreatment can be used in the fairness constraint.

Since SVM loss is convex, the solution to the problem (5.24) is similar to the LR case.

For simplicity, we omit the process and show the results of the experiment.

5.2.6 Discussion

Based on the above analysis, some conclusions can be drawn:

1. Since unlabeled data do not contain any label information, they do not label biased

information so that we can take advantage of the unlabeled data to improve the trade-off

between accuracy and fairness. In our framework, due to the fairness constraint, the

weight w is updated towards a fair direction. Using the updated w to update yu also

ensures that yu is directed towards fairness. In this way, fairness is enforced in labeled

and unlabeled data by updating w and yu iteratively. Therefore, labels of unlabeled

data are calculated in a fair way, which is beneficial to the accuracy of the classifier as

well as the fairness of the classifier.

2. Fairness constraints on labeled data and unlabeled data have a different impact on

the training result because labeled and unlabeled data may present different covariance

between the sensitive attribute and the signed distance between feature vectors to the

decision boundaries.

5.3 Experiment

In this section, we first describe the experimental setup, including datasets, baselines,

and parameters. Then, we evaluate our method on three real-world datasets under the

fairness metric of disparate impact and disparate mistreatment (including OMR, FNR

and FPR). The aim of our experiments is to assess: the effectiveness of our method to

achieve fair semi-supervised learning; the impact of different fairness constraints on

fairness; and the extent to which unlabeled can balance fairness with accuracy.
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5.3.1 Experimental Setup

5.3.1.1 Dataset

Our experiments involve three real-world datasets: Health dataset 1, Titanic dataset 2

and Bank dataset 3.

• The task in the Health dataset is to predict whether people will spend time in

the hospital. In order to convert the problem into the binary classification task,

we only predict whether people will spend any day in the hospital. After data

preprocessing, the dataset contains 27,000 data points with 132 features. We

divide patients into two groups based on age (≥65 years) and consider ’Age’ to be

the sensitive attribute.

• The Bank dataset contains a total of 41,188 records with 20 attributes and a

binary label, which indicates whether the client has subscribed (positive class) or

not (negative class) to a term deposit. We consider ’Age’ as sensitive attribute.

• The Titanic dataset comes from a Kaggle competition where the goal is to analyze

which sorts of people were likely to survive the sinking of the Titanic. We consider

"Gender" as the sensitive attribute. After data preprocessing, we extract 891 data

points with 9 features.

5.3.1.2 Parameters

The sensitive attributes are excluded from the training set to ensure fairness between

groups and are only used to evaluate discrimination in the test phrases. In the Health,

Bank and Titanic datasets, data are all labeled. In the Health dataset, we sample 4000

data points as labeled dataset, 4000 data points as test dataset, and left as unlabeled

dataset. In the Bank dataset, we sample 4000 data points as labeled dataset, 4000 data

points as test dataset, and left as unlabeled dataset. In the Titanic dataset, we sample

200 data points as labeled dataset, 200 data points as test dataset, and left as unlabeled

dataset. Therefore, Dl and Du are collected from the similar data distribution.
1https://foreverdata.org/1015/index.html
2https://www.kaggle.com/c/titanic/data
3https://archive.ics.uci.edu/ml/datasets/bank+marketing
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In the experiments, the results are an average of 10 results by randomly sampling

labeled dataset, test dataset and unlabeled dataset. We set α = 1 and T = 0.5 in all

datasets; σ = 0.5 in the Health dataset and Bank dataset, and σ = 0.1 in the Titanic

dataset. In DCCP, parameter τ is set to 0.05 and 1 in the Bank and Titanic dataset,

respectively. Parameter µ is set to 1.2 in both Bank and Titanic datasets.

5.3.1.3 Baseline Methods

The methods chosen for comparison are listed as follows. It is worth noting that [32]

also used unlabeled data on fairness. However, they only applied the equal opportunity

metric, which is different to ours. Hence, we did not compare the proposed method with

them.

• Fairness Constraints (FS): Fairness constraints are used to ensure fairness for

classifiers. [146]

• Uniform Sampling (US): The number of data points in each groups is equalized

through oversampling and/ undersampling. [73]

• Preferential Sampling (PS): The number of data points in each groups is equalized

by taking samples near the borderline data points. [73]

• Fairness-enhanced sampling (FES): A fair SSL framework includes pseudo label-

ing, re-sampling and ensemble learning. [149]

5.3.2 Experimental Results of Disparate Impact

5.3.2.1 Trade-off Between Accuracy and Discrimination

Figure 5.1 shows that as c varies, accuracy and discrimination level in the proposed

method and other methods with LR and SVM on two datasets. From the results, we

can observe that our framework provides a better trade-off between accuracy and

discrimination. A better trade-off means that with the same accuracy, discrimination

is low or with the same discrimination, accuracy is higher. For example, at the same

level of accuracy on the Titanic dataset, (shown by the black line), our method with LR

has a discrimination level of around 0.08, while the FS method has a discrimination
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Figure 5.1: The trade-off between accuracy and discrimination in proposed method Semi
(Red), FS (Blue), US (Blue cross), PS (Yellow cross) and FES (Green cross) under the
fairness metric of disparate impact with LR and SVM in two datasets. As the threshold
of covariance c increases, accuracy and discrimination increase. The results demonstrate
that our method achieves a better trade-off between accuracy and discrimination than
other methods.

level of 0.11. A similar observation can be made from the results with the PS method

(Yellow cross), US method (Blue cross) and the FES method (Green cross). Note that the

discrimination level (red line) with LR in the Health dataset does not extend because

discrimination does not increase as c grows. Additionally, we note that accuracy and

discrimination level are related to the training models. In the Titanic dataset, LR has

lower accuracy and discrimination than SVM and the choice of training models is related

to the datasets.
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Dataset Health dataset
Constraint Labeled Unlabeled Combined Mixed

Acc Dis Acc Dis Acc Dis Acc Dis
c=0.0 0.7868 0.0042 N/A N/A 0.7874 0.0022 0.7862 0.0003
c=0.1 0.7890 0.0129 N/A N/A 0.7890 0.0145 0.7892 0.0149
c=0.2 0.7900 0.0170 0.7900 0.0207 0.7898 0.0170 0.7898 0.0170
c=0.3 0.7898 0.0207 0.7898 0.0170 0.7900 0.0207 0.7900 0.0207
c=0.4 0.7902 0.0178 0.7898 0.0170 0.7900 0.0207 0.7900 0.0207
c=0.5 0.7900 0.0207 0.7900 0.0207 0.7900 0.0207 0.7900 0.0207
c=0.6 0.7900 0.0207 0.7906 0.0186 0.7900 0.0207 0.7900 0.0207
c=0.7 0.7900 0.0207 0.7900 0.0207 0.7900 0.0207 0.7900 0.0207
c=0.8 0.7900 0.0207 0.7904 0.0191 0.7900 0.0207 0.7900 0.0207
c=0.9 0.7900 0.0207 0.7908 0.0190 0.7900 0.0207 0.7900 0.0207
c=1.0 0.7900 0.0207 0.7900 0.0207 0.7900 0.0207 0.7900 0.0207

Table 5.1: The impact of fairness constraints on different datasets in terms of accuracy
(Acc) and discrimination level (Dis) under the fairness metric of disparate impact with
LR in the Health dataset.

Dataset Titanic dataset
Constraint Labeled Unlabeled Combined Mixed

Acc Dis Acc Dis Acc Dis Acc Dis
c=0.0 0.6330 0.0128 0.6970 0.1244 0.6290 0.0139 0.6440 0.0402
c=0.05 0.6690 0.0579 0.7070 0.1265 0.6690 0.0716 0.6810 0.0948
c=0.1 0.7150 0.1272 0.7140 0.1332 0.7100 0.1239 0.7150 0.1256
c=0.15 0.7200 0.1366 0.7190 0.1336 0.7190 0.1336 0.7200 0.1366
c=0.2 0.7200 0.1366 0.7200 0.1366 0.7200 0.1366 0.7200 0.1366
c=0.25 0.7200 0.1366 0.7200 0.1366 0.7200 0.1366 0.7200 0.1366

Table 5.2: The impact of fairness constraints on different datasets in terms of accuracy
(Acc) and discrimination level (Dis) under the fairness metric of disparate impact with
LR in the Titanic dataset.

5.3.2.2 Different Fairness Constraints

Our next set of experiments is to determine the impact of different fairness constraints.

For these tests, the size of unlabeled data is set to 12,000 data points in the Health

dataset and 400 data points in the Titanic dataset. Due to space limitations, we have

only reported the results for the LR, which appear in Tables 5.1 and 5.2. The result

shows that when varying the threshold of covariance c, different fairness constraints

on labeled and unlabeled data have different impacts on the training results. As the

threshold of covariance increases, both accuracy and discrimination level increase before

steadying off for the duration. In terms of accuracy, this is because a larger c allows for a

larger space to find better weights w to inform classification. In terms of discrimination,
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a larger c tends to introduce more discrimination in noise.

It is also observed that the fairness constraint on mixed data generally has the best

performance in the trade-off between accuracy and discrimination. The other three

constraints have very similar accuracy and discrimination levels. We attribute this to

the assumption that labeled and unlabeled data have a similar data distribution, and

therefore the mixed fairness constraint on labeled and unlabeled data gives the best

description of the covariance between sensitive attributes and signed distance from

feature vectors to the decision boundary.
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Figure 5.2: The impact of the amount of unlabeled data in the training set on accuracy
(Red) and discrimination level (Blue) under the fairness metric of disparate impact with
LR and SVM in two datasets. The X-axis is the size of unlabeled dataset; the left y-axis
is accuracy, and right y-axis is discrimination level.
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5.3.2.3 The Impact of Unlabeled Data

For these experiments, we set the covariance threshold c = 1 for the Health and Titanic

datasets. Figure 5.2 shows that accuracy and discrimination level vary with the amount

of unlabeled data. This applies to both the LR and SVM classifiers on both datasets. As

shown, accuracy increases as the amount of unlabeled data increases in both datasets

before stabilizing at its peak. Discrimination level sharply decreases almost immediately,

then also stabilize. These results clearly demonstrate that discrimination in variance

decreases as the amount of unlabeled data in the training set increases.

5.3.3 Experimental Results of Disparate Mistreatment

5.3.3.1 Trade-off Between Accuracy and Discrimination

Figures 5.3-5.5 show that as c varies, accuracy and discrimination level in the proposed

framework and the FS method with LR and SVM on two datasets under the fairness

metric of OMR, FPR and FNR. From the results, we can observe that our proposed

method (Red line) generally is on the left above the FS method (Blue line). This indicates

that our framework provides a better trade-off between accuracy and discrimination

in three metrics of most time. For example, at the same level of accuracy (Acc = 0.885)

on the Bank dataset under OMR, our method with LR has a discrimination level

of around 0.045, while the FS method has a discrimination level of 0.06. We also

observe that discrimination level is quite different under fairness metrics. For example,

discrimination level can reach 0.17 at the end under FNR, while discrimination level

only shows 0.01 under FPR. In addition, we note that accuracy and discrimination level

have different performances on training models. In the Bank dataset, SVM generally

has lower accuracy and discrimination than LR.

5.3.3.2 Different Fairness Constraints under OMR

Table 5.3 and Table 5.4 shows that different fairness constraints on labeled and unla-

beled data have different impacts on the training results. Due to space limitations, we

have only reported the results for the LR under the metric of OMR on the Bank and

Titanic datasets. For these tests, the size of unlabeled data is set to 4,000 data points in

the Bank dataset and 400 data points in the Titanic dataset. As shown, when varying
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Figure 5.3: The trade-off between accuracy and discrimination in proposed method Semi
(Red), FS (Blue) with LR and SVM in two datasets under the metric of overall misclassi-
fication rate. As the threshold of covariance c increases, accuracy and discrimination
increase. The results demonstrate that our method using unlabeled data achieves a
better trade-off between accuracy and discrimination.

the threshold of covariance c, different fairness constraints on labeled and unlabeled

data have a huge difference in the training results. When the fairness constraint is

enforced in labeled data, accuracy and discrimination increase with the increase in c in

the Titanic dataset. This is because a smaller c enforces the lowest discrimination level,

which results in lower accuracy.

However, when the fairness constraint is enforced in unlabeled data, accuracy

and discrimination could decrease with the increase in c. This is because the label of
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Figure 5.4: The trade-off between accuracy and discrimination in the proposed method
Semi (Red), FS (Blue) with LR and SVM in two datasets under the metric of false
negative rate. As the threshold of covariance c increases, accuracy and discrimination
increase.

unlabeled data appears in the fairness constraint of disparate mistreatment, and it is

updated during the training. This means that the distribution of unlabeled data is not

described well during the training. As a result, the fairness constraint on unlabeled

data is not that effective.

5.3.3.3 The Impact of Unlabeled Data under OMR

For these experiments, we show the impact of unlabeled data on OMR. The covariance

threshold is set as c = 1 for the Bank and Titanic datasets. Figure 5.6 shows accuracy
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Dataset Bank dataset
Constraint Labeled Unlabeled Combined Mixed

Acc Dis Acc Dis Acc Dis Acc Dis
c=0.0 0.8635 0.0905 0.8407 0.1847 0.8342 0.147 0.8605 0.0987
c=0.5 0.8625 0.092 0.8402 0.1854 0.8342 0.1442 0.8605 0.0987
c=1.0 0.8638 0.0922 0.8402 0.1854 0.835 0.1452 0.8635 0.1071
c=1.5 0.8645 0.0918 0.8407 0.1833 0.835 0.1452 0.8635 0.1071
c=2.0 0.8648 0.0907 0.841 0.1822 0.8347 0.1462 0.8625 0.1071
c=2.5 0.8652 0.0914 0.8413 0.1812 0.8353 0.1469 0.8635 0.1084
c=3.0 0.866 0.0923 0.8413 0.1784 0.8342 0.147 0.8627 0.1084
c=3.5 0.8662 0.0927 0.8407 0.1805 0.8342 0.147 0.8627 0.1097
c=4.0 0.8665 0.093 0.841 0.1795 0.8342 0.147 0.8627 0.1097
c=4.5 0.8668 0.0919 0.8407 0.1791 0.835 0.1452 0.8635 0.1113
c=5.0 0.867 0.0909 0.8407 0.1791 0.8355 0.1444 0.8635 0.1113

Table 5.3: The impact of fairness constraints on different datasets in terms of accuracy
(Acc) and discrimination level (Dis) under the fairness metric of overall misclassification
rate with LR in the Bank dataset.

Dataset Titanic dataset
Constraint Labeled Unlabeled Combined Mixed

Acc Dis Acc Dis Acc Dis Acc Dis
c=0.0 0.7448 0.0285 0.7138 0.3996 0.7655 0.1387 0.7483 0.0175
c=0.5 0.7483 0.0335 0.6966 0.4386 0.7655 0.1547 0.7483 0.0175
c=1.0 0.7517 0.0385 0.6931 0.4656 0.7552 0.1397 0.7517 0.0225
c=1.5 0.7552 0.0436 0.7103 0.3946 0.7793 0.1748 0.7448 0.0445
c=2.0 0.7552 0.0436 0.7069 0.4216 0.7724 0.1648 0.7483 0.0495
c=2.5 0.7586 0.0326 0.7103 0.4106 0.7759 0.1378 0.7448 0.0605
c=3.0 0.7552 0.0596 0.7552 0.2678 0.7552 0.0596 0.7483 0.0655
c=3.5 0.7552 0.0596 0.6931 0.4656 0.7552 0.0596 0.7483 0.0816
c=4.0 0.7586 0.0646 0.7103 0.4106 0.7586 0.0646 0.7517 0.0866
c=4.5 0.7586 0.0646 0.7138 0.3996 0.7586 0.0646 0.7517 0.0866
c=5.0 0.7552 0.0756 0.7103 0.4106 0.7552 0.0756 0.7483 0.0816

Table 5.4: The impact of fairness constraints on different datasets in terms of accuracy
(Acc) and discrimination level (Dis) under the fairness metric of overall misclassification
rate with LR in the Titanic dataset.
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Figure 5.5: The trade-off between accuracy and discrimination in proposed method Semi
(Red), FS (Blue) with LR and SVM in two datasets under the metric of false positive
rate. As the threshold of covariance c increases, accuracy and discrimination increase.

and discrimination level varies given the different size of unlabeled data with LR and

SVM on two datasets. As shown, before the peak is reached, as the amount of unlabeled

data increases in the two data sets, accuracy will also increase. Discrimination level

decreases at the beginning, and then stabilizes in the Titanic dataset. These results

indicate that discrimination in variance decreases as the amount of unlabeled data in

the training set increases.
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Figure 5.6: The impact of the amount of unlabeled data in the training set on accuracy
(Red) and discrimination level (Blue) under the fairness metric of overall mistreatment
rate with LR and SVM in two datasets. The X-axis is the size of unlabeled dataset; the
left y-axis is accuracy, and the right y-axis is discrimination level.

5.3.4 Discussion and Summary

5.3.4.1 Discussion

We discuss how the proposed framework is able to reduce discrimination in terms of

discrimination decomposition into discrimination in bias, variance and noise. Discrimi-

nation in bias depends on the model choice. Discrimination in variance relates to the

size of training data. Our framework uses unlabeled data to expand the size of training

data, and thus reduce the discrimination in variance. Discrimination in noise depends
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on the quality of training data. In our framework, discrimination in noise also depends

on label propagation. Predicting labels for unlabeled data may bring discrimination in

noise. This discrimination can be adjusted by the threshold c in the fairness constraint.

A smaller threshold generates smaller discrimination in noise. The reduction in dis-

crimination in variance is generally more than the discrimination in noise induced by

label propagation. Thus, when the same model is used, unlabeled data helps to lessen

discrimination.

5.3.4.2 Summary

From these experiments, we can obtain some conclusions. 1) The proposed framework

can make use of unlabeled data to achieve a better trade-off between accuracy and

discrimination. 2) Under the fairness metric of disparate impact, the fairness constraint

on mixed labeled and unlabeled data generally has the best trade-off between accuracy

and discrimination. Under the fairness metric of disparate mistreatment, the fairness

constraint on labeled data is used to achieve the trade-off between accuracy and discrim-

ination. 3) More unlabeled data generally helps to make a better compromise between

accuracy and discrimination. 4) Model choice can affect the trade-off between accuracy

and discrimination. Our experiments show that SVM is more friendly to achieving a

better trade-off than LR.

5.4 Related Work

In recent years, a large number of works have studied fairness in machine learning, and

we classify them into two streams.

5.4.1 Fair Supervised Learning

Methods for fair supervised learning include pre-processing, in-processing and post-

processing methods. In pre-processing, discrimination is eliminated by guiding the

distribution of training data towards a fairer direction [73] or by transforming the

training data into a new space [16, 52, 124, 147, 151]. The main advantage of the

pre-processing method is that it does not require changes to the machine learning

algorithm, so it is very simple to use. In in-processing, discrimination is constrained
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by fair constraints or a regularizer during the training phase. For example, Zafar et

al. [75] used regularizer term to penalize discrimination in the learning objective. [57,

145, 146] designed the convex fairness constraint, called decision boundary covariance

to achieve fair classification for classifiers. Recent work presented the constrained

optimization problem as a two-player game and formalized the definition of fairness

as a linear inequality [4, 36, 43]. This category is more flexible for optimizing different

fair constraints, and solutions using this method are considered to be the most robust.

In addition, these methods have shown good results in terms of accuracy and fairness.

A third approach to achieving fairness is post-processing, where a learned classifier is

modified to adjust the decisions to be non-discriminatory for different groups [60, 79, 91].

Post-processing does not need changes in the classifier, but it cannot guarantee an

optimal classifier.

5.4.2 Fair Unsupervised Learning

Chierichetti et al. [30] were the first to study fairness in clustering problems. Their

solution, under both k-center and k-median objectives, required every group to be

(approximately) equally represented in each cluster. Many subsequent works have since

been undertaken on the subject of fair clustering. Among these, Rosner et al. [116]

extended fair clustering to more than two groups. Chen et al. [118] consider the fair

k-means problem in the streaming model, define fair coresets and show how to compute

them in a streaming setting, resulting in a significant reduction in the input size. Bera

et al. [11] presented a more generalized approach to fair clustering, providing a tunable

notion of fairness in clustering. Kleindessner et al. [80] studied a version of constrained

spectral clustering incorporating the fairness constraints.

5.4.3 Comparing with Other Work

Existing fair learning methods mainly focus on supervised and unsupervised learning,

and cannot be directly applied to SSL. As far as we know, only [32, 104, 149] has

explored fairness in SSL. Chzhen et al. [32] studied Bayes classifier under the fairness

metric of equal opportunity, where labeled data is used to learn the output conditional

probability, and unlabeled data is used to calibrate the threshold in the post-processing

phase. However, unlabeled data is not fully used to eliminate discrimination, and the
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proposed method only applies to equal opportunity. In [104], the proposed method is

built on neural networks for SSL in the in-processing phase, where unlabeled data

is marked labels with pseudo labeling. Zhang et al. [149] proposed a pre-processing

framework which includes pseudo labeling, re-sampling and ensemble learning to

remove representation discrimination. Our solution will focus on margin-based classifier

in the in-processing stage, as in-processing methods have demonstrated good flexibility

in both balancing fairness and supporting multiple classifiers and fairness metrics.

5.5 Summary

In this chapter, we propose a framework of fair semi-supervised learning that operates

during in-processing phase. Our framework is formulated as an optimization problem

with the goal of finding weights and labeling unlabeled data by minimizing the loss

function subject to fairness constraints. We analyze several different cases of fairness

constraints for their effects on the optimization problem plus the accuracy and discrim-

ination level in the results. Our experiments confirm this analysis, showing that the

proposed framework provides accuracy and fairness at high levels in semi-supervised

settings.
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BALANCING LEARNING MODEL PRIVACY, FAIRNESS,

AND ACCURACY WITH EARLY STOPPING CRITERIA

In previous chapters, we have studied privacy and fairness in machine learning sep-

arately. In some cases, privacy, fairness, and accuracy need to be considered together

when using machine learning models. For example, in disease diagnosis, demographic

groups (such as black and white defendants) should experience similar processing, i.e.,

similar predictive accuracy. Meanwhile, participating in training data means that the

individual might have been diagnosed with a disease, which is very sensitive and needs

to be kept confidential. Therefore, it is crucial to consider privacy, fairness and accuracy

simultaneously. In this chapter, we focus on privacy and fairness and investigate their

interactions. We propose two early stop criteria to guide when to stop training to achieve

a better balance between accuracy, fairness and privacy.

6.1 Introduction

Striking a balance between accuracy and privacy or accuracy and fairness are well-

studied topics. Arguably, the current state-of-the-art in private machine learning is

differential privacy (DP) [25, 56, 144]. With deep learning models, one of the most

widely-used approaches to implementing DP is to clip gradients and add noise during
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Figure 6.1: Challenges in private and fair deep learning: 1) Privacy comes at the cost
of accuracy; 2) Fairness comes at the cost of accuracy; 3) Privacy could affect model
fairness.

training with DP-SGD [1]. In terms of ensuring fair machine learning, there are three

broad approaches based more on when the method is applied. One type is applied before

training [16, 73], the second during training [4, 145], and the third after training [60, 91].

A few studies have combined DP with fairness methods, such as the in-processing

methods outlined in [40, 139], and the post-processing method outlined in [67]. However,

all these techniques, whether combined with privacy or not, were designed for traditional

machine learning environments. To the best of our knowledge, this is the first study to

attempt a solution for balancing the trinity of fairness, privacy, and accuracy in deep

learning.

In this new sphere, three big challenges await. As illustrated in Figure 6.1, all three

hinge on the fact that both privacy and fairness require a sacrifice in accuracy. However,

an interesting observation of DP-SGD is that DP may have a disparate impact on model

accuracy. Studies by [9, 138] have shown that the reduction in accuracy caused by

DP-SGD disproportionately affects under-represented groups. In other words, DP-SGD

could affect model fairness. This motivated us to think that perhaps fairness does not

need to be addressed directly. Rather, fairness might be better managed by treating it

as a byproduct of training with DP-SGD.

In this chapter, we propose two early stop criteria to guide when to stop training,

in order to achieve the ideal balance between the three. This idea comes from early
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stopping, which is a simple and effective method to stop training when the validation

accuracy starts to decline. When using DP-SGD, gradient clipping and noise addition in

DP-SGD make the training less stable than SGD. This change provides the possibility

that the model may be updated to perform low discrimination levels in certain epochs.

With theoretical and empirical analysis, we have noticed that the discrimination level

shows similar changes on the validation set and test set. Therefore, the discrimination

level in the validation set is used as a key indicator to guide when to stop training. As

for privacy, when DP-SGD is used to training neural networks, less training epochs

consume less privacy cost. That is to say, early stopping naturally is beneficial to save

privacy cost, thereby increasing the privacy level. Thus, we conjecture that an effective

way to balance accuracy, privacy and fairness is to simply stop the training process once

the desired ratio between all three has been reached.

In summary, the contributions of this chapter are listed below.

• 1) We proposed two stopping criteria to guide when to stop the training. These

stopping criteria help decrease the discrimination level and privacy cost without

much sacrifice in accuracy.

• 2) We theoretically analyze the effect of gradient clipping and noise addition in

DP-SGD on the gradient, the effect on training stability, and the effect on model

accuracy and model fairness, and explain why DP-SGD affects model fairness.

• 3) We empirically analyze the impact of DP-SGD on model accuracy and fairness

with both structured (Bank and Health datasets) and unstructured datasets (UTK

Face and IMDB datasets). The results verify that the proposed stopping criteria

help to achieve an ideal balance between accuracy, fairness and privacy.

6.2 Background

6.2.1 Notation

Consider a binary classifier f : X →Y , mapping training examples x to a discrete label

y ∈ {0,1}. Let D be a dataset with N data points x1, x2, ..., xN , where each data point

xi contains the information of a number of d unprotected attributes a1,a2, ...,ad, the
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protected attribute z, and the label y. The dataset can be divided into different groups

according to the protected attribute. For example, if the protected attribute is ‘Sex’,

the dataset can be divided into male and female groups. The training goal is to learn

a mapping fw over the dataset D to well approximately mapping between input X
and output Y in a private and fair way, where w denotes the model parameters. A

loss function L ( fw(x), y) is used to measure the difference between the label y and the

classifier’s prediction fw(x). The optimized model parameters w are solved by minimizing

empirical loss LD( fw(x), y) = 1
N

∑N
i=1ℓi( fw(x), y). In each iteration, l, a batch of data

points b is sampled from D and the gradient of the average loss ∇wl is updated by the

following rule

(6.1) wl+1 = wl − r∇wl ,

where r is the learning rate. Given a number of T training epochs, the number of

iterations is L = TN
b .

6.2.2 Fairness Metrics

Definition 6.1. (Demographic parity) [15] A classification model satisfies demo-

graphic parity if

(6.2) Pr( ŷ= 1|z = 1)= Pr( ŷ= 1|z = 0),

where ŷ is the predicted label.

Definition 6.2. (Equal opportunity) [60] Equal opportunity requires that the true

positive rates are equal in different groups, which is presented as

(6.3) Pr( ŷ= 1|z = 1, y= 1)= Pr( ŷ= 1|z = 0, y= 1).

Definition 6.3. (Equal odds) [60] Equal odds requires that the predicted result of a

classifier is independent of the sensitive attribute on the condition of true positive rate

and false positive rate, which is given as
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(6.4) Pr( ŷ= 1|z = 1, y= 0)= Pr( ŷ= 1|z = 0, y= 0),

(6.5) Pr( ŷ= 1|z = 1, y= 1)= Pr( ŷ= 1|z = 0, y= 1).

Definition 6.4. (Discrimination level) Let γz(D, fw) denote the probability of positive

predictions of group z on a model fw training with a dataset D in terms of a fairness

metric. The discrimination level Γ(D, fw) on a model fw training with a dataset D is

measured by the difference between groups:

(6.6) Γ(D, f )= |γ0(D, fw)−γ1(D, fw)|.

Take demographic parity as an example, we have γ1(D, fw) = Pr( ŷ = 1|z = 1), and the

discrimination level is Γ(D, fw)= |Pr( ŷ= 1|z = 1)−Pr( ŷ= 1|z = 0)|.

6.2.3 Differential Privacy

DP is a widely used privacy model in machine learning to bound the leakage about the

presence of specific data point [25].

Definition 6.5. (ϵ,δ-Differential privacy) [44] Given neighboring datasets D and D′

that differ in one data point, an algorithm M satisfies (ϵ,δ)-differential privacy for any

possible outcome Ω,

(6.7) Pr[M (D) ∈Ω]≤ exp(ϵ) ·Pr[M (D′) ∈Ω]+δ,

where ϵ is privacy budget which determines privacy level, and δ is a broken probability.

The lower ϵ and δ represent the higher privacy level.

Definition 6.6. (Sensitivity) [44] For a fw : D −→ R, and neighboring datasets D and

D′, the sensitivity of fw is defined as

(6.8) ∆ fw =max
D,D′ || fw(D)− fw(D′)||.

Sensitivity measures the maximal difference between neighboring datasets.
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Definition 6.7. (Gaussian mechanism) [48] Gaussian mechanism adds zero-mean

Gaussian noise with variance ∆ f 2
wσ2 in each coordinate of the output fw(D),

(6.9) M (D)= fw(D)+N (0,∆ f 2
wσ2),

where σ denotes the noise scale. It satisfies (ϵ,δ)-differential privacy if ϵ ∈ [0,1], δ ≥
c∆ fw/ϵ, and c2 ≥ 2ln(1.25/δ).

DP-SGD [1] ( see Algorithm 1 below) is an optimized SGD algorithm with two key

steps to ensure that the gradients are updated in a differentially private way. Firstly, at

iteration l, we denote the original gradients as gl , the gradient after clipping as ḡl , and

the gradient after clipping and adding noise as ĝl . The first step is that a clipping bound

C is used on the l2 norm of the gradient updates gl(xi) with the batch size b (Line 5).

The second step aggregates clipped gradients ḡl , and adds Gaussian noise N (0,σ2C2)

to the aggregation (Line 8). Since each update of ĝl is differentially private, the final

model parameters are also differentially private in terms of the composition property of

differential privacy. The privacy leakage of DP-SGD is measured by (ϵ,δ), that is, the

bound of privacy loss ϵ under a certain probability δ.

Algorithm 8 DP-SGD
Input: Dataset D, loss function LD(w), learning rate r, batch size b, iteration times L,
noise scale σ, clipping bound C
Initialize: Model parameters w0

1: for l ∈ L do
2: Randomly sample a batch of data points Bl(|Bl | = b) from D
3: for xi ∈ Bl do
4: gl(xi)=∇l

wL (wl , xi)
5: ḡl(xi)= gl(xi)×min(1, C

|gl (xi)| )
6: end for
7: ĝl = 1

b
∑

i( ḡl(xi)+N (0,σ2C2))
8: wl+1 = wl − r ĝl

9: end for
Output: Model wl and accumulated privacy cost (ϵ,δ)
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6.2.4 Early Stopping Criteria

In the optimization process, high-capacity models tend to overfit. During the entire

optimization process, when the loss on the training set decreases, the test loss saturates

at a certain point and starts to increase again. Early stopping is widely used to solve

this problem because it is easy to understand and implement, and in many cases is

reported to be superior to regularization methods [87, 96, 112]. The gold standard for

early stopping is to monitor the loss of the validation set. More specific, the continuous

estimation of the generalization performance is observed in the validation set, the

optimizer will stop when the generalization performance drops again. Different from

traditional stopping criteria, we observe the discrimination level in the validation set

and the optimizer will stop when the discrimination level is at a lower level after the

training is convergent.

6.3 Preliminary Studies

In this section, we present some preliminary studies on bank deposit prediction and

image classification tasks to show that DP-SGD results in decreased stability during the

training process. Two main operations in DP-SGD, gradient clipping and noise addition

protect the privacy of training data from the training process in deep neural networks.

However, gradient clipping and noise addition also affect the direction of gradient

update, resulting in decreased stability during the training process. The decreased

stability brings more variations during the training, resulting in great variations in

discrimination levels.

6.3.1 Preliminary Experiments

6.3.1.1 Bank Deposit Prediction: Gender and Bank Data

Dataset The Bank dataset 1 contains a total of 41,184 samples with 20 attributes and

a binary label. The label indicates whether the client has subscribed to a term deposit

or not. We consider ’Age’ as the protected attribute. We sample a balanced Bank dataset

with 30,000 samples ( 15,000 samples in each group).
1https://archive.ics.uci.edu/ml/datasets/bank+marketing
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Model We use a logistic regression model with regularization parameter 0.01. We use

SGD learning rate r = 0.02; and DP-SGD learning rate r = 0.02; batch size b = 256; the

number of training epochs T = 40; clipping bound C = 0.3; and noise scale σ= 1.

6.3.1.2 Image Classification: Gender and Facial Images

Dataset The task is to make gender classification on the UTK Face dataset, which is a

large-scale face dataset with a long age span [150]. We consider “Race" as the sensitive

attribute, with white as the protected group and other races as the unprotected group,

sampling 10,000 images from both groups. Before the model is applied, images are

cropped to 200∗200 pixels.

Model We use a ResNet18 model [63] with 11M parameters pre-trained on ImageNet;

SGD learning rate r = 0.001; DP-SGD learning rate r = 0.01; batch size b = 128; the

number of training epochs T = 100; clipping bound C = 1; and noise scale σ= 1.

6.3.2 Results

Figures 6.2 and 6.3 show the impact of SGD and DP-SGD on model accuracy and

fairness in terms of demographic parity, equal opportunity and equal odds on the Health

and UTK Face datasets. Some observations can be seen based on the preliminary

experiments:

1) Accuracy increases with growing training epochs in SGD and DP-SGD, and

generally SGD has a faster increasing rate than DP-SGD and finally achieves higher

accuracy.

2) DP-SGD training process is less stable than SGD’s because of gradient clipping

and noise addition.

3) Even when the training converges, there are still small variations in accuracy,

which lead to great variations in discrimination levels. Furthermore, it is noted that the

discrimination level is at a low level in some epochs. This is because the discrimination

level is more sensitive than accuracy. For example, one data point in the protected group

is classified as label “1” in the previous epoch, then classified as label “1” in the current

epoch. According to Definition 7, the effect is twofold, because positive predictions in the
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Figure 6.2: Training with SGD (Blue) and DP-SGD (Red) in the Bank dataset.

sensitive group are subtracted by 1, meanwhile, negative predictions in the unprotected

group are increased by 1.

4) Variations are much more obvious in the UTK Face dataset than in the Health

dataset. This is because the model used in the UTK Face dataset is much more complex

(with 11M parameters) than the linear regression model used in the Health dataset.

The more parameters the model has, the more dimensions the gradient has. Gradient

clipping and noise addition have a greater impact on the gradients.
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Figure 6.3: Training with SGD (Blue) and DP-SGD (Red) in UTK Face dataset. Figure
3 shows that, with DP-SGD, more variations appear during the training in terms of
accuracy and discrimination levels.

6.4 Early Stopping Criteria Methods

Based on the observation in the last section, DP-SGD brings more variations during the

training, resulting in great variations in discrimination levels. In this section, we design

two stopping criteria that can be used to halt training at the required trade-off between

accuracy, privacy and fairness. Conventionally, the training for a deep neural network

with SGD usually stops once the model converges. Yet, motivated by the evidence in all

these analyses, it is clear that training could be stopped at a fluctuation that provides a
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desirable balance between accuracy, privacy, and fairness. The problem setting follows,

and then each stopping criteria is outlined in turn.

Consider the training procedure in two stages: the first stage where accuracy in-

creases rapidly over n epochs, and the second stage where accuracy stabilizes from

epoch n to the end. The early stopping criteria are implemented during the second stage.

In this way, the stopping point does not affect model accuracy much, and only focuses on

how to stop the training when the discrimination level is lower. Let A be the accuracy

of the training algorithm, where At
val denote the model’s accuracy measured after the

epoch t for the validation set.

Implementing the two criteria in the training process works as follows: (1) Train

only on the training set and evaluate the per-example error on the validation set in

every epoch. (2) Stop training as soon as the stopping criterion is satisfied. (3) Use the

network weights from the previous step as the model. (4) Use the model on the test set

to get the final results. This approach uses the validation set to anticipate the behavior

on the test set, assuming that the trend of discrimination level will be similar for both

sets. Algorithm 1 shows the implementation of two stopping criteria.

6.4.1 Stopping Criterion 1

The key idea of stopping criterion 1 is to stop the training when accuracy has a relative

increase and discrimination level has a relative decrease at epoch t after training is

convergent. Firstly, the value Γt
max is defined to be the highest discrimination in the

validation set obtained from epoch n up to epoch (n+k):

(6.10) Γt
max = max

n≤t≤n+k
Γt

val .

The relative decrease of discrimination level ∆Γ in two epochs n and (n+ t) is defined as

(6.11) ∆Γt
val =

Γt
max

Γt
val

−1.

The value At
min is defined to be the lowest accuracy in the validation set obtained from

epoch n up to epoch (n+k):

(6.12) At
min = min

n≤t≤n+k
Γt

val .

105



CHAPTER 6. BALANCING LEARNING MODEL PRIVACY, FAIRNESS, AND
ACCURACY WITH EARLY STOPPING CRITERIA

The relative increase of accuracy ∆A in two epochs n and (n+ t) is defined as

(6.13) ∆At
val =

At
val

At
min

−1

Now we define F A(t) as the sum of the relative decrease of discrimination level ∆Γ

and the relative increase of accuracy ∆A at the training epoch t as

(6.14) F A(t)=α∆Γt
val +∆At

val ,

where α is a parameter to control the balance between accuracy and discrimination level.

F A can measure the balance between the discrimination level under certain fairness

metrics and accuracy. A higher F A situation is that the discrimination level decreases

at an epoch, while accuracy does not reduce much. A high F A is one obvious candidate

reason to stop training because it indicates further training consumes more privacy

cost and does not benefit model fairness and accuracy. This leads us to the first class of

stopping criteria: stop as soon as the F A exceeds a certain threshold:

(6.15) F A(t)≥β1,

where β1 is the threshold.

6.4.2 Stopping Criterion 2

The second stopping criteria rely on the sign of changes in the discrimination level. This

criterion says “stop when the discrimination level increases in β2 successive strips:

(6.16) Γ
t−β2
val ≥ ...≥Γt−1

val ≥Γt
val .

The idea behind this definition is that when the discrimination level in the validation

set has decreased not only once, but during β2 consecutive strips, we assume that such

a consecutive decrease indicates a local minimum of discrimination level. Note that if

multiple epochs meet stop criterion 2, the training will stop at the first epoch that meets

stop criterion 2.
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Algorithm 9 Balance privacy, fairness and accuracy with early stopping criteria
Input: Training set Dtra, validation set Dval loss function L (w), learning rate r, batch
size b, parameters α,β1,β2
Initialize: Model parameters w0

1: Train the model on the Dtra, and evaluate the error on the Dval with DP-SGD;
2: Find the epoch n when accuracy stabilizes on the Dval ;
3: Calculate the discrimination level Γ in terms of fairness metrics and accuracy A

since epoch n;
—– Stopping criterion 1 —-

4: for t ∈ [n,n+k] do
5: Calculate ∆Γt

val and ∆At
val

6: if F A(t)≥β1 then
7: Stop the training at the epoch t
8: end if
9: end for

—– Stopping criterion 2 —-
10: for t ∈ [n,n+k] do
11: if Γt−β2

val ≥ ...≥Γt−1
val ≥Γt

val then
12: Stop the training at the epoch t
13: end if
14: end for
Output: Accuracy, discrimination level and accumulated privacy cost (ϵ,δ)

6.5 Theoretical Analysis

6.5.1 The Impact of DP-SGD on Gradient

In this section, we conduct an analysis of DP-SGD’s impact on gradients w.r.t. each

group. The analysis shows that gradient clipping leads to a disparate impact on model

fairness. We analyze from the perspective of a single batch, where the utility loss is

measured by the expected error of the estimated private gradient w.r.t. each group. Our

analysis follows [7], which investigated bias-variance trade-off due to clipping. Let Bt be

a batch of data points xi, ..., xb at the epoch t. Each xi corresponds to a data point and

generates a gradient gt(xi). The goal is to estimate the average gradient ĝt from Bt in a

differentially private way while minimizing the objective function.

Theorem 6.1. Let original gradients at epoch t denote as gt, and the gradient after
clipping and noise as ĝt. The expected error of the estimated private gradient for a group

107



CHAPTER 6. BALANCING LEARNING MODEL PRIVACY, FAIRNESS, AND
ACCURACY WITH EARLY STOPPING CRITERIA

z satisfies

(6.17) E
∣∣ ĝt

z − gt
z
∣∣≤ 1

bz

C
ϵ
+ 1

bz

mz∑
i

(∣∣gt
z(xi)

∣∣−C
)
,

where bz is the size of a group z in a batch, and mz = |i : |gt
z(xi)| > C| is the number of

data points that are clipped in the group z.

Proof. First, the original gradients gt, the gradient after clipping ḡt, and the gradient

after clipping and noise ĝt are presented as following

gt = 1
b

b∑
i=1

gt(xi), ḡt = 1
b

b∑
i=1

ḡt(xi),(6.18)

ĝt = 1
b

b∑
i=1

( ḡt(xi)+N (0,σ2C2)).(6.19)

The gradient after clipping and noise for the same batch of data points for a group z is

denoted as, ĝt
z = 1

bz
(
∑bz

i=1 ḡt
z +N (0,σ2C2)) The expected error of the estimated private

gradient of a group z can be decoupled as

(6.20)

E
∣∣ ĝt

z − gt
z
∣∣≤ E

∣∣ ĝt
z − ḡt

z
∣∣+ ∣∣ ḡt

z − gt
z
∣∣

≤ 1
bz

C
ϵ
+ 1

bz

bz∑
i

max
(
0,

∣∣gt
z(xi)

∣∣−C
)

≤ 1
bz

C
ϵ
+ 1

bz

mz∑
i

(∣∣gt
z(xi)

∣∣−C
)
.

■

Result 6.1. The expected error of the estimated private gradient of a group z can be
decoupled as bias and variance.

From Inequation (6.20), we know that the utility loss of the group z, measured by the

expected error of the estimated private gradient, is limited by two terms: the variance

term and the bias term. The variance term, which is related to the clipping bound

C and the privacy budget ϵ, produces the utility loss due to random noise added to

the gradients. Bias is related to the clipping bound C and the size of gradients, which

produces the utility loss by clipping gradients. Note that if C is small, the variance will

be close to zero, but the bias will be large, making gradient less informative. Conversely,

if C is large, the bias will be small, but the variance will be great.
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Result 6.2. The clipping bound could lead to different discrimination levels for each
group when training neural networks with DP-SGD.

Note that the bias in Inequation (6.20) is different for each group due to gradient

distribution and the group size: these are the two factors that decide bias. Beginning

with gradient distribution, the bias due to clipping is greater in the group with larger

gradients. In SGD, the larger gradients make more of a contribution to the average

gradient ĝt prior to clipping, but this is not so with DP-SGD. After clipping, the larger

gradients have lost more information, so the direction of the gradient update changes

and is closer to the group with the smaller gradients. Second, the group with a larger

group size makes more of a contribution in the average gradient ĝt than the group

with a smaller group size both before and after clipping. Hence, gradient clipping has a

disparate impact on the gradients for each group and, in turn, the model accuracy. Since

fairness metrics, such as demographic parity, and equal odds, are always related to

predicted results from the model, disparate impact on model accuracy leads to disparate

impact on model fairness.

6.5.2 The Impact of DP-SGD on the Training Process

Theorem 6.2. Let V ar( ĝt) denote the variance of gradients at the epoch t in DP-SGD
and V ar(gt) denote the variance of gradients at the epoch t in SGD, and we have
V ar( ĝt)≥V ar(gt).

Proof. To prove Theorem 6.2, we need to calculate the variance of gradients V ar( ĝt)

in DP-SGD and the variance of gradients V ar(gt) in SGD. The average of gradients

w.r.t all data points is calculated as gave =∑N
i=1 g(xi). The variance of gradients in SGD

V ar(gt) comes from sampling, and can be calculated as

(6.21) V ar(gt)= 1
T

T∑
t=1

(gt − gave)2.

According to Expression in (6.21), gradients in DP-SGD are affected by gradient clipping

and noise addition. The variance of gradients in DP-SGD V ar( ĝt) can be calculated as

(6.22) V ar( ĝt)= 1
T

T∑
t=1

[( ĝt − gt)+ (gt − gave)]2.

Comparing Equations (6.21) and (6.22), we can conclude V ar( ĝt)≥V ar(gt). ■
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Result 6.3. In neural networks, the variance of the gradient can be transferred, which
means that the variance of the gradient is large, and the variance of the model training
result is also large. This can be expressed as V ar(gt)∝V ar(w)∝V ar( ŷ)∝V ar(Γ).

The variance of the gradients can transfer in model predictions as well as discrimination

levels. The variance of the gradient V ar(gt) is proportional to the variance of the

model parameters V ar(w). This is because model parameters are updated by gradients

directly according to Equation (1). The variance of the model parameters V ar(gt) is

proportional to the variance of the model predictions V ar( ŷ). This is because the model

predictions depend on the model parameters, and the relation can be simplified as

ŷ= fw(x). The variance of model predictions V ar( ŷ) is proportional to the variance of the

discrimination level V ar(Γ). This is because the discrimination level Γ(D, f ) depends on

model predictions. Hence, variance can be transitive from gradients to model predictions

and discrimination levels. Combining with Theorem 2, DP-SGD results in a larger

variance in accuracy and discrimination during the training.

6.5.3 The Changes of the Discrimination Level in the Validation
Set and Test Set

Theorem 6.3. Suppose that the validation set Dval and test set Dtest come from the
same data distribution P , the changes in the discrimination level of the validation set
Γ(Dval , fw) and the test set Γ(Dtest, fw) are similar.

Proof. Generally, the discrimination comes from the model and data [127], and thus we

analyze the discrimination in the validation set Dval and test set Dtest from the model

and data. Firstly, the discrimination level in the metric of demographic parity in the

dataset D can be expressed as follows

ΓDP (D, fw)(6.23)

= |γ0( ŷD , fw)−γ1( ŷD , fw)|
= |Pr( fw(xi)= 1|z = 0)−Pr( fw(xi)= 1|z = 1|)|

= |
∑N

i=1 fw(xi)(1− zi)∑N
i=1(1− zi)

−
∑N

i=1 fw(xi)zi∑N
i=1 zi

|.
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Similarly, the discrimination level in the metric of Equal opportunity can be expressed

as

ΓEO(D, fw)(6.24)

= |
∑N

i=1 fw(xi)yi(1− zi)∑N
i=1(1− zi)yi

−
∑N

i=1 fw(xi)yi zi∑N
i=1 zi yi

|.

According to Equation (23) and (24), the discrimination level depends on the model fw

and the group size bz. In our case, the same model is used in Dval and Dtest, and thus

the discrimination from the model should be similar. Also, Dval and Dtest coming from

the same data distribution P means that the group size bz from each group should be

approximately the same. Based on above, we conclude that the change of discrimination

level should be similar in the validation set Dval and test set Dtest. ■

6.6 Experiment

In this section, we first give more experimental results on the Medical prediction

and sentiment analysis tasks to show the impact of DP-SGD on the training process.

Second, we explore the impact of gradient clipping and noise addition on model accuracy

and fairness. Third, we show the effects of two early stopping criteria in the image

classification and sentiment analysis tasks under different noise scale σ, including

accuracy, discrimination level, privacy cost, stopping epoch and parameter values.

Finally, we present the positive prediction rate and true positive rate changes during

the training for a better understanding of the changes in demographic parity and equal

opportunity.

6.6.1 Experimental Setup

6.6.1.1 Medical Prediction: Age and Health Data

Dataset The task with the Health dataset 2 is to predict whether patients will be

admitted to a hospital within the next year. We divide patients into two groups based on

age (≤ 65 years and ≥65 years) and consider ’Age’ as the sensitive attribute. We sample

10,000 data points from both two groups, so the Health dataset has 20,000 samples.
2https://foreverdata.org/1015/index.html
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Model We use a logistic regression model with regularization parameter 0.01; SGD

learning rate r = 0.06; DP-SGD learning rate r = 0.2; batch size b = 256; the number of

training epochs T = 40; clipping bound C = 0.4; and noise scale σ= 1.

6.6.1.2 Sentiment analysis: Ethnicity and Movie Reviews

Dataset The last experiment is a sentiment analysis task using the IMDB movie

review dataset [93], and the objective is to classify each review as positive or negative.

The sensitive attribute is ethnicity, given by the method in [12, 13], where reviews

are labeled as Standard American English (SAE) or Other American English (OAE).

We sample 2,5000 tweets from each group split equally between positive and negative

sentiments.

Model We use FastText model [71] with 2.5M parameters, and pretrained 100-

dimensional GloVe embedding [110]. We use SGD learning rate r = 0.9; DP-SGD learning

rate r = 0.6; batch size b = 64; the number of training epochs T = 100; clipping bound

C = 1; and noise scale σ= 1.

6.6.1.3 Protocol

In the experiments, the learning rate is different for SGD and DP-SGD on the dataset.

This is because the convergence rate of DP-SGD depends on the variance of stochastic

gradients, bias introduced due to gradient clipping and variance due to noise addition

[? ]. The learning rate is tuned for the best performance by each model after binary

searching. Parameter α is set to be 0.001 in Eq.(14). The range of β1 is from 0.02 to 2,

and β2 is set to be 3.

In all settings, the dataset is split into 60% training data, and 20% validation data

and 20% testing data. δ is set to as 10−5. The implementation is based on PyTorch [109].

Experiments were carried out with NVIDIA GeForce GTX 1080 Ti, NVIDIA Quadro

RTX 5000 and Intel Xeon Gold 6142.

6.6.1.4 Evaluation Metrics

We define a metric that is used to evaluate the trade-off between accuracy, fairness and

privacy.
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Definition 6.8. Let At
test and Γt

test denote the model accuracy and discrimination level

measured after the epoch t for the test set. We define the trade-off between accuracy,

fairness and privacy (AFP) as the linear combination of accuracy, discrimination and

training epoch, which is expressed as follows

(6.25) AFP =−λ1At
test +λ2Γ

t
test +λ3t

where λ1, λ2, and λ3 are parameters that adjust the importance of accuracy, discrimina-

tion level and privacy cost. Since privacy cost is linearly related to training epoch t when

noise scale σ and clipping bound C are fixed in DP-SGD, we use epoch t to measure

privacy cost. A smaller AFP indicates a better trade-off, which means that the training

stops at higher accuracy and a lower discrimination level as early as possible when the

training is convergent. In the experiment, we set λ1 = 0.1, λ2 = 1 and λ3 = 0.01.

6.6.1.5 Baseline

Baseline 1: We set the baseline 1 that the epoch with the best validation accuracy is

used as the epoch to stop training after the training is convergent. This is a commonly

used method to implement traditional early stopping and is likely to achieve the best

test accuracy. More specifically, the validation accuracy in the UTK Face dataset and

the IMDB dataset stops increasing roughly after 70 epochs, and we choose the best

validation accuracy from epoch 70 to epoch 100.

Baseline 2: We set the baseline 2 that the training stops at the 30-th epoch after the

training is convergent. This is another commonly used method to implement traditional

early stopping, that is, stopping the training at a certain epoch after the training is

convergent. More specifically, since the training on the UTK Face dataset and the IMDB

dataset has converged since epoch 70, we set the training of both datasets to stop at

epoch 100.

6.6.2 Accuracy and Discrimination Level with SGD and DP-SGD

Figures 6.4 and 6.5 show the impact of SGD and DP-SGD on model accuracy and

fairness in terms of three fairness metrics on the Health and IMDB datasets. As shown,

accuracy again increases with more training epochs, and SGD’s accuracy is higher

than DP-SGD’s. DP-SGD’s training process is smoother than SGD’s. Even when the
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Figure 6.4: Training with SGD (Blue) and DP-SGD (Red) in the Health dataset.

training converges, there are still small variations in accuracy, which lead to great

variations in discrimination levels. All fairness metrics fluctuate during training, and

hence the fairness levels are highly related to when training is halted. Observations

from Figures 6.2-6.5 confirm our analysis in Section 6.4. That is gradient clipping and

noise addition in DP-SGD lead to high variations during the training process. When the

training is convergent, small variations in accuracy may lead to dramatic variations in

discrimination levels.
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Figure 6.5: Training with SGD (Blue) and DP-SGD (Red) in the IMDB dataset. Figure
6.5 shows that, with DP-SGD, more variations appear during the training in terms of
accuracy and discrimination levels.

6.6.3 Effect of Hyperparameters

We further conducted empirical analyses with the same three scenarios to examine

the impact of clipping bound C and noise scale σ. The results for each case are similar.

Therefore, we report the results of the sentiment analysis with the IMDB dataset here.

With the noise (σ ·C) fixed to 1, and the clipping bound C varied from 0.2,0.5,1,2,4,

Figure 6 shows that accuracy is better with a larger C until around 1, after which

it does not change much. This is because a larger C clips less information up to a

point (at 1) where no information is clipped at all. A smaller C, however, has a higher
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Figure 6.6: Training with SGD (Dark blue) and DP-SGD (other colors; σ ·C = 1 and C
varies) in the IMDB dataset. Figure 6.6 shows that clipping bound has an impact on
discrimination levels.

disparate impact and, therefore, the final model has a high discrimination level. Figure

6.6 shows the reverse, with the clipping bound C fixed at 1, and the noise (σ ·C) varied

among 1,3,5,7,10. Figure 6.7 shows the impact of noise level on SGD and DP-SGD. It is

clear, and unsurprising, that the amount of noise added has a huge impact on accuracy.

However, the same is not true of fairness. Noise does have some impact, but it is not

decisive.
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Figure 6.7: Training with SGD (Dark blue) and DP-SGD (other colors; C = 1 and σ

varies) in the IMDB dataset. Figure 7 shows that the noise scale does not produce a
distinctive difference in discrimination levels.

6.6.4 The Effect of Stopping Criteria

With structured datasets, training tends to be smooth because the models are usually

simple. Thus, stopping criteria are more useful in deep neural networks, and we con-

ducted two stopping criteria on unstructured datasets. We conduct two early stopping

criteria (SC 1 and SC 2 ) in different privacy levels, including σ= 1, σ= 1.5 and σ= 2. β

(β1 in the SC 1, β2 in the SC 2) is the parameter in the early stopping criteria, and the

value of β is chosen by some simple attempts. For example, when the value of β is large,

the stopping criteria may not be able to stop the training. In this case, the value of β
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UTK Face dataset
Metrics Demographic parity Equal opportunity Equal odds

Acc Dis Epoch AFP Acc Dis Epoch AFP Acc Dis Epoch AFP
SC 1, σ= 1 0.7732 0.0915 89 0.9041 0.7494 0.0224 74 0.6874 0.7797 0.1760 90 0.9980
SC 2, σ= 1 0.7708 0.1169 79 0.8298 0.7708 0.0227 79 0.7356 0.7797 0.1760 90 0.9980

Baseline 1, σ= 1 0.7880 0.1686 94 1.0308 0.7880 0.0242 94 0.8854 0.7880 0.2964 94 1.1576
Baseline 2, σ= 1 0.7851 0.1245 100 1.045 0.7851 0.0248 100 0.9462 0.7851 0.2624 100 1.1838

SC 1, σ= 1.5 0.7821 0.1062 81 0.8379 0.7791 0.0018 85 0.7738 0.7833 0.1633 91 0.9953
SC 2, σ= 1.5 0.7791 0.0832 74 0.7452 0.7750 0.0070 79 0.7190 0.7851 0.1968 96 1.0188

Baseline 1, σ= 1.5 0.7755 0.1349 80 0.8573 0.7755 0.0051 80 0.7275 0.7755 0.2576 80 0.9800
Baseline 2, σ= 1.5 0.7815 0.1130 100 1.0348 0.7815 0.0107 100 0.9325 0.7815 0.2270 100 1.1488

SC 1, σ= 2 0.7696 0.0934 93 0.9464 0.7607 0.0221 76 0.7060 0.7535 0.1849 77 0.8795
SC 2, σ= 2 0.7519 0.0758 79 0.7906 0.7696 0.0048 93 0.8578 0.7517 0.1449 81 0.8797

Baseline 1, σ= 2 0.7726 0.1158 97 1.008 0.7726 0.0085 97 0.9012 0.7726 0.2456 97 1.1383
Baseline 2, σ= 2 0.7684 0.1391 100 1.062 0.7684 0.0271 100 0.9502 0.7684 0.2445 100 1.1676

Table 6.1: Accuracy, discrimination levels and training epoch for the two early stopping
criteria with different parameters on the UTK Face dataset

could be adjusted to a smaller value.

Tables 6.1 and 6.2 show the accuracy, discrimination level and stopping epoch for

each of the two stopping criteria with the UTK Face and IMDB datasets. As shown,

baselines present a higher AFP most of the time, compared with the training with

proposed stopping criteria. This indicates that two stopping criteria can stop the training

at a better trade-off between accuracy, fairness and privacy. This is because DP-SGD

brings variations during the training, which leads to the possibility to obtain a model

that has a small discrimination level. In many cases, stopping criteria help to reduce

nearly half of the discrimination level. For example, the discrimination level can be

reduced to 0.0694 (when σ= 2 using SC 1) in the metric of demographic parity in the

IMDB dataset, which is less than half of the discrimination level in baselines.

6.6.5 Discrimination Levels in Validation and Test Sets

To explain why stopping criteria is helpful to guide when to stop the training, we

show how discrimination levels change in the validation and test sets of the sentiment

analysis task with IMDB. Figures 6.8-6.11 shows the trend of discrimination levels

in terms of demographic parity and equal opportunity on four datasets. The trend of

discrimination levels is consistent in validation and test sets, even if a gap may exist in

discrimination levels. The observation confirms the analysis in Section 6.3. Thus, the

validation set can help us to signal the ideal time to stop the training with the test set.
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IMDB dataset
Metrics Demographic parity Equal opportunity Equal odds

Acc Dis Epoch AFP Acc Dis Epoch AFP Acc Dis Epoch AFP
SC 1, σ= 1 0.8064 0.0821 92 0.9214 0.8064 0.0530 92 0.8923 0.8064 0.0827 92 0.8920
SC 2, σ= 1 0.8050 0.0921 77 0.7816 0.8050 0.0612 77 0.7507 0.8079 0.1133 81 0.8225

Baseline 1, σ= 1 0.8092 0.0929 89 0.9019 0.8092 0.0581 89 0.8671 0.8092 0.1052 89 0.9142
Baseline 2, σ= 1 0.8088 0.0985 100 1.0176 0.8088 0.0658 100 0.9849 0.8088 0.1119 100 1.0310

SC 1, σ= 1.5 0.7792 0.0782 94 0.9402 0.7782 0.0518 85 0.8239 0.7782 0.0819 85 0.8545
SC 2, σ= 1.5 0.7788 0.0940 77 0.7861 0.7794 0.0639 73 0.7159 0.7788 0.1067 77 0.7996

Baseline 1, σ= 1.5 0.7777 0.1030 95 0.9752 0.7777 0.0672 95 0.9394 0.7777 0.1258 95 0.9980
Baseline 2, σ= 1.5 0.7812 0.0945 100 1.0163 0.7812 0.0608 100 0.9826 0.7812 0.1019 100 1.0476

SC 1, σ= 2 0.7609 0.0720 86 0.8559 0.7609 0.0392 86 0.8231 0.7609 0.0694 86 0.8533
SC 2, σ= 2 0.7604 0.0740 81 0.8079 0.7604 0.0273 81 0.7612 0.7604 0.0705 81 0.8044

Baseline 1, σ= 2 0.7592 0.1180 93 0.9720 0.7592 0.0949 93 0.9489 0.7592 0.1607 93 1.0147
Baseline 2, σ= 2 0.7590 0.1077 100 1.0318 0.7590 0.6288 100 0.9869 0.7590 0.1388 100 1.0629

Table 6.2: Accuracy, discrimination level and training epoch for the two early stopping
criteria with different parameters on the IMDB dataset
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Figure 6.8: Discrimination level of demographic parity (a) and equal odds (b) on valida-
tion set (Blue) and test set (Red) in the Bank dataset. Figure 6.8 shows the changes of
discrimination level is similar in validation and test set in the Bank dataset.

6.6.6 Positive Prediction Rate and True Positive Rate

For a better understanding of how DP-SGD affects metrics of demographic parity and

equal opportunity, we plot the positive prediction rate (PPR) and true positive rate (TPR)

changes during training in each group. As Definitions 4 and 5 describe, demographic

parity is the difference in the number of positive predictions between groups, and equal

opportunity is the difference in TPR between groups.

In Figure 6.12, the positive prediction rate and true positive rate are both higher
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Figure 6.9: Discrimination level of demographic parity (a) and equal odds (b) on valida-
tion set (Blue) and test set (Red) in the Health dataset. Figure 6.9 shows the changes of
discrimination level is similar in validation and test set in the Health dataset.
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Figure 6.10: Discrimination level of demographic parity (a) and equal odds (b) on
validation set (Blue) and test set (Red) in the UTK Face dataset. Figure 6.10 shows the
trend of discrimination level is similar in validation and test set.

120



CHAPTER 6. BALANCING LEARNING MODEL PRIVACY, FAIRNESS, AND
ACCURACY WITH EARLY STOPPING CRITERIA

0 50 100
Epochs

0.10

0.15

0.20

0.25

0.30
De

m
og

ra
ph

ic 
pa

rit
y Val

Test

(a) IMDB-Demographic parity

0 50 100
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

Eq
ua

l o
dd

s

Val
Test

(b) IMDB-Equal odds

Figure 6.11: Discrimination levels on the validation set (Blue) and test set (Red) in the
IMDB dataset. Figure 6.11 shows the trend of discrimination levels is similar in both
sets.

in Group 2 than Group 1, and DP-SGD has a bigger impact on Group 2 than Group

1. In Figures 6.13 and 6.14, we can see a great deal of variation in both rates. This is

because deep neural network models typically deal with high-dimensional gradients,

which means gradient clipping has a higher probability of affecting gradients during

training. Even so, we could still see the trend of positive prediction rate and true positive

rate for each group. Overall, we find that DP-SGD changes the positive prediction rate,

and further affects discrimination level in demographic parity and equal odds. This

indicates that gradient clipping affects positive predictions during the training.

6.6.7 Discussion and Summary

6.6.7.1 Discussion

As shown in Tables 6.1 and 6.2, when σ increases, stopping criteria are more likely to

obtain the model with smaller discrimination. This is because a larger σ brings more

noise during the training, and noise leads to variations. This provides the possibility

that the model is updated at a low discrimination epoch.

Two stopping criteria have some differences. β1 is an important parameter to deter-

mine the trade-off. An appropriate β1 in stopping criterion 1 can stop the training at a

desirable trade-off. Since stopping criterion 1 considers the variation of accuracy and
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Figure 6.12: Training with SGD (Blue) and DP-SGD (Red) in the Health dataset. (a)
Positive predication rate in Group 1 (Solid line) and Group 2 (Dotted line) (b) True
positive rate in Group 1 (Solid line) and Group 2 (Dotted line). Figure 6.12 shows how
PPR and TPR change in two groups in the Health dataset.
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Figure 6.13: Training with SGD (Blue) and DP-SGD (Red) in the Bank dataset. (a)
Positive prediction rate in the protected group (solid line) and unprotected group (Dotted
line) (b) True positive rate in protected group (solid line) and unprotected group (Dotted
line). Figure 6.13 shows how PPR and TPR change in two groups in the Bank dataset.
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Figure 6.14: Training with SGD (Blue) and DP-SGD (Red) in the IMDB dataset. (a)
Positive prediction rate in Group 1 (Solid line) and Group 2 (Dotted line) (b) True
positive rate in Group 1 (Solid line) and Group 2 (Dotted line). Figure 6.14 shows how
PPR and TPR change in two groups in the IMDB dataset.
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Figure 6.15: Training with SGD (Blue) and DP-SGD (Red) in the UTK Face dataset.
(a) Positive predication rate in Group 1 (Solid line) and Group 2 (Dotted line) (b) True
positive rate in Group 1 (Solid line) and Group 2 (Dotted line). Figure 6.15 shows how
PPR and TPR change for two groups in the UTK Face dataset.
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discrimination level, it can avoid stopping the training at some epochs when accuracy is

not good. Stopping criterion 2 is easy to implement and parameter β2 is easier to select.

However, stopping criterion 2 may not stop the training at the best trade-off.

6.6.7.2 Summary

From these experiments, we summarize some findings as follows. (1) When DP-SGD

is used in deep neural network models, gradient clipping and noise addition will bring

more variations in model accuracy and fairness. (2) Both theoretical analysis and

experiments express a similar trend in validation and test sets in terms of demographic

parity, equal opportunity and equal odds. (3) Stopping criteria helps to strike a better

balance between accuracy, privacy and fairness. In terms of accuracy, the training is

stopped when it is convergent, which means little accuracy is lost. In terms of privacy,

stopping training early helps to save the privacy cost. In terms of fairness, the designed

criteria provide two means of striking a desirable discrimination level.

6.7 Related work

6.7.1 Differentially Private Machine Learning

In recent years, many work have studied differential privacy in machine learning. In

terms of the position where random noise is added in the training process, we classify

existing research into four types: input perturbation, output perturbation, objective

perturbation and gradient perturbation. Input perturbation means that individual data

are randomly perturbed to some extent before they are handed over to the model for

learning or analysis to prevent the model from acquiring real data [54]. Chaudhuri et

al. provided output perturbation where noise is added to optimal parameters obtained

by empirical risk minimization [24, 108], and an objective perturbation where noise is

added to the objective function [25, 56]. Later, differentially private stochastic gradient,

where noise is added to in the process of solving the optimal model parameters using

the gradient descent method, and ensuring that the entire process meets differential

privacy [1, 144]. In order to ensure the calculation efficiency of the algorithm, stochastic

gradient descent or small batch gradient descent methods are often used in practical

applications.
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6.7.2 Fair Machine Learning

In recent years, a large number of researchers have been working on fair machine

learning, we summarize the existing work on fair machine learning in the following

three lines.

6.7.2.1 Pre-processing Methods

Pre-processing methods eliminate the discrimination by adjusting the training data,

including suppression, reweighing and sampling to obtain fair datasets before training

[16, 73]. Also, learning fair intermediate representations in pre-process phase has re-

ceived much attention. [147] was the first to achieve fair machine learning by learning

fair intermediate representations. The basic idea is that mapping the training data

to a transformed space where as much useful information as possible is retained, but

the dependencies between sensitive attributes and class labels are removed. Many re-

searchers studied fair representation learning with different methods, such as adversary

learning [52, 94, 124]. These methods are based on using a classifier to predict sensitive

attributes as adversarial components. The advantage of pre-precessing methods is that

these methods can apply to all algorithms and tasks.

6.7.2.2 In-processing Methods

In-processing methods avoid discrimination with the modifications in the model aspects,

such as adding fair constraints or regularizers. [75] used regularizer term to penalize

discrimination to enforce non-discrimination in the learning objective. [57, 145, 146]

designed the convex fairness constraint to achieve fair classification. [4] reduced fair

classification to a sequence of cost-sensitive classification problems, where fairness

definitions are formalized as linear inequalities. [5] built a unified framework for

designing optimal and fair decision trees for classification and regression decisions. [98]

studied fair classifiers that were robust to perturbations, and formulated the problem

as a min-max to minimize a distributionally robust training loss. The advantage of

in-processing methods is that the level of fairness and accuracy can be controlled by

parameters in the model.
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6.7.2.3 Post-processing Methods

A third approach to achieving fairness is post-processing, where a learned classifier

is modified to adjust the decisions to be non-discriminatory for different groups. [60]

proposed an approach to use of post-processing to ensure fairness criteria of equal

opportunity and equal odds.

6.7.3 Comparison with Other Work

Several papers have studied the privacy and fairness issues in machine learning simul-

taneously. [40, 139] proposed a differentially private fair algorithm in logistic regression.

[67] studied fair learning under the constraint of differential privacy in the equalized

odds. [22] studied privacy risks of group fairness through the lens of membership in-

ference attacks. Different from these papers working on margin classifiers, our work

studies the balance between fairness, privacy and accuracy in deep neural networks.

And while, [9, 138] have considered the impact of DP-SGD on model accuracy. We first

put it further, we conduct preliminary studies on the impact of DP-SGD on model

fairness. We then analyze how to reach a better trade-off between accuracy, fairness and

privacy with early stopping criteria.

6.8 Summary

The empirical and theoretical analyses show that DP-SGD makes the training less

stable, and has a disparate impact on model fairness. Moreover, small variations in

accuracy can lead to dramatic variations in the resulting model‚Äôs discrimination

levels, and the variations are similar in the validation set and test set. Hence, we

leverage these phenomena with two different criteria for stopping training as a solution

for fine-tuning the trade-off between accuracy, fairness and privacy. The stopping criteria

are easy to implement and can be used with any fairness metric.
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REVISITING MODEL FAIRNESS VIA ADVERSARIAL

EXAMPLES

In the last main chapter, we have studied how privacy-preserving methods could affect

model fairness. However, fairness could also be affected by adversarial examples. Exist-

ing research evaluates model fairness over limited observed data. In practice, however,

factors such as maliciously crafted examples and naturally corrupted examples often

appear in real-world data collection. This severely limits the reliability of bias removal

methods, inhibits the fairness improvement in long-term learning systems, and probes

to study accuracy-related robustness. In this chapter, we focus on the vulnerability of

model fairness - how adversarial examples could skew model fairness. We propose a

general adversarial fairness attack framework that can twist model bias through a

small subset of adversarial examples.

7.1 Introduction

Model fairness has been studied extensively [31, 105], with researchers agreeing that it

is is an essential in machine learning models. Many events have proven that machine

learning algorithms can discriminate and do harm to the basic rights of human beings.

For example, Vigdor et al. [131] reported gender bias in Apple card’s credit ranking, while
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GPT-3, a state-of-the-art language model has been found to capture persistent Muslim-

violence bias [2]. Most research on fair machine learning has focused on defining what is

fair in machine learning, including individual fairness [46] and group fairness [15, 145],

and explored the methods to remove discrimination before learning [117, 124, 149],

during learning [4, 146] and after learning [91]. However, the literature has largely

ignored the susceptibility of assessing model fairness. The fairness of classifiers is often

evaluated on sampled datasets, and can be unreliable for various reasons, including

biased examples, missing and/or noisy attributes [69, 84, 98]. Assessing model fairness

is the key to determining the effectiveness of bias removal methods, as well as the key

to improving model fairness in dynamic learning systems [37, 89].

In this work, we are the first to focus on an important yet under-studied aspect

of the fairness problem: the vulnerability of model fairness to adversarial attacks.

Learning models are proven vulnerable to adversarial examples [58, 102, 122]. A small

and imperceptible perturbation on data examples is sufficient to fool state-of-the-art

classifiers, resulting in incorrect classification. However, research in adversarial machine

learning has mostly focused on accuracy. We argue that, like accuracy, model fairness

can also be targeted by malicious adversaries. Intuitively, adversarial examples lead to

incorrect classification, and further lead to disparate impact on the similarity between

individuals as well as disparate demographic information on groups. Thus, adversarial

examples prevent us from correctly assessing model fairness.

Figure 7.1 presents an example of a classification task, in which a bank makes a loan

decision. The dataset consists of two groups: group 1 (triangle points) and group 0 (circle

points). The fairness is evaluated in terms of individual fairness and group fairness

(using demographic parity (DP) to measure the difference in positive predictions between

groups [15]). Before the attack, the model satisfies individual fairness (“similar examples

should be treated similarly”), and the model is evaluated with no discrimination, DP

= 0. However, after the attacker converts two examples into adversarial examples by

altering the number of pets owned by customers (blue triangles become black triangles),

the model exhibits individual bias and group bias. Note that the number of pets is

considered as a less important feature and could be imperceptible by bank experts.

This shows that adversarial attacks can fool model’s predictions on input examples by

injecting a small amount of noise, which further skews model fairness.

In this chapter, we focus on the vulnerability of model fairness to adversarial attacks,
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Figure 7.1: Two examples in the group 1 with negative predicted labels are perturbed
into adversarial examples. These original examples are similar to their adversarial
examples but are being treated differently by the model. This violates individual fairness,
and furthers skews the demographic information in group fairness.

and how to maximize the model bias with the constraint of adversarial examples and

the perturbation scale. Our attacks effectively exploit the fact that data examples

exhibit disparate susceptibility to fairness metrics. This can disproportionately alter

the influence of data samples in different groups, which enables the attacker to place

adversarial examples where it can impose a large bias on the model. Our contributions

are summarized as follows:

• 1) Vulnerability of Model Fairness: We are the first to study the vulnerability

of model fairness from the view of adversarial examples. We define individual

adversarial bias and group adversarial bias, and explain the vulnerability of

individual fairness and group fairness to adversarial attacks.

• 2) Adversarial Fairness Attacks: We formulate the adversarial fairness at-

tack as a general optimization problem. The proposed algorithm can maximize

model bias with a fixed perturbation scale on limited adversarial examples, while

corporating with existing adversarial attack methods,

• 3) Empirical Benefits: We empirically evaluate our proposed methods across

four real datasets. Results show that a small perturbation scale could skew the

discrimination level dramatically.
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7.2 Related Work

Adversarial Attacks Since adversarial examples were first discovered [128], it has

been a hot topic in adversarial machine learning. Many successful adversarial attack

methods have been proposed to generate adversarial examples, including Fast Sign

Gradient Method (FSGM) [58], Deepfool [102], Projected Gradient Descend (PGD) [95],

etc. Most works on adversarial attacks focus on image recognition tasks. Recently,

however, adversarial attacks on tabular data have received attention [10, 18, 62, 86].

The main difficulty is the imperceptibility of perturbations in the tabular domain as

opposed to the image domain. For example, Ballet et al. studied adversarial attacks

on tabular data [10], and used feature importance as an indicator and applied more

perturbations to the less important features. In [62], adversarial examples on tabular

data are treated as counterfactual examples to help the explainability of the model.

Most existing adversarial attacks aim at model accuracy. In this work, we are the first

to analyze the vulnerability of model fairness via the view of adversarial attacks, and

design adversarial attacks to skew model fairness.

Fair Machine Learning In recent years, many fairness metrics have been proposed

to define what is fair in machine learning, including statistical fairness [31, 60, 146],

individual fairness [45, 46, 117] and casual fairness [83, 137]. In this work, we design

adversarial attacks aiming at individual and statistical fairness. Meanwhile, methods

to achieve fair machine learning fall into three categories based on when fairness is

addressed. Pre-processing methods eliminate the discrimination by transforming the

training data into a fair set [16, 73, 117]. In-processing methods avoid discrimination

with fair constraints or regularizers [4, 57, 145, 149]. Post-processing methods adjust

the decisions made by a model to be non-discriminatory [60, 79].

Recent studies [21, 101, 103] have demonstrated that fairness is not robust to attacks.

Mehrabi et al. [101] and Chang et al. [21] studied data poisoning attacks against group-

based fair machine learning. Nanda et al. proved that it may be easier for an attacker

to target a particular group, resulting in a form of robustness bias [103]. As can be

seen, a few works have discussed fairness robustness and designed data poison attacks

on group fairness. Different from these studies, we study the vulnerability of model

fairness via the view of adversarial attacks. Individual fairness is naturally susceptible
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to adversarial examples, and further adversarial examples skew the demographic

information in groups.

7.3 Vulnerability of Model Fairness to Adversarial
Attacks

Notation Consider a binary classifier f : X →Y , which maps training examples x to

a discrete label y ∈ {0,1}. Let D be a dataset with N data points D = {(xi, yi)}N
i=1, where

xi ∼ X contains the information of k unprotected attributes, the protected attribute z
(also called sensitive attribute), and yi ∈ {0,1}∼Y denotes the label. When considering a

binary protected attribute, D is divided into the advantage group D1 = {(xi, yi) : zi = 1}N
i=1

and disadvantage group D0 = {(xi, yi) : zi = 0}N
i=0. The advantage group is referred to as

the group that has better performance in terms of a fairness metric and vice versa.

Similarly, we have D+
1 = {(xi, yi) : zi = 1, yi = 1}N

i=1 and D−
0 = {(xi, yi) : zi = 0, yi = 0}N

i=1. In

particular, x+i and x−i denote the example xi with positive and negative labels; x̂+i and

x̂−i denote the example xi with positive and negative predicted labels.

7.3.1 Vulnerability of Individual Fairness

Individual fairness Individual fairness is formalized by viewing machine learning

models as maps between input and output metric spaces and defining individual fairness

as Lipschitz continuity of machine learning models. The definition is given as follows.

Definition 7.1. (Individual Fairness) [45] A model f : X → Y is individually fair if

for all xi, x j ∈ X , we have M( f (xi), f (x j))≤ d(xi, x j).

Individual fair models require that any two data examples xi, x j that are at distance

d(xi, x j), and map to distributions f (xi) and f (x j), respectively, such that the statistical

distance between f (xi) and f (x j) is d(xi, x j) at most. The distance metric d on the input

space depends on the machine learning tasks because it encodes the intuition as to

which users are similar.

Adversarial Attack Meanwhile, machine learning models are vulnerable to adver-

sarial attacks. The goal of adversarial attacks is to generate an adversarial example
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x′ to mislead the model [128]. Given an input example (x, y), an adversarial example

is a perturbation of the input pattern x′ = x+ r; here, r is small enough so that x′ is

imperceptible from x, but the model f predicts an incorrect label. Given the model f
and Lp-norm, the adversarial example is defined by solving the following constrained

optimization problem

(7.1) x′ = argmax
x′:||x′−x||p≤ϵ

L (x′, y),

where ϵ is the perturbation scale; L denotes the loss function; p denotes Lp norm.

Research [34, 65] showed that the robustness of models to adversarial examples relates

to the Lipschitz constant, and it can be used to establish a strict worst-case bound for

model robustness.

Connection We see that Lipschitz continuity connects with individual fairness and

adversarial attacks. When the perturbation norm and the similarity between examples

are comparable, adversarial examples could act as similar examples for an individual.

In practice, a learning model f usually does not satisfy Lipschitz condition, that is, f
does not satisfy individual fairness and is not robust to adversarial attack. Adversarial

examples could be the factor that leads to the break in individual fairness. John et

al. have verified individual fairness in machine learning models, and found that two

similar data examples could exhibit individual bias [70]. That is, a pair of valid inputs

which are close to each other (according to a distance metric) but are treated differently

by the model. However, it is difficult to find similar data examples in a dataset, while

adversarial attack can easily produce similar data examples. To measure the impact of

adversarial examples on individual fairness, we define individual adversarial bias as

follows.

Definition 7.2. (Individual Adversarial Bias (IAB)) Let d be a metric to evaluate

the similarity between two examples as well as the perturbation norm on adversarial

examples. A model f : X →Y exhibits individual adversarial bias if there exists a pair of

original and adversarial examples (xi, x′i), with M( f (xi), f (x′i))≥ d(xi, x′i). Such example

x′i is referred to as an individual biased example. Given a set of examples D, individual

adversarial bias of model f on D is defined as

(7.2) ΓI(D, f )= Prx,y∈D{M( f (x), f (x′))≥ d(x, x′)}
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In the context of adversarial attacks, the constraint is used to limit the perturbation

norm d(x, x′)≤ ϵ. Let us consider the example illustrated in Figure 1: a model f is used

to make a decision as to whether an application will be accepted based on customer-

provided information (incomes, age, etc.). When L2 norm is adopted, the adversarial

example x′i can be generated by altering the number of pets, which is an unimportant

feature in expert’s eyes, leading to M( f (xi), f (x′i))≥ ||xi − x′i||2.

7.3.2 Vulnerability of Group Fairness

Adversarial attacks directly undermine individual fairness by generating adversarial

examples. Adversarial attack can also undermine group fairness. The reasons are as

follows: 1) Adversarial examples can distort the group proportion in any group fairness

measure by carefully selecting adversarial examples; 2) Data examples of each group

have different distances to the decision boundary. Let us take DP as an example of

group fairness metrics to demonstrate the vulnerability of group fairness to adversarial

attacks.

Definition 7.3. (Demographic Parity (DP)) [15] A classification model satisfies

demographic parity if Pr( f (x) = 1|z = 1) = Pr( f (x) = 1|z = 0), where f (x) is the pre-

dicted label. The discrimination level of DP is calculated as I (D, f )= |Pr( f (x)= 1|z =
1)−Pr( f (x)= 1|z = 0)|.

The discrimination level of DP is measured by the difference in positive predictions

between groups. Intuitively, turning all examples into adversarial examples (flipping

their predicted labels) will not alter the discrimination level much. This is because the

full reversal of positive and negative predictions does not change the difference in the

absolute value of the discrimination level.

In addition, the perturbation scale is crucial to adversarial attacks. Given a small ϵ,

not all examples could be transformed into adversarial examples, and the proportion of

adversarial examples in each group may be different. This is because data examples

of each group exhibit disparate average distances to the decision boundary, examples

in one group may be more vulnerable to adversarial attacks than those in the other

group. Here, we define group adversarial bias based on DP, and quantify the disparate

133



CHAPTER 7. REVISITING MODEL FAIRNESS VIA ADVERSARIAL EXAMPLES

−10 −5 0 5 10
Distance

−8
−6
−4
−2
0
2
4
6

Di
st
an

ce

Label '+' in Group 1
Label '+' in Group 0
Label '-' in Group 1
Label '-' in Group 0

(a) Data
distribution of a binary classification
problem for randomly generated data.

0.5 1.0 1.5 2.0 2.5
Distance

0.2

0.4

0.6

0.8

Pr
ab

ab
ilit

y

Label '+' in Group 1
Label '+' in Group 0
Label '-' in Group 1
Label '-' in Group 0

(b)
Proportion of a group which is greater
than ϵ away from a decision boundary

Figure 7.2: An example of group adversarial bias.

susceptibility of data examples in each group to adversarial attack with the following

function.

Definition 7.4. (Group Adversarial Bias (GAB)) Given a dataset D and a perturba-

tion scale ϵ, group adversarial bias ΓG(D, f ) is defined as the sum of the probability that

x− in the advantage group D1 and x+ in the disadvantage group D0 are perturbed into

adversarial examples.

(7.3) ΓG(D, f )= Prx,y∈D{dis(x,B)≤ ϵ|x ∈ D1, y= 0}+Prx,y∈D{dis(x,B)≤ ϵ|x ∈ D0, y= 1}

where dis(x,B) denotes the distance between x and the decision boundary B. Here,

we consider x− in D1 and x+ in D0 because these examples exhibit the discrimination in

terms of DP. Note that ΓG( f ) ∈ [0,1], and a large ΓG indicates that the model f has the

potential to be more biased by adversarial attacks.

Let us consider an example of logistic regression (LR) to show group adversarial

bias. In LR, the decision boundary is well understood and can be expressed in a closed

form. As a result, we can easily calculate the proximity of each point to the decision

boundary. Consider a toy dataset and learned classifier in Figure 7.2 (a); here, red and

blue points denote x+ and x−, and circle and cross denote examples in D1 and D0. We

can quantify the disparate susceptibility by plotting the proportion of examples that are

greater than ϵ from the decision boundary. As shown in Figure 7.2 (b), we observe that

x− in D1 is generally far from the decision boundary than x+ in D0.
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From a strictly view of classification accuracy, which class being closer to the decision

boundary is not of concern because two classes could achieve similar classification

accuracy. However, when we move from this toy problem to a neural network with real

data, this difference between classes can become a potential vulnerability to group

fairness, especially for a well-designed perturbation scale.

7.4 Method

7.4.1 Problem Formulation

Consider a white-box attacker who can access the model and dataset D. The attacker

aims to maximize model bias Γ by carefully selecting a subset of examples Ds from

D and converting them into a set of adversarial examples D′
s with the constraint of

perturbation norm on adversarial examples. We assume that sensitive attributes are

not perturbed by attackers. Because sensitive attributes are very sensitive, changes in

sensitive attributes are easily discovered by domain experts. The optimization problem

can be described as follows

max
D′

s

Γ(D′, f )(7.4)

s.t. |Ds| ≤ η|D|(7.5)

where x′ = argmax
x′:||x′−x||p≤ϵ

L(x′, y).(7.6)

where D′ = {D′
s ∪D s̄} denotes the set that consists of adversarial examples and original

examples; |Ds| is the number of data examples that are perturbed; η denotes the

proportion of data examples. The constraint (7.5) restricts the number of data examples

being perturbed, and the constraint (7.6) limits the maximum perturbation on the Lp

norm.

7.4.2 Adversarial Attack on Individual Fairness

The optimization goal of adversarial attacks on individual fairness is to maximize

individual adversarial bias ΓI (D′, f )= Prx,y∈D′{D( f (x), f (x′))≥ d(x, x′)}. As we can see, it

depends on the metrics M and d. A description of these metrics is provided below.
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Distance Metric Here, we use two distance metrics: L2 norm and weighted L2 norm.

L2 norm is widely used to evaluate the distance between individuals. Moreover, we use

weighted L2 norm because the imperceptibility on tabular data is relevant to feature

importance [10]. Each feature xk is associated with a feature importance coefficient

vk ∈R, and v = {v1, ...,vk}, and the feature importance depends on the domain knowledge

of the dataset. In this way, we define weighted L2-norm based on the product of feature

importance and data in L2 norm as d(xi, x′i)= ||(xi − x′i)⊙v||2, where ⊙ is the Hadamard

product.

The choice of M depends on the form of the output. A model is fair if, for any pair of

close inputs (xi, x′i), the model outputs are also close. In classification models, this means

that the model’s decision does not change (i.e., f (xi)= f (x′i)). It is therefore appropriate

to use the discrete metric M( f (xi), f (x′i))= I[ f (xi), f (x′i)] with the threshold equal to 0 on

the model output; since, in a fair classification model, we want to prevent any change in

the class label due to small perturbations. The distance metric adopted in this work is a

common means of measuring similarity between examples. We believe that constructing

a good distance metric to measure individual adversarial bias is an important research

question in the future.

Distance to Decision Boundary Given the constraints on the perturbation scale

and the number of adversary examples, maximizing individual fairness bias requires the

examples that are most vulnerable to adversarial attacks. Surely, the most vulnerable

examples can be found by brute-force search. However, as we know, the generation

of adversarial examples is time-consuming. As the community has discovered, data

examples closer to the decision boundary might be more susceptible to adversarial

attack [64, 129, 134]. Some studies have conducted empirical research to show this

distance, but there is no explicit way to measure it. We use an approximate method to

calculate the distance between examples and the decision boundary. Let f0(x) and f1(x)

be the outputs of the softmax layer of a neural network. The decision boundary of the

network can be defined as B = {x| f0(x) = f1(x)}. According to [50], the distance to the

boundary can be approximated as

(7.7) dis(x,B)= | f0(x)− f1(x)|
∥∇x f0(x)−∇x f1(x)∥p
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Eq.(7) can be used to calculate the approximate distance between examples and the

decision boundary. The optimization problem of individual adversarial bias is then solved

by selecting the examples closest to the decision boundary. When an example is near

the decision boundary, the distance from the example x can be further approximated as

dis(x,B)= |g0(x)− g1(x)| according to [120] where g0(x) and g1(x) denote the inputs to

the softmax layer for classes 0 and 1. Thus, given a perturbation scale ϵ, if |g0(x)−g1(x)| ≤
ϵ, we can consider this sample has the potential to produce adversarial examples that

undermine individual fairness.

7.4.3 Adversarial Attack on Group Fairness

Intuitively, the goal of maximizing group adversarial bias is to turn x̂− into x̂+ in G1,

and turn x̂+ into x̂− in G0 to the greatest extent. In this way, the distinction in positive

predictions between groups increases, leading to a more biased model.

Objective Function We now transform group adversarial bias ΓG defined in Eq. (7.3)

according to the definition of DP, which can be expressed as

ΓG(D′, f )(7.8)

= Prx,y∈D′{dis(x,B))≤ ϵ|x ∈ D1, y= 0}+Prx,y∈D′{dis(x,B))≤ ϵ|x ∈ D0, y= 1}

=
∑|D′|

i=1 Pr[ f (xi)= 1](1− yi)

|D1|
+

∑
i=1D′|(1−Pr[ f (xi)= 1])yi

|D0|
where |D1| and |D0| denote the number of examples in D1 and D0. Note that |D1| = |D′

1|
and |D0| = |D′

0| because the sensitive attribute of each example does not change. Next,

we propose an algorithm to solve the optimization problem.

Adversarial Example Selection Given the perturbation scale, ϵ and the number of

perturbed examples |Ds|, the value of group adversarial bias depends on the likelihood

of an example being converted into an adversarial example according to Eq.(7.8). To

maximize group adversarial bias with constraints, we need to select examples that are

more likely to become adversarial examples. In other words, we need to select examples

in D−
1 and D+

0 that are closest to the decision boundary. Note that group adversarial

bias is the same when one x̂+ is perturbed into x̂− in D0 and one x̂− is perturbed into
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x̂+ in group D1. First, we gather examples in D−
1 and D+

0 , and rank them in terms of

the distance dis(x,B) calculated in Eq. (7.7) in an ascending order. We can then select

data examples according to the rule in Eq. (7.9). Algorithm 1 describes the process of

the optimization problem of maximizing group adversarial bias.

(7.9) Ds =
η|D|, i f |Ds| ≤ |D−

1 |+ |D+
0 |

|D−
1 |+ |D+

0 |, Otherwise

Theorem 7.1. Let I (D, f ) and I (D′, f ) denote the discrimination level of model f on
the dataset D and D′. The range of I (D′, f ) with our proposed method is as follows

(7.10) 0≤I (D, f )≤I (D′, f )≤I (D, f )+
|D−

s,1|
|D1|

+
|D+

s,0|
|D0|

≤ 1,

where |D−
s,1| and |D+

s,0| denote the number of examples in D−
s,1 and D+

s,0. Theorem

7.1 states that the selection of adversarial examples with our method will increase the

discrimination level, and the proof is provided in the Supplementary.

Proof. First, we decompose the discrimination level of I (D′, f ) in terms of the definition

of DP.

I (D′, f )

(7.11)

= |Pr( f (x)= 1|z = 1)−Pr( f (x)= 1|z = 0)|
= Pr( f (x)= 1|z = 1)−Pr( f (x)= 1|z = 0)

=
∑|D|

i=1 f (xi)zi +∑|D′
s|

i=1 Pr[ f (x′i)= 1]zi

|D1|
−

∑|D|
i=1(1− f (xi))(1− zi)−∑|D′

s|
i=1 (1−Pr[ f (x′i)= 1])(1− zi))

|D0|

= (
∑|D|

i=1 f (xi)zi

|D1|
−

∑|D|
i=1(1− f (xi))(1− zi)

|D0|
)+ (

∑|D′
s|

i=1 Pr[ f (x′i)= 1]zi

|D1|
+

∑|D′
s|

i=1 (1−Pr[ f (x′i)= 1])(1− zi)

|D0|
)

≤I (D, f )+
|D−

s,1|
|D1|

+
|D+

s,0|
|D0|

The absolute value of I (D′, f ) is removed because when the adversary has the back-

ground knowledge of which group is the advantaged group. Positive predictions in

the advantage group come from two parts: the original set D and the adversarial set
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D′
s. While positive predictions in the disadvantaged group come from the original set

D minus the adversarial set D′
s. The minus is because some examples with positive

predictions are turned into adversarial examples with negative predictions. Note that

|D1| = |D′
1| and |D0| = |D′

0| because the sensitive attribute does not change. The last

inequation is because not all selected examples can flip predicted labels successfully.

Thus the upper bound of discrimination level is when all selected examples in D+
s,0 and

D−
s,1 flip their predicted labels. The lower bound of I (D′, f ) is I (D, f ), which means

that selected examples fail to flip predicted labels given some hard conditions, such as a

small perturbation scale. ■

Algorithm 10 Adversarial Example Selection
Input: Dataset D, the number of adversarial examples |D′

s|, perturbation scale
ϵ

for xi ∈ D do
if xi ∈ D−

1 then
Execute an adversarial attack method to generate x′i
Calculate the distance dis(x,B) according to Eq.(7.7)

end if
if xi ∈ D+

0 then
Execute an adversarial attack method to generate x′i
Calculate the distance dis(x,B) according to Eq.(7.7)

end if
end for
Sort x′ according to distance dis(x,B) in an increasing order
Select x′ according to Eq. (7.9)

Output: A set of adversarial examples D′
s

7.5 Experiment

The aim of our experiments is to assess: the vulnerability of model fairness to adversarial

attacks, and the effectiveness of our methods to individual and group fairness in terms

of the discrimination level and the perturbation norm.
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Table 7.1: Description of datasets

Dataset Size No. features Sensitive attribute Prediction task Discrimination

German 1000 20 Age Approve loan application? 0.0407
Bank 45211 20 Age Subscribed to a deposit account? 0.0627
Titanic 891 9 Race Survive? 0.0081
Law 1823 17 Gender Pass the exam? 0.0572

7.5.1 Experimental Setup

7.5.1.1 Datasets, Models and Parameters

We demonstrate our proposed methods on four datasets well used in the fairness

literature: German, Bank, Titanic and Law. The basic description of these datasets is

given in Table 7.1. All datasets are preprocessed using uniform sampling [73] to obtain

fair datasets in terms of demographic parity. As shown in Table 7.1, the discrimination

level in four datasets is small.

We build a fully connected neural network using dense ReLU layers and a Softmax

layer for the last one. We split the dataset into training set (70%), and test set (30%).

We set the size of selected examples Ds = 0.2∗D; the perturbation scale ϵ= 0.4 on the

Titanic dataset and ϵ = 0.2 on the other three datasets.We use the Adam optimizer

with learning rate 0.001, batch size 64, momentum 0.9 and weight decay 0.001 to train

neural networks. To limit the generated adversarial examples x′ in a coherent subspace,

we clip x′ to the bounds of each feature. More formally, we clip each feature xi ∈ [1...k]

so that it remains within its their natural range [min(xi),max(xi)].

7.5.1.2 Evaluation Metrics

Adversarial Bias: Individual adversarial bias (IAB) is measured by the success rate of

individual biased examples by Eq. (7.2), and group adversarial bias (GAB) is measured

by Eq. (7.3).

Perturbation Norms: To evaluate the degree to which the adversarial attack is

imperceptible, we measure the non-weighted norm of the adversarial perturbation

||x− x′||2 and weighted norm of the adversarial perturbation ||(x− x′)⊙ v||2. In both

perturbation norms, we compute the mean and median value over the set of adversarial

examples D′
s. We denote the mean and median of the perturbation norm as MeanP
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and WMeanP; the weighted mean and median of the weighed perturbation norm as

WMeanP and WMedian.

Distance to Closest Neighbor: Although the perturbation norm of an example

allows us to compare the scale of perturbation with itself, this value does not provide

insight into the importance of perturbation for a given dataset. We, therefore, compute

the average non-weighted and weighted distance between the adversarial example

and the closest neighbors from the original samples. Thus, we can measure the effect

of the perturbation on the dataset. The distance to the closest neighbor is defined

as dn(x′i) = argmin
x∈D

||x′i − x||2 and dwn(x′i) = argmin
x∈D

||(x′i − x)⊙ v||2 where x denotes the

original examples in the dataset D. We use MD and WMD to denote the non-weighted

and weighted mean distance between an adversarial example to its closest neighbors.

In the experiment, we calculate the average distance of the nearest three neighbors.

7.5.1.3 Methods and Baselines

In this experiment, we consider two methods, LowProFool (LPF) and DeepFool (DF),
to generate adversarial examples on tabular data. A brief description of these methods is

presented below; more details of these methods can be found in the Supplementary. LPF
generates adversarial examples on tabular data by making use of feature importance

as an indicator and applies more perturbations to the less important features [10].

The perceptibility of LPF is measured as the L2 norm of the perturbation weighted

by a feature importance vector. DF calculates the minimal perturbation to change the

classifier‚Äôs decision according to the orthogonal projection of original examples onto

the hyperparameter plane [102]. The perturbed example updates while the true label

and the label of the perturbed example are the same. We use LPF-Pro and DF-Pro to

denote LPF and DF implemented using our proposed methods. Considering it is the first

paper to work on adversarial fairness attack, the baseline methods are implemented

with randomly selected examples used as adversarial examples, which are denoted by

LPF-Ran and DF-Ran.

7.5.2 Experimental Results

Table 7.2 presents the performance of all methods on four datasets. Our findings show

that the proposed methods exhibit significantly higher discrimination and a lower
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Table 7.2: Results for all datasets and all methods concerning fairness metrics and
perturbation metrics

DATA SET METHOD IAB GAB MeanP WMeanP MedianP WMedianP MD WMD

LPF-PRO 0.9967 0.3665 0.1805 0.0242 0.2039 0.0151 1.5161 1.6195
GERMAN DF-PRO 0.9667 0.3665 0.1060 0.0339 0.0878 0.0253 1.3317 1.3464

LPF-RAN 0.9167 0.0051 0.2091 0.0326 0.2304 0.0207 1.4970 1.5767
DF-RAN 0.8000 0.0582 0.1464 0.0447 0.1273 0.0474 1.5636 1.5979

LPF-PRO 1.0000 0.4430 0.1632 0.0214 0.1619 0.0172 0.7114 1.0749
BANK DF-PRO 1.0000 0.4430 0.0519 0.0212 0.0410 0.0170 0.6912 1.0629

LPF-RAN 0.9833 0.0359 0.1895 0.0347 0.1760 0.0290 1.9914 1.6412
DF-RAN 1.000 0.0485 0.0956 0.0391 0.0953 0.0392 1.0568 1.8285

LPF-PRO 1.0000 0.3784 0.3072 0.2742 0.3111 0.2788 0.3280 0.4702
TITANIC DF-PRO 1.0000 0.3784 0.3071 0.2751 0.3105 0.2792 0.3282 0.4705

LPF-RAN 0.7833 0.0238 0.3159 0.2829 0.3135 0.2811 1.0099 1.0184
DF-RAN 0.8167 0.0115 0.3142 0.2821 0.3126 0.2801 1.0918 0.0751

LPF-PRO 0.9700 0.2951 0.0662 0.0191 0.0495 0.0126 1.0427 1.1446
LAW DF-PRO 0.9800 0.2984 0.0578 0.0203 0.0398 0.0145 1.0056 1.0931

LPF-RAN 0.8200 0.0861 0.0981 0.0294 0.1015 0.0263 1.1660 1.2145
DF-RAN 0.8900 0.0562 0.0819 0.0303 0.0715 0.0251 1.0626 1.1820

perturbation norm than the baselines. As shown, LPE-Pro and DF-Pro can generate

huge individual and group adversarial bias. For examples, group adversarial bias is

0.3665 in LPF-Pro and DF-Pro with the German dataset. While group adversarial bias

in LPF-Ran and DF-Ran are quite small, less than 0.1. This indicates that adversarial

examples can effectively turn a fair model into an unfair model with our proposed

methods. As for the perturbation norm, MeanP, WMeanP, MedianP and WMedianP
are lower in LPF-Pro and DF-Pro than in LPF-Ran and DF-Ran. This indicates that

selected examples in the proposed methods can be perturbed into adversarial exam-

ples with fewer perturbations than randomly selected examples. Also, Wmean and

WMedian are typically larger in LPF than DF, while WmeanP and WMedianP are

smaller in LPF than DF. This indicates that LPF performs a lower perturbation norm

when considering feature importance as an indicator of imperceptibility. MD and WMD
show the perturbation norm by comparing with its nearest neighbors; we set 3 nearest

neighbors in the experiment. As shown, the perturbation norm is much smaller than

the distance to the nearest neighbors, which further highlights that the perturbation

norm is imperceptible.

Ablation Study Next, to better understand how adversarial examples affect model

fairness in the proposed methods, we show the performance with varying perturbation
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Figure 7.3: Group adversarial bias and individual group adversarial bias on the German
and Bank datasets with increasing perturbation scale ϵ. Results show that adversarial
examples in our proposed methods can significantly skew individual fairness and group
fairness more than baselines.
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Figure 7.4: The mean of the perturbation norm on the German and Bank datasets with
an increasing number of adversarial examples ϵ in Fig. 7.4 (a) and 7.4 (b). The result of
the group adversarial bias on the German and Bank datasets with the growing number
of adversarial examples in Fig. 7.4 (c) and 7.4 (d).

scale ϵ and the number of adversarial examples. Figure 7.3 shows group and individual

adversarial bias with varying perturbation scale ϵ on the German and Bank datasets

(The results for all datasets are given in the supplementary). The discrimination level

starts to increase and then becomes steady with increasing ϵ. This is because with a

larger perturbation norm, examples are easier to find its adversarial example. Fur-

thermore, group adversarial bias grows when more adversarial examples are present.

However, a larger ϵ does not help LPF-Ran and DF-Ran generate more group adversarial

bias.

In Figure 7.4 (a) and 7.4 (b), the mean of the perturbation norm MeanP increases

with a growing ϵ. Meanwhile, MeanP in the proposed methods is smaller the baselines,

which proves that our proposed methods select examples that are more vulnerable to

adversarial attacks. Figures 7.4 (c) and 7.4 (d) show the changes in group adversarial

bias with a varying number of adversarial examples. Group adversarial bias in the

143



CHAPTER 7. REVISITING MODEL FAIRNESS VIA ADVERSARIAL EXAMPLES

proposed methods increases as the number of adversarial examples increases. This is

because the proposed methods generate adversarial examples in the direction where

the discrimination increases. However, the discrimination level in the baselines does

not change much. This is because randomly generated adversarial examples do not lead

to a preference for a specific group.

7.6 Summary

In this chapter, we analyze the vulnerability of model fairness via the view of adversarial

examples. Our proposed algorithms are able to maximize the discrimination level with

the constraints of a number of adversarial examples and the perturbation scale. In

practice, the proposed algorithms are very general and are straightforward to apply in

any adversarial attacks to skew model fairness. We hope the insights revealed will drive

further research into solutions for building robustly fair learning models.
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CONCLUSION AND FUTURE WORK

8.1 Conclusion

This thesis broadly investigates privacy and fairness problems in machine learning. The

proposed methods and experimental results suggest that machine learning can provide

users with a better experience in terms of privacy and fairness without sacrificing too

much model performance. The results from Chapter 3 show that correlated datasets

may leak more privacy information than expected. A careful selection of features will

help achieve a better trade-off between data utility and data privacy in correlated

datasets. Chapters 4 and 5 show that unlabeled data is able to improve the trade-

off between fairness and accuracy in machine learning, and pre-processing and in-

processing methods in supervised learning can also be applied in semi-supervised

learning with some adjustments. Chapter 6 shows that DP-SGD makes the training

less stable and has a disparate impact on model fairness, and the discrimination level

can be used as a key indicator to guide when to stop training. We view the results as

a promising preliminary investigation into the relationships between training time

and model balance. Finally, Chapter 7 shows the vulnerability of model fairness via

the view of adversarial examples. Our key finding is that adversarial examples easily

affect individual fairness, and further adversarial examples will distort demographic
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information among groups.

8.2 Future Work

When working on fair semi-supervised learning, we have an assumption that labeled

and unlabeled have very similar data distributions. However, this assumption may

not hold in some real-world practices. When labeled and unlabeled data distributions

are unknown or different, the bias estimation could be inaccurate from labeled data to

unlabeled data. Hence, one of the future research directions is how to achieve fair semi-

supervised learning where labeled and unlabeled data have different data distributions.

Another further direction is to explore ways to achieve fair semi-supervised learning

with other fairness metrics, such as individual and casual fairness. The dominant

research focus in fair learning is known as group fairness. However, individual and

casual fairness catch types of unfairness that group fairness metrics miss. individual

and casual fairness in semi-supervised learning is an open question of how unlabeled

data may also benefit other fairness metrics.

Interaction between privacy and fairness Most existing work assumes that sensi-

tive attributes are known when building fairness-aware models and evaluating fairness

metrics. For example, sensitive attributes of gender and race are known information

when designing fairness constraints. However, sensitive attributes are usually con-

sidered as sensitive information which is unavailable because of privacy concerns or

the dataset may be constructed for use in a situation where the sensitive information

is collected unnecessarily, undesired, or even illegally. In many situations, collecting

large datasets with such sensitive information is impossible. Therefore, training and

evaluation of fair machine learning models become a challenging problem. This is an

open question of how to build fairness-aware and evaluate fair machine learning without

sensitive attributes.
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