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ABSTRACT

E lectronic trainers (e-trainers) are fitness guidance systems consisting of motion
signal sensor(s), a user interface, and a control system. Owing to the widespread
popularity of fitness and personal training, e-trainers have found numerous

applications across many fields. However, the design of e-trainers is challenging because
of their requirement for miniaturisation and problems with discrepancies, drift, lack of
data, and limited resources. The primary aim of this thesis is to design an improved
e-trainer with a focus on the initial measurement unit calibration algorithm and the
practical implementation of pattern recognition algorithms. Several problems in the field
are considered, including kernel-based heart rate regulation, practical considerations for
the calibration of efficient wearable devices, and model compression using the pruning
method.

The first part of this thesis investigates several practical issues associated with
calibrating the proposed low-cost wearable e-trainer in clinical settings, including poor
repeatability and significant volatility. In field-based environments, the parameter vari-
ation of the low-cost triaxial gyroscope requires an effective and practical calibration
process to reduce the errors due to unexpected variance. To this end, an efficient in-
field calibration method is developed that can readily calibrate the triaxial gyroscope
without additional equipment. This experimental scheme can be easily implemented by
manually rotating the triaxial gyroscope over a certain angle as the calibration refer-
ence. A linearised calibration model is developed for the proposed experimental scheme,
and G-optimality is achieved. Extensive numerical simulations demonstrate that the
calibration error is relatively low and the estimation of model parameters is unbiased
under mild experimental conditions. After a calibration process taking less than 30 s,
the absolute error of the scale factors is always less than 2.5×10−2 for LSM9DS1 and
that of the biases is less than 1×10−2 for ICM20948.

In the second part of this thesis, to overcome the lack of suitable training data for
modelling the human cardiovascular response, the simulation and control of the human
heart rate are investigated in detail using a kernel-based nonparametric model with
model predictive control. This kernel-based method introduces a kernel regularisation
term that provides prior information to the model estimation phase. By adding this
prior information, the experimental protocol can be significantly simplified, with a model
training time of only 10 min. Based on the identified model, a controller that uses model
predictive control is designed to track a predefined reference heart rate profile. One
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advantage of this approach is that the speed and acceleration of the treadmill can be
maintained within a safe range for vulnerable exercisers. The entire model construction
process takes 10 min, including an 80-s resting period. The protocol is relatively simple
and consists of only two accelerations. In the heart rate tracking task, the heart rates of
12 experiment participants follow the target heart rate to within ±3 beats per second.

The third part of this thesis leverages the state-of-the-art neural network pruning
method to compress the network model. This allows the computational complexity of
the inference task to be reduced by 98% without significant performance degradation. It
is therefore possible to use advanced deep learning models to estimate human motion
states on embedded systems with limited resources. For the user, more neural network
models operating on the device means that more functions can be provided. Experimental
results verify the effectiveness and efficiency of the proposed method, with up to 60% of
graph links and 98% of network weights pruned across different tasks with no significant
drop in accuracy.

An application of the proposed e-trainer is introduced in the fourth part of this thesis.
The purpose of this application is to estimate the gait parameters (i.e. contact time (CT)
and flight time (FT)) of 40 rugby players associated with the Sydney Swans Football Club.
This is important because the analysis of such gait parameters can help players increase
their running performance and reduce the running-related injury risk. In addition to the
CT and FT, a pre-processing system that detects the running period and identifies the
95% confidence interval is introduced to analyse and enhance the detection accuracy. We
also investigate the compatibility of CT and FT estimation based on the data collected
from a gyroscope and an accelerometer placed in a single location. The results show that
the combined accelerometer–gyroscope system obtains the desired accuracy (absolute
error <20 ms) in CT and FT detection. Moreover, after introducing the confidence interval,
the two systems exhibit high consistency at lower running speeds (<20 km/h).

In conclusion, this thesis describes a comprehensive solution for the design of both
hardware and software for electronic virtual trainers. The first part presents an efficient
calibration method for gyroscopes. This method only requires simple external devices
(or may not need any external device), and can be finished within 30 s. The gyroscope
reading accuracy is significantly enhanced by the use of our method. The second part
aims to overcome the problem of a lack of data using kernel-based modelling. For users,
fewer experiments are needed during the model building period. For the issue of limited
resources, the fourth part proposes a model compression method for complex neural
networks operating on resource-limited embedded systems. Thereby, novel machine
learning algorithms can provide additional guidance to the user.
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INTRODUCTION

1.1 Motivation and Scope

Exercise and general fitness practices have played a vital role in numerous

cultures throughout history. From the dawn of humankind to around 10,000

BC, physical development followed a natural path that was determined by the

practical demands of life in a wild landscape, as well as the vital need to avoid threats

and seize opportunities for survival. Civilised populations also valued physical fitness

for sports. Records of athletic competitions exist from ancient Egypt, and the ancient

Greeks famously created the Olympic games. Not surprisingly, these early sports were

all based on practical, natural movement skills and were fundamentally related to the

preparedness needed for war.

Nowadays, however, the widespread dedication to fitness has been endowed with

different functions and meanings. In fact, fitness offers benefits beyond survival. Regular

exercise and physical activity promote strong muscles and bones, staying active can help

maintain a healthy weight and an attractive appearance, and it has been found that

people who exercise regularly are less likely to become sick than those who do not.

Thus, exercise and general fitness practices are being increasingly investigated,
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appreciated, and employed in different areas. Research shows that physical activity or

exercise can improve health and reduce the risk of developing illnesses such as type-2

diabetes [9–11], cancer [12, 13], and cardiovascular disease [14–16]. Numerous studies

have shown that regular physical activity increases life expectancy and reduces the risk

of premature mortality [17–19]. Studies also indicate that physical activity can improve

mental health [20, 21] and self-confidence [22, 23]. Recently, with regard to COVID-19

infection, researchers found that general physical fitness can reduce the hospitalisation

rate of the population [24] and shorten the recovery time [25].

Despite their enhanced physicality, exercisers still suffer from training injuries due

to lack of training knowledge, and may be reluctant to invest time and money to learn

the systematic fitness concepts required to become competent self-trainers. Owing to the

urgent need for training guidance, personal trainers and physiotherapists have become

popular professions. However, they have natural deficiencies: i) It takes considerable

time and money to train novices to become competent in certain tasks. ii) The onset of

fatigue limits the exercisers’ training time. iii) Face-to-face training or rehabilitation

guidance may cause the spread of COVID-19 and cannot overcome the geographical

obstacles presented by lockdowns.

Aware of the power and market value of fitness and the shortages of traditional

personal trainers, researchers both in academia and industry have started to devote

themselves to developing electronic personal trainers. Also known as e-trainers, these

devices are designed to collect and analyse human motion signals and provide training

suggestions [26–29]. Nowadays, e-trainers are ubiquitous, e.g. smartwatches and fitness

trackers. Figure 1.1 (left) shows a common sports band that is currently available on the

market. It can collect some basic sports data, but does not provide real-time feedback

based on our physical state. Figure 1.1 (right) shows a small wearable e-trainer designed

in this study, which can collect, process, and classify the motion signals of the human

body. In the near future, this will also have the ability to provide users with exercise

suggestions in real time.

An e-trainer is composed of two major parts, namely hardware and software (see
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Figure 1.1: Left: Common sports band. Right: Fit.E, designed by the candidate.

Figure 1.2). The hardware can be further classified as motion signal sensor(s), a user

interface (UI), and a control system. The UI includes graphical user interfaces (GUIs),

auditory interfaces, and haptic user interfaces, of which the GUIs are the most common.

The software can be further classified as sensor calibration algorithms, feature extraction

algorithms, and pattern recognition algorithms.

Previous studies have made great contributions to both the hardware and software of

electronic personal trainer systems. Hardware design focuses on two aspects: i) Research

on motion sensors focuses on updating sensing materials and/or designing transduction

mechanisms. This contributes to various motion sensors, such as electrocardiograms

(ECGs) [30, 31], electromyogram (EMGs) [32, 33], initial measurement units (IMUs) [34,

35], depth-of-field sensors [36, 37], and visible spectrum cameras [38, 39]. ii) Research

on control systems mainly focuses on reducing the product size to make it portable

and/or wearable [40, 41], increasing battery life by enhancing battery capacity and/or

decreasing power consumption [42, 43], and improving communication quality in terms

of data transmission speed and signal reliability [44, 45]. The software design covers

sensor calibration algorithms, feature extraction algorithm design, and task-determined

pattern recognition algorithm design.

This thesis mainly focuses on the design of an IMU calibration algorithm and the

practical implementation of pattern recognition algorithms. The major challenges re-
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Figure 1.2: Research directions of virtual personal trainers. Red rectangles indicate the
focus of this study.

garding these two parts will be discussed in Section 1.2. The instruments included in

our experiments are our self-designed wearable e-trainer and self-designed portable e-

physiotherapy unit, named E.Fit and Franky, respectively. E.Fit is a wearable electronic

trainer with ultra-low power consumption and an IMU with nine degrees of freedom,

which is capable of motion tracking and monitoring. Franky is a self-propelled telehealth

rehabilitation and assistant robot for stroke patients.

1.2 Design Challenges and Solution Strategy

As people realise the convenience of miniaturised e-trainers, the design of these devices

has changed significantly. On the one hand, micro-electromechanical sensors suffer from

low accuracy and inconsistency, making their measurements untrustworthy. On the other

hand, the implementation of advanced machine learning algorithms in such devices
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Figure 1.3: Summary of the design challenges and thesis outline.

suffers from a lack of training data and insufficient computing resources.

1.2.1 Challenges in Using Inertial Measurement Unit

1.2.1.1 Discrepancy Issue

The discrepancy issue refers to the problem of different individual sensors of the same

model giving different measurements of the same signal under the same environmental

conditions. Ideally, a gyroscope would only be sensitive to the rotation rate. In practice,

all gyroscopes are sensitive to acceleration due to asymmetry of their mechanical designs

and/or micromachining inaccuracies. There are multiple manifestations of acceleration

sensitivity, with the severity varying between designs. The inevitable variability in the

manufacturing process causes discrepancies between the parameters of two identical

sensors. For the IMUs of micro-electromechanical systems (MEMSs), the discrepancies

come from two aspects: i) Baseline discrepancy caused by the fluctuation of a sensor’s

capacitor value C0 in the stable state; ii) Sensitivity discrepancy caused by the fluctu-

ation of a sensor’s rate constant Kx, y, z under actual motion. Under the influence of

the discrepancy issue, the same model of IMU will obtain completely different acceler-

ation/angular rate measurements from identical movements. For attitude estimation

tasks, in particular, the error accumulates so that the estimated result is far from the

ground truth.

Solution Strategy: The discrepancy issue can be solved by using calibration. The
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Figure 1.4: Turntable calibration system [1].

calibration process adjusts the gyroscope readings to a calibrated standard of known

accuracy. The gold-standard method uses a turntable to calibrate the IMU. The IMU is

precisely aligned on the turntable before rotating along x-, y-, and z-axes at a known

rotation speed and angle [46].

1.2.1.2 Drift Issue

The drift issue refers to the difference caused by changes in the state of IMU sensors.

We classify the drift issue into two categories: i) Irreversible drift (or long-term drift)

refers to a permanent change in the state of the sensor, such as through aging (e.g.

micromachining fatigue over a long period of time) and over-range damage (e.g. a shock

degrades the sensor’s micro-mechanical structure). ii) Reversible drift (or short-term

drift) refers to a temporary change in the state of the sensor, such as through variations

in environmental conditions (e.g. humidity and temperature) and memory effects (e.g.

the residue of the previous movement).

Solution Strategy: Irreversible drift usually means that the sensor is damaged and

needs to be replaced. The user should not exceed the measurement range and replace the
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sensor as soon as possible once such damage has occurred. Reversible drift results in poor

repeatability and significant volatility on every use or under different environmental

conditions because the IMU parameters have changed. Therefore, it is necessary to

calibrate the IMU on each initialisation or when the environmental conditions change.

However, current calibration processes are typically time-consuming, and so many simple

and efficient auto-calibration methods have been investigated [5, 6, 47].

1.2.2 Challenges in Implementing Pattern Recognition

Algorithms

The success of deep learning can be attributed to three key factors: powerful computing

resources (e.g. GPUs), complex neural networks (e.g. convolutional neural networks, long

short-term memory), and large-scale datasets. However, e-trainer users often do not

want to spend time training the device before it gives accurate results. Additionally, the

computing resources of portable or wearable e-trainers are generally limited.

1.2.2.1 Lack of data

Typically, machine learning algorithms require large amounts of data before they can

give useful results. Deep learning usually requires large data volumes as support. If

insufficient training data are available, the problem of over-fitting may occur. However,

the collection and labelling of data are both time- and money-consuming. In terms of

e-trainer design, the model should be personalised build and trained for a specific user,

while asking users to collect and label a substantial amount of data is clearly unrealistic.

In addition, the data quality affects the accuracy of any machine learning algorithm.

Deep learning can imitate the content of the data without understanding the data. It

does not evaluate the quality of the data or reject any incorrect data, and so the final

results may be erroneous.

Solution Strategy:

Few-shot learning is widely used to solve the problem of insufficient labelled data.

The core idea of this method is to use prior knowledge to replace the training data. This
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prior knowledge can come from either an expert or from a previously learned model. The

training process starts from the previously learned model, rather than learning from

scratch. Thus, the training process requires less time. The prior knowledge is contained

in the regularisation term of the loss function. Consequently, the parameters are adjusted

according to the prior knowledge to achieve the desired model output.

1.2.2.2 Limited Resources on Embedded Systems

Neural network models are widely used in fitness suggestion systems. Generally, a

machine learning model has many parameters, necessitating a massive amount of

storage and a high level of computational complexity; consequently, the time and energy

costs of such models can be significant. However, due to size and weight limitations, the

battery capacity of e-trainers is often small. To balance the battery life and capacity, the

e-trainers’ processors are generally designed to achieve ultra-low power consumption,

which means that the computing power and the memory capacity on the chip are often

insufficient for running neural network models. Furthermore, e-trainers should provide

users with real-time feedback. Thus, the contradiction between low latency and low

power consumption is increasingly prominent.

Solution Strategy:

Model compression can turn a large model into a small model, and the compressed

form often achieves performance close to or even better than the large model. Commonly

used model compression methods include network pruning, knowledge distillation, pa-

rameter quantisation, and model architecture design. A small model always means less

computation power and less memory usage, and consequently less power consumption.

Therefore, advanced neural network models can be used in small-size devices.

In conclusion, this thesis aims to solve the problems of discrepancies, drift, lack of

data, and limited resources.
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1.3 Influence of COVID-19

The COVID-19 pandemic has affected almost my entire candidature. Due to the impact

of the epidemic, I had to modify my research plan. This section elaborates on my initial

research plan and the changed research plan in response to COVID-19.

The initial research plan had three aims:

• To develop a kernel-based model of heart rate (HR) response during treadmill

exercise for model predictive control and verify that the model can be used for HR

tracking.

• Use the established model as a simulation environment to train a reinforcement

learning agent, and apply the deep deterministic policy gradient method to a HR

tracking project.

• Design a wearable exercise device that can monitor the intensity of the exerciser

and recommend a suitable exercise intensity. The algorithms developed for Aims

1 and 2 would run on the designed device without the need for bulky monitoring

equipment.

After completing the experiments associated with Aim 1, measures required to stop

the spread of COVID-19—such as campus closures, lockdowns, and additional lab access

limits—disrupted my plan. We had designed the algorithm for Aim 2, but could not carry

out the necessary experiments due to stringent restrictions on human-related research

during the pandemic period. Therefore, following discussions with my supervisor, I

conducted some experiments that did not require human participation while waiting

for the end of the pandemic. We decided to change my research plan. The experiments

associated with Aim 2 were postponed, and we instead designed the wearable device for

Aim 3. We also developed an efficient autocalibration method for the designed device.

During the first campus reopening, we tested this device and used it in a practical project

for monitoring pregnant women. In addition, to run the advanced artificial intelligence-

based motion analysis method on the resource-limited wearable device, we proposed a
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neural network pruning method to simplify and reduce the computational complexity of

the method.

My revised research plan is as follows:

• To develop a kernel-based model of HR response during treadmill exercise for

model predictive control and verify that the model can be used in HR tracking.

• To develop a wearable movement tracking device to investigate whether and how

women with complex pregnancies mobilise themselves during the first stage of

labour in differently designed birth rooms.

• To improve the tracking accuracy of wearable devices and make the results of

attitude estimation and motion state estimation more accurate, a fast and effi-

cient gyroscope calibration method is proposed in combination with the existing

accelerometer calibration method.

• To run the designed algorithm on a resource-limited wearable device, the neural

network pruning method is applied to reduce its computational complexity.

1.4 Thesis Contributions

This thesis describes a complete solution for the monitoring and control of human

physical exercise intensity, including the design of an exercise-intensity monitoring

device, device calibration, control algorithm design, and algorithm optimisation. The

major contributions of this thesis can be summarised as follows:

• Designing the hardware for an electronic virtual trainer: Ultra-low power consump-

tion e-trainer – Fit.E The wearable e-trainer, Fit.E, was designed by the candidate

from scratch. Figure 1.5 shows a functional block diagram of the device. This water-

proof device can be charged wirelessly and offers battery life of around 22 h. Figure

1.6 shows the interior and exterior of the device. All components are attached to a
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Figure 1.5: Functional block diagram of Fit.E.

Figure 1.6: Left: Interior of Fit.E. Right: Exterior of Fit.E.

four-layer printed circuit board (PCB) using surface mounting technology. The case

used in this study was 3D printed.

AI-based exoskeleton for upper limb rehabilitation – AIEXO The candidate also de-

signed a portable electronic physiotherapist as a group work. The candidate mainly

focused on designing the electrical system for this robot. Figure 1.7 (left) shows

the functional diagram of the electrical system. The electrical system designed by

the candidate includes a power system, motor drivers, and an embedded control

system. Figure 1.7 (right) is the control PCB used by the system. Figure 1.8 shows
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Figure 1.7: Left: AIEXO system architecture. Right: Embedded control board in hand.

a prototype of the portable electronic physiotherapist.

• Proposition for modelling and control of the human physiological system: Hu-

man HR regulation based on nonparametric modelling. This method applies a

kernel-based nonparametric modelling method to estimate the HR response during

treadmill exercise and proposes a model predictive control (MPC) method to per-

form HR control for an automated treadmill system. A kernel regularisation term

that provides prior information to the model estimation phase was introduced. By

adding this prior information, the experimental protocol was significantly simpli-

fied so that only a small number of model training experiments are needed. For the

patient, this means fewer experiments during the model construction phase. Based

on the identified model, an MPC controller was designed to track a predefined ref-

erence HR profile. One advantage of this scheme is that the speed and acceleration

of the treadmill can be limited to within a safe range for vulnerable exercisers.

• Proposition of the model compression algorithm:

Model compression and calculation reduction via pruning method.

One of the main factors preventing the application of artificial intelligence-based

methods to wearable devices is that the embedded systems usually have limited

memory and computing power. To this end, we utilised neural network pruning
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Figure 1.8: Prototype of the AIEXO.

technology to compress the model and make it feasible for use in the wearable

device. By removing superfluous components of the neural network model, the

number of parameters used in the model was reduced by 98% without causing

a significant drop in performance. This led to remarkable reductions in memory

and computation usage during the inference period. This provides a protocol for

migrating the advanced artificial intelligence algorithms that previously only ran

on bulky devices to wearable devices. Consumers can thus enjoy the benefits of

artificial intelligence anytime and anywhere without being restricted by equipment,

and the cost of purchasing the equipment will be reduced.

• Proposition of calibration method and application of wearable device:

Efficient calibration method for triaxial gyroscope

The parameter variation of low-cost triaxial gyroscopes requires an effective and
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practical in-field calibration process to reduce errors due to unexpected variance.

An efficient servomotor-aided calibration algorithm was designed for a triaxial

gyroscope. The entire calibration process only takes approximately 1 min, and

does not require high-precision equipment. This method is based on the idea

that the measurement of the gyroscope should be equal to the rotation speed of

the servomotor. A six-observation experimental design is proposed to minimise

the maximum variance of the estimated scale factors and biases. In addition, a

fast-converging recursive linear least-squares estimation method is presented

to reduce computational complexity. The feasibility of the proposed method has

been experimentally demonstrated on a robot arm, and the method has been

implemented on a microcontroller. By comparing the calibrated low-cost gyroscope

reading with that from a high-precision gyroscope, we can conclude that our method

significantly increases the gyroscope’s accuracy.

In-field gyroscope calibration method for wearable health monitoring

This method further simplifies the equipment required for calibration. Specifically,

we developed an efficient in-field calibration method that readily calibrates the

triaxial gyroscope without additional equipment. This experimental scheme can be

easily implemented by manually rotating the triaxial gyroscope over a certain angle

as the calibration reference. A linearised calibration model has been developed for

the proposed experimental scheme, and we showed that G-optimality is achievable.

We also designed a low-energy, cost-effective, and wearable wireless movement

tracking device for health monitoring. We applied the proposed triaxial gyroscope

calibration approach in the wearable device and found that it significantly improved

angle estimation accuracy. Doctors can use the device to determine a patient’s

exercise intensity accurately with respect to time, resulting in more accurate

diagnoses of the impact of exercise on the patient.

Temporal gait parameter estimation method using Fit.E

We utilised the designed device to analyse the CT, FT, and gait asymmetries of 40
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rugby players from Sydney Swans Football Club while running. The results showed that

the combined accelerometer-gyroscope system obtains the desired accuracy (absolute

error <20 ms) in both CT and FT detection.

1.5 Thesis Outline

This thesis is arranged as follows:

CHAPTER 1

This chapter presents an introduction to the motivation and scope of the study, the

challenges faced, the contributions made by study results, and an outline of the thesis.

CHAPTER 2

This chapter presents an in-depth review of each aspect of the study and provides a

critical analysis of the existing literature.

CHAPTER 3

This chapter describes an efficient servomotor-aided calibration method for the

triaxial gyroscope. The entire calibration process only takes approximately 1 min, and

does not require high-precision equipment. This method is based on the idea that the

measurement of the gyroscope should be equal to the rotation speed of the servomotor. A

six-observation experimental design is proposed to minimise the maximum variance of

the estimated scale factors and biases. In addition, a fast-converging recursive linear

least-squares estimation method is designed to reduce computational complexity. The

simulation results verify the robustness of the calibration method under normal and

extreme conditions. We experimentally demonstrate the feasibility of the proposed

method on a robot arm and implement the method on a microcontroller. We verify

the calibration results of the proposed method through comparisons with a traditional

turntable approach, and find that the results of these two methods are comparable. Thus,

we conclude that our method significantly increases the gyroscope’s accuracy.

The work in this chapter has been published in:

15



CHAPTER 1. INTRODUCTION

• Wang, L., Zhang, T., Ye, L., Li, J. J., & Su, S. (2021). An Efficient Calibration Method

for Triaxial Gyroscope. IEEE Sensors Journal. doi: 10.1109/JSEN.2021.3100589.

CHAPTER 4

This chapter presents an efficient in-field calibration method that readily calibrates

the triaxial gyroscope without additional equipment. This experimental scheme can be

easily implemented by manually rotating the triaxial gyroscopes over a certain angle as

the calibration reference. A linearised calibration model is developed for the proposed

experimental scheme, and we show that G-optimality is achievable. Extensive numerical

simulations indicate that the calibration error is relatively low and that the estimation of

model parameters is unbiased under mild experimental conditions. We also empirically

validate the effectiveness of the proposed method on two commonly used low-cost gyro-

scopes and achieve real-time calibration on a low-energy consumption microcontroller

with low computational power. In addition, we validate the effectiveness and practicality

of the proposed method in comparison with three state-of-the-art methods. The absolute

error of the scale factors and biases are always less than 2.5×10−2 for LSM9DS1 and

less than 1×10−2 for ICM20948, and the calibration process takes less than 30 s.

The work in this chapter has been concluded in:

• Wang, L., Fox, D., Duffield, R., Hammond, A., Zhang, A., & Su, S. An Infield

Gyroscope Calibration Method In Wearable Health Monitoring. Submitted to IEEE

Transactions on Systems Man Cybernetics-Systems.

• Wang, L., & Su, S. On the Influence of Rotation Speed and Noise Intensity of

the Calibration Accuracy of Gyroscope. Prepare submit to IEEE Transactions on

Industrial Electronics.

CHAPTER 5

This chapter describes the application of a kernel-based nonparametric modelling

method to estimate the HR response during treadmill exercise and proposes a model

predictive control (MPC) method for HR control in an automated treadmill system.

The kernel-based method introduces a kernel regularisation term that provides prior
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information to the model estimation phase. By adding this prior information, the experi-

mental protocol can be significantly simplified and only a small number of model training

experiments are needed. The model parameters are experimentally estimated from 12

participants in a treadmill exercise with a short and practical exercise protocol. The

modelling results show that the model identified using the proposed method accurately

describes the HR response to the treadmill exercise. Based on the identified model, an

MPC controller is designed to track a predefined reference HR profile. One advantage of

this scheme is that the speed and acceleration of the treadmill can be limited to within a

safe range for vulnerable exercisers. The proposed controller is experimentally validated

in a self-developed automated treadmill system. The tracking results indicate that the

desired automatic treadmill system can efficiently and safely regulate the participants’

HRs to follow the reference profile.

The work in this chapter has been published in:

• Wang, L., Yang, Y., & Su, S. (2021, November 1-5). Nonparametric Modelling Based

Model Predictive Control for Human HR Regulation during Treadmill Exercise.

43rd Annual International Conference of the IEEE Engineering in Medicine and

Biology Society, Guadalajara, Mexico.

CHAPTER 6

Artificial intelligence-based human action classification and exercise intensity control

algorithms provide appropriate guidance for exercisers. However, the application of these

algorithms to embedded devices is limited by the computing power and memory capacity

of such devices. Therefore, this chapter proposes a method that significantly reduces

the computational load of graph neural networks (GNNs). Larger graphs and deeper

GNNs make the training and inference procedures increasingly expensive. The recently

reported graph lottery ticket (GLT) method [48] leverages the lottery ticket hypothesis

(LTH), which was initially proposed for neural network pruning, to design a unified

GNN sparsification framework that simultaneously prunes the graph adjacency matrix

and the model weights. Besides leveraging the LTH, we further extend several existing

training-free saliency metrics (SNIP, GraSP, Synflow) for network pruning to GNNs. We
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find that these methods can achieve similar performance as GLT when jointly pruning

the network weights and graph adjacency matrix. This reveals that these training-free

saliency metrics can replace LTH with greatly reduced computational cost.

This chapter is a collaborative work and has been concluded in:

• Wang, L*., Huang, W*., Zhang, M, & Su, S. Pruning Graph Neural Network by

Evaluating Edge Property. Submitted to Knowledge-Based Systems.

CHAPTER 7

This chapter demonstrates an in-field application of Fit.E, analysing the CT, FT,

and gait asymmetries of 40 rugby players from Sydney Swans Football Club during

running. We propose an intelligent running gait analysis system that can estimate

the CT and FT with the desired accuracy. Furthermore, a pre-processing system that

detects the running period and a 95% confidence interval are introduced to analyse and

increase the detection accuracy. To the best of our knowledge, this is the first study to

investigate the compatibility of CT and FT estimation based on the data collected from

a gyroscope and accelerometer placed in a single location. The results show that the

combined accelerometer-gyroscope system obtains the desired accuracy (absolute error

<20 ms) in both CT and FT detection. Moreover, after introducing the confidence interval,

the two systems show high consistency at lower running speeds (<20 km/h). The effect of

the striking type on the current gait algorithms in different IMU placement locations

should be investigated in future research.

This chapter is a collaborative work and has been published in:

• Yang, Y*., Wang, L*., Su, S., Watsford, M., & Duffield, R. Reliable Inertial Mea-

surement Based Temporal Gait Parameter Estimation. Submitted to Sensors.

CHAPTER 8

This chapter summarises the work described in this thesis and presents several

prospective directions for future research.
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LITERATURE REVIEW

2.1 Review of Physiological Signal Response

Modelling

2.1.1 Nonparametric Dynamical Models

F or a linear time-invariant system, the output is equal to the convolution of

the system input and the system impulse response. In fact, the process of

finding the finite impulse response (FIR) of the system from observation data

is a deconvolution problem [49]. Such problems are common in biology, physics, and

engineering [49–51]. It is impossible to uniquely identify a continuous-time FIR from

a finite dataset because it is always an ill-posed problem. Additionally, estimating an

FIR from discrete-time signals results in an ill-conditioned situation, which means

that small levels of noise in the dataset might produce large estimation errors. The

regularisation method was first proposed by Tikhonov and Phillips [51, 52]. Since then,

regularisation methods have become a hot topic in the field of system identification, and

several techniques have been proposed, such as L1-regularisation [53, 54] and gradient

descent methods [55, 56].
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The most popular system identification approach is the maximum-likelihood method

[49, 57]. Based on the assumption that the model class is fixed, the maximum-likelihood

method is well understood. For a large dataset, the procedure is optimal with respect to

minimising the error. However, for parametric methods, the most important thing is to

choose a suitable model class. In the frequentist framework, the balance between bias

and variance can be problematic, and several model validation techniques have been

developed to solve this issue, such as Akaike’s information criterion (AIC) method [58]

and the cross-validation method. In some studies [59–61], these classical approaches

have been identified as unsatisfactory for the experimental data, differing from the

characteristics predicted by classical statistical theory. This indicates that prediction

error methods might be asymptotically efficient for Gaussian approaches.

Researchers have shown that the kernel-based method can solve the model selection

problem in system identification [59]. This method leads to interesting interdisciplinary

applications between the fields of control and machine learning. The traditional method

always assumes that the system has a finite-dimensional space, such as ARX and

ARMAX, while the new paradigm expresses the problem as one of function estimation

in an infinite-dimensional space, namely a reproducing kernel Hilbert space. From a

system identification point of view, the impulse response model lies in such a space. The

inherent ill-posed nature of the system can be solved by the regularisation term, which

can also be explained by Bayesian inference [62]. Specifically, the FIR is considered to

be a zero-mean Gaussian process. Thus, prior information is added to the identification

process by assigning a covariance, which is also called a kernel in the machine learning

field [63].

Unless some key features of the system identification problem are considered, the

direct application of these technologies to the control field is doomed to fail. First,

the relationship between the unknown function and the measurement is not a direct

relationship, as normally assumed in machine learning settings, but is established

indirectly through the convolution of the system inputs. This has a clear analogy with

studies on inverse problems [50, 64]. Additionally, for system identification, the stability
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of the impulse response must be known by the estimation process. In this regard, a major

recent development is the introduction of new kernels that include information on the

exponential stability of the impulse response [59, 61]. These kernels depend on some

hyperparameters which can be maximised using marginal likelihood. This corresponds

to model order selection in the classic prediction error method (PEM) paradigm, but

achieves more robust performance, which might be why these procedures are successful.

Other studies have proposed different kernel designs, such as the maximum entropy

kernel [60], optimal kernel [61], and wavelet kernel [65].

2.1.2 Artificial Neural Network Models

Artificial neural network models are designed on the basis of modern neuroscience,

reflecting the structure and function of the human brain. Since the 1980s, research

on artificial neural networks has made great progress, and the related theories and

methods have developed into an interdisciplinary subject straddling physics, mathe-

matics, computer science, and neurobiology. These networks are widely used in pattern

recognition, medical image processing, rehabilitation robot control, and physiological

system modelling.

Figure 2.1: Mathematical model of an artificial neuron.

The most basic component of a neural network is the neuron model. In biological

21



CHAPTER 2. LITERATURE REVIEW

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

Figure 2.2: Ideal activation function: Unit step function.

neural networks, each neuron is connected to other neurons. When excited, a neuron

sends chemicals to connected neurons, changing the electrical potential within those

neurons. If a neuron’s potential exceeds a threshold, it becomes activated, i.e. excited,

and sends chemicals to other neurons.

In 1943, (author?) [66] abstracted the above situation into the simple model shown

in Figure 2.1, which is the “McCulloch-Pitts neuron model“ that has been used until

now. In this model, a neuron receives input signals from i other neurons. These input

signals are passed through a weighted connection, and the total input value received

by the neuron is compared with the neuron’s threshold. It is then processed through an

activation function to produce the neuron’s output.

The ideal activation function is the step function shown in Figure 2.2, which maps

the input value to an output value of “0“ (neuron inhibition) or “1“ (neuron excitation).

However, the step function has discontinuous and non-smooth properties, which will

cause problems in the process of neural network training. Therefore, other activation

functions such as the sigmoid function, ReLU function, tanh function, and Softplus
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Figure 2.3: Commonly used activation functions.

function are commonly used (see Figure 2.3). The activation function squeezes the input

values, which may vary over a wide range, into an output value range of (0, 1).

Artificial neural networks connect many such neurons in a certain hierarchical

structure. From a computer science point of view, we can ignore whether the network

really simulates a biological neural network and think of it as a mathematical model

with many parameters and numerous functions.

One common neural network is the hierarchical structure shown in Figure 2.4. Each

layer of neurons is fully interconnected with the lower-layer neurons. There is no same-

layer connection between neurons and no cycles are formed. Such a neural network

structure is usually called a “multi-layer feedforward neural network". The input-layer

neuron receives an external input, the hidden-layer and output-layer neurons process

the signal, and the final result is output by the output-layer neurons. In other words,

the input-layer neurons only accept input and do not perform functional processing, and

the hidden layer and output layer contain functional neurons. The learning process of

the neural network involves adjusting the connection weights between neurons and the
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Figure 2.4: Typical neural network with one hidden layer.

threshold of each functional neuron according to the training data. In other words, the

knowledge learned by the neural network is contained in the connection weights and

thresholds.

2.2 Review of Inertial Measurement Units

MEMS technology is used to design, process, manufacture, measure, and control micro/-

nano materials based on micro/nanotechnology. It integrates mechanical components,

optical systems, drive components, and electronic control systems into an integral unit.

The resulting micro-device or -system integrates some micro-mechanisms, micro-sensors,

micro-actuators, signal processing and control circuits, interfaces, communication modes,

and a power supply. If the silicon processing technology is similar to that for integrated

circuits, large-scale and low-cost production can be achieved. Thus, the cost perfor-

mance is greatly improved compared with that of traditional mechanical manufacturing

technology and large-scale integrated industry can be realised.

MEMS gyroscopes are an important development direction in the MEMS field. With

the development of MEMS technology, inertial micro-gyroscopes have attracted consider-
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able attention due to their small size and high precision. There are broad development

and market prospects in fields such as car navigation, consumer electronics, mobile

applications, aerospace, and high-tech battlefields.

2.2.1 Working Principle

Traditional gyroscopes mainly use the principle of conservation of angular momentum.

They are constantly rotating objects, and their axis of rotation does not change with

the rotation of the bracket carrying them. However, the working principle of MEMS

gyroscopes is slightly different, because it is not easy to process a rotatable structure

on a silicon substrate with micromachining technology [67]. MEMS gyroscopes take

advantage of the Coriolis force, which is the tangential force that a rotating object

experiences when it moves radially.

Consider the dynamic coordinate system shown in Figure 2.5. Three separate ac-

celerations can be calculated: radial acceleration, Coriolis acceleration, and centripetal

acceleration [68].

(2.1)

r⃗ = r⃗r0

θ⃗0 = ω⃗0 × r⃗0

dr⃗2

dt = vr⃗r0 + r dr⃗0
dt = vr⃗r0 − r⃗r0 × ω⃗

d2 r⃗
dt2 = a, r⃗0 −2vr⃗r0 × ω⃗−ωr2⃗r0

aConsult =−2vr⃗r0 × ω⃗

If there is no radial motion of the object on the disk, the Coriolis force will not arise.

Therefore, in the design of MEMS gyroscopes, the object is driven to produce radial

motions or back-and-forth vibrations. The lateral vibrations are small, and the phase

differs by exactly 90 degrees from the driving force (Figure 2.6).

MEMS gyroscopes typically have movable capacitors in the two directions of each axis.

The radial capacitor applies an oscillating voltage to force the object to move radially,

and the lateral capacitor plate measures the capacitance change caused by the lateral
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Figure 2.5: Rotation coordinate system.

Figure 2.6: MEMS gyroscope working principle.

Coriolis motion. Because the Coriolis force is proportional to the angular velocity, the

angular velocity can be calculated from the change in capacitance.

A MEMS gyroscope designed to use vibrations to induce and detect the Coriolis

force has no rotating parts and no bearings [69]. Thus, it is easily mass-produced using

micromachining techniques. The vast majority of MEMS gyroscopes rely on alternating

Coriolis forces caused by mutually orthogonal vibrations and rotations. The vibrating

object is suspended above the base by an elastic structure. The overall dynamic system is

a two-dimensional elastically damped structure in which vibration- and rotation-induced
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Coriolis forces convert energy proportional to the angular velocity into capacitance that

can be measured by the circuit.

2.2.2 Main Performance Parameters

A gyroscope has many parameters that affect its performance. In this section, we intro-

duce the following important parameters of a MEMS gyroscope.

Power supply (V): The DC power supply voltage range required for the gyroscope to

work properly.

Power supply current (mA): The current consumed by the gyroscope in normal

operation.

Sleep mode supply current (mA): The amount of current consumed by the gyroscope

in sleep mode.

Power supply current in shutdown mode (µA): The amount of current consumed when

the gyroscope is powered off.

Full scale (dps): The scale range of the gyroscope.

Zero rate output value: The number of zero rate output signals when the gyroscope

has no angular rate applied.

Sensitivity (mV/dps or dps/LSB): The relationship between one dps and analogue

gyroscope output voltage change at zero rate output value, expressed in mV/dps; or,

the relationship between a digital gyroscope and the least significant bit, expressed in

dps/LSB.

Sensitivity change with respect to temperature (%/◦C): Percentage change in sensitiv-

ity when the temperature deviates from the standard temperature.

Zero rate output value change with respect to temperature (dps/◦C): The zero rate

output value change when the temperature deviates from the standard temperature.

Nonlinearity (%): Maximum error between gyroscope output and best-fit straight line

as a percentage of full scale.

System bandwidth (Hz): Angular rate signal frequency range from DC to the internal

bandwidth measurable by the analogue gyroscope.
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Rate noise density (dps/VHz): Standard resolution of analogue gyroscopes and digital

gyroscopes that can be obtained from the gyroscope output and internal bandwidth

parameters.

2.2.3 Types of Gyroscope

MEMS micro-gyroscopes can be divided into four main categories based on their work-

ing principle: vibration gyroscopes, fluid-floated gyroscopes, micro-integrated optical

gyroscopes, and micro-atomic gyroscopes.

2.2.3.1 Vibration Gyroscopes

Vibration gyroscopes use the Coriolis effect produced by a high-frequency vibrating

mass to detect angular motion [70]. The main body of the vibrating gyroscope is a high-

frequency vibration component, which has the advantages of stable performance, simple

structure, high reliability, and wide measurement range. Common vibration gyroscopes

include tuning fork vibration gyroscopes, piezoelectric vibration gyroscopes, and shell

vibration gyroscopes.

Tuning fork vibration gyroscopes. Tuning fork vibrating gyroscopes, or tuning

fork resonant gyroscopes, use the Coriolis effect from the vibrating mass at the end of

the tuning fork being driven to rotate by the base to sense the angular velocity [71].

Functionally, they are single-axis rate gyroscopes. The arms of the tuning fork perform

alternately reciprocating bending motions towards and away from each other under the

movement of the vibration excitation device. The masses at the two ends of the tuning

fork alternately face towards and away from each other. The vibration excitation device

ensures that the tuning fork oscillates with equal amplitude, that is, the amplitude of the

oscillation of the two arms is equal, and the phase is exactly opposite. The Coriolis effect

of the tuning fork vibrating gyroscope is illustrated in Figure 2.7. Due to the mutual

influence of the relative motion and the implicated motion, the two particles at the end

of the tuning fork are subjected to Coriolis acceleration and are affected by the Coriolis

inertial force. When the particles at the end of the tuning fork move toward each other,
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Figure 2.7: Physical model of a typical tuning fork vibration gyroscope [2].

the Coriolis inertial force vector of the two particles is on the xoz plane, thereby forming

a torque on the central axis of the tuning fork, that is, the Coriolis moment of inertia. In

addition to the above phenomenon of the two particles at the end of the tuning fork, the

Coriolis effect applies to all particles in symmetrical positions along the two arms of the

tuning fork. Therefore, the Coriolis moment of inertia of the entire tuning fork should be

obtained by integration. The angular velocity information can be inversely deduced by

integrating the output result.

Vibrating shell gyroscopes. Shell vibrating gyroscopes work by utilising the Corio-

lis effect of the vibrating mass of an axisymmetric shell under the action of the angular

velocity [72]. In such gyroscopes, the result of the Coriolis effect is a deflection of the

vibration waveform relative to the base. The core part of the shell vibration gyroscope is

the resonant shell or resonator, which uses the deflection of the resonator mode shape

relative to the base to measure the rotation of the base relative to the inertial space.

The deflection direction of the mode shape is opposite the rotation direction of the base,

and the deflection angle of the mode shape is proportional to the rotation angle of the

base. The deflection of the harmonic oscillator mode shape is obtained by the Coriolis

acceleration and the Coriolis inertial force, that is, the corresponding deflection angle

of the harmonic oscillator mode shape is obtained through the Coriolis effect of the

harmonic oscillator under the action of the angular velocity, so that the vibration of
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Figure 2.8: Physical model of vibrating shell gyroscope [2].

Figure 2.9: Schematic of the fluid-floated gyroscope [3].

the shell can be obtained. The angular velocity information is deduced from the output

information of the gyroscope.

2.2.3.2 Fluid-floated gyroscope

The gyroscope motor is supported in a sealed ball (also called a floating ball) by high-

precision ball bearings, and a T-shaped outer rotor structure is used to obtain a larger

moment of momentum [73]. The gyro ball is composed of two hemispherical shells, which

are filled with hydrogen or helium to reduce the wind resistance of the motor, prevent

oxidation of parts and lubricants, and improve thermal conductivity. The gyro ball is

equipped with a sealed insulator. A conductive hairspring is welded to it for signal

transmission and power supply. A mass unbalanced micro-vernier adjuster is fixed to

both ends of the gyro ball. The gyro ball is suspended in a floating liquid and is positioned

with a jewel bearing. To obtain two rotational degrees of freedom, a ring device is designed
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to function as a gimbal. Two pairs of orthogonal gem bearing seats are installed on the

ring. The journal is equipped with an adjustment and locking mechanism to ensure

axial clearance. At operating temperature, the gyroscope is mechanically suspended.

The buoyancy of the floating ball is equal to gravity, so that the inner and outer ring

jewel bearing supports are unloaded, and the bearing support only plays a positioning

role. The two output axes of the gyro are equipped with two moving coil sensors and two

direct current coil torquers. The sensor rotor assembly is installed on the gyro ball outer

cover, and the stator is excited by an AC signal. The torquer rotor assembly is mounted

on the gyro ball. The stator assembly is composed of magnetic steel, magnetic permeable

ring, and so on. It is also installed on the outer end cover of the torquer rotor and is

supplied with DC control signals. The gyro shell consists of two outer end caps and a

base to form a closed container, and the suspension is filled inside. Both sides of the outer

end cover are equipped with bellows components to compensate for the volume change of

the floating liquid caused by temperature. Symmetrically distributed heating wires and

thermal sensors in the shell form a temperature control component for gyro temperature

control. The outer cover acts as magnetic shielding, protection, and incidental insulation.

For a two-degree-of-freedom liquid-floating gyroscope, a pair of pivots is mounted

in jewel bearings on the inner ring. Together with the inner ring, the float is mounted

in jewel bearings on the housing by a pair of pivots on the inner ring. The spin motor

lies perpendicular to the plane formed by the inner and outer ring shafts, so that the

gyro ball has freedom to rotate along the inner and outer ring shafts. Two orthogonally

mounted sensors are used to measure the angular displacement of the float around the

two orthogonal directions, and the outputs correspond to the rotations around the inner

and outer ring shafts, respectively. Similarly, two orthogonally mounted torquers are

used to control the motion in the two orthogonal directions, respectively, to generate

moments about the inner and outer ring axes. The two-degree-of-freedom liquid-floating

gyroscope is sensitive to the angular motion of two orthogonal axes at the same time,

and uses two gyroscopes as sensitive components to form a three-axis stable platform
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Figure 2.10: Floated two-axis gyro schematic [3].

system, which can realise one-axis redundancy. To ensure accuracy, the float has a small

working angle range along the two orthogonal axes.

2.2.4 Gyroscope Calibration

There have been a number of studies on the methods and accuracy of gyroscope calibra-

tion (Figure 2.11). The conventional calibration method uses a turntable to provide a

standard rotation speed for the gyroscope [46]. This method provides high calibration

accuracy, but requires expensive and precise instruments and complex calibration proce-

dures that preclude its use in consumer electronic devices or clinical settings. Several

recent studies [4–6, 47] have proposed calibration methods that do not require precision

equipment. Specifically, in [4], a camera-aided calibration method 2.12 was reported in

which images provide orientation and position information about the sensor, resulting

in a high computational complexity. In a separate method [5], a homogeneous magnetic

field is employed as the calibration reference. The natural geomagnetic field is very weak

and easily affected by the alternating electric field, making it difficult to implement

outside the laboratory. In [6, 47], an accelerometer-aided gyroscope calibration method
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Figure 2.11: Taxonomy of existing gyroscope calibration methods.

Figure 2.12: Camera-aided gyroscope calibration method.[4]

was presented. The accelerometer is first calibrated using the multi-position method,

then the rotation speed of the sensor body is determined by the accelerometer. In this

method, the calibration error of the accelerometer affects the calibration accuracy of the

gyroscope. Additionally, the calibration process takes more than 10 min. The above dis-

cussion indicates that current gyroscope calibration methods rely on external equipment

and are not suitable for scenarios where no external calibration device is available, such

as in the field or in a clinical setting akin to a busy and chaotic hospital birthing room.

This thesis proposes a fast in-field autocalibration method for triaxial gyroscopes that

does not require any external devices to verify the IMU data collected from field-based

contexts.

To facilitate frequent calibration, the calibration efficiency should be carefully exam-

ined. However, the majority of previous research [4–6, 46, 47, 74] has not explored the

optimal experimental scheme. Ye et al. [75] reported a design of experiment (DoE) for
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Figure 2.13: Magnetometer-aided gyroscope calibration method.[5]

Figure 2.14: Accelerometer-aided gyroscope calibration method.[6]

accelerometer calibration. The motivation for this DoE is to minimise the number of tri-

als required to obtain sufficient calibration information. Nevertheless, there is currently

no similar DoE in the field of gyroscope autocalibration. One of the most significant

challenges for such DoE is that the calibration model is highly nonlinear. Thus, in this

thesis, we first describe a linearised six-parameter gyroscope calibration model prior to

proposing a G-optimal DoE for the recommended model.

34



2.3. REVIEW OF MODEL COMPRESSION METHODS FOR PATTERN RECOGNITION
ALGORITHMS

2.3 Review of Model Compression Methods for

Pattern Recognition Algorithms

A significant disadvantage of deep neural networks is their computational load. This

largely hinders the commercialisation of deep learning-based methods, especially on some

edge devices. Most edge devices are not designed for computing-intensive tasks. If the

neural network models are simply deployed, power consumption and latency will become

problems. Even on the server side, more computation directly leads to increased costs.

Researchers are trying to overcome this problem from various angles, such as specially

designed neural network acceleration chips, which use dedicated hardware acceleration

for a given computing task. Another idea is to consider whether all calculations in the

model are necessary. If not, the model could be simplified to reduce the computation and

memory footprint. This thesis focuses on a software method called model compression.

Specifically, model compression can be divided into various techniques such as pruning,

quantisation, low-rank factorisation, and knowledge distillation. In this thesis, we limit

our attention to pruning methods.

2.3.1 Pruning Target

2.3.1.1 Parameter-level Pruning

The number of parameters and floating point operations per second (FLOPS) are widely

used as metrics for evaluating the cost of a neural network. Unstructured pruning

directly removes some of these parameters, thereby reducing the number of parameters

that must be determined in the model. This method has been considered in several

studies. Parameter pruning is the most widely used pruning method in the literature

and is seen as the default framework when pruning is required.

The direct pruning of parameters has many advantages. First, it is very simple.

In most deep learning frameworks, all network parameters can be easily accessed,

which makes this technique very simple to implement. Additionally, parameters are the
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Figure 2.15: Overview of neural network pruning.

most fundamental elements of the network and most networks are over-parameterised.

Thus, such networks can be heavily pruned without affecting their performance. This

granularity enables pruning in very fine-grained modes, e.g. pruning of parameters

within convolution kernels. As the pruning of weights is not limited by any constraints

and does not modify the structure of the networks, this method is called unstructured

pruning. However, one fatal disadvantage of this approach is that most deep learning

frameworks and hardware cannot accelerate the computation of sparse matrices, which

means that no matter how many parameters have been masked, there is no substantial

impact on the actual training cost.

2.3.1.2 Filter-level Pruning

Structured pruning focuses on pruning larger structures, such as entire neurons or

convolutional filters (kernels) in deep convolutional networks. Deep networks tend

to contain many convolutional layers, consisting of hundreds or thousands of filters.

This makes fine-grained pruning of convolutional layer filters possible. Removing this

structure not only makes the layer structure of the deep neural network sparser, but

also removes the feature map of the filter output.
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Figure 2.16: Typical pruning method flowchart.

2.3.2 Pruning Methods

Pruning is a classic method for reducing the number of model parameters and the

computational load. With the rise of deep learning and the large-scale application

of convolutional neural networks in the field of image classification, various pruning

methods have emerged. Although there are various approaches, the core idea is to

prune the structure of the neural network. Pruning includes three main tasks: training,

pruning, and fine-tuning, as shown in Figure 2.16.

In the pruning process, the training process only needs to be performed once. The

purpose of training is to obtain the original model trained on a specific task for the

pruning algorithm. The most important part of pruning is to evaluate the importance of

the network structure. This evaluation process is one of the main differences between

the various pruning algorithms. The evaluated model structure mainly includes a filter,

parameters, and other structures. Evaluating the importance of the network structure

can be divided into two methods: network parameter-driven evaluation and data-driven

evaluation. The network parameter-driven method uses the parameter information of

the model itself to measure the importance of the model structure. For example, with L1

or L2 regularisation of parameters, the evaluation process does not depend on the input

data. The data-driven method evaluates the importance of the network structure using

the training data, such as by evaluating the importance of the filter by counting the

number of 0 values after the output of the filter has passed through the activation layer.

Fine-tuning is necessary to restore the expressiveness of models affected by pruning

operations. Structural pruning adjusts the original model structure. Therefore, although

the remaining model parameters are unchanged, the modified model structure may affect
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the expression ability of the pruned model to some extent. The fine-tuning process can

restore the expressive ability of the sub-model by adjusting the pruned sub-model on the

training set. In the re-pruning process, the fine-tuned sub-model is sent to the pruning

module. The model structure evaluation and pruning process are then performed again.

Through the re-pruning process, each pruning operation is applied to a model with better

performance, and the pruning model is continuously optimised until the model satisfies

the pruning target requirements.

The above-mentioned process is the mainstream pruning algorithm [76–81]. On the

basis of this pruning method, some related studies have improved the standard pruning

process [82, 83]. In particular, [82] integrates the pruning process into fine-tuning process,

removing the distinction between fine-tuning and pruning. A new trainable network layer

is added for the pruning process. The network layer generates a binary code, and the

network structure corresponding to the 0 values in the binary code is pruned. In [83], the

importance of each network structure is measured by calculating the Kullback–Leibler

(KL) divergence between the original model and the sub-model with the corresponding

network structure removed. This method ensures that the network structure evaluation

is not limited to local features or parameters, but uses global features to give more

accurate evaluation results. Therefore, it achieves a good pruning effect without the need

for a re-pruning process.
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TRIAXIAL GYROSCOPE CALIBRATION VIA SERVOMOTOR

3.1 Introduction

T o eliminate the error caused by sensor inaccuracy, we intuitively think to use

the calibration methods. In particular, the conventional calibration method uses

a turntable to provide a standard rotation speed for the gyroscope. This method

can provide high calibration accuracy, but requires expensive and precise instruments,

and complex calibration procedures that preclude its use in consumer electronic devices

or clinical settings. Thus, in this chapter, we proposed a servomotor-aided autocalibration

method, which only needs sample calibration equipment.

The Micro-electro-mechanical-system (MEMS) triaxial gyroscopes are commonly

used devices for measuring angular velocity in a broad range of applications, such as

indoor pedestrian positioning [84], health monitoring [85], and consumer electronic

devices [86, 87]. Such low-cost gyroscopes usually do not show high precision, due to

the accumulation of drift error from integration when calculating the attitude [88]. In

addition, the low repeatability and instability of the gyroscope cause changes in the

scale factor and biases on every boot or under different environmental conditions, such

as temperature variation [89]. Therefore, the gyroscope needs to be calibrated before
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each use or when the environmental conditions change. Simple and efficient calibration

methods are required for frequent calibration to be practical.

The issue of gyroscope calibration has received considerable attention. The ordinary

triaxial gyroscope calibration method involves rotating the gyroscope at known angu-

lar velocity [46]. This approach can achieve high calibration accuracy, but the complex

calibration procedure and requirement for expensive equipment make it unsuitable for

use outside the laboratory. Gyroscope calibration methods that do not require precise

rotation velocity measurements are presented in [4–6, 47]. In [4], a camera is employed

to provide position and orientation information for gyroscope calibration. This technique

first requires alignment of the body frame and the image frame, and calibration of the

camera to achieve high accuracy. As images are involved, the computational complexity

is significantly increased. In [5], a magnetometer-aided calibration method is investi-

gated. The gyroscope calibration reference is provided by a homogeneous magnetic field.

However, a weak magnetic field (e.g., the local magnetic field) can be easily disturbed by

external alternating magnetic fields such as power lines. Therefore, this method may

not be suitable for certain in-field applications. In [6, 47], accelerometer-aided gyroscope

calibration methods are proposed. The accelerometer is first calibrated by gravity using

the multi-position method, which then provides the rotation speed of the gyroscope.

The entire calibration procedure takes more than 10 minutes, which is cumbersome in

practical operation. Besides, the error caused by the accelerometer may be superimposed

on the gyroscope parameters. Therefore, there is a great need to find a fast and simple

in-field calibration method for gyroscopes. This chapter proposes a servomotor-aided

gyroscope calibration method, which does not require high precision equipment and is

easy to implement outside the laboratory.

To meet the requirements of frequent calibration, improving the calibration efficiency

is of primary importance. Most previous studies [4–6, 46, 47, 74] paid little attention

to investigating the selection of optimal experimental design. Recently, a six-position

accelerometer calibration experimental design (DoE) was proposed [75]. The purpose of

DoE is to obtain sufficient information for calibrating the accelerometer using a minimum
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number of experiments. To the best of our knowledge, this is the first study to apply such

DoE to gyroscope calibration. In this study, we propose a G-optimal DoE for gyroscope

calibration, minimizing the maximum estimation variance over the entire measurement

range.

For solving the regression problem, [47, 74, 90] applied nonlinear estimation methods,

such as the Nelder-Mead method[91] and Levenberg-Marquardt algorithm [92]. These

methods typically require sizeable computational power, which are difficult to apply for

gyroscope calibration since a gyroscope is often part of an embedded system with limited

resources and battery life. Therefore, we propose a fast converging recursive linear least

square estimation for the six-parameter gyroscope calibration model.

We summarise the contributions of this chapter as follows. First, we propose an

efficient servomotor-aided gyroscope calibration method, which does not require the use

of high precision equipment during calibration. Second, we propose a six-point G-optimal

experiment for gyroscope calibration. The proposed DoE can significantly shorten the cal-

ibration time and has been empirically validated. Last, we implement a fast converging

recursive linear least square estimation method to reduce the computational complexity,

which makes the calibration process more adaptable for an embedded environment.

This chapter is organized as follows. In section 3.2, we discuss the proposed calibration

method and the DoE. In Section 3.3, we validate the approach using simulations under

different conditions. In Section 3.4, we demonstrate the implementation of the proposed

method on two commonly used gyroscopes. Section 3.5 concludes this chapter.

3.2 Calibration methodology

3.2.1 Efficient Calibration Method for Triaxial Gyroscope

Various factors contribute to error in a gyroscope. In this study, scale factors and biases

are considered as error sources. Thus, a six-parameter calibration model is employed

to define the unknown parameters. The relation between the actual angular velocity

Gi = [gx,i, g y,i, gz,i]T and the measured angular velocity Mi = [mx,i,my,i,mz,i]T at the i
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th observation is described as:

(3.1)


gx,i

g y,i

gz,i

=


kx 0 0

0 ky 0

0 0 kz





mx,i

my,i

mz,i

+


bx

by

bz




where kx,ky,kz and bx,by,bz stand for the scale factor and the bias of each axis, respec-

tively.

This method is based on the idea that the measurement of the gyroscope should be

equal to the rotation speed, that is

(3.2) ωi =
√

g2
x,i + g2

y,i + g2
z,i

where ωi is the rotation speed.

We can expand Eq.(3.2) and square both sides of the equation. Then, we have:

ω2
i = k2

xm2
x,i +k2

ym2
y,i +k2

zm2
z,i

+2k2
xbxmx,i +2k2

ybymy,i +2k2
zbzmz,i

+ ∑
j=x,y,z

k2
j b

2
j +ϵi.

(3.3)

The error term ϵi is a combination of a Gaussian and a noncentral Chi-squared noise.

Similar to [93], the Chi-squared noise term can be ignored when the rotating speed is

high. Thus, in this study, we consider the ϵi as a Gaussian noise. If we let

β0 =∑
j=x,y,z k2

j b
2
j

β1 = k2
x

β2 = k2
y

β3 = k2
z

β4 = 2k2
xbx

β5 = 2k2
yby

β6 = 2k2
zbz



x1,i = m2
x,i

x2,i = m2
y,i

x3,i = m2
z,i

x4,i = mx,i

x5,i = my,i

x6,i = mz,i

yi =ω2
i ,
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then the gyroscope calibration problem becomes

yi =β0 +β1x1,i +β2x2,i +β3x3,i

+β4x4,i +β5x5,i +β6x6,i +ϵi,
(3.4)

which is a linear regression problem. The cost function of this problem is defined as:

(3.5) J =
n∑

i=1
(||yi − yactual,i||),

where yactual is the squared rotation speed provided by the servomotor. However, there

is no close form solution for this problem as the parameter β0 can be represented by

the remaining six parameters β0 = β2
4

4β1
+ β2

5
4β2

+ β2
6

4β3
. The representation introduces the

nonlinearity to Eq.(3.4). Thus, the question can be solved using a nonlinear regression

technique such as the Levenberg-Marquardt algorithm [92]. As mentioned above, a

gyroscope is often part of an embedded system with limited resources. To reduce the

computational complexity, a novel iterative least square method [75] is employed to

estimate the parameters.

We can reform Eq.(3.4) in matrix form as:

(3.6) Y = Xβ+β0+ϵ.

The observation matrix X ∈R6×6 consists of the measured angular velocity:

(3.7) X =



mx,1 my,1 mz,1 m2
x,1 m2

y,1 m2
z,1

mx,2 my,2 mz,2 m2
x,2 m2

y,2 m2
z,2

mx,3 my,3 mz,3 m2
x,3 m2

y,3 m2
z,3

mx,4 my,4 mz,4 m2
x,4 m2

y,4 m2
z,4

mx,5 my,5 mz,5 m2
x,5 m2

y,5 m2
z,5

mx,6 my,6 mz,6 m2
x,6 m2

y,6 m2
z,6


.

The response matrix Y = [yactual,1, yactual,2, . . . , yactual,6]T , parameters β= [β1,β2, . . . ,β6]T ,

bias term β0 ∈R1×6 = [β0,β0, . . . ,β0]T , and noise term ϵ= [ϵ1,ϵ2, . . . ,ϵ6]T .

For solving Eq.(3.6), the fast converging iterative least square method is summarized

in Algorithm 1. The convergent condition is given as 0 ≤ β0 < 0.5 [75]. For a low cost
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Algorithm 1 Iterative least square method
Ensure: Estimated scale factors [kx,ky,kz] and bias [bx,by,bz].

1: Set initial value β0
(0) = [0,0,0,0,0,0];

2: Calculate initial estimation β(1) = (X T X )−1X T(Y −β0
(0));

3: while
∑6

j=1 ||β j
(n+1) −β j

(n)|| > 10−6 do
4: Update β0 at nth iteration as follows:

5: γ(n) = β2
4

(n)

4β1
(n) + β2

5
(n)

4β2
(n) + β2

6
(n)

4β3
(n) ;

6: β0
(n) = [γ(n),γ(n),γ(n),γ(n),γ(n),γ(n)] ;

7: Update β at nth iteration as follows:
8: β(n+1) = (X T X )−1X T(Y −β0

(n)).
9: end while

10: return Scale factors and bias terms:
kx =

√
β1

ky =
√

β2
kz =

√
β3


bx = β4

2β1

by = β5
2β2

bz = β6
2β3Gyroscope
X

Y

Gyroscope
X

Y

Gyroscope
X

Y

Gyroscope
X

Y

Gyroscope
X

Y

Gyroscope
X

Y

Gyroscope
X

Y

Figure 3.1: Six-observations rotation protocol for gyroscope calibration. The gyroscope is
rotated at constant speed clockwise and counterclockwise along the x,y,z axis. [7]

MEMS gyroscope, the scale factor is usually within the range of [0.8,1.2]. The bias term

is usually between ±0.1rad/s. Recall that β0 =∑
j=x,y,z k2

j b
2
j . Obviously, the convergence

condition is met.
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3.2.2 G-Optimal Experimental Design

Unlike an accelerometer, it is difficult for a low-cost MEMS gyroscope to perform autocal-

ibration using the Earth’s rotation. The Earth rotates at a moderate angular velocity of

7.29×10−5rad/s, which is much lower than the bias term of the gyroscope. Hence, this

study employs a servomotor as an external device. Considering its working principle, a

servomotor may have vibrations during operation, but the time taken per revolution is

still highly accurate. Owing to the linearity of Eq.(3.4), we can take the average of both

sides of the equation during each revolution and consider it as one observation:

1
N

N∑
j=1

yi, j = 1
N

N∑
j=1

(β0 +β1x1,i, j +β2x2,i, j +β3x3,i, j

+β4x4,i, j +β5x5,i, j +β6x6,i, j +ϵi).

(3.8)

In this case, we can minimize the influences of vibrations and random noise to the

estimated parameter.

The linear regression problem includes the estimation of six parameters. Thus, at

least six observations are required [94]. To minimize the maximum variance of the

estimated parameters, we introduce a G-optimal design of a second-order three variables

model Eq. (3.4) for gyroscope calibration experiments. As the measurement is limited by

m2
x,i+m2

y,i+m2
z,i ≈ω2

i , the design region is spherical. For a six-observations experimental

scheme, the G-optimal design matrix can be expressed as:

D =

mx,i my,i mz,i



(1) 1 0 0

(2) −1 0 0

(3) 0 1 0

(4) 0 −1 0

(5) 0 0 1

(6) 0 0 −1

Accordingly, the rotation method of the gyroscope is shown in Fig.3.1. We rotate the

gyroscope 360 degrees clockwise and counterclockwise along the x, y, z axis at the speed
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Figure 3.2: The simulation results of estimation error between estimated and actual
parameters under normal conditions at different noise level using different method. Top:
0.035 rad/s noise levels. Bottom: 0.2 rad/s noise level. Left: Levenberg-Marquardt (LM)
method. Right: Our proposed method. [7]

of ω, respectively. We average the data during each rotation and construct the 6-by-6

observation matrix according to Eq.(3.7). It is worth noting that no high-precision device

is used to eliminate the alignment error. Once this six-observation matrix is constructed,

the scale factors and bias terms can be calculated using Algorithm 1.

3.3 Simulation

With the intention of validating the feasibility of the proposed calibration method under

different weights of scale factors, biases, rotation speed, orientation misalignment, and

noise level, we first examined the proposed method using simulations. During each simu-

lation, we generated a set of parameters under certain conditions, and these parameters

were considered as the ground truth. Based on the actual value, the measurements of six

observations were generated according to the experimental protocol in Fig.3.1. Then, the

proposed method was employed to calculate the scales and biases based on the generated

measurements, and the estimated parameters were stored.
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Figure 3.3: Simulation results of the desired rotation speed ω and gyroscope readings
from three axes x, y, z before and after calibration. The dashed line indicates actual
rotation on each axis, and the solid line represents gyroscope readings. [7]

3.3.1 Simulation Under Normal Conditions

We first conducted simulation tests under normal conditions. The simulation conditions

are given based on the parameters of the commonly used gyroscopes. The following

assumptions on the parameter are given, and the results are explained after them.

1. The scale factor follows a uniform distribution U(80%,120%) and the bias follows

U(−0.1rad/s,0.1rad/s). The typical scale factors and biases of low-cost MEMS

gyroscopes are usually within ±20% and ±0.1rad/s, respectively.

2. Misalignment on mounting follows U(0%,10%). In practice, without an accurate

mounting platform, it is difficult for users to make measurements in the exact

position specified by the experimental protocol. To demonstrate the robustness of

the proposed method, we run the simulations with mounting misalignment.

3. The measurement noise is assumed to follow a Gaussian distribution with zero
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mean and two different variances, ϵ1 ∼N (0, 0.035) and ϵ2 ∼N (0, 0.2). The typical

noise spectral density of the MEMS gyroscope is between 1.74∼ 6.11×10−4rad/s/
p

Hz .

As this study uses a 200 Hz sampling rate, the range of noise amplitude is around

0.035∼ 0.18rad/s. Thus, we consider the noise vibration as 0.035 and 0.2 rad/s.

4. The variance of rotation noise is 5% of the current speed, which follows N (0, 5%ω).

We use this term to simulate vibration during operation.

Based on the assumptions, we generated 30 sets of scale factors and biases to simu-

late different gyroscopes. For each set of parameters, we repeated the simulations 500

times. For each simulation, we took a six-observation measurement according to the

experimental protocol shown in Fig.3.1, and constructed a 6-by-6 observation matrix

based on Eq.(3.7). Subsequently, Algorithm 1 was implemented to estimate the scale

factors and biases. Overall, 15,000 simulations were generated for testing our proposed

calibration method.

To evaluate the performance of the proposed calibration method, we calculated the

differences between the actual parameters and the estimated scale factors and biases.

Box plots were used to analyze the differences as shown in Fig.3.2. The median values of

the estimation error were 0, and the results indicated that the estimated parameters

were unbiased. The majority of estimations of scale factors had an error within ±9.3×10−4

for the 0.035rad/s noise level and ±5.4×10−3 for the 0.2rad/s noise level. The estimation

error of biases is higher, which is ±3.0×10−3 for the 0.035rad/s noise level and ±1.7×10−2

for the 0.2rad/s noise level. This indicated that the estimation accuracy was related to

the measurement noise level. Better gyroscopes with lower noise have lower estimation

error. In addition, we compared Algorithm 1 with the Levenberg-Marquardt method. The

results indicated that the error of these two methods were identical. Interestingly, the

scale factors had a much lower estimation error than the bias terms. This phenomenon

can be explained by sensitivity analysis techniques [95]. In this particular model Eq.(3.4)

and experiment design, the observability of scale factors is much higher than that of bias

terms, which leads to better estimation results for the former.
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Figure 3.4: The mean squared error (MSE) between estimated and actual parameters at
different rotation speeds during calibration with different measurement noise levels. (a)
0.035 rad/s noise level. (b) 0.2 rad/s noise level. [7]

To intuitively demonstrate the effectiveness of the calibration, we performed a simula-

tion to compare the gyroscope readings before and after calibration. The desired rotation

speed of the servomotor ω with respect to time was set as a sine wave with an amplitude

of 1rad/s and frequency of 0.75Hz. The three axes of the gyroscope were mounted to be

equidistant from the rotation axis. Thus, the projection of the rotation speed to each axis

was equal. The rotation noise variance was set to be 5% of the current speed, and the

measurement noise followed ε∼N (0, 0.035). We randomly generated a set of parameters

and use the proposed approach to estimate the scale factors and bias terms. The actual

parameters [kx,ky,kz,bx,by,bz] and estimated parameters [k̂x, k̂ y, k̂z, b̂x, b̂ y, b̂z] are as

49



CHAPTER 3. TRIAXIAL GYROSCOPE CALIBRATION VIA SERVOMOTOR

kx ky kz bx by bz

-0.01

-0.005

0

0.005

0.01

0.015

(a)

kx ky kz bx by bz

-0.02

0

0.02

(b)

Figure 3.5: The simulation results of estimation error between estimated and actual
parameters under extreme conditions at different noise level using different method.
Top: 0.035 rad/s noise levels. Bottom: 0.2 rad/s noise level. [7]

follows:



kx = 0.9070

ky = 1.0501

kz = 0.8734

bx = 0.0528

by = 0.0813

bz =−0.0992



k̂x = 0.9070

k̂y = 1.0502

k̂z = 0.8735

b̂x = 0.0529

b̂y = 0.0802

b̂z =−0.0994

Based on the estimated parameters, we corrected the gyroscope readings using

Eq.(3.1). Fig.3.3 demonstrates that after calibration, the measured and actual values

showed better fit. The fluctuations were caused by measurement noise and motor speed

instability.
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3.3.2 The Effect of Rotation Speed

Next, we explored the influence of rotation speed on the estimation results during

calibration. We followed the 15,000 simulations procedure described above, but used

different rotation speeds. The rotation speed was set within the range of 0.3 to 3rad/s

with a step size of 0.1rad/s. Lower rotation speeds outside this range may be covered by

noise,while higher rotation speeds cannot be accurately achieved by servomotors during

the real experiment. The overall mean squared error (MSE) of six estimated parameters

are defined as follows:

(3.9) e j = 1
N

N∑
i=1

( j i − ĵ i)2, j i = kx,i,ky,i,kz,i,bx,i,by,i,bz,i,

where N is the number of simulations. Fig.3.4 shows the influence of speed on the

parameter estimation accuracy during calibration. As the speed increases, the average

MSE decreases exponentially. After the speed rises to 1 rad/s, the average MSE value

stops decreasing. The MSE of biases remains unchanged irrespective of changes in speed,

and is only affected by the measurement noise level. This is because the observability of

biases still exists even in a static state, i.e. ω= 0. Appealingly, when the speed is less

than 1 rad/s, the MSE of scale factors drops significantly as the speed increases. At low

speeds, the measurement noise occupies most of the measured value rather than the

projection of the rotation component on this axis. At this time, the signal to noise ratio

(SNR) of the measured value is small. The lower the rotation speed, the smaller the SNR.

At the same rotation speed, when comparing (a) and (b) in Fig.3.4, the estimation with

high measurement noise has a larger MSE. As for the difference between axis, during

machining of MEMS gyroscopes, the x and y axes are usually machined together, while

the z axis is machined separately. So the x and y axes usually have similar accuracy, and

the z axis has a different accuracy comparing with the x and y axes. As a result, the error

of the z-axis also varies after calibration.
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Figure 3.6: Experimental system for the gyroscope calibration on a robot arm UR10e.
The part names and joint numbers are noted. [7]

Table 3.1: Convergence rate under different scale factors and biases

Number of
iterations kx ky kz bx by bz

1.High scale factor error
Actual value 1.9074 1.9529 1.5635 0.0827 0.0265 -0.0805

1 1.9102 1.9571 1.5665 0.0822 0.0243 -0.0797
2-Converged 1.9071 1.9539 1.5640 0.0822 0.0243 -0.0797

2.High bias
Actual value 1.0979 1.1052 0.9851 -0.1046 0.1995 0.1565

1 1.1029 1.1103 0.9900 -0.1057 0.1971 0.1545
2 1.0961 1.1035 0.9839 -0.1057 0.1971 0.1545

3-Converged 1.0962 1.1036 0.9840 -0.1057 0.1971 0.1545
3.High scale factor error and bias

Actual value 1.5044 1.6494 1.5282 0.1483 -0.1282 0.1794
1 1.5173 1.6652 1.5423 0.1469 -0.1284 0.1802
2 1.5053 1.6521 1.5302 0.1469 -0.1285 0.1803

3-Converged 1.5055 1.6523 1.5304 0.1469 -0.1285 0.1803

3.3.3 Robustness of the Method under Extreme Conditions

To demonstrate the robustness of the proposed gyroscope calibration method, the quality

of the gyroscope was assumed to be very poor. The randomly generated parameters

followed U(120%,200%) for scale factors and U(−0.2∼−0.1,0.1∼ 0.2) for biases. Other

parameters followed the previous setting. The results shown in Fig.3.5 suggested that

our proposed method could be applied to gyroscopes with poor manufacturing quality.
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Figure 3.7: Raw gyroscope data from LSM9DS1, compared with ADIS16465 reading
during calibration. (a) Periodic vibration was caused by the control strategy of the servo-
motor. (b) The component on the non-rotating axis was caused by mounting misalignment.
[7]

Although the errors were larger than under normal conditions, the majority of these

errors were within ±3×10−3 for 0.035 rad/s noise level and ±1.8×10−2 for 0.2 rad/s noise

level. Under extreme conditions, the scale factors had worse observability since larger

scale factors enlarge the signal noise, thereby reducing the SNR.

To demonstrate the convergence rate of the iterative method, we performed three

simulations (results shown in TABLE 3.1). The first simulation used high scale factors

error and normal biases, while the second simulation used typical scale factors error and

high biases. The third simulation used high scales factors error and high biases. The

results indicated that less than three iterations were needed for the proposed calibration

method.
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Figure 3.8: Raw gyroscope data from MPU9250, compared with ADIS16465 reading dur-
ing calibration. (a) Periodic vibration was caused by the control strategy of the servomotor.
(b) The component on the non-rotating axis was caused by mounting misalignment. [7]

0 10 20 30 40 50 60 70
Time (s)

-60

-40

-20

0

20

40

60

80

100

120

An
gu

la
r V

el
oc

ity
 (d

eg
/s

)

LSM9DS1 X
LSM9DS1 Y
LSM9DS1 Z
ADIS16465 X
ADIS16465 Y
ADIS16465 Z14.6 14.8 15 15.2

(a)

-61

-60

-59

31 32 33
(b)

-1

0

1

Figure 3.9: Calibrated gyroscope data from LSM9DS1, compared with ADIS16465 read-
ing during the testing period. (a) The reading from LSM9DS1 and ADIS16465 nearly
coincided with each other. (b) The biases of gyroscope reading were almost zero. [7]
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Figure 3.10: Calibrated gyroscope data from MPU9250, compared with ADIS16465
reading during the testing period. (a) The reading from MPU9250 and ADIS16465 nearly
coincided with each other. (b) The biases of gyroscope reading were almost zero. [7]

3.4 Experiments

We calibrated and verified two commonly used low-cost MEMS gyroscopes: LSM9DS1

from STMicroelectronics and MPU9250 from TDK. We demonstrated the application

of our proposed method on a UR10e robotic arm. Besides, our method is easy to imple-

ment on a 3-axis camera gimbal or a single-axis servomotor with proper adapter. The

calibration system is shown in Fig.3.6. The gyroscope is replaceable. The digital signals

were collected and calculated using an STM32L432 Nucleo board. It is worth noting

that high-precision turntables or other calibration equipment were not needed in the

proposed system. For the purpose of comparing the data quality of low-cost gyroscopes, an

ADIS16465 sensor was mounted on the same board during calibration. The ADIS16465

was pre-calibrated using a turntable. The room temperature was set to 22 °C.
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3.4.1 Calibration of Two Low-cost Gyroscopes

The proposed method was applied to the two gyroscopes according to the G-optimal

experiment scheme shown in Fig.3.1. We summarise the calibration procedure as follows:

1. Mount the LSM9DS1 and ADIS16465 on the UR10e and turn on the system.

2. Rotate wrist 3 of the UR10e 360◦ clockwise. Based on the simulation results,

find the balance between the rotation speed and measurement noise, and set the

angular velocity to 60◦/s. Then, wait for 3 seconds.

3. Rotate wrist 3 of the UR10e 360◦ counterclockwise. Wait for 3 seconds.

4. Repeat 2-3 for wrist 1 and wrist 2.

5. Repeat 1-4 for MPU9250.

The entire process takes about one minute. The data was recorded by the microcontroller

and transferred to the computer via a serial port. After completing the calibration process

on the microcontroller, the scale factors and biases were transferred to the computer. The

raw data from LSM9DS1 and MPU9250 are shown in Fig.3.7 and Fig.3.8.

From the figures, we can see that the readings of the two sensors are quite different

from that of ADIS16465. Since the ADIS16465 is a high-precision sensor and we have

also pre-calibrated it, it can be inferred that the difference is caused by the scale factors

and biases of the low-cost sensors. The servomotor control strategy leads to vibration

during rotation, while the ADIS16465 reading suggests that the average angular velocity

is relatively accurate. Since high-precision components were not used in the mounting

process, the non-rotating axis also had a rotation component. We hence prove that the

proposed method can work under conditions of vibration and misalignment.

To demonstrate the accuracy of the proposed method, we compared the calibration

results with those obtained using the precision turntable method [46]. The results are

shown in TABLE 3.2 and TABLE 3.3. For a fast calibration method without using any

high-precision equipment, all errors less than 10−3 indicate a considerably accurate
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Table 3.2: Comparison of LSM9DS1 calibration results

Parameter Results of proposed Results of conventional
calibration method turntable method

kx 1.1775 1.1771
ky 1.1552 1.1554
kz 1.1445 1.1440

bx(rad/s) 0.0076 0.0077
by(rad/s) -0.0103 -0.0100
bz(rad/s) -0.0042 -0.0051

Table 3.3: Comparison of MPU9250 calibration results

Parameter Results of proposed Results of conventional
calibration method turntable method

kx 1.0069 1.0065
ky 0.9960 0.9955
kz 0.9955 0.9950

bx(rad/s) 0.0442 0.0411
by(rad/s) -0.0089 -0.0099
bz(rad/s) 0.0076 0.0101

Table 3.4: MSE between LSM9DS1 and ADIS16465

Axis Error before Error after
calibration (rad/s) calibration (rad/s)

x 0.2798 0.0052
y 0.2255 0.0093
z 0.1940 0.0022

result. Besides, considering the low repeatability of the two gyroscopes used, the actual

scale factors and biases when mounted on the robot arm may be different from those

when mounted on the turntable.

After calibration, the parameters were stored in the microcontroller. To further test

calibration effectiveness, we made the robot arm repeat the same movements as during

the calibration procedure. Instead of raw data, the microcontroller sent the calibrated

gyroscope readings to the computer. The results after calibration are shown in Fig.3.9
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Table 3.5: MSE between MPU9250 and ADIS16465

Axis Error before Error after
calibration (rad/s) calibration (rad/s)

x 0.1031 0.0051
y 0.0107 0.0057
z 0.0096 0.0033

and Fig.3.10. The reading from the pre-calibrated ADIS16465 was considered as a ground

truth. We calculated the MSE error between the LSM9DS1/MPU9250 and ADIS16465.

The results are shown in TABLE 3.4 and TABLE 3.5. Our experiments show that the

gyroscope reading obtained after calibration using the proposed method is significantly

more accurate than the reading before calibration.

3.5 Conclusion

This chapter proposed an efficient servomotor-aided calibration method that estimates

the gain factors and biases of a triaxial gyroscope. A six-observation G-optimal exper-

imental scheme was implemented for the calibration process, and a fast converging

recursive linear least square estimation method was applied to reduce the computational

complexity. We performed a series of simulations and experiments to evaluate the validity

and feasiblity of the proposed method.

The simulation results indicated that the gyroscope parameters could be accurately

estimated within three iterations, and demonstrated that the proposed method was

robust under extreme conditions. Furthermore, the simulation results showed a bal-

ance between the rotation speed and measurement noise. The angular velocity in the

experiment was set to 60◦/s, accordingly.

We performed experiments on two commonly used low-cost MEMS gyroscopes. The

outcomes of calibration using our proposed method and the conventional turntable

method were experimentally compared. The results indicated that the errors between

these two methods were less than 10−3. To further test the performance of our proposed
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method, we compared the calibrated reading of the two low-cost gyroscopes with a high-

precision sensor. The results showed that the error was significantly decreased after

calibration. More importantly, we demonstrated the possibility of implementing this

method on low-precision motors such as a robot arm, as well as its applicability on a

microprocessor. Using our proposed method, the entire calibration process only requires

one minute, and high-precision calibration equipment is not necessary.
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TRIAXIAL GYROSCOPE CALIBRATION VIA MANUAL

ROTATION

4.1 Introduction

In some in a filed or clinical setting, even simple external calibration device is

not available. The autocalibration method proposed in the previous chapter was

further simplified. In this chapter, we proposed an autocalibration method, which

does not rely on any external devices and the calibration process can be finished within

30 seconds.

The gyroscope is essential equipment for measuring angular velocity in a wide range

of technologies, such as motion tracking [96], indoor positioning [97], and wearable health

monitoring [98–100]. For example, we have designed a low-cost micro-electromechanical

(MEMS) inertial measurement unit (IMU) device to be worn by preganant women during

childbirth to explore the impact of hospital birth room configuration upon mobility for

women with complex pregnancies (See Fig. 4.1 and 4.2). However, a key concern of

measurement in such ecological settings is that the accuracy of low-cost gyroscopes are

usually low. For instance, when calculating the attitude, the integration will lead to
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Figure 4.1: The designed wearable motion tracking device

Figure 4.2: The designed device using in the pilot study

the accumulation of drift error [88]. In addition, owing to the poor repeatability and

significant volatility, on every booting or under different environmental conditions, the

scale factor and biases change [89]. Therefore, it is necessary to calibrate the gyroscope

on each initialization or when environmental conditions change. However, calibration

processes are normally time consuming, and thus in field or clinical context, practitioners

need frequent calibration of the gyroscope, which needs to be a simple and efficient

process.

4.1.1 Preliminary Study

The development of the in-field wearable sensor calibration method is motivated by

the transdisciplinary project ’The use of wearable technologies to explore the impact of

hospital birth room configuration upon mobility in childbirth for women with complex

pregnancies’ under the support of the Faculty of Engineering and Information technology
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Cross-Faculty Collaborative Scheme, at the University of Technology Sydney (UTS).

The aim of our study was to track, analyse and compare the mobilisation and physical

positioning of women experiencing high risk pregnancy, during labour. This is important

because being able to move freely and adopt a range of positions during labour is

associated with reduced length of labour, decreased likelihood of caesarean section and

epidural use, increased sense of choice and control and bodily autonomy, and decreased

pain for women. Mobilisation during labour is expected for most women experiencing a

low risk pregnancy. However, women experiencing a high risk pregnancy may be less

expected to mobilise during labour, and thus may be offered less opportunity to move

freely and adopt a range of positions. The experienced midwives on the research team

have observed that mobilisation is rarely facilitated for women experiencing high risk

pregnancies, who are usually expected to remain prone on the bed. Little is known about

how women experiencing high risk pregnancies would mobilise if given opportunity to do

so. It seems possible that the use of wireless fetal monitoring and a birth room that has

appropriate space and equipment may facilitate mobilisation, and its associated benefits,

for these women.

For the first time, we have produced data showing where and how women move

around and utilise space in a (simulated) birthing environment, whilst they are undergo-

ing continuous electronic fetal monitoring due to risk factors and medical complications.

In future, the device can be used to compare efficacy and clinical impacts of different

types of electronic fetal monitoring on freedom of movement, maternal and infant well-

being. Future application of the device can fill a significant gap in health care design

research, which has previously been unable to reliably report on user experience of birth

room environments in maternity care settings.

In order to protect the privacy of potential participating birthing women in future

studies, the device could not use the conventional video-camera based tracking system.

It developed and pre-tested the motion tracking technology based on the integration of

inertial sensors and wireless sensing. One of the subsystems is a wearable module that

includes wireless IMU for gait monitoring and assisted behaviour recognition.
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Figure 4.3: Estimated orientation using raw gyroscope readings before calibration from
two models of gyroscope. Left: LSM9DS1. Right: ICM20948.

4.1.2 Pre-study

To test the accuracy of the developed portable IMU device, especially the gyroscope, we

implemented the orientation angle estimation tests as shown in Fig. 4.5. The gyroscope

to be tested is placed on a robotic arm, which rotates 360 degrees clockwise along the

x-axis and then 360 degrees counterclockwise. We repeat this action on the y and z axes.

Fig. 4.3 indicates that the angle estimation error is significant, which will potentially

influence the gait estimation and gesture analyses.

To improve the estimation accuracy, we tried to develop in-field calibration methods

for both accelerometers and gyroscopes. Despite the extensive amount of literature

investigating in-field calibration of triaxial accelerometers [74, 75, 101, 102]; few studies

discuss the calibration of the gyroscope under non-laboratory environments. Hence, in

this study, we developed a new easy-to-use gyroscope calibration method, which can

significantly improve the angle estimation accuracy as shown in the later discussions.
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Figure 4.4: The taxonomy chart of existing gyroscope calibration methods.

4.1.3 Existing Calibration Methods

A considerable amount of literature exists on the methods and accuracy of gyroscope

calibration (Fig. 4.4). In particular, the conventional calibration method uses a turntable

to provide a standard rotation speed for the gyroscope [46]. This method can provide

high calibration accuracy, but requires expensive and precise instruments and complex

calibration procedures that preclude its use in consumer electronic devices or clinical

settings. Several recent studies [4–6, 47] proposed several calibration methods that do

not need precision equipment. Specifically, in [4], a camera-aided calibration method

was reported. The images provide the orientation and position information of the sensor

to confirm its orientation, resulting in a high computational complexity. In a separate

method [5], an homogeneous magnetic field was employed as the calibration reference.

The natural geomagnetic field is very weak and is easily affected by the alternating

electric field, again making it difficult to implement outside the laboratory. In [6, 47],

an accelerometer-aided gyroscope calibration method was presented. The accelerometer

was first calibrated using the multi-position method. Then, the rotation speed of the

sensor body is provided by the accelerometer. In this method, the calibration error of the

accelerometer affects the calibration accuracy of the gyroscope. Besides, the calibration

process takes more than ten minutes. From the above discussion, we can infer that these

gyroscope calibration methods rely on external equipment are not suitable for scenarios

where the external calibration device is not available, such as in a filed or clinical setting

akin to a busy and chaotic hospital birthing room. This chapter proposed a fast in-field

autocalibration method for triaxial gyroscopes without any external devices that would
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assist provide veracity of collected IMU data from field-based contexts.

Intending to facilitate frequent calibration, the calibration efficiency deserves a

careful examination. However, the majority of previous research [4–6, 46, 47, 74] did not

dedicate enough time to explore the optimal experiment scheme. Ye et al. [75] reported

the design of experiment (DoE) for accelerometer calibration. The motivation of DoE

is that minimizing the number of trials to obtain sufficient calibration information.

Nevertheless, currently there is no similar DoE in the field of gyroscope autocalibration.

One of the most significant challenges in such DoE is that the calibration model is

highly nonlinear. Thus, in this study, we first give a linearized six-parameter gyroscope

calibration model prior to proposing a G-optimal DoE for the recommended model.

4.1.4 Summary of Our Contributions

The contributions of this chapter can be summarized as follows: (1) We propose a fast

autocalibration method for triaxial gyroscopes. This calibration method is implemented

in a micro-controller and only takes 30 seconds without using any external device. (2) We

propose a G-optimal DoE scheme for a linearized autocalibration model. (3) We validated

the effectiveness of the proposed calibration method in both numerical simulation and

real-time experiments. (4) We designed a low-energy, cost-effective, and wearable wireless

movement tracking device for health monitoring. We applied the proposed triaxial

gyroscopes calibration approach in the wearable device and significantly improved angle

estimation accuracy.

4.2 Methodology

One of the main obstacles stops gyroscope autocalibration is that the low-precision gyro-

scopes cannot use the earth’s rotation as a reference for calibration, like accelerometer

use gravity. This is because the angular velocity of the earth’s rotation is often submerged

in the noise of the gyroscope. In this section, we first propose an autocalibration method
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Figure 4.5: The orientation estimation tests. The IMU is mounted on a robot arm.
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Figure 4.6: 4-observations rotation protocol for gyroscope calibration. (1) Stationary stage.
(2)-(4) Rotating stage: Manually rotate the gyroscope 360 degrees clockwise along the
x,y,z axis.
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that uses manual rotation angle as a calibration reference. Then, a four-observation

calibration method is reported.

4.2.1 Calibration principle

Numerous parameters contribute to the error in a gyroscope, among which the scale

factor and biases have a significant influence. In this study, a 6-parameter calibration

model is employed to estimate unknown parameters. Therefore, the relationship between

the actual angular velocity components gx,i, g y,i, gz,i and the measured angular velocity

mx,i,my,i,mz,i at i th rotation are described as:

(4.1)


gx,i

g y,i

gz,i

=


kx 0 0

0 ky 0

0 0 kz





mx,i

my,i

mz,i

+


bx

by

bz


 ,

Where the kx,ky,kz and bx,by,bz represents the scale factors and biases, respectfully.

The main idea of this method is Euler’s theorem. Specifically, the total rotation vector

of the gyroscope θtotal should be equivalent to the sum of the rotation projections on each

of these three axes [θx,i,θy,i,θz,i].

(4.2) θtotal,i = θx,i +θy,i +θz,i,

where i stands for the different rotations. We calculate the magnitude and square both

sides of Eq. (4.2), and consider the rotation angle on each axis is equal to the integral of

the angular velocity of this axis. Thus, for a discrete system, we have:

(4.3) θ2
total,i =

(
N∑

j=1
gx,i, j

)2

+
(

N∑
j=1

g y,i, j

)2

+
(

N∑
j=1

gz,i, j

)2

,

where j is the number of the sample within one rotation and N is the total sample

number in one rotation. If we substitute Eq. (4.1) into Eq. (4.3), we have:
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θ2
total,i = k2

x

(
N∑

j=1
(mx,i, j +bx)

)2

+k2
y

(
N∑

j=1
(my,i, j +by)

)2

+k2
z

(
N∑

j=1
(mz,i, j +bz)

)2

+ϵi,

(4.4)

where ϵi is the noise. Let the unknown parameters be represented by a vector α=
[kx,ky,kz,bx.by,bz]. Then, we can reformat the calibration problem into an optimization

problem:

(4.5) min
α

J(α)=min
α

n∑
i=1

(|| fα(M i)−θ2
i ||), l = x, y, z,

where M i = [
∑N

j=1 mx,i, j,
∑N

j=1 my,i, j,
∑N

j=1 mz,i, j] is the measurement during each rotation

and fα(M i) is a scalar function of M i. The minimization problem Eq. (4.5) can be solved

using various nonlinear methods, such as Levenberg‚ÄìMarquardt algorithm[92] and

Nelder‚ÄìMead method[91]. However, these nonlinear methods are relatively compu-

tationally expensive. In practice, a gyroscope is usually integrated into an embedded

system with limited computational power and battery life. Therefore, a method with low

computational complexity is given below to estimate the scale factors and biases.

4.2.2 Model Linearization and Experimental Design

When the gyroscope is in a static state, the left side of the Eq. (4.4) becomes to θtotal,i = 0.

As every term on the right side of Eq. (4.4) is greater or equal to zero. Thus, every term

should be equal to zeros. Consequently, biases can be obtained as follows:

(4.6)


bx =− 1

N
∑N

j=1 mx, j

by =− 1
N

∑N
j=1 my, j

bz =− 1
N

∑N
j=1 mz, j

After the biases are given, the model Eq. (4.4) can be reformed into a first-order linear
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Figure 4.7: Typical simulated measurements of the proposed calibration method under
0.15◦/sec noise level. Speed variation and speed projection on non-rotating axis were to
simulate the manual rotation process.

form by redefining a new set of parameters and variables as follows:
β1 = k2

x

β2 = k2
y

β3 = k2
z

,


x1,i =

(∑N
j=1(mx,i, j +bx)

)2

x2,i =
(∑N

j=1(my,i, j +by)
)2

x3,i =
(∑N

j=1(mz,i, j +bz)
)2

.

The polarity of the scale factor should be predefined. We consider the sign of the

scale factors to be positive to ensure consistency with the datasheet. We also define the

actual rotation angle as the response of the first-order model yi = θ2
total,i, then the model

becomes:

(4.7) yi =β1x1,i +β2x2,i +β3x3,i +ϵi.

This can be easily calculated using least square method:

(4.8) β̂= (XT X)−1XTY ,
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where β= [β1,β2,β3]T , Y = [y1, y2, y3]T , and X = [x1,1, x2,1, x3,1; x1,2, x2,2, x3,2; x1,3, x2,3, x3,3].

After solving (4.8), the scale factors can be calculated by:

(4.9)


kx =

√
β1

ky =
√

β2

kz =
√

β3

.

In optimal experiments design, G-optimality aims to minimize the maximum variance

of the predicted parameters. The scaled prediction variance (SPV) of the linearized model

Eq. (4.7) can be expressed as:

(4.10) d(x,ξn)= n f T(x)(XT X)−1 f (x),

where ξn is the n observations experimental scheme and f (x)= [x1, x2, x3]T . We propose

a three observations scheme and its design matrix is

(4.11) D =

x1 x2 x3


(1) 1 0 0

(2) 0 1 0

(3) 0 0 1

.

Theorem 1 confirms that the DoE (4.11) is G-optimal.

Theorem 1. The experimental scheme Eq. (4.11) is the G-optimal design of the model

(4.7) in the spherical design region.

Proof. To prove the G-Optimality of the experimental scheme Eq. (4.11) must make

sure the maximum SPV is equivalent to the amount of unknown parameters[94]:

d(x,ξn)= n f T(x)(XT X)−1 f (x)

= 3(x2
1 + x2

2 + x2
3).

In the spherical design region (x2
1 + x2

2 + x2
3) = 1, d(x,ξn) has the maximum value of 3,

which is identical to the amount of parameters. ■
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Figure 4.8: The error of estimated biases and scale factors compared with the true values
at different noise levels. (a)0.03◦/sec noise level. (b)0.15◦/sec noise level.

4.2.3 Summary of the calibration process

The calibration process can be summarized into two stages, including a stationary and

rotating stage, respectively. In the stationary stage, the gyroscope is placed on a stable

surface and remains still for three seconds. In the rotating stage, two smooth planes

perpendicular to each other are selected (see Fig. 4.10). The tabletop and the side of

the cuboid box perpendicular to the horizontal plane are selected. The two planes are

not required to be strictly vertical, but they are required to be stable. First, place the

gyroscope on a horizontal table close to the side of the box, and mark its initial position

on the table before gently rotating 360 degrees around the x-axis of the gyroscope. When

the gyroscope coincides with the initial position of the mark, it is deemed as one rotation.

This process is then repeated on the above operation in the y, z-axis to obtain a total of 3

observations. It is worth noting that high-accuracy equipment and customized case are

not used in this process.
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Figure 4.9: The mean error of the calibrated angular velocity compared with the actual
value of each axis. Row: under different noise levels. Column: before and after calibration.

4.3 Simulation

To validate the proposed method under different conditions such as scale factors, biases,

mounting misalignment, and measurement noise, we first inspect the proposed method

using simulations. For the purpose of simulating under the similar hardware condition,

the following assumptions on the parameter are given, and the results are explained

thereafter:

1. The scale factors and biases follow uniform distributions U(80%,120%) and U(−5◦/s,5◦/s),

respectively. The parameters of low-cost MEMS gyroscopes are usually in between

these values.

2. The mounting misalignment on each axis follows a uniform distribution U(−10%,10%).

In the absence of high-precision fixtures, it is almost impossible to mount the gyro-

scope accurately.

3. The measurement noise is assumed following a Gaussian distribution with zero

73



CHAPTER 4. TRIAXIAL GYROSCOPE CALIBRATION VIA MANUAL ROTATION

mean and two different noise N (0, 0.032) and N (0, 0.152). The typical rate noise

density is between 0.003−0.015◦/sec/
p

Hz . At a 100Hz sampling frequency, we

consider the standard deviation of root-mean-square noise as 0.03−0.15◦/sec.

Based on the above assumptions, we formulate the following simulation process.

30 sets of parameters are randomly generated based on the assumptions above. For

each set of parameters, 500 simulations were repeated. During each simulation, we

created a 4-observation measurement according to the experiment scheme described in

Section 4.2.3. For the purpose of showing that the proposed method is not sensitive to the

speed variation, the rotation speed in the rotating stage was represented by a randomly

generated Bezier curve [103]. A typical run of one simulation is shown in Fig. 4.7. We

also generated a testing set for each simulation. The gyroscope were assumed to rotating

constantly and have equal speed projection on each axis during testing process.

After obtaining the 4-observation measurement, (4.6) and (4.8) are employed to

calculate the biases and scale factors. We use the estimated biases and scale factors to

compensate the test set and compare with the actual value. 15000 simulations were

conducted for testing our efficient calibration method.

We first observe the error between the estimated parameters and the actual para-

meters. Box plot Fig. 4.8 was used to analysis the statistical characteristics of the error.

The results show that the estimated scale factors and bias terms are unbiased with

a zero median value of the estimation error. The majority of the estimation error are

within ±5.5×10−3 for 0.03◦/sec noise level and within ±2.5×10−2 for 0.15◦/sec noise

level. Besides, each subplot in Fig. 4.9 shows statistical characteristics of the mean error

of the calibrated measurement value and the actual value in the testing set in 15,000

simulations. The error is defined as:

(4.12) e l =
∑N

i=1(gt
l,i − m̂t

l,i)

N
, l = x, y, z,

where gt and m̂t stands for the true value and calibrated measurement value in the

test set. Under both noise levels, the error after calibration is significantly reduced
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Figure 4.10: Experimental system for gyroscopes calibration. Main figure: the initial
position of the device. Top left figure: bottom view of the device.

compared to the error before calibration. Among them, under the noise level of 0.03◦/sec,

the measurement error is reduced to 3% of the previous.

4.4 Experiments

In this section, we empirically implemented and validated the proposed method. For the

purpose of show the efficiency and accuracy of our method, we compared the proposed

method with three existing method.

4.4.1 Experiments Device and Hardware Design

The developed wearable MEMS IMU device is shown in Fig. 4.1. This device is composed

of a 3D printed case, a 9 degree of freedom inertial sensor (ICM20948), an RF transceiver

(RTL8762AG) and a microcontroller (STM32F103T8U6). Owing to the low energy con-

sumption features of the chosen components and adjustable inertial sensor sampling

frequency (4.4Hz−562.5Hz), the device can continuously work for 14 hours with a 400

mAh lithium polymer battery. Besides, to further reduce the power consumption, we use

Bluetooth Low Energy technology to transmit the collected data to the host computer. In

75



CHAPTER 4. TRIAXIAL GYROSCOPE CALIBRATION VIA MANUAL ROTATION

Inertial Sensor 
ICM20948

Micro-controller
STM32F103T8U6

Bluetooth RF 
Transceiver
RTL8762AG

Lithium Polymer 
Battery

Power Management 
and Wireless Charging 

IC

Inductive 
Coil Antenna

Signal Flow

Power Flow

Figure 4.11: The designed wearable motion tracking device functional block diagram.

addition, the 3D printed case has good airtightness, which makes the device meet the

IP67 waterproof standard. For ease of use, the device is also equipped with the wireless

charging function. The system functional block diagram is shown in Fig. 4.11.

4.4.2 Experimental Setting

Two commercial-grade low-cost gyroscopes are tested in this study. One is LSM9DS1

from ST-Microcontroller, and the another one is ICM20948 from TDK Invensense. The

LSM9DS1 was set to 104Hz sampling rate with a full-scale range of 245◦/sec. On

ICM20948, the sampling frequency was set to 104Hz, and the full-scale range was set to

250◦/sec. The parameters are summarized in Table. 4.1. The room temperature was set

to 22°C. All devices were preheated for 3 minutes before experiments.

Table 4.1: Related parameters of test gyroscope

Parameter LSM9DS1 ICM20948
±4.5%
±6.25
250

Sensitivity Scale Factor Tolerance
Zero-Rate Output Tolerance (dps)

Scale range (dps)
Sampling Frequency (Hz)

Not Provide
±30
245
104 104
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Table 4.2: Calibration results comparison of LSM9DS1.

Parameter Results of proposed Results of conventional Results of accelerometer Results of servomotor
calibration method turntable method [46] -aided method [47] -aided method [104]

kx 1.2374 (0.0245) 1.2619 1.2464 (0.0154) 1.2590 (0.0029)
ky 1.1764 (0.0202) 1.1966 1.1806 (0.0160) 1.2030 (0.0064)
kz 1.1504 (0.0032) 1.1536 1.1603 (0.0067) 1.1441 (0.0095)

bx(◦/s) -3.1065 (0.0215) -3.1275 -3.1156 (0.0124) -3.1436 (0.0157)
by(◦/s) 1.6171 (0.0141) 1.6312 1.6137 (0.0175) 1.6585 (0.0274)
bz(◦/s) -1.4467 (0.0188) -1.4655 -1.4794 (0.0139) -1.4493 (0.0162)

Time (Second) 27 1533 570 60
Equipment N/A High-precision turntable Accelerometer Servomotor

Notes. The value in parentheses is the absolute error compared with the turntable method.

Table 4.3: Calibration results comparison of ICM20948

Parameter Results of proposed Results of conventional Results of accelerometer Results of servomotor
calibration method turntable method [46] -aided method [47] -aided method [104]

kx 0.9859 (0.0037) 0.9822 0.9745 (0.0077) 0.9780 (0.0042)
ky 1.0096 (0.0088) 1.0183 1.0189 (0.0006) 1.0168 (0.0015)
kz 0.9710 (0.0078) 0.9788 0.9879 (0.0091) 0.9765 (0.0023)

bx(◦/s) -0.5236 (0.0067) -0.5169 -0.5159 (0.0011) -0.5250 (0.0081)
by(◦/s) -1.4347 (0.0055) -1.4402 -1.4488 (0.0086) -1.4473 (0.0071)
bz(◦/s) 1.0525 (0.0023) 1.0502 1.0537 (0.0035) 1.0566 (0.0064)

Time (Second) 29 1495 565 60
Equipment N/A High-precision turntable Accelerometer Servomotor

Notes. The value in parentheses is the absolute error compared with the turntable method.

4.4.3 Comparing with existing calibration methods

To show the efficiency and accuracy of our method, we compared our method with two

state-of-the-art autocalibration method [47, 104] and the gold standard turntable method

[46].

Conventional turntable method. This method uses a high-precision turntable to

provide a calibration reference. The key parameters of the turntable are 0.0001°position

accuracy and 0.0001°/s angular velocity accuracy. The fixture manufacture precision is

0.02mm. We use six angular rate method in this study.

The accelerometer-aided method. This method uses the feature that most IMUs

include accelerometers, and uses accelerometers to provide a calibration reference for

the calibration of the gyroscope. Following the experiment process described in [47], we

reproduced the experiment using our gyroscopes. In our experiment, the inclination

angle between the device and the desktop is set to 0°, 30°, and 45 °. Different from the

original experiment, we did not repeat the experiment multiple times and take average
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to improve the calibration accuracy, because the experiment time is already as long as

ten minutes.

The servomotor-aided method. This method uses a servomotor to provide a

reference for calibration and provides a fast and low-cost calibration method. Due to the

use of external calibration equipment, this method is not a pure autocalibration method.

We have calibrated our gyroscope with reference to the calibration method provided in

[104].

Our proposed method is summarized in Section 4.2.3.

To compare the efficiency of these method, we also compared the calibration time. We

use a stopwatch to calculate the experiment time. Before the start of each experiment, we

prepare all the test equipment. After pressing the timing button, we start the experiment,

and we stop timing until all the data is collected. We did not include the data processing

time, because it usually only takes a few seconds with a well written program.

4.4.4 Results and discussion

The calibration results of four different calibration methods are summarized in Table.

4.2 and 4.3. As we do not know the true scale factors and biases of the testing device, we

consider the result of gold standard turntable method as ground truth in the following

discussion.

The absolute error of the proposed method is less than 2.5×10−2 for LSM9DS1 and

less than 1×10−2 for ICM20948. Considering the low repeatability and large measure-

ment noise of the low-cost gyroscopes, the calibration result is considerably accurate.

The estimation error of ICM20948 is significantly lower than that of LSM9DS1. We infer

that this is because the noise spectral density of ICM20948 is lower. This is also in line

with the simulation result, that is, the calibration result of the gyroscope with lower mea-

surement noise has a smaller estimation error. Besides, the repeatability of ICM20948 is

higher, which means that its parameters change less during the experiments.

Compared with the accelerometer-aided method, our method achieves a similar cali-

bration accuracy within one twentieth of the time. Besides, because the accelerometer is
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Figure 4.12: Magnitude of rotation speed before and after calibration. The acceleration
and deceleration phases were omitted.

Figure 4.13: Estimated orientation using calibrated gyroscope readings after calibration
from two models of gyroscope. Left: LSM9DS1. Right: ICM20948.

used to provide the gyroscope calibration reference, the calibration error of the accelerom-

eter is also added to the gyroscope calibration process. The servomotor-aided method has

a fast calibration speed and high calibration accuracy because it has a principle similar

to that of a turntable. However, due to the use of external auxiliary equipment, it is not

suitable for use in an in-field calibration situation.

To further verify the calibration results, we rotate the above calibrated gyroscope

360 degrees clockwise and counterclockwise along the x, y, z axis at a constant speed

of 25.42°/s using a servomotor, and record the raw readings along with the calibration
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parameters. When plotting, we did not plot the acceleration and deceleration phases. We

calculated the magnitude of rotation speed before and after calibration. The magnitude

of the rotation speed was calculated by the square root of the sum of squares of their

vector components. The results are shown in Figure. 4.12. The results show that the

magnitude of rotation speed after calibration is obviously closer to the ground truth,

where the results of ICM20948 almost coincides with the ground truth.

As we discussed in Section 4.1.1, in the transdisciplinary project for monitoring the

movements of women with complex pregnancies during labour and childbirth, without

calibration, the angle estimation error was significantly high as shown in Figure.4.3.

After using the proposed in-field calibration method, the estimation accuracy has been

significantly enhanced. In Figure.4.13, it is clearly showed the ideal trajectories, and the

estimated trajectories almost coincide when using the calibrated gyroscope readings.

Overall, the proposed method achieves a relatively high calibration accuracy. It should

be emphasized that the entire calibration process only took less than 30 seconds, and

any external device is not used during the process.

4.5 Conclusion

This chapter proposed an efficient in-field gyroscope calibration method for the purpose

of developing a wearable monitor to track the movement of a labouring and birthing

woman in a hospital birth room. We first introduced a self-designed low-cost motion

tracking device. To overcome the error caused by the gyroscope during motion tracking,

we presented a linearized calibration model. Based on the proposed linearized calibration

model, a G-optimal experimental scheme was proposed for the calibration process. For

the purpose of proving the feasibility of the proposed method, both simulations and

experiments have been conducted.

The simulations were performed using the parameters which are similar to commonly

used gyroscopes. The results indicate that the proposed method can achieve a relatively

high calibration accuracy, and the results are unbiased. The experiments were conducted
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on two commercial-level low-cost MEMS gyroscopes. To show the efficiency and accuracy

of our method, the results of our method and the results of the turntable method as well

as two state-of-the-art autocalibration were compared in this study. The results show

that the errors between our method and turntable method were comparable. It has been

shown that no high-precision equipment is required and the calibration process only

takes less than 30 seconds.
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5.1 Introduction

C ollecting and labelling the data are both time and money consuming. In the

e-trainer design aspect, the model should be personalized build and trained

for a specific user, but asking users to collect and label a substantial amount of

the data is unachievable. To overcome the lack of dataset issue, in this chapter, we use

kernel method to provide prior information and minimize the model building phase.

During physical exercise, as the intensity of exercise changes, the cardiovascular

system adjusts to the amount of blood and oxygen delivered to the working muscles,

resulting in heart rate (HR) changes and respiratory rate changes. Creating a mathe-

matical model for the cardiovascular system might give us a better understanding of

exercise physiology[105]. Comprehending the aetiology of HR behaviours throughout the

course of an exercise may also help predict and reduce the mortality from cardiovascular

disease [106]. This is also conducive to improving athletes’ performance and designing

more effective weight loss procedures for obese people. It also helps to assess individual
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Figure 5.1: The proposed automatic treadmill system and speed profile during the
identification period. (A) Resting. (B) Walking.[8]

physical health [107].

Modelling and controlling HR response during treadmill exercise has received con-

siderable attention in the [108–110]. The variance of HR response measurement can be

quite large because of the limitation of HR sensor accuracy and dislocation of the sensor

[111]. Also, due to the complexity of the human cardiovascular system, it is hard to use

a simple parametric model to describe the responses of the cardiovascular system to

exercise. Accordingly, in this chapter we employ a nonparametric model, called a finite

impulse response (FIR) model, to describe the HR response. However, due to the fact that

the size of the FIR model is relatively large, the traditional system identification method

usually requires a very complicated dynamic input to provide enough information for

the model establishment, which will in turn lead to a long experiment time and sharp

variations during model estimation. The inherent ill-posed problem caused by sensor

noise and insufficient dynamic information can be solved by adding the regularisation

term in the index function. This term reforms the problem into a regularised least square

estimation (ReLS) problem [64]. However, ReLS only solves the ill-condition problem and

is incapable of providing any prior information to the model estimation process. To this

end, we reform the FIR model estimation problem as Gaussian Process modelling[112].

By adding a kernel term in reproducing kernel Hilbert space (RKHS), the prior informa-

tion is embedded in the identification process by assigning a covariance which is also

called a kernel in the machine learning field [63]. The participation of this prior informa-

tion means fewer experiments can provide enough information for model identification.
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MPC Controller Treadmill
Exerciser on 

Treadmill

Heart Rate 
Measurement System

Automatic Treadmill System

Figure 5.2: Schematic of the automatic treadmill system [8]

The contributions of this study are summarised as follows: (a) An effective kernel-based

nonparametric modelling method is developed for identifying the HR response model. By

applying this method, we can significantly reduce the number of experiments and the

complexity of the experimental protocol to reach the desired modelling accuracy. (b) An

effective HR tracking controller is developed by integrating the proposed nonparametric

modelling method and the MPC. This new model predictive controller can also limit the

speed and acceleration ranges to ensure the safety of the exercisers. To the best of the

authors’ knowledge, it is the first time that the kernel-based nonparametric modelling

approach has been integrated with MPC control for HR regulation during treadmill

exercises. (c) The proposed modelling and control algorithms have been experimentally

validated on 12 participants and have achieved the desired HR tracking accuracy.

5.2 Kernel-based estimation method of heart rate

response model

The heart rate (HR) response model can be dynamically described by its impulse response

g(k) as follows:

(5.1) y(t)= ∑∞
k=1

g(k)u(t−k)+ e(t), t = 1,2, . . . N,

where the e(t) is the noise, and N is the total number of sampling. We can compute the

system output y(t), here it is the HR, by knowing the corresponding impulse response
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g(k) and input signal u(t), here it is the treadmill speed. In general, e(t) is supposed to

be independent of u(t).

For a stable system, its impulse response decays exponentially. Thus, the system can

be approximately decrypted by its mth order finite impulse response (FIR):

(5.2) y(t)=
m∑

k=1
g(k)u(t−k)+ e(t), t = 1,2, . . . N.

When we stack all the rows in y(t) and u(t) to the vectors form and define [g(1), g(2), . . . , g(m)]=
θ ∈ Rm, then equation (5.2) becomes

(5.3) Y =φθ+E.

Apparently, the least-squares estimator of the model (5.2) is

(5.4) θ̂ = argmin
θ

||Y −φθ||2.

In industrial applications, when the experiments are well designed (e.g., PRBS

inputs) and comprehensively performed, the information matrix associated with equation

Eq. (5.4) contains enough information to identify the parameter. As a result, even a

classical least-square estimator can be applied to identify θ̂ which is the parameter

of the nonparametric model. However, for the physiological model, in which human

factors are involved, the experiments are often limited to input strength and duration.

While the experimental protocol should not be too complicated, this is often the case

for the modelling of the HR impulse. To ensure the safety of the treadmill exercisers,

the input signal (i.e., the profile of the treadmill speed) is often confined to rectangular

with moderate magnitude (treadmill speed). That is why most existing literature uses a

simple parametric model, often a first-order model, to approximately descript the HR

response to treadmill speed. To better accommodate the differences of various exercisers,

a nonparametric model can be employed. This has the potential to develop personalised

sports medicine based on accurate prediction of the cardiorespiratory response to exercise.

However, using a high dimension impulse response model with limited model stimulation

often leads to an ill-conditioned problem, i.e. a small error in the measurement can lead

to a large estimation error. To address this issue, a commonly used technique is that of
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adding a regularisation term to the estimator (5.4). In contrast to the regularised least

square estimation (ReLS) method introduced in [64], we add a kernel regularisation

term to the estimator [113]

(5.5)
θ̂ = argmin

θ

||Y −φθ||2 +γθTβ−1θ

=βφT
(
φβφT +γIN

)−1
Y ,

where the second item is a kernel regularisation term that denotes the squared Eu-

clidean norm in reproducing kernel Hilbert space (RKHS). β is an N-by-N kernel matrix

containing the prior information of FIR. Comparing to the ReLS method, the advantage

of the kernel method is that it has a stronger capacity to minimise the mean square

error of FIR. The ReLS method only considers solving the ill-condition problem. More

importantly, the prior information brought by the kernel allows us to build an impulse

response model.

5.3 MPC Controller Design

During treadmill exercise, the walking speed and acceleration must be limited to within a

safe range to guarantee the safety of exercisers. Because model predictive control (MPC)

has the inherent ability to deal with constraints, it is the most suitable choice. MPC

depends on the dynamic model of the process to predict and optimise the future behaviour

of the process. MPC uses current measurements, including the dynamic information of

the current process, the model, process reference trajectory, and constraints, to calculate

future changes in manipulated variables. MPC usually only implements the first optimal

sequence to the plant and repeats the calculation when the next change is needed.

Let y(t) and ŷ (t+1|t) represent the current measurement and predicted measure-

ment, respectively. The control output ut,ut+1, . . .ut+q−1 can be obtained by solving the

following constrained optimisation problem [110]:
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Table 5.1: Participant information.

Col 1 Mean SD Range

Age(year) 28.67 0.94 27-30
Body mass(kg) 66.58 13.07 50-86
Height(cm) 174 10.35 156-187
BMI(kg/m2) 21.75 2.22 18.37-24.59

n=12, 5 female, 7 male.

(5.6)

minimize
∆ut . . .∆ut+q−1

p−1∑
l=0

|| ŷt+l+1 − r t+l+1||2Q y
+

q−1∑
l=0

||∆ut+l ||2S

subject to umin ≤ ut ≤ umax t = 0, . . . , N −1,

∆umin ≤∆ut ≤∆umaxt = 0, . . . , N −1.

Use the kernel-based nonparametric model to predict the future output of a certain

range p (called the prediction horizon) at each time t. These future outputs ŷ are

predicted based on the given information (past inputs and outputs) up to time t and the

future control output u generated by the controller up to time t+ q, where q is called the

control horizon. Q y and S are the penalty matrix for prediction errors and control moves.

Here, u and ∆u are constrained speed and acceleration, respectively.

Based on the model θ = [g(1), g(2), . . . , g(m)] estimated by Eq.5.5, the predictor can be

described as:

(5.7)
ŷ(t+ l|t)=

l∑
k=1

g(k)u(t+ l−k)+
m∑

k=l+1
g(k)u(t+ l−k)

+ ym(t)−
m∑

k=1
g(k)u(t−k),

where ym(t) is the measured value at time t.

5.4 Experiments and Discussion

In this section, we introduce the procedure of the experiment and discuss the result. The

experiment is divided into two phases. The first one is the model estimation phase, which
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builds the HR response model for each participant by using the kernel-based estimation

method. The second phase is MPC control by using the proposed model. In this phase,

we achieve HR tracking with constrained speed and acceleration.

The modelling and control data was obtained from 12 participants. The detail is

shown in Table 5.1. The experiment was performed under the approval of the UTS

Human Research Ethics Committee (ETH17-1758). The data collection was based on

voluntary participation, and the informed consent from all participants was obtained

before the data collection.

Before each phase, the participants were permitted to consume a light meal 2 h before

the experiment. High-intensity exercise was not allowed 3 h before the experiment. Each

participant wore a wireless HR sensor and stood on the treadmill for 2 minutes before

the experiment started. The room temperature was set to 22 ℃.

5.4.1 Experimental Equipment

The proposed heart rate (HR) regulation treadmill system and its MPC control system

are shown in Fig.5.1. A TRACKMASTER FVX 325 medical-grade treadmill, which is

manufactured by Full Vision Inc, is used in the automated system. This system can

send treadmill speed to a personal computer and manipulate the treadmill speed via

the serial port. The HR is measured by a wireless wearable Zephyr HR sensor. The

sensor collects the analogue electrocardiogram signal and calculates the HR by using

the edge detection method. The sensor transmits HR data to the control system every

second via Bluetooth. However, it is observed that the measured HR is often polluted by

electromagnetic interference generated by other environmental equipment. To address

this issue, we use the proposed kernel-based nonparametric MPC for HR tracking.

5.4.2 Model Estimation

In the model estimation phase, the participants are required to walk on the treadmill

according to the desired speed protocol shown in Fig.5.1. They first stand on the treadmill

for 80 seconds. Then, they are asked to walk at 3 km/h for 3 minutes, followed by a faster
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Figure 5.3: (Top) Typical estimated heart rate comparison between Kernel method and
LS method. (Bottom) The estimated impulse response for one participant. [8]

walk at 6 km/h for 3 minutes. Then, another walk for 160 seconds at a speed of 3 km/h.

The entire process takes 10 minutes, including 80 seconds resting period. The expertise

protocol is relatively easy as it only contains two accelerations. The exerciser is informed

5 seconds before each acceleration.

For the finite impulse response model Eq.(5.2), the order m was selected as 250 and

the sampling time was selected to 1 second. The proposed kernel-based estimator Eq.

(5.5) was employed to identify the FIR model by using the Tuned/Correlated (TC) kernel,

Diagonal kernel (DI) kernel, and Stable spline (SS) kernel. The fit error is defined as the

normalised root mean square error between the estimated HR and true HR.

To select the best kernel, we estimated each participant model using three different

kernels. The parameter selection method of each kernel was given in [113]. We calculated

the fit error of each estimated model. As a comparison of the conventional method, we

calculated the fit error of the model by using the latest square (LS) method Eq. (5.4). The

fit error is recorded in Table 5.2. The kernel with the lowest fitness error was selected

for the model estimation. It demonstrated that the proposed kernel method outperforms
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Table 5.2: Fitness error.

Subject TC(%) SS(%) DI(%) LS(%)

Participant 1 33.86 31.68 30.79 41.91
Participant 2 21.61 30.61 21.23 25.63
Participant 3 19.05 17.59 18.81 21.85
Participant 4 26.83 27.50 29.24 30.26
Participant 5 25.56 25.53 25.46 34.61
Participant 6 50.36 66.37 37.69 53.52
Participant 7 28.75 29.07 18.41 44.62
Participant 8 48.05 48.15 47.43 82.40
Participant 9 25.85 26.60 25.84 26.83
Participant 10 54.18 56.83 53.70 84.65
Participant 11 55.61 39.07 38.00 54.51
Participant 12 22.53 23.18 22.50 30.41
Average 34.35 35.18 30.76 44.27
Standard deviation 13.11 14.07 10.85 20.24

the conventional LS method. Specifically, Fig.5.3(Top) shows a typical estimated HR

comparison between the kernel-based method and LS method. The figure indicates that

the proposed model response has a lower fitness error and is smoother than the LS model

response in general. Fig.5.3(Bottom) is the estimated impulse response by using different

methods. The LS method impulse response is extremely noisy. This indicates that the

kernel-based method can solve the ill-posed problem.

5.4.3 MPC Heart Rate Regulation

In the heart rate (HR) regulation phase, using the kernel-based nonparametric model

presented in Section 5.4.2, we designed a model predictive controller to track a predefined

reference HR. The participants were required to stand on the treadmill for 60 seconds.

The reference HR was then set to be 100 beats/minutes and to last for 6 minutes. The

prediction horizon was p = 10 and control horizon was q = 1. The penalty matrix for

prediction errors and control moves were set to be Q y = 1 and S = 5, respectively. To

maintain the exercise safety, the maximum speed was limited to 6 km/h and the acceler-

ation was limited to ±0.5 km/h/sec. Fig.5.4 demonstrates that the proposed kernel-based
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Figure 5.4: Heart rate tracking results for all 12 subjects. [8]

nonparametric model and MPC controller achieved the desired tracking performance.

All 12 participants reached the target HR within 60 seconds after the treadmill started

and without steady-state error. These performances are comparable with those discussed

in previous literature [110]. However, it should be emphasised that the performance ac-

quired by the proposed method requires easier experiments during the model estimation

phase.

5.5 Conclusion

In this chapter, we proposed a nonparametric model and a kernel-based estimation

approach describing the HR response during treadmill exercise. The proposed model

and estimation method were applied to 12 participants. The experimental results indi-

cated that the fit error of the proposed approach is lower than the least square method.

In addition, the model estimation phase needs less time and does not contain com-
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plex exercise protocols. By using this nonparametric model, an automatic treadmill

system was built and employed for HR tracking during treadmill exercise. The MPC

technique was implemented, which could achieve safe exercise by constraining both

exercise speed and acceleration. Experimental results demonstrated that the proposed

HR regulation system achieved low HR tracking error under the predefined acceleration

and speed constraints. The proposed HR response model and MPC control approach

were experimentally validated and might have important implications for cardiovascular

rehabilitation, the creation of effective training plans for athletes and the development

of efficient weight loss plans to combat obesity.
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6
MODEL COMPRESSION VIA PRUNING METHOD

6.1 Introduction

A rtificial intelligence-based human motion state classification and exercise inten-

sity control algorithms have received considerable attention in recent years. In

some scenarios, exercisers wear more than one e-trainer. In this case, the state

of the exerciser is a graph, and each sensor is a node in the graph. Consequently, Graph

Neural Networks (GNNs) can be used to determine the sports state of the athlete. These

algorithms often run on high-performance computers and cannot be applied to wearable

devices. The main obstacle is that wearable devices do not have enough memory and

computing power to run artificial intelligence models. Therefore, this chapter proposed

a model compression method via neural network pruning, which greatly reduced the

memory usage and calculation amount, so as to achieved the purpose of running the

model on wearable devices.

Intricate relations and phenomena such as molecular structure, traffic networks and

the Internet are naturally described as graphs. GNNs found their way on various graph-

based learning tasks, such as node classification [114], link prediction [115], and graph

classification [116], achieving excellent performance by leveraging graph information.
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During the node feature learning, GNNs aggregate features from neighboring nodes,

and then perform feedforward propagation on the aggregated embeddings hierarchically,

thus cooperating structural information efficiently.

However, the inefficiency has always plagued the training and inference of GNNs,

which hinders the application of GNN to deal with large-scale graphs in the real world.

The recursive neighborhood aggregation scheme is the core of the GNN algorithm, in

which each node aggregates the feature vectors of its multi-hop neighbors to calculate its

new feature vector. In a large and dense graph, the aggregation phase consumes much

computation. This makes the training and inference of GNNs easily surpass working

memory. Therefore, it is critical to acquire smaller graphs and remove unnecessary

weights in GNNs. To simplify the graph, one of the most popular paradigms is to

leverage sampling-based methods with the local aggregations and local features updating

[117–122]. In [123], the graph sparsification problem was further formulated as an

optimization problem, where the alternating direction method of multipliers (ADMM)

was employed as a solver. On the other hand, removing unnecessary weights, a.k.a.

network pruning, is becoming a key instrument in deep neural networks (DNNs) [124–

128]. However, network pruning received less attention from the GNN community since

most existing GNNs only used very shallow neural networks compared with convolutional

neural networks (CNNs) due to the feature over-smoothing problem. Network pruning

aims to issue each weight with a saliency score and then removes the weights based

on the score accordingly [124]. Frankle and Carbin [125] recently proposed a lottery

ticket hypothesis (LTH) method, which empirically verified the existence of sub-networks

(winning tickets). Such sub-networks were obtained by pruning the network based on

the magnitude after training, which were able to reach comparable accuracy with the

original network when resetting the remaining weights to their initial values. With more

works focusing on alleviating the feature over-smoothing problem in GNNs [129–132],

the GNNs can go as deep as CNNs in recent days [133–135], and the network pruning

also becomes nontrivial in the GNN community.

Technically, GNN pruning contains the graphs sparsification and the network pruning.
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Unlike heavily overparameterized DNNs, the shallow nature of GNNs may indicate that

pruning the shallow GNNs will not have much benefit. However, the latest work proposed

a graph lottery ticket (GLT) method that [48] simultaneously prunes the graph adjacency

matrix and the model weights, and proved the existence of the lottery ticket hypothesis

in GNNs. The authors directly introduced LTH, which was designed for network pruning,

to GNNs, aiming to find a sub-network and a sub-graph simultaneously with comparable

performance as the original GNN. It added a trainable mask to the graph and then

performed training. After training, it considered the magnitude of the graph mask as the

importance of graph link.

Rather than using magnitude after training for pruning as LTH, in this chapter,

we propose to prune network weights without any training. Specifically, motivated

by pruning-at-initialization techniques for general DNNs [126–128], wherein a per-

parameter saliency metric is computed before training to inform pruning, we intuitively

generalize train-free saliency metrics for general DNN pruning to the GNN pruning. Our

main observations are:

First, the train-free saliency metrics can not only extremely improve the computa-

tional efficiency, but also achieve comparable performance as GLT for GNN pruning. It

can still remove 98% of network weights without causing a significant drop in perfor-

mance.

Second, although such pruning methods (including GLT, SNIP, Synflow, GraSP)

achieve competitive performance when jointly pruning network weights and graph

adjacency matrix or solely pruning network weights, they could hardly outperform

random pruning when only pruning the graph.

Based on the above observations, we found that the existing pruning methods can

effectively prune the network weights in GNNs, while they could hardly evaluate the

importance of graph edges. Consequently, we infer that the benefits of GLT when simul-

taneously pruning graph adjacency matrix and network weight was brought by weight

pruning, with arguing that graph links and network weight should use different scoring

standards during GNNs pruning. To more precisely measure the importance of edges,
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we mathematically formulate the performance of graph neural network with respect to

the properties of edges, which elucidates how the loss of performance can be avoided

by pruning negative edges and non-bridges, motivating a simple but effective method

for graph edges pruning. In addition, different from GLT using the trained model to

prune network weight, we use the training-free methods to prune network weight to

further improve the efficiency of the algorithm, leading to a general two-step pruning

method for GNNs that simultaneously prune network weights and graph edges. Our

main contribution can be summarized as follows.

• We, for the first time, extend pruning-at-initialization methods to graph neural

networks. We achieve comparable accuracy as the state-of-the-art GNN pruning

method GLT [48], while extremely enhancing the computational efficiency, where

we can get the sub-GNN within seconds compared with hours by GLT.

• To overcome the drawback of pruning based methods on edge pruning, we math-

ematically formulate the performance of GNN with respect to the properties of

edges, elucidating how the loss of performance can be avoided by pruning negative

edges and non-bridges, and accordingly provide an effective graph edges pruning

strategy.

• We propose a General Two-Step Pruning (GTSP) method for effective graph neural

network pruning, which leverages the training-free saliency metric for network

pruning and sparsifies the graph by preserving performance. Experimental results

verify the effectiveness of our proposed method, in which our approach outperforms

GLT by large margins during the pruning process.

6.2 Preliminaries

Let G = {V ,E } be an undirected graph, where V denotes the set of |V | nodes and E

is the set of edges. An adjacency matrix A ∈ R|V |×|V | is employed to describe the re-

lations between nodes, where A[i, j] = 1 if (vi,v j) ∈ E else A[i, j] = 0. Moreover, let
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X = [x1, x2, ..., x|V |]T ∈R|V |×D represents feature matrix where xi ∈RD is the feature vec-

tor of node vi, with D being the feature dimension. Thus, an alternate notation of a

graph is G = {A, X }. Consider a semi-supervised node classification setting, only a part of

labels Yt = {y1, y2, . . . , yt} are given, where t ≪|V |. The goal of a GNN node classification

task is to learn a function fΘ that maps the nodes features to the labels, where Θ is the

collection of weights in the neural network.

6.2.1 Graph Neural Networks

There are two main families of GNNs, spectral GNNs and spatial GNNs. The spectral

GNN was directly derived from the spectral graph theory [136, 137]. The basis of spectral

GNN is graph Fourier transform, defined by the eigendecomposition of the graph Lapla-

cian matrix. The most popular graph network belonging to spectral class are Chebyshev

polynomials [138], and Cayleynets [139]. Even though spectral-based GNNs can theoret-

ically extract information on any frequency, the piratical power is constrained by a fixed

pattern. The spatial-based GNNs that aggregate nodes neighborhood information are

more flexible and have less computational complexity. It is known that GCN [114], GAT

[140], and GIN [141] belong to spatial GNN. Existing researches showed that most of

the existing spatial-designed convolutions were essentially low-pass filters [142].

With the growth of graph data, the computation cost and memory usage of GNNs

rapidly increased. Graph sampling or sparsification aims to find a subgraph from the

large original graph that best preserve desired information. A considerable literature

sparsifies the graph using different metrics such as graph spectrum [143, 144], global

importance [145–147] or clustering coefficient [148]. ReuralSparse [149] utilizes deep

neural networks to parameterize sparsification processes. Li et al. [123] consider graph

sparsification as an optimization problem and solve it by using the alternating direction

method of multipliers (ADMM).
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6.2.2 Network Pruning

Pruning focuses on removing superfluous parameters in a neural network. Most prun-

ing methods operate on a pre-trained network. The main idea is to identify a saliency

metric for each parameter and remove the less-important parameters. Among these

methods, magnitude-based pruning algorithms [124, 125] use the weight as the saliency

metric, while Hessian-based pruning algorithms [150–152] identify the importance of

each weight by measuring how its removal will affect the loss. However, these methods

need training before determining the saliency metric. To further reduce the computa-

tion complexity during the pruning process, the training-free pruning-at-initialization

algorithms are introduced by [126] and extended by [127, 128, 153–155]. The saliency

criteria are computed in a single backward propagation pass, and these methods are

successfully used to heavily prune neural networks before training. SNIP [126] provides

us with a pruning-at-initialization method. This method samples training data and

issues weights with scores z = |∂L
∂Θ ⊙Θ|, where L is the loss function of a neural network

with parameters Θ. This saliency criteria describe the loss change w.r.t. each parameter

removal. In this study, we consider a recently-proposed iterative variant of SNIP [156].

Wang et al. [127] extended snip metric to grasp by measuring the change in gradient

norm when a parameter is removed. It computes the Hessian-gradient product H and

issues scores z =−(H ∂L
∂Θ )⊙Θ. Besides, SynFlow [128] treats the input of the network as

one and computes the sum R of the logits. They claim that this method can avoid layer

collapse when pruning. It issues scores zθ = ∂R
∂θ

⊙Θ and removes weights with the lowest

scores.

6.3 Theoretical Framework

In this section, we study the performance of graph neural networks with respect to the

properties of the input graph. In particular, we leverage the equivalence between spatial-

based GNNs and spectral-based GNNs, based on which, we apply graph spectral theory.

As a result, we characterize the error bound for node classification with respect to the
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graph properties. Furthermore, we propose the related edge properties that are correlated

with the derived error bound and investigate the influence by pruning corresponding

edges.

6.3.1 Formulations

A central object in spectral graph theory is the so-called graph Laplacian [157] which

is defined by L = I −D−1/2AD−1/2, where A is the adjacency matrix, D ∈ R|V |×|V | is the

diagonal degree matrix with D i,i = ∑
j A j,i. This work targets pruning the edge of the

graph whose performance depends highly on the properties of the graph as shown in our

theorem later. We introduce two critical properties as a preliminary,

Definition 6.1 (Positiveness and negativeness of edge). For an edge e(v,v′), if the labels

of vertexes v,v′ are the same, i.e. y(v)= y(v′), we define it the positive edge denoted as

Epos, otherwise the negative edge denoted as Eneg.

Definition 6.2 (Bridge and non-birdge). For an edge e(v,v′), a bridge is an edge of a

graph whose deletion increases the graph’s number of connected components, denoted as

Ebri. On the contrary, the edge is called non-bridge denoted as Enon.

The spectral analysis for graph Laplacian resort to the eigendecompostion, namely,

L = UΣUT , where U = [⃗u1, u⃗2, . . . , u⃗|V |] is the eigenvector and Σ = diag[λ1,λ2, . . . ,λ|V |].

The spectral network can be written by a sum of filtered signals [158],

H(l+1)
j =σ

( f l∑
i=1

Udiag(K i, j,l)UT H(l)
i

)
where j ∈ {1, . . . , f l+1}, σ is the activation function, H(l)

i is the i-th feature vector in l-th

layer, K i, j,l ∈R|V | is the corresponding trainable weight vector. On the other hand, the

spatial GNN can be generalized as propagation of node features to the neighborhood

node followed by activation function, of the form,

H(l+1) =σ
(
CH(l)Θ(l))
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where Θ(l) is the trainable weight, H(l) is the feature matrix in l-th layer, and C is the con-

volution kernel. GCN [114] adopts a single convolution kernel C = D̃−1/2 ÃD̃−1/2, where

Ã = A+ I is the adjacency matrix of the undirected graph with added self-connections,

and D̃ is the corresponding degree matrix. On the other hand, GIN [141] is equipped with

C = A+ I. While GCN and GIN use fixed-design matrices C, GAT [140] uses trainable

convolution kernels.

6.3.2 An Error Bound for GNNs through Graph Spectral theory

The equivalence between spatial and spectral GNNs has been revealed by [142, 159]

recently and stated as follows,

Lemma 6.1 (Equivalence between spatial and spectral GNNs). With the convolution

kernel of spatial GNNs set to C =Udiag(K(λ))UT , where U are the eigenvectors of the

Laplacian for studied graph, K(λ) is the corresponding trainable weight depending on

eigenvalue λ, the spatial GNN is equivalent to spectral GNN.

The detailed proof can be found in [142]. With this results, we can further bound the

prediction error of GNNs.

Theorem 6.1 (Spectral learning of GNNs). Consider a L-layer spatial GNN with C =
Udiag(K(λ))UT and last layer being linear, i.e., H(L) = Udiag(K(λ))UT H(L−1)Θ(L−1).

Then there exists a linear weight Θ(L), such that the linear probe error of embedding H(L)

is,

E(H(L))=O
(α
κ

)
where E(H(L)) is the mean squared error as the best possible linear classifier on the

embedding, defined as E(H(L))=minΘ(L)
1
|V |∥[H(L)Θ(L)−Y ∥2

2, α is the density of edges that

connects different labels, i.e., α= |Eneg|
|V | , and κ is the (d+1)-th smallest eigenvalue of graph

Laplacian, with d being the dimension of embedding.

Proof. Let g⃗ = {0,1}|V | ∈R|V |×1 be the vector the labels of all vertexes (nodes) under the

an optimal classifier g. Then we show there is a constraint on the quadratic form with
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respect to the optimal classifier g. According to graph spectral theory [136], the quadratic

form g⃗TL g⃗ = 1
2
∑

v,v′
A(v,v′)p

D(v)D(v′) ( g⃗v− g⃗v′)2 captures the amount of edges connecting different

labels. Since we have defined that α as the density of edges that connects different labels,

we can directly show that g⃗TL g⃗ ≤α|V |. This implies that the quality of classifier depends

on the density of negative edges in the graph.

Next we show that there exist a linear weight Θ(L) such that the linear probe of

embedding can approximate the optimal classifier, namely, H(L)Θ(L) ≈ g⃗. Denote the

eigenvalue of Laplacian in an ascending manner, i.e., 0≤λ1 ≤λ2 ≤ ·· · ≤λd ≤ ·· · ≤λ|V | ≤ 2,

and the corresponding eigenvectors are denoted as u⃗1, · · · , u⃗|V |. Let Π = ∑d
i=1 u⃗i u⃗T

i ∈
R|V |×|V |, and Π⊥ = ∑|V |

i=d+1 u⃗i u⃗T
i ∈ R|V |×|V |. Because H(L) = Udiag(K(λ))R, where R =

UT H(L−1)Θ(L−1) contains a space spanned by eigenvectors of u⃗1, . . . , u⃗d, then there exists

a linear matrix Θ(L) such that H(L)Θ(L) =Π g⃗. As a result, the difference between optimal

classifier and our linear predictor is ∥ g⃗ − H(L)Θ(L)∥2
2 = ∥ g⃗ −Π g⃗∥2

2 = ∥Π⊥ g⃗∥2
2. On the

other hand, we can expand the quadratic form by g⃗TL g⃗ = (Π g⃗+Π⊥ g⃗)TL(Π g⃗+Π⊥ g⃗)≥
(Π⊥ g⃗)TL(Π⊥ g⃗)≥λd+1∥Π⊥ g⃗∥2

2. Combine the two equations, we have, 1
|V |∥Y −H(L)Θ(L)∥2

2 ≤
α
κ

, where κ=λd+1.

■

6.3.3 Edge Property Matters

Theorem 6.1 implies that the performance of GNNs (including GCN, GIN and GCN)

depends on two quantities of the studied graph, namely the number of edges that connects

different labels and the largest eigenvalue of graph Laplacian λ. In this subsection, we

show that how this result can further be utilized to guide graph adjacency pruning,

through pruning negative edges and non-bridges respectively.

Definition 6.1 divides the edges of a graph into two classes. Based on Theorem 6.1, it

is easy to see that pruning negative edge will decrease the error bound when κ is fixed,

thus leading to the following corollary,

Corollary 6.1. Denote B(G )= α(G )
κ(G ) as the linear probe error bound of a GCN satisfying

conditions stated in Theorem 6.1 trained on a Graph G . If we only prune negative edges
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in G and resulting graph is denoted as G ′. Suppose that κ changes rarely during negative

edge pruning, then B(G ′)<B(G ).

Proof. Because the number of negative edges in G ′ is less than negative edges in G after

pruning, we have |Eneg(G ′)| < |Eneg(G )|. As a result, we have α(G ′) <α(G ). In addition,

since κ changes rarely during negative edge pruning, which implies κ(G ′)= κ(G ). Finally,

we can arrive at B(G ′)<B(G ). ■

The next corollary accounts for eigenvalue of graph Laplacian, and show that pruning

bridges can lead to error bound increase.

Corollary 6.2. Denote the G ′ as the graph with bridges pruned from its origin, then

B(G ′)>B(G ).

Proof. According to the definition 6.2 for bridge, pruning bridge will lead to the increase

of independent component. Suppose the resulting graph G ′ has M independent compo-

nents, then eigenvalue of the corresponding Laplacian is λ1 = λ2 = ·· · = λM = 0. As we

keep pruning bridges until we have M ≥ d+1, which means κ(G ′) = 0. Thus we have

B(G ′)= α(G ′)
κ(G ′) >B(G ). ■

6.4 Build Effective Pruning Method for GNNs

In this section, we first revisit the graph lottery ticket [48] and leverage the pruning-at-

initialization saliency metrics to GNNs. Then, we propose our novel pruning method,

which removes the negative edges and non-bridges to preserve the performance. After

that, we propose a general two-step pruning method for GNNs which simultaneously

prunes the graph links and network weights.

6.4.1 Revisit Graph Lottery Ticket

Graph Lottery Ticket. Similarly to LTH, Graph Lottery Ticket (GLT) [48] hypothesizes

that given a GNN f (·,Θ) and a graph G = {A, X }, where Θ is the collection of all weights,
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there exists sub-networks f (·,mΘ⊙Θ) trained on sparse graphs Gs = {mg ⊙ A, X } reach

test accuracy comparable to the original GNN trained on the full graph G . We define

f ({mg ⊙ A, X },mΘ⊙Θ) as a unified graph lottery tickets (GLTs), where mg and mΘ are

two trainable masks for indicating the importance of graph links and network weights

in the graph and GNNs, respectively.

Picking winning tickets. Classical LTH leverages iterative magnitude-based prun-

ing (IMP) to identify lottery tickets. In a similar way, GLT identify the winning tickets

after the network is trained, as described as follows:

1. Randomly initialize a neural network f (·,Θ0), initial mask m0
g = A, m0

Θ
= 1 ∈R∥Θ0∥0 ,

and j = 0.

2. Train the network for k iterations, arriving at convergence with parameters Θ j

and m j
g.

3. Set sg% of the lowest magnitude values in m j
g to 0 and others to 1, then obtain

m j+1
g .

4. Set sΘ % of the lowest magnitude values in Θ j to 0 and others to 1, then obtain

m j+1
Θ

.

5. Reset the unpruned weights in Θ j to their initial values in Θ0), j = j+1.

6. Loop step 2-5 until termination condition is satisfied, and get the winning ticket

f ({m j
g ⊙ A, X },m j

Θ
⊙Θ).

Extend Pruning-at-initialization Methods.

As described above, GLT directly leverages the trained magnitudes in the lottery

ticket hypothesis (LTH) as scores for GNN pruning. LTH verified the existence of sub-

networks, and it obtained the winning tickets by pruning the network based on the

magnitude after training. Recently-proposed pruning-at-initialization methods further

abandoned the training part through devising different training-free saliency metrics

(SNIP[126, 156], GraSP [127], Synflow [128]) to measure the importance of weights, and

achieved comparable results as LTH. The success of GLT and pruning-at-initialization

methods intuitively motivate us to extend these training-free saliency metrics to GNN
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Algorithm 2 Pruning Graph via Edge Property (PGEP)
Require: Graph G = {X , A}; Training labels Yt = {y1, y2, . . . , yt}, desired pruning ratios

pg, network mask mΘ.
Ensure: Sparsified Graph mask mg.

1: Train fmΘ⊙Θ(X ,mg ⊙ A) with Yt until convergence.
2: Ŷ = fmΘ⊙Θ(X ,mg ⊙ A).
3: Aneg(i, j)= mg ⊙ 1[Ŷ (i) ̸= Ŷ ( j)], ∀i, j ∈ {1 · · · |V |}.
4: Random remove pg ×|A| of Aneg by setting corresponding mg = 0. ▷ Find and

remove negative edge
5: Find all non-bridges Anon.
6: Random remove pg ×|A| of Anon by setting corresponding mg = 0.

pruning, by replacing the scoring mechanism in GLT with training-free saliency metrics.

Experimental results verified the effectiveness of our extension, where these pruning-at-

initialization methods can achieve similar performance as GLT for the GNN pruning.

6.4.2 Pruning Graph via Edge Property

Although existing pruning methods (including LTH, SNIP, GraSP, and Synflow) achieve

competitive performance when jointly pruning the network weights and graph adjacency

matrix, such saliency metrics (including GLT) could hardly outperform random pruning

in most cases when solely sparsifying the graph. Experiments in Sec.6.5.2 demonstrate

the failure of existing pruning methods on graph edges pruning, so here we follow

the theoretical framework proposed in Sec.6.3 to introduce a new way to prune graph

adjacency matrix. Specifically, we first train the network with the training labels Yt =
{y1, y2, . . . , yt}, and predict all labels using the trained network with getting the predicted

labels of all the nodes Ŷ = { ŷ1, ŷ2, . . . , ŷ|V |}. Then, we prune negative edges iteratively

until all such edges are pruned. The non-bridges are pruned afterwards until it reaches

the target graph sparsity. We summarized our method in Algorithm 2.

6.4.3 Pruning Graph via Edge Property

Although existing pruning methods (including LTH, SNIP, GraSP, and Synflow) achieve

competitive performance when jointly pruning the network weights and graph adjacency
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matrix, such saliency metrics (including GLT) could hardly outperform random pruning

in most cases when solely sparsifying the graph. Experiments in Sec.6.5.2 demonstrate

the failure of existing pruning methods on graph edges pruning, so here we follow

the theoretical framework proposed in Sec.6.3 to introduce a new way to prune graph

adjacency matrix. Specifically, we first train the network with the training labels Yt =
{y1, y2, . . . , yt}, and predict all labels using the trained network with getting the predicted

labels of all the nodes Ŷ = { ŷ1, ŷ2, . . . , ŷ|V |}. Then, we prune negative edges iteratively

until all such edges are pruned. The non-bridges are pruned afterwards until it reaches

the target graph sparsity. We summarized our method in Algorithm 2.

6.4.4 A General Two-Step Pruning Method for GNNs

When solely sparsifying the graph, the unified saliency metrics could hardly outperform

random pruning in most cases, implying that the graph and network should use a

different pruning strategy. Therefore, we propose an effective framework, a general two-

step pruning method for GNNs (GTSP), to simultaneously reduce edges in the graph and

parameters in the network. Specifically, for the graph pruning part, we use the proposed

method in Algorithm 2 as this method significantly outperforms the saliency metrics

methods for pruning the graph. For network pruning, we use iterative-SNIP [156] since

experimental observations showed that this method can achieve similar accuracy to the

GLH and found the winning tickets within seconds. In this case, the effectiveness of

PGEP and the efficiency of iterative SNIP have successfully made up for the two major

problems of GLT. We summarized our method in Algorithm 3.

6.5 Experiments

In this section, we answer the following questions sequentially by conducting extensive

experiments with different pruning methods. Q1: Can the training free method achieve

a similar pruning performance to GLT? Q2: Where the pruning benefit come from? Is

that from the graph sparsification part and network pruning part together, or only from
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Algorithm 3 A General Two-Step Pruning Method for GNNs (GTSP)
Require: Graph G = {V ,E }; Loss function L ; Training labels Yt = {y1, y2, . . . , yt}; Desired

network pruning ratios pΘ. Iteration steps m.
Ensure: Graph mask mg and network mask mΘ

1: for k in [1, · · · ,m] do
2: Define Θ̂= mΘ�Θ

3: S(Θ̂)←|∂L
∂Θ̂

� Θ̂| � Score weight by SNIP
4: Compute pΘ th percentile of S (Θ̂) as t
5: mΘ = 1[S (Θ̂)< t]
6: Get sparsified graph mg with network mask mΘ using Algorithm 2.
7: end for
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We progressively prune GNNs and each time prunes 5% of graph links and 20%
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Figure 6.1: Pruning-at-initialization Methods performance when jointly pruning graph
links and network weights over achieved graph sparsity levels and network sparsity of
GCN, GIN, and GAT on Cora. Note: GraSP is no draw when layer collapse occurs.

a single part? Q3: Can the performance of our proposed GTSP in Sec.6.4.4 exceed the

existing methods?

6.5.1 Dataset

6.5.2 The Training-free Pruning Methods on GNNs

We first apply the training-free pruning method (Synflow, Grasp, SNIP and magnitude

before training) to GNN pruning, simultaneously pruning the graph connections and

network weights.
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Table 6.1: Test accuracies on Cora, Citeseer, PubMed for different pruning-at-
initialization methods when jointly pruned 98% weights and 60% graph links.

Network GCN GIN GAT
Dataset Cora Citeseer PubMed Cora Citeseer PubMed Cora Citeseer PubMed
Synflow 65.48 63.36 78.20 63.44 62.16 76.88 76.14 68.74 77.76
SNIP 71.92 67.00 75.90 68.46 65.24 75.48 78.68 70.12 78.16
Random 34.60 33.72 54.55 58.68 57.52 73.90 77.52 66.74 77.48
GraSP 13.00 7.70 18.00 66.98 61.06 70.90 13.00 7.70 18.00
Magnitude 34.20 32.66 58.90 57.98 57.76 74.70 75.98 67.48 77.78
GLT 72.66 67.66 78.65 70.80 65.12 76.10 78.48 69.68 78.96

Dataset Nodes Edges Features Classes

Cora 2708 5429 1433 7
Citeseer 3327 4732 3703 6
PubMed 19717 44338 500 3

Ogbn-ArXiv 169343 1166243 128 40

Table 6.2: Dataset Statistics

of network weights. Fig. 6.1 shows the test accuracies on Cora data set over achieved

graph sparsity (first row) and network sparsity (second row). On GAT of cora dataset,

SNIP initially outperformed the unpruned network. As the pruning progresses, the

accuracy gradually decreases to the same performance as GLT. Since GNNs have few

layers and GraSP did not design a mechanism to prevent layer collapse, it is more likely

to occur layer collapse. In Table. 6.1, we summarize the accuracy of training-free pruning

methods when 60% of the graph edges and 98% of the network weight are pruned for the

Cora, Citeseer, and PubMed data sets. We found that Synflow and SNIP have similar

performance to GLT on all networks and data sets, especially SNIP performs best. Among

them, SNIP has a performance that exceeds GLT on GAT.

Overall, SNIP and Synflwo have a similar performance to GLT when pruning the

graph and network of GNNs at the same time. SNIP persistently has good accuracy, while

Synflow has a surprising performance on the PubMed data set. GraSP is unsatisfactory

due to layer collapse [128].
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Figure 6.2: Pruning-at-initialization Methods performance when solely pruning network
weights over achieved graph sparsity levels and network sparsity of GCN, GIN, and GAT
on Cora, Citeseer, and PubMed datasets, respectively.

6.5.3 Ablations for graph pruning methods

In this subsection, we aim to understand where the pruning benefit come from? By

individually pruning each part, we explore which part contributes to the performance

gap between random pruning and the aforementioned methods.

Solely prune network weights. Fig. 6.2 demonstrated the test performance against

network sparsity of these pruning-at-initialization methods when solely pruning the

network weights. The results of SNIP and Synflow in all experiments far exceed the

results of random pruning, and have similar results to GLT. In GCN, random pruning

began to show a significant performance decline when the network parameters were

pruned more than 90%. In contrast, the accuracy of SNIP, Synflow and GLT have not

dropped until the sparsity reaches 98%. On PubMed, after using SNIP and Synflow

pruning, with the decrease of network parameters, the prediction accuracy rate increased,

among which Synflow performed the best. Overall, we believe that these pruning methods
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are capable for prune network weights in GNNs.

Solely prune graph links. We then discuss the situation when only pruning graph

links. We conducted the experiments that only prune graph links while the network

weights remain unchanged. The results can be found in Fig. 6.5. Surprisingly, all these

pruning methods, including SNIP, Syflow, GraSP, GTL, magnitude before training, hardly

surpass random pruning. Especially in GAT, random pruning is even better than some

specially designed scoring standards. GraSP did not experience performance degradation

in the early stages, because only pruning the graph links did not trigger layer collapses.

Although in a few cases, such as GCN’s Citeseer, GLT is slightly outperformed random

pruning, the overall accuracy downward trend remains unchanged. Overall, graph link

pruning has a scarce contribution to GNN pruning and existing pruning methods are

unsatisfied for graph link pruning.

In summary, based on the above experimental phenomenon in Sec.6.5.2 and 6.5.3,

we argue that the benefit of GLT and pruning-at-initialization methods when jointly

pruning graph adjacency matrix and network weight was brought by weight pruning.

Thus, graph links and network weight should use different scoring standards during

GNNs pruning.
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Figure 6.3: The General Two-Step Pruning method performance when jointly pruning
graph links and network weights over achieved graph sparsity levels and network
sparsity of GCN, GIN, and GAT on Cora.
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Table 6.3: Test accuracies on Cora, Citeseer, PubMed for the General Two-Step Pruning
methods at different sparsities.

Sparsity Network GCN GIN GAT
Graph/
Weight Dataset Cora Citeseer PubMed Cora Citeseer PubMed Cora Citeseer PubMed

60%/
98%

GLT 72.66 67.66 78.65 70.8 65.12 76.1 78.48 69.68 78.96
Random 34.6 33.72 54.55 58.68 57.52 73.9 77.52 66.74 77.48
GTSP (Ours) 77.88 68.48 79.1 71.62 65.64 77.6 78.68 70.04 78.1

49%/
95%

GLT 75.94 68.74 79.20 72.88 66.40 75.70 79.36 69.96 79.10
Random 66.56 57.94 71.30 66.38 61.28 74.60 79.48 71.04 79.00
GTSP (Ours) 80.08 69.58 79.20 75.36 66.18 78.15 79.72 70.16 78.50

40%/
90%

GLT 78.00 70.32 78.10 74.52 67.84 77.60 79.00 69.46 77.60
Random 74.88 67.10 75.90 70.00 64.28 76.20 79.52 70.98 78.80
GTSP (Ours) 80.56 69.70 79.50 76.98 66.52 78.20 81.06 70.12 79.10

6.5.4 A General Two-Step Pruning Method for GNNs

In Sec.6.5.3, we showed that saliency metrics are not suitable for scoring the graph edges.

In this section, we evaluate the performance of the proposed method when simultaneously

pruning graph link and net weight.

Fig. 6.3 shows the test accuracies comparison between the proposed method, GLT and

random on Cora data set over achieved graph sparsity (first row) and network sparsity

(second row). On GAT of Cora dataset, our method outperforms unpruned networks.

Table. 6.3 summarized the test accuracy when the GNNs is pruned at a three different

sparsity. On all data sets and networks, our method has greatly improved compared to

the baseline methods. On the Cora dataset, the maximum performance improvement in

the case of matching sparsity is 5.22%.

In general, our algorithm exceeds baseline performance in all aspects due to the

excellent graph pruning method. In addition, as the training free pruning method is used

when pruning the network weights, the weight pruning process can also be completed

within a few seconds, which greatly reduce the computational complexity of pruning.

6.5.5 Ablations on pre-trained GNNs

Though the recent study [160] shows the pruning at initialization methods are under-

performed on CNNs, the performance did not drop on GNN. We provide the comparison
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between leveraging the scores in an initialized GNN and a pretrained GNN in Table 6.4.

We tested two saliency scores, SNIP and Synflow. As shown, there is no significant per-

formance drop between pruning before training and after training when solely pruning

network weights, and before training even achieves better results in many cases. From

the result shown in Tabel 6.4, we concluded that pruning-at-initialization methods do

not under-perform the traditional pruning after training for shallow GNNs.

Table 6.4: Performance compare by applying SNIP, and SynFlow before training (BF)
and after training (AT). Pruned ratio: 95%.

GCN GIN GAT
AF BF AF BF AF BT

Cora SNIP 80.95 81.04 77.90 77.86 80.15 80.22
Syn 79.10 79.12 75.30 75.32 78.98 79.08

Citeseer SNIP 70.44 70.22 68.00 69.16 70.36 70.96
Syn 69.51 69.42 68.28 67.86 70.30 69.86

PubMed SNIP 80.17 80.45 78.63 78.56 77.80 78.20
Syn 79.55 79.70 79.22 78.96 79.15 79.30

As to why this observation in GNN is different from deep CNNs, [160] and [161]

pointed out that the useful information that pruning methods extract is not which indi-

vidual weights to remove, but rather the layerwise proportions to prune in the network.

[161] experimentally proved that how to obtain the proportion of each layer is more im-

portant. Training-free methods can get very similar proportions as the training method

[160], however, deep CNNs (VGG-16, ResNet-50) are more sensitive to the proportions,

and the slight difference brings marginal improvement over training-free methods. In

contrast, for GNNs used in this work, which are much smaller than deep CNNs, the

proportions gained by the training-free method are sufficiently informative and the

insignificant difference in proportions between training and training-free methods won’t

affect the accuracy.
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6.5.6 Complementary experiments

In this section, we aims to provide extra experiments on different data sets. Fig. 6.4 is

a supplement to Fig. 6.1 and Fig. 6.7 is a supplement of Fig. 6.3. Fig. 6.5 shows these

pruning methods (Synflow, Grasp, SNIP, magnitude before training and GLT) when

solely pruning the graph links.

Specifically, Fig. 6.4 shows the test accuracies on Cora, Citeseer, PubMed data set

over achieved graph sparsity (first row) and network sparsity (second row). We found

that Synflow and SNIP have similar performance to GLT on all networks and data

sets. Specificlly, on the PubMed data set, Synflow dominates from pruning starts until

graph sparsity and network sparsity reach 65% and 99%, respectively. Surprisingly, the

accuracy of Synflow increased with the pruning continuum. On GAT cora dataset, SNIP

initially outperformed the unpruned network. As the pruning progresses, the accuracy

gradually decreases to the same performance as GLT. Since GNNs have fewer layers and

GrsSP did not design a mechanism to prevent layer collapse, it is more likely to occur

layer collapse.

Fig. 6.5 demonstrated the test performance against graph sparsity of these pruning-

at-initialization methods when solely pruning the graph links. Surprisingly, all these

pruning methods, including SNIP, Syflow, GraSP, GTL, magnitude before training, hardly

surpass random pruning. Especially in GAT, random pruning is even better than some

specially designed scoring standards. GraSP did not experience performance degradation

in the early stages, because only pruning the graph links did not trigger layer collapses.

Although on a few cases, such as GCN’s Citeseer, GLT is slightly outperform random

pruning, the overall accuracy downward trend remains unchanged. In summary, graph

link pruning has scarce contribution to GNN pruning.

We evaluate the performance of the proposed method when simultaneously pruning

graph link and net weight. Fig. 6.7 shows the test accuracies comparison between the

proposed method, GLT and random on Cora data set over achieved graph sparsity (first

row) and network sparsity (second row). On all data sets and networks, our method has

greatly improved compared to the baseline methods. On the Cora dataset, the maximum
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Figure 6.4: Pruning-at-initialization Methods performance when jointly pruning graph
links and network weights over achieved graph sparsity levels and network sparsity of
GCN, GIN, and GAT on Cora, Citeseer, and PubMed. Note: GraSP is no draw when layer
collapse occurs.

performance improvement in the case of matching sparsity is 6.36%. On and GIN network

with PubMed dataset, our method outperform unpruned network until 60% graph link

and 97.75% network parameters were pruned.
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Figure 6.5: Pruning-at-initialization Methods performance when solely pruning graph
edges over achieved graph sparsity levels and network sparsity of GCN, GIN, and GAT
on Cora, Citeseer, and PubMed datasets, respectively.
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Figure 6.6: The performance of 28-layer deep ResGCN on large-scale graph data set.
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Figure 6.7: The General Two-Step Pruning method performance when jointly pruning
graph links and network weights over achieved graph sparsity levels and network
sparsity of GCN, GIN, and GAT on Cora, Citeseer, and PubMed
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6.5.7 Large-scale Graphs with 28-layers ResGCN

Following experiment settings in [48], we also extend the proposed method on large scale

data set and deeper GNNs. Fig. 6.6 demonstrates that the proposed method can be scaled

up to deep GNN on large-scale graphs. The performance is comparable at the beginning

of pruning process and is better than the baseline method at extreme sparsity.

6.6 Findings

GNNs are Heavily Over-parameterized. Since GNN is usually very shallow, it is

generally believed that GNN does not have great pruning potential. Through experiments,

we found that GNN is also heavily over-parameterized, where after removing 98% of the

network weights, the accuracy of GNN still holds. This means removing the unnecessary

weights in GNNs can significantly reduce the inference computation complexity. With

the emergence of deeper GNNs, the reduction in computational complexity will bring

more substantial benefits.

Easy Saliency Metric Can Get Good Performance. The experiment results in

Sec.6.5.2 indicated that using a simple saliency metric such as SNIP can achieve a good

pruning effect. Notably, these training-free approaches are considerably simpler than

GLT, with no requirements of pretraining.In general, the training-free method, such as

SNIP and Synflow, can achieve similar performance to the after training pruning method

on GNNs.

Unified GNN Pruning Method Remain Challenging. The experimental results

in Sec.6.5.3 verified that existing saliency metrics cannot evaluate the importance of

graph links, so we need different scoring criteria to evaluate graph edges and neural

network parameters separately. This makes it difficult to find a unified pruning method

for GNNs. The graph pruning method we designed is not a train-free method, which

remains an open problem for future work.
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6.7 Conclusion

This chapter extended several existing training-free saliency metrics (SNIP, GraSP, Syn-

flow) to GNNs pruning, and found that these methods can achieve similar performance

as GLT when jointly pruning the network weights and graph adjacency matrix, showing

that these training-free saliency metrics can substitute LTH with extremely reducing the

computational cost. However, when solely sparsifying the graph, such saliency metrics

(including GLT) could hardly outperform random pruning in most cases. Thus, we argue

that graph links and network weight should use different scoring standards during

GNNs pruning. Rather than measuring the importance of graph edges based on saliency

metrics, we mathematically formulate the performance of graph neural network with

respect to the properties of edges, elucidating how the loss of performance can be avoided

by pruning negative edge and non-bridge. This leads to our simple but effective two-step

method for graph neural network pruning, leveraging the saliency metrics for the net-

work pruning while sparsifying the graph by preserving the loss. Experimental results

verified the effectiveness and efficiency of the proposed method, where our method can

prune up to 60% of graph links and 98% of network weights on different tasks with no

significant accuracy drop.

119





C
H

A
P

T
E

R

7
RELIABLE TEMPORAL GAIT PARAMETER ESTIMATION

7.1 Introduction

In this chapter, we demonstrated an in field application of the Fit.E, analysing the

contact time, flight time, and asymmetric of 40 rugby players from Sydney Swan

Football Club during running.

During running, the detection of two essential incidents is required to perform gait

analysis on each step of the running process, they are heel stride or initial contact (IC)

and toe-off or terminal contact (TC). By finding these two events, the main temporal

parameters of every stride like pace, contact time, flight stage length, and swing stage

length can be determined [162]. IC is identified at the instance when one of the foot is

initially touching or landing on the surface of running. On the other hand, TC represents

the termination of the pushing phase, meaning when one of the foot finishes its contact

with the surface. There is a wide range of research finding and proving the intrinsic

relationships between these temporal parameters and other critical factors related to

running, such as the running economy [163], performance of running [164] and RRI risks

[165]. Thus, a precise recognition of IC and TC is paramount.

In the early stage of gait research, many laboratory tools were used to detect the
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parameters that are mentioned above. For example, [166] conducted a study to capture

and to analyse gait patterns using a single camera system. Similarly, another study

carried out by [167] recorded the gait movement signal using wearable sensors. However,

these studies using laboratory equipment have several limitations. [168] conducted

a symmetric review of the current gait analysis method and suggested that earlier

approaches of gait analysis required appropriately equipped laboratories with high-

speed cameras or force pads. However, these requirements could bring many limitations

on the gait study as the in-lab environment could hardly simulate the outdoor situation.

Additionally, such equipment is difficult to set up or to be accessed by most of the runners.

Hence, there is a need to develop a gait analysis method with affordable and portable

tools, allowing gait studies to be carried out in different locations and for a more extended

period to gather data that can be applied to real-life exercise [169].

Herewith, the application of inertia measurement units (IMU) such as gyroscopes

and accelerometers can be an excellent solution to the problem. This is because they

can capture the resistance in linear or angular motions[170] and they have low man-

ufacturing cost, reduced size and weight, and they can monitor kinematic throughout

an extended period [163]. These advantages have made IMU a widely used system to

investigate human movement.

There are many ways to collect IC and LC using IMU. Currently, the approaches

differ in the IMU placement and the way of how to utilise the data that are collected.

There are several sites where IMU is located among different studies. [171] conducted a

review of the current gait research, and they found that the major locations of placing

IMU are pelvis, shank, and foot. They concluded that particular sites of IMU placement

requires different data analysis methods to detect IC and LC, which could result in

diverse accuracy. As for the detection method, they are mainly IMU or Gyroscope based.

[172] investigated tibial acceleration around the knee joint, in which they are most

interested in the mediolateral plane, thus they studied varus/valgus knee movement

throughout running. [173] studied gait movement using accelerometers and established

that accelerometer positioning was vital in delivering accurate analysis. In terms of
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using gyroscopes, [174] analysed the difference between unprofessional and elite runners

using an IMU containing a tri-axial gyroscope located at the lower back (L1) area.

From this literature review, it is found that most of the studies use either accelerome-

ter or gyroscope or focus on the different placement of the IMU. However, the accuracy of

using gyroscope and accelerometer data at the same location is not compared. Further-

more, no research method proposed a system to detect IC and LC using both gyroscope

and accelerometer.

Therefore, this study aims to determine the performance of the adaptive algorithms

built based on data from gyroscope and accelerometer relatively for the detection of

IC and LC during running, and hence to propose algorithms that are based on each

method. Furthermore, to increase and analyse the prediction accuracy, we included a

pre-processing algorithm that detects the period of running to remove unwanted data

such as standing still or putting on the IMU. Likewise, we used confidence intervals to

analyse the systems‚Äô consistency and to further enhance the system and its accuracy.

7.2 Method

7.2.1 Data pre-processing

The collected raw data from the IMU contains noise and data from untargeted periods

such as putting on the IMU, walking or standing still. These sections of the data are

needed to be removed for the running stance phase detection. Hence, we introduce a pre-

processing algorithm that can detect the running period. This algorithm first calculates

the square value of the acceleration in the three directions as shown in Eq.(7.1), the

square value amplifies the difference between non-running period and running period.

This algorithm contains a sliding window of 0.5s and it compares the average square

value of the sum of accelerations in three directions to a threshold value within the

window. If the value output exceeds the threshold for more than 3s, it will be marked as

the beginning of running, and when the value drops below the threshold, it is marked as

the end. The calculation of the sliding average value is shown in Eq.(7.2).
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(7.1) Ares = (Ax2 + A y2 + Az2)

(7.2) Athreshold =
∑n+s∗ f

n (Ares)2

s∗ f

where Athreshold is the output value that is compared to the threshold. f is the sample

frequency of the IMU. Ax, A y, Az are the linear acceleration value in three directions. S

is the time frame of the sliding window.

7.2.2 Algorithm design

Based on the data collected from gyroscope and accelerometer, two different algorithms

were built for IC and TC detection.

7.2.2.1 Accelerometer-based algorithm

In the accelerometer-based IC and TC detection, the algorithm was built upon the

acceleration data on Z-axis. Before plotting the graph, the square value of the acceleration

was found to amplify the data and the graph trend. The instant of IC was detected at the

peak of foot-resultant acceleration as shown in figure 7.1. The detection of the TC was

conducted in the region of interest when the fluctuation of the z-axis acceleration started

to show a gentle trend after the peak point (IC). Figure7.1 represents the TC point and

the area of interest for the TC detection.
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Figure 7.1: Random samples of right ankle acceleration value in g AankleR of a partici-
pant during 10km/h running. Note: the peak resultant acceleration is marked as IC, and
the 2g-threshold is the area of interest for TC detection.

During running, as the speed increases, the stride length of the runner tends to

decrease, hence the ground contact time is often less than 50 percent of the total stride

time during high speed running [175]. Therefore, to find the exact point of TC, we

designed a window to highlight the area of TC detection. This window has a length

of N samples, which is half of the total number of samples in a specific stride, and

the window is located between 25 percent to 75 percent of the stride, Eq.(7.3) shows

the calculation of N. After that, all the data within this region was normalized using

Min-max normalization and scanned until the first point that exceeded the empirical

threshold had been reached. That point was marked as the TC.

(7.3) Nwindow = 1
2
∗ (Peakn+1 −Peakn)

The pseudo-code of the acceleration algorithm on terminal contact points detection is

shown in Algorithm 4:
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Algorithm 4 Finding TC using Acc data
Output: TC

1: StartTime ← f romPre− processing
2: EndTime ← f romPre− processing
3:
4: AccZ ← AccelerationZ(From StartTime to EndTime)
5: AccY ← AccelerationY (From StartTime to EndTime)
6: AccX ← AccelerationX (From StartTime to EndTime)
7:
8: resAcc ←

p
AccX2 + AccY 2 + AccZ2

9: SqreDi f f Acc ← ((resAcc(2) − resAcc(1)), (resAcc(3) −
resAcc(2)), ‚Ä¶‚Ä¶(resAcc(n)− resAcc(n−1)))2

10: [PeakV alue, InitialContactx]← localmaximum(SqreDi f f f Acc)
11:
12: Flag ← 0
13: Count1← 1
14: Count2← 1
15: Peakx ← 0
16:
17: for i ← 0 to Length(SqreDi f f Acc) do
18: if Flag = 0 & SqreDi f f f Acc(i) = PeakV alue(Count1) then
19: Flag ← 1
20: Peakx ← i
21: INCREMENT Count1
22: else
23: if Flag = 1 & i = (Peakx+ (InitialContactx(Count1)−Peakx)/4) then
24: for h ← i to (Peakx+ (InitialContactx(Count1)−Peakx)/2) do
25: NrmlsACC ← (SqreDi f f Acc(h)−Minimum(SqreDi f f Acc(h to(Peakx+

(InitialContactx(Count1)−Peakx)/2))))/(Maximum(SqreDi f f Acc(h to(Peakx+
(InitialContactx(Count1)−Peakx)/))))− Minimum(SqreDi f f Acc(h to(Peakx+
(InitialContactx(Count1)−Peakx)/2))))

26: if NrmlsAcc ≥ EmpiricalThreasholdAcc then
27: TC = h
28: end if
29: end for
30: TC(Count2)← TC
31: INCREMENT Count2
32: Flag ← 0
33: end if
34: end if
35: end for

126



7.2. METHOD

7.2.2.2 Gyroscope-based algorithm

The precise detection of leg moments such as initial contact (IC), terminal contact (TC),

and mid-swing(MS) is essential for the computation of temporal parameters including

stride time, swing and stance duration in gait analysis. Such instance can create unique

signal characteristics that both acceleration and angular velocity data show distinctively

positive or negative peaks consisting of medium to rather high frequencies.The instance

of IC and TC is defined at the first and the second local maximum, where MS is the

local minimum that is located after TC, the locations of IC, TC and MS are shown in

figure 7.2.While the scale of such peaks are affected by several factors such as the partic-

ipant‚Äôs running intensity or speed, they tend to show similar tends among different

runs and hence can be detected in the specific area of interest or frequency domains.

Following previous work of gait analysis by [176], who proposed a detection algorithm by

first detecting the location of mid-swing (MS), followed by searching backwards for TC

and forwards for IC.

Figure 7.2: Random samples of right ankle angular rate ωankleR of a participant during
10km/h running. Note: MS = Mid-Swing; IC = Initial-Contact; TC = Terminal-Contact.
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The proposed algorithm first detects TC to minimise the computational requirements

for backward searching. To enhance and detect the mid-swing peak, a 2nd-order Butter-

worth low-pass filter was designed with a cut-off frequency of 10 Hz. In the detection of

the possible location of TC, the proposed system first detects the first local maximum

point. After that, the algorithm search for the presence of a local minimum point after

TC which is the MS. Next, the following local maximum is then recognised as the location

of IC. These possible points (PP) of gait event location are then evaluated under the set

of rules shown in Table 7.1.

Table 7.1: The detection logic and conditions for IC, MS and TC detection.

Gait event Conditions

TC TC must fulfil below conditions:
a) It is the local minimum
b) A local maximum (MS) is after TCpp
c) A local minimum IC is after MS
d) It is the local minimum between MS n and MS n-1

MS MS must fulfil below conditions:
a) It is the local maximum
b) MS (n, 1) ‚Äì MS (n-1, 1) > 300ms

IC IC must fulfil below conditions:
a) A MS is identified before the location of IC
b) IC (n,1) ‚Äì TC (n,1) >100ms
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7.2.2.3 Confidence Interval

To test the accuracy and the consistency of the output of gyroscope and accelerometer

algorithms, confidence interval (CI) is used to perform comparison and to verify the

range of the difference between the two algorithms. In the case of a CI in a particular

measure X . The sample size is defined as N, where m is defined as the hypothetical

average value or mean, and s is the standard deviation. The pre-defined confidence

level is represented as 1−α, in this study, we used 95 % confidence level. Hence, the

CI of the given sample or the range of values can be defined by: m‚àícαs < X < m+ cαs,

and as α= 0.05, then cα= 1.96. In this project, to test the consistency between the two

algorithms, a right-side test was conducted to the difference between the calculated

contact time of the two algorithms (H0 : µ≤µ0 | H1 : µ>µ0,µ0 = 0.03−0.05). The average

of the absolute difference between the two algorithms x̄di f f is calculated by Eq.(7.4). The

z-score value is then calculated using Eq.7.5 and the output Z value is then compared to

the Critical Value Zα/2 which is 1.654.

(7.4) x̄di f f =
∑n

i=1 |CTG yro −CTAcc|
n

where x̄di f f is the average value of the absolute difference between the outputs from

the two algorithms. CTG yro and CTAcc are the calculated contact time output from the

two algorithms.

(7.5) Z = x̄di f f −µ0

s/
p

n

where z is the z-score value of the current x̄di f f , Œž0 is the maximum tolerance of

the x̄di f f value, and s is the standard deviation of the x̄di f f dataset.

The output z-score value is then accessed and compared to test if the system‚Äôs

consistency is within the confidence level of 95% where the maximum inconsistency of

the two algorithms is 0.03s.

If Z ≤ Zα/2(1.645),µ ≤ µ0,H0: the system‚Äôs consistency is within the confidence

level.
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If Z > Zα/2(1.645),µ>µ0,H1: the system‚Äôs consistency is not within the confidence

level.

7.3 Results and Discussion

7.3.1 Data collection Protocol

In total, 40 rugby players from Sydney Swan Football Club were asked to run at three dif-

ferent speeds. All the participants were healthy and do not suffer from any symptomatic

musculoskeletal injuries. The 40 rugby players were volunteered to take part in this data

collection protocol. These trails were conducted in a laboratory provided by the Faculty

of Health of the University of Technology Sydney. This study was approved by the ethics

committee of the University of Technology Sydney. Each player was requested to run

10 meters with three different trails at different speed of 10kmh, 15kmh and 20kmh.

The data collection was carried out on an instrumented treadmill that was connected

to a camera system that has 60 FPS. During running, all participants were wearing

their own comfortable shoes. An IMU device (ImeasureU) was attached to the ankle

area of each foot of the participant. The IMU device was consisted of an accelerometer

(500HZ, ± 200g recording range), a gyroscope (500HZ, ± 35rad/s recording range)

and a barometric sensor. In this study, only the data collected from gyroscope and the

accelerometer was utilized. A 6 min familiarization period was conducted on the same

treadmill with identical setup as a warm-up for each player. A rest period was given

between each trail for all participants, and they were free to determine the duration of

resting. Figure7.3shows the attachment of the IMU device on the ankle area.
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Figure 7.3: The placement of the IMU device on the ankle area of a participant.

Additional trails were carried out with a camera-based system and setup, the partici-

pants were asked to repeat the previous trials with the same setup and protocols with

the camera capturing the feet transitional motion of the participant. The collected data

was used as a validation data set to test the validity and accuracy of the two algorithms.

In total, a sample which consisted of 900 steps were recorded. Within this data set, 180

of the steps were recorded with the camera-based system and were used as the ground

truth to test the algorithm accuracy, whereas the 720 steps were used for algorithm

construction and consistency testing.

7.3.2 Data Pre-processing

The purpose of the pre-processing algorithm was to filter out the non-running data ranges

and to output the running period start time and end time for IC and TC detection in the

later part of the algorithm. Figure 7.4 demonstrates a random sample of a participant’s

whole running data, including all three speeds (10km/h, 15km/h and 20km/h). The

algorithm clearly distinguished the three different running period form the whole data

set which was 370s. As the sliding window has a length of 0.5s and the algorithm used

average value within the window, the output value could have slight error of which was
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up to 0.5s which could affect the detection of IC and TC on a specific step. However, one

step can be considered as a minor influence to the algorithm’s accuracy to a data set that

was consisted with a large amount of steps.

Figure 7.4: Random sample of a participant’s pre-processed data with three different
running speeds (10km/h, 15km/h and 20km/h).
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Table 7.2: The consistency of the two systems under different speeds and maximum
tolerance values of the confidence interval.

Percentage of datasets within the maximum tolerance value
with 95% confidence interval(s)

0.05 0.04 0.03 Average

Sp
ee

d

(K
M

/H
) 10 100% 95 86.5% 93.75%

15 100% 96.25% 88.75% 95%
20 100% 92.25% 93.75% 91.67%
Average 100% 94.17% 86.26%

7.3.3 Algorithm consistency

To test the consistency of the gyroscope and accelerometer algorithms, 95% right-sided

confidence intervals with different maximum tolerance value (0.05s, 0.04s and 0.03s)

were constructed on the difference between the output value of the two algorithms. Table

2 summarizes the consistency of the two algorithms under different speed. The consis-

tency was calculated by finding the percentage of datasets that has a lower difference

than the given tolerance under 95% confidence level between the output of the two

algorithms. As the results are shown in Table 7.2, a 100% consistency between the two

systems was found for all speeds with a maximum difference value of 0.05s. An average

consistency of 94.17% was found for all datasets under maximum difference of 0.04s and

for 0.03s tolerance, an average consistency of 86.26% was found. The two algorithms

showed the highest consistency at the speed of 15 km/h, and the average consistency

is 95%. From the results, we found that the consistency of the two algorithms reduced

sharply as the running speed increased to 20 km/h. On top of this, the highest consistency

for each tolerance group was found at the running speed of 15 km/h, meaning the two

algorithms were more consistent at this speed level.
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7.3.4 Accuracy of Detection

The output values of the two algorithms were then compared to the video reference to

test the validity of the systems. The results were recorded in Table 7.3. The mean errors

of the accelerometer algorithm are 0.0159s, 0.008s, 0.015s for speeds of 10km/h, 15km/h

and 20km/h relatively. The mean errors of the gyroscope algorithm are 0.0239s, 0.0214s,

0.023s for speeds of 10km/h, 15km/h and 20km/h respectively. Like the result of the

consistency between the algorithms, the speed of 15km/h shows the lowest mean error

for both accelerometer and gyroscope.

Figure 7.5: Comparesion between actual result (red line) and estimated results (dots).
Note: MS = Mid-Swing; IC = Initial-Contact; TC = Terminal-Contact.

Table 7.3: The mean error of the two algorithms under different speeds.

Speed(km/h) Mean error(s)

Accelerator algorithm Gyroscope algorithm
10 0.0159 ± 0.03 0.0239 ± 0.03
15 0.008 ± 0.03 0.0214 ± 0.03
20 0.025 ± 0.03 0.029 ± 0.03
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Table 7.4: The consistency of the two systems under different speed and maximum
tolerance value of the confidence interval.

Speed(km/h) Strike type
Forefoot Rear-foot

Appearance
Consistency at
0.03 maximum

tolerance
Appearance

Consistency at
0.03 maximum

tolerance

10 0% N.A 100% 100%
15 8.75% 42.15% 91.25% 96.25%
20 86.25% 35.75% 13.75% 91.25%

The result of this study shows that both accelerometer and gyroscope have good

potential in developing IMU based gait analysis algorithms, especially in contact time

(CT) and flight time (FT) detection. By comparing the accuracy of the two algorithms

at three different running speeds, we found that at medium running speed (around 15

km/h), both algorithms showed higher consistency and accuracy and the mean errors

were at their lowest, 0.008s and 0.0214s. Another interesting trend is that both the

accuracy and consistency are at their lowest during high speed running.

As both the consistency and accuracy of the two systems showed decreasing trend at

higher speed, we studied the ground truth video and found that the performance of the

algorithms can be related to the striking style, which are forefoot strike and rear-foot

strike. Rear-foot strike means the heel of the runner makes the first contact with the

ground where forefoot strike is when the toe of the runner contacts the ground first [177].

Table 7.4 summarizes the appearance of the two strike styles and the consistency of the

two algorithms under different speeds and strike types. We also found that when the

running speed increased, the runners tend to shift from rear-foot strike to forefoot strike

as 86.25% of the strikes were shifted from rear to fore foot when the speed increased to

20km/h. The result also supported our hypothesis that the forefoot strike could affect

the consistency and accuracy of the algorithms. The reason which causes this reduction

could be due to the placement of the IMU. As the IMU was placed in the ankle area,

which was closed to the rear-foot, and as the runner struck the ground with forefoot,
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there was some movement and turbulence on the foot which could generate noise and

affected the accuracy of the algorithms. The future studies should investigate the effect

of different striking styles have on the current gait algorithms. At the same time, the

investigation should also include the impact of different striking patterns on the accuracy

of the algorithms in different IMU placement locations. Furthermore, the future design

and development of the IMU-based gait algorithms should consider and build upon both

striking styles to increase the accuracy.

7.4 Discussion

This study aimed to develop and validate adaptive algorithms based on gyroscope and

accelerometer data for the detection of IC and TC during running. Such a system

is desirable as it provides the potential of instant analysis and feedback of ground

contact time for athletes and coaches in trainings or other circumstances in field settings.

Specifically, such system based on IMU can overcome the limitations related to other

gait analysis methods like motion tracking system, force plate, footswitch systems or

camera-based systems which are highly lab-based and are difficult to use in field-based

settings or in most team sports where training is undertaken concurrently in large

groups. The application of gyroscope-based algorithms in IC and TC detection has been

investigated in several running gait studies for healthy athletes [178], disabled athlete

with transtibial amputees [179], athletics recovery [180] and many other conditions.

On top of this, the gyroscope-based algorithm can maintain the same waveform shape

under different or increasing running speeds as only the magnitude of the foot’s angular

rate and frequency are affected. Referring to the results from this study, the absolute

mean error presented a less variation when running speed increased as compared to the

acceleration-based algorithm. Therefore, the algorithm we proposed can reliably identify

the key gait events of IC and TC in many running-related applications for both in-field

settings and a large group of individuals. Despite these advantages, gyroscope-based

algorithms usually require wavelet transformation and different filter design according
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to different speeds, running intensiveness, and IMU placement. For example, Gouwanda

et al. [178] designed a 2nd order digital low pass filter with cut-off frequency of 15 Hz

to make the waveform peaks stands out for IC and TC detection; McGrath et al. [181]

utilized a low pass filtered with zero-phase fifth order Butterworth filter with a 50.2 Hz

corner frequency, where in this study, the cut-off frequency was set to 10 Hz to obtain the

best waveform information. The performance of these algorithms can be affected with

expanded sample size or running styles. Whereas for the accelerometer-based algorithm,

the detection of TC is more crucial and usually generates more errors as compared to the

detection of IC. In support of this, Jasiewicz et al. [182] studied the current accelerometer-

based gait study algorithms with IMU placement on foot and suggested that the mean

absolute error (MAE) of TC (27.6 ms) is much higher than the MAE of IC detection (4.2

ms). In this study, the result showed similar trend to the findings from this reviewed

study by yielding higher errors in TC than IC, as the MAE of TC had a minimum of

23.8 ms and a maximum of 31.4 ms, whereases the IC had the minimum of 4.5 ms and

the maximum of 6.7 ms. Moreover, the accuracy of the TC detection in acceleration-

based analysis has not been widely investigated. Hence future should investigate the

accuracy of TC detection and the factors which lead to the drop in accuracy. Thereby,

the combination of using both accelerometer and gyroscope-based algorithms can be a

good approach to mitigate the limitations of these two gait analysis methods. In this

study, we investigated the consistency of the two algorithms with confidence interval

and discovered that the proposed systems had good overall consistency despite the lower

consistency (83.75 %) at the higher speed which could be resulted from the striking

style and required further investigation. Hence, this study discovered the feasibility of

using the combination of both algorithms where the advantage of each approach could

be utilised to further improve the detection accuracy of IC and TC. An example to this

could be using a weightage algorithm in which the accelerometer-based system has more

weightage in IC calculation and gyroscope-based system being more impactful in TC

detection. Accordingly, future studies should investigate the effect of different striking

styles have on the current gait algorithms. Moreover, the accuracy of TC detection should
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also be studied, and the cause of accuracy reduction should be investigated. Finally, the

future study should examine the feasibility of the combination of accelerometer and

gyroscope-based systems to further increase the IC and TC detection accuracy. To achieve

these, the future experimental sample size should be expanded to include more runners

with a larger variety of foot-striking characteristics, running speeds or intensities and

with different IMU placement locations. Furthermore, the future design and development

of the IMU-based gait algorithms should consider and build upon both striking styles to

increase the accuracy.

7.5 Conclusions

In this chapter, we proposed an intelligent running gait analysis system that can estimate

contact time (CT) and flight time (FT) by detecting key running instance such as IC

and TC. The system had Two algorithms which were designed based on the data from

gyroscope and accelerometer relatively. We also introduced a pre-processing algorithm

which can detect the running period to increase the detection accuracy. Furthermore, the

consistency of the two algorithms were studied using a 95% confidence interval and the

accuracy of the system was investigated using the validation data set.

The result showed that the accelerometer and gyroscope combined system can obtain

the desired accuracy (absolute error: <20ms) in CT and FT detection. Moreover, after

introducing the confidence interval, the two systems showed high consistency in lower

speed running (< 20km/h). It was found that the reduced consistency was due to the

change in the foot striking style (rearfoot strike to forefoot strike) as the running speed

increased.

Our ultimate objective is to deign a highly-accurate IMU-based gait analysis system

which utilize both gyroscope and accelerometer. The system should be compatible to

both striking styles (rear-foot and fore-foot) that were found to be affecting the systems’

consistency and accuracy in the proposed algorithms. Therefore, the future research is

to study the effect of the striking type on the current gait algorithms in different IMU
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placement locations and to further improve the compatibility and detection accuracy of

the system.
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8.1 Conclusion

This thesis has focused on improving the performance of IMU sensor-based

electronic devices using autocalibration and model compression. To achieve

this goal, we conducted research in two directions: i) The design of efficient

autocalibration methods to provide accurate sensor readings; and ii) The design of novel

model pruning and few-shot learning methods to ensure that neural network models can

be executed on resource-limited devices.

For the first task, Chapter 3 described a novel gyroscope calibration method using

simple equipment. A servomotor was employed to provide the calibration reference.

The entire calibration process only takes approximately 1 min, and does not require

high-precision equipment. Moreover, a six-observation experimental design was proposed

to minimise the maximum variance of the estimated scale factors and biases. In addition,

a fast-converging recursive linear least-squares estimation method was presented to

reduce the computational complexity. The simulation results reflect the robustness

of the calibration method under normal and extreme conditions. We experimentally

demonstrated the feasibility of the proposed method on a robot arm, and implemented
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the method on a microcontroller. We verified the calibration results of the proposed

method through comparisons with a traditional turntable approach, and this experiment

indicated that the results of these two methods are comparable.

With the aim of completely discarding the shackles of external calibration equipment,

an improved method was proposed in Chapter 4. We developed an efficient in-field cali-

bration method that readily calibrates triaxial gyroscopes without additional equipment.

This experimental scheme can be easily implemented by manually rotating the triaxial

gyroscope over a certain angle as the calibration reference. A linearised calibration model

was developed for the proposed experimental scheme, and we showed that G-optimality

was achievable. The absolute errors of the scale factors and biases were always less

than 2.5×10−2 for LSM9DS1 and less than 1×10−2 for ICM20948, with the calibration

process taking less than 30 s.

For the second task, Chapter 5 described a novel kernel-based nonparametric mod-

elling method to estimate the heart rate response during treadmill exercise and proposed

an MPC method for heart rate control. This kernel-based method introduced a kernel

regularisation term that provides prior information to the model estimation phase. By

adding this prior information, the experimental protocol can be significantly simplified

and only a small number of model training experiments are needed. For the exerciser,

this means fewer experiments during the model building phase. Based on the identified

model, an MPC controller was designed to track a predefined reference heart rate profile.

Another advantage of this approach is that the speed and acceleration of the treadmill

can be limited to within a safe range for vulnerable exercisers.

To overcome the issue of limited resources, Chapter 6 described a pruning method that

significantly reduces the computational load of GNNs. Larger graphs and deeper GNNs

make the training and inference processes increasingly expensive. The GLT method,

which leverages the LTH, was used to design a unified GNN sparsification framework

that simultaneously prunes the graph adjacency matrix and the model weights. Apart

from leveraging the LTH, we further extended several existing training-free saliency

metrics (SNIP, GraSP, Synflow) for network pruning to GNNs. We found that these
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methods can achieve similar performance as GLT when jointly pruning the network

weights and graph adjacency matrix. This revealed that these training-free saliency

metrics can replace LTH while achieving a significant decrease in computational cost.

Overall, this study has considered the design and implementation of e-trainers with

a focus on IMU calibration algorithm design and practical implementation of pattern

recognition algorithms. The entire design process was discussed, ranging from hardware

design, some practical considerations regarding efficient wearable device calibration,

and model compression using the pruning method.

8.2 Future Work

Several interesting directions for future work are as follows.

In Chapters 3 and 4, we proposed gyroscope calibration algorithms using a mathe-

matical model. We assumed that the noise involved in these methods was additive white

Gaussian noise. In the field experiments, however, we found that the noise tended to

follow a chi-square distribution, and the accuracy of these methods was observed to be

highly dependent on the rotation speed and calibration time. We believe that this is

caused by the model and estimate used being incorrect. Therefore, future work will focus

on i) analysing the noise source and ii) designing a proper estimator that can handle

non-Gaussian noise.

In Chapter 5, we proposed heart rate regulating algorithms using kernel-based non-

parametric modelling. The performance of this method was found to be highly dependent

on the optimisation of the kernel hyperparameters. However, we used a grid search

for hyperparameter tuning, which is time-consuming and computationally expensive.

Therefore, a future improvement to the proposed methods will involve the automatic

identification of the desired hyperparameters.

In Chapter 6, we proposed a pruning method that reduces the model complexity and

allows the neural network model to be executed on an ultra-low-power micro-controller. In

the experiments, we found that most floating-point operations were used for element-wise
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operations, which can easily be calculated in parallel. Thus, future work will investigate

whether we can design an application-specific integrated circuit to solve the problems of

limited energy and resources.

In Chapter 7, we demonstrated an in-field application of the Fit.E, analysing the CT,

FT, and asymmetric gait of 40 rugby players from Sydney Swans Football Club while

running. This shown the usefulness of the proposed E.Fit and the potential further

cooperation with other sports organizations.
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