

Assessment of Seismic Behaviour of Large LNG Tanks Considering Soil-Foundation- Structure Interaction

by Noor Sharari

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of:	A/Prof. Behzad Fatahi
	Prof. Hadi Khabbaz
	Dr. Aslan Hokmabadi

University of Technology Sydney Faculty of Engineering and Information Technology (FEIT)

July 2022

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, **Noor Sharari**, declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Civil and Environmental Engineering at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution. This research is supported by the Australian Government Research Training Program.

Signature of Candidate

Production Note: Signature removed prior to publication.

Noor Sharari Sydney, November 2021 Sincerely Dedicated to

My Father and Mother

Ibrahim & Mountaha

I owe you two my life and all the success

My husband Hussam, thank you for being with me during this journey

Saad and Hamad my sweethearts

ACKNOWLEDGEMENT

I would like to express my sincere appreciation and gratitude to the people who supported me during my PhD studies. This PhD project could not have been possible without their knowledge, support, advice, and guidance.

I would particularly like to thank to my principal supervisor, Associate Professor Behzad Fatahi, for his limitless support, tireless contributions, intellectual guidance, and critical feedback throughout this work. He dedicated countless hours, providing support with his knowledge in geotechnical, structural and earthquake engineering. I would also like to thank my co-supervisors, Associate Professor Hadi Khabbaz, and Dr Aslan Hokmabadi, for their presence, guidance and support during this research project.

Additionally, I would like to thank the Al-Hussien Bin Talal University for awarding me PhD scholarship, which provided me with the opportunity to complete my dream and pursues this degree.

I am very appreciative and thankful to my friends and colleagues for their time and support which rendered precious help and made this PhD journey more enjoyable. Special thank go to Dr Ruoshi Xu for his technical contribution to this project, and Mootassem Hassoun for his kind assistance in the early stages of my research work. In addition, I would like to express my gratitude to all the academic and professional staff in the Faculty of Engineering and Information Technology for their help and support.

Last but not the least, I would like to take this opportunity to express my wholehearted gratitude to my family for their priceless support and confidence in me without which I would not have been able to achieve my goals. Particularly, I would like to express my love and gratitude to my parents, Ibrahim and Mountaha, my grandmother, my aunt Sabah, my siblings, for their love, support and prayers for me to achieve this dream. Special thanks go to my husband Hussam whom I shared the happy, stressful, and down moments through this project. We gift this achievement to our growing family, including Saad, Hamad and the coming ones. I hope that I have made you all very proud and give you the motivation to pursue your dreams as well.

LIST OF PUBLICATIONS

- 1. Sharari, N., Fatahi, B., Hokmabadi, A., & Xu, R. (2022). Seismic resilience of extra-large LNG tank built on liquefiable soil deposit capturing soil-pile-structure interaction. *Bulletin of Earthquake Engineering*. 23,1-57.
- Sharari, N., Fatahi, B., Hokmabadi, A. S., & Xu, R. (2022). Impacts of Pile Foundation Arrangement on Seismic Response of LNG Tanks Considering Soil– Foundation–Structure Interaction. *Journal of Performance of Constructed Facilities*, 36(1), 04021110.
- Sharari, N., Fatahi, B., Hokmabadi, A., & Xu, R. (2022). Impacts of Steel LNG Tank Aspect Ratio on Seismic Vulnerability Subjected to Near-Field Earthquakes. In Proceedings of the 5th International Conference on Sustainable Civil Engineering Structures and Construction Materials (pp. 941-956). Springer, Singapore.
- 4. Sharari, N., Fatahi, B., & Hokmabadi, A. S. (2020). Impact of Wall Support Conditions on Seismic Response of Ground-Supported Reinforced Concrete Containment Tanks. *WIT Transactions on The Built Environment*, 198, 139-151

TABLE OF CONTENTS

CERTIFICATE OF ORIGINAL AUTHORSHIPii
ACKNOWLEDGEMENT iv
LIST OF PUBLICATIONSv
TABLE OF CONTENTS vi
LIST OF FIGURESx
LIST OF TABLESxix
LIST OF NOTATIONSxxi
ABSTRACTxxvi
CHAPTER 1 INTRODUCTION
1.1 General
1.2 Objectives and scope of this study
1.3 Thesis organisation
CHAPTER 2 LITERATURE REVIEW7
2.1 General7
2.2 Overview of LNG tanks
2.3 Seismic design and analysis of LNG tanks
2.4 Factors affecting the seismic performance of LNG tanks
2.4.1 Fluid-Structure Interaction (FSI) effect
2.4.2 Soil-Foundation-Structure Interaction (SFSI) effects
2.4.2.1 Free-field ground motion
2.4.2.2 Dynamic behaviour of soils
2.4.2.3 Soil-foundation-structure interaction (SFSI) concept for liquid
storage tanks
2.5 Observed damage to liquid storage tanks during previous earthquakes and
previous research studies on seismic performance of LNG tanks
2.6 Summary
CHAPTER 3 IMPACT OF PILE FOUNDATION ARRANGEMENT ON SEISMIC
RESPONSE OF LNG TANKS CONSIDERING SOIL-FOUNDATION-STRUCTURE INTERACTION
3.1 General
3.2 Introduction
3.3 Description of the adopted LNG tank and foundation
3.4 Numerical modelling details
3.4.1 Modelling of the superstructure

3.	4.2	Modelling of the fluid-tank interaction	50
3.	4.3	Modelling of the soil deposit and the piles	53
3.	4.4	Modelling of interfaces, boundary conditions and adopted earthquakes	s 56
3.5	Res	ults and discussion	60
3.	5.1	Free vibration analysis	60
3.	5.2	Nonlinear time history results	65
	3.5.2.1	Response spectrum	65
	3.5.2.2	2 Maximum tank acceleration profile	66
	3.5.2.3	<i>The maximum structural response of the inner LNG tank walls</i>	70
	3.5.2.4	4 Seismic response of pile foundation	75
3.6	Sum	ımary	80
CHAP			
		Y TO CAPTURE THE SEISMIC WAVE PROPAGATION TED CLAY DEPOSIT	งา
4.1		eral	
4.1		oduction	
4.3		overview of NKH soil model	
4.4		nerical modelling	
	4.1	Benchmark model considering stiffness degradation and hysteretic SD	
da	amping	(FLAC3D)	
	4.4.1.1	Simulation of dynamic soil behaviour	93
	4.4.1.2	2 Boundary conditions	96
	4.4.1.3	8 Considered earthquakes	97
4.	4.2	Finite element model adopting NKH model (ABAQUS)	101
	4.4.2.1	Model Parameters calibration	101
	4.4.2.2	2 Model Geometry, boundary conditions and earthquake records	107
4.5	Res	ults and discussion	110
4.	5.1	Shear stress - strain response of soil	111
4.	5.2	Acceleration time history predictions	117
4.	5.3	Acceleration response spectrum	124
4.	5.4	Assessment of NKH model for different hazard levels	128
4.6	Sum	ımary	135
~	EFIAB	LE SOIL DEPOSIT CAPTURING SOIL-PILE-STRUCTURE	
		ON	
5.1		eral	
5.2	intro	oduction	13/

5.3 Ove	erview of adopted LNG tank and soil profile	141
5.4 Det	ails of numerical modelling	146
5.4.1	Modelling of the inner and outer tanks and pile foundation	146
5.4.1.	1 Modelling of Outer Reinforced Concrete Tank	146
5.4.1.	2 Modelling of Reinforced Concrete Piles	154
5.4.1.	3 Modelling of inner 9% Ni steel tank	155
5.4.2	Modelling of the Fluid-Structure Interaction	159
5.4.3	Modelling of the soil deposit	161
5.4.3.	1 Modelling of clay soil deposit	161
5.4.3.	2 Modelling of liquefied soil deposit	168
5.4.4	Modelling of interfaces, boundary conditions and the adopted earthq 170	uakes
5.5 Res	ults and discussion	175
5.5.1	Free vibration analysis	175
5.5.2	Nonlinear time history results	182
5.5.2.	1 Response spectrum	182
5.5.2.	2 Maximum tank acceleration profile	184
5.5.2.	<i>3 The structural response of the LNG tanks</i>	189
5.5.2.	4 Seismic response of pile foundation	201
5.6 Sun	nmary	207
CHAPTER 6 RIGID BAS	5 CONTEMPORARY PROBLEMS FOR LNG CONTAINMENT O	
6.1 Ger	neral	209
-	pacts of steel LNG tank aspect ratio on seismic vulnerability subjected earthquakes	
6.2.1	Introduction	209
6.2.2	Details of adopted storage tanks	212
6.2.3	Fluid-Structure Interaction effects	213
6.2.4	Finite element model of the tank-liquid System	
6.2.5	Results and discussion	
6.2.5.		
6.2.5.	2 Non-linear dynamic time-history analysis	219
1	oact of wall support conditions on seismic response of ground-support concrete containment tanks	
6.3.1	Introduction	227
6.3.2	Description of adopted LNG tank	228
6.3.3	Numerical modelling	229

6	.3.3.1	General model description	229
6	.3.3.2	Adopted material model for reinforced concrete	230
6	.3.3.3	Connection details and adopted earthquakes	232
6.3.	.4 F	Results and discussion	234
6	.3.4.1	Modal analysis	234
6	.3.4.2	Non-linear dynamic time history analysis	236
6.4	Sumn	nary	243
CHAPT	ER 7	CONCLUSIONS AND RECOMMENDATIONS	245
7.1	Gener	ral	245
7.2 respoi		lusions related to importance of pile foundation arrangement on seism LNG tanks	
7.3 the se		lusions related to capabilities of kinematic hardening model for captur wave propagation in clay soil deposit	-
7.4 LNG		lusions related to effect of liquefied soil deposit on seismic resilience	
7.5 respoi		lusions related to Effect of height to diameter aspect ratios on seismic LNG tank.	251
7.6 reinfo		lusions related to effects of wall support condition on seismic response oncrete containment tank.	
7.7	Reco	mmendations for future research	252
REFER	ENCES	S	254

LIST OF FIGURES

LNG tank (Lun et al. 2006), and (b) Details of the full containment LNG tank components (after Jo et al. 2018)
Figure 2.2 Design flowchart for LNG tank and foundation system (after Peiris et al. 2006).
Figure 2.3 Analytical model for the dynamic behaviour of ground supported liquid
storage tank (after Housner 1957)
Figure 2.4 Mechanical models proposed by Malhotra et al. (2000)
Figure 2.5 The mechanical model for impulsive and convective pressures using the added
mass method according to Eurocode-8 (2006)
Figure 2.6 Analysis of the ground response and upward wave propagation near the
shallow ground soil surface
Figure 2.7 Typical normalized site response spectrum (5% damping ratio) for varied local
site conditions (after Seed et al. 1976)
Figure 2.8 Cyclic behaviour of soil
Figure 2.9 The decrease of shear modulus and the related damping ratio curves with cyclic
shear strain
Figure 2.10 Mechanical models for the soil-tank-liquid coupled system (after Larkin
2008)
Figure 2.11 Illustration of kinematic and inertial interaction in a SFS system for liquid
storage tank supported by pile foundation
Figure 2.12 Observed damage for steel tanks under seismic load (a) elephant foot
buckling example, and (b) diamond shape buckling (Malhotra et al. 2000)
Figure 3.1 A large LNG tank at a coastal site in a region with high seismicity in east Asia.
Figure 3.2 The LNG tank configuration adopted in this chapter: (a) section view of the
superstructure and foundation, and (b) the plan view of 229 no. piles supporting the tank.
Figure 3.3 Three different choices of LNG tank foundation considered in this chapter, (a)
end-bearing pile-raft foundation, (b) frictional pile-raft foundation with pile length of 25
m, and (c) frictional pile-raft foundation with pile length of 20 m

Figure 3.4 The adopted finite element model for the end-bearing pile foundation case and
the modelling element details of the developed soil structure system
Figure 3.5 Proposed mechanical model used for FSI modelling in this chapter
Figure 3.6 Backbone for cohesive soils (data from Sun et al. 1988)
Figure 3.7 Adopted earthquake time histories in terms of the ground accelerations for (a)
1994 Northridge earthquake and (b) 1995 Kobe earthquake
Figure 3.8 Impulsive and convective masses oscillations for the proposed mechanical
model used in this study: (a) Impulsive mode, and (b) convective mode
Figure 3.9 The fundamental vibration mode shape for LNG tank with different foundation
options: (a) End-bearing piled-raft foundation with pile length of 30 m, (b) Piled-raft
foundation with pile length of 25 m, and (c) Piled-raft foundation with pile length of 20
m
Figure 3.10 Response spectrum derived from the motion of foundation slab with 5%
damping ratio under (a) 1994 Northridge Earthquake, and (b) 1995 Kobe earthquake. 64
Figure 3.11 Maximum horizontal acceleration profile along inner 9% Ni steel tank wall
for different foundation options subjected to (a) 1994 Northridge earthquake at $t = 4.2$ sec
and (b) Kobe earthquake at t = 5.8 sec
Figure 3.12 Maximum horizontal acceleration profile along outer tank wall for different
foundation options subjected to (a) 1994 Northridge earthquake at $t = 4.2$ sec and (b)
Kobe earthquake at $t = 5.8$ sec
Figure 3.13 The horizontal acceleration of the at the cross section of the inner 9% Ni steel
tank wall at 11 m elevation for different foundation options subjected to (a) 1994
Northridge earthquake at $t = 4.2$ sec and (b) Kobe earthquake at $t = 5.8$ sec
Figure 3.14 Distribution of the hoop forces in the tank wall at $\theta = 0^{\circ}$: (a) 1994 Northridge
earthquake at $t = 4.2$ sec and (b) Kobe earthquake at $t = 5.8$ sec
Figure 3.15 Distribution of the axial forces in the tank wall at $\theta = 0^{\circ}$: (a) 1994 Northridge
earthquake at $t = 4.2$ sec and (b) Kobe earthquake at $t = 5.8$ sec
Figure 3.16 Distribution of the radial displacement along the inner tank wall height level
of the three foundation options at $\theta = 0^{\circ}$ for (a) 1994 Northridge earthquake at t = 4.2 sec
and (b) Kobe earthquake at t = 5.8 sec
Figure 3.17 The maximum von Mises stress distribution on the inner 9% Ni steel tank
wall and the location of the maximum stress on the stress- strain curve for 9% Ni steel
under (a) 1994 Northridge earthquake at $t = 4.2$ sec and (b) Kobe earthquake at $t = 5.8$
sec

Figure 3.18 Maximum lateral pile displacement for different foundation types along the
normalized pile length subjected to (a) 1994 Northridge earthquake at $t = 4.2$ sec and (b)
Kobe earthquake at t = 5.8 sec
Figure 3.19 Maximum shear force profile imposed on the pile for different foundation
types along the normalized pile length subjected to (a) 1994 1994 Northridge and (b) 1995
Kobe earthquakes
Figure 3.20 Maximum bending moment profile along the normalized pile length due for
different foundation types subjected to (a) 1994 Northridge and (b) 1995 Kobe
earthquakes
Figure 4.1 Explanation of the nonlinear kinematic hardening (NKH) model implemented
in this study, (a) one-dimensional representation of the hardening nonlinear kinematic
rule and the generalised stresses with respect to plastic strain (b) three-dimensional
representation of the kinematic hardening effect in translation the yield stress surface in
the stress space (c) back stresses parameters in case of two back stresses as adopted in
this chapter
Figure 4.2 Model geometry (half model) and analysis demonstration implemented in
FLAC 3D
Figure 4.3 Hysteresis loop of soil
Figure 4.4 Adopted modulus reduction and the corresponding damping ratio curves used
in this study
Figure 4.5 Considered earthquakes: (a) Original 1994 Northridge Earthquake, (b)
Original 1995 Kobe Earthquake, (c) Original 1940 El Centro Earthquake and (d) Original
1979 Imperial Valley Earthquake
Figure 4.6 Response spectra considering 5% structural damping: (a) Original 1994
Northridge Earthquake, (b) Original 1995 Kobe Earthquake, (c) Original 1940 El Centro
Earthquake and (d) Original 1979 Imperial Valley Earthquake 100
Figure 4.7 Scaled earthquakes reflecting different AEP at strong rock site
Figure 4.8 Stabilised loading cycle based on Hardin/Drnevich (1972) model with Masing
(1926) rule for Soil E with V_s 160 m/s
Figure 4.9 Comparison between the calibrated kinematic hardening models adopted in
this study with the laboratory measurements obtained from Sun et al. (1988) (a) soil E,
(b) soil D, and (c) soil C 106
Figure 4.10 Soil model adopted in this study (a) model geometry (half model)
demonstration implemented in ABAQUS; (b) representation of different elements

element (CIN3D8)
soil model in FLAC 3D and NKH soil model for (a) site class C, (b) site class D and (c) site class E under original 1994 Northridge earthquake
site class E under original 1994 Northridge earthquake
Figure 4.12 Comparison between shear stress strain record at 15 m depth between SDHD soil model in FLAC 3D and NKH soil model for (a) site class C, (b) site class D and (c) site class E under original 1995 Kobe earthquake
soil model in FLAC 3D and NKH soil model for (a) site class C, (b) site class D and (c) site class E under original 1995 Kobe earthquake
site class E under original 1995 Kobe earthquake
Figure 4.13 Comparison between shear stress strain record at 15 m depth between SDHD soil model in FLAC 3D and NKH soil model for (a) site class C, (b) site class D and (c) site class E under original 1960 El Centro earthquake
soil model in FLAC 3D and NKH soil model for (a) site class C, (b) site class D and (c) site class E under original 1960 El Centro earthquake
site class E under original 1960 El Centro earthquake
Figure 4.14 Comparison between shear stress strain record at 15 m depth between SDHD soil model in FLAC 3D and NKH soil model for (a) site class C, (b) site class D and (c) site class E under original 1979 Imperial Valley earthquake
soil model in FLAC 3D and NKH soil model for (a) site class C, (b) site class D and (c) site class E under original 1979 Imperial Valley earthquake
site class E under original 1979 Imperial Valley earthquake
Figure 4.15 Horizontal acceleration time history for (a) Bedrock Level for Original 1994
Northridge Earthquake, and Comparison between acceleration time histories at ground
surface of stiffness degradation with hysteresis damping and nonlinear kinematic
hardening soil models for (b) site class C, (c) site class D and (d) site class E under
Original 1994 Northridge earthquake 120
Figure 4.16 Horizontal acceleration time history for (a) Bedrock Level for Original 1995
Kobe Earthquake, and Comparison between acceleration time histories at ground surface
of stiffness degradation with hysteresis damping and nonlinear kinematic hardening soil
models for (b) site class C, (c) site class D and (d) site class E under Original 1995 Kobe
Earthquake121
Figure 4.17 Horizontal acceleration time history for (a) Bedrock Level for Original 1960
El Centro Earthquake, and Comparison between acceleration time histories at ground
surface of stiffness degradation with hysteresis damping and nonlinear kinematic
surface of stiffness degradation with hysteresis damping and nonlinear kinematic
surface of stiffness degradation with hysteresis damping and nonlinear kinematic hardening soil models for (b) site class C, (c) site class D and (d) site class E under
surface of stiffness degradation with hysteresis damping and nonlinear kinematic hardening soil models for (b) site class C, (c) site class D and (d) site class E under Original 1960 El Centro earthquake
surface of stiffness degradation with hysteresis damping and nonlinear kinematic hardening soil models for (b) site class C, (c) site class D and (d) site class E under Original 1960 El Centro earthquake
surface of stiffness degradation with hysteresis damping and nonlinear kinematic hardening soil models for (b) site class C, (c) site class D and (d) site class E under Original 1960 El Centro earthquake

Figure 4.19 Comparison of acceleration response spectra for the recorded ground motions on the soil surface of stiffness degradation with hysteresis damping and nonlinear kinematic hardening soil models for Site class C, D and E under (a) 1994 Northridge earthquake, (b)1995 Kobe earthquake, (c) 1940 El Centro earthquake, and (d) 1979 Imperial Valley earthquake......127 Figure 4.20 Comparison of acceleration response spectra for the three recorded ground motion levels on the soil surface of stiffness degradation with hysteresis damping and nonlinear kinematic hardening soil models for Site class C under (a) 1994 Northridge earthquake, (b)1995 Kobe earthquake, (c) 1940 El Centro earthquake, and (d) 1979 Imperial Valley earthquake......130 Figure 4.21 Comparison of acceleration response spectra for the three recorded ground motion levels on the soil surface of stiffness degradation with hysteresis damping and nonlinear kinematic hardening soil models for Site class D under (a) 1994 Northridge earthquake, (b)1995 Kobe earthquake, (c) 1940 El Centro earthquake, and (d) 1979 Imperial Valley earthquake......132 Figure 4.22 Comparison of acceleration response spectra for the three recorded ground motion levels on the soil surface of stiffness degradation with hysteresis damping and nonlinear kinematic hardening soil models for Site class E under (a) 1994 Northridge earthquake, (b)1995 Kobe earthquake, (c) 1940 El Centro earthquake, and (d) 1979 Figure 5.1 The LNG tank adopted in this study (a) LNG tank configuration including the superstructure and foundation details; (b) the plan view of the arrangement 289 piles supporting the LNG tank and (c) end bearing pile details......144 Figure 5.2 Soil profile scenarios used in the study (a) Scenario I (benchmark case - nonliquefied soil); (b) Scenario II with 5.0 m deep liquefied soil; (c) Scenario III with 10.0 m deep liquefied soil and (d) Scenario IV with 15.0 deep liquefied soil......145 Figure 5.3 The adopted finite element model used in this study for homogenous clay soil Figure 5.4 Concrete damage plasticity models used in this study (a) modified tension stiffening model and (b) uniaxial compressive stress- strain curve for concrete. 151 Figure 5.5 Calibration of the CDP model parameters used in this study......152 Figure 5.6 Moment-curvature response of the concrete reinforced pile section adopted in this study with the pile cross section details......155

Figure 5.8 The relation between the initial stiffness, tangent modulus and initial kinematic
hardening modulus of the steel
Figure 5.9 Soil nonlinear kinematic model (a) One-dimensional illustration of the
hardening in the nonlinear kinematic model; (b) the generalised stresses for multiaxial
loading in three-dimensional illustration of the hardening in the nonlinear kinematic
model
Figure 5.10 Implemented fitting curve for cohesive soil
Figure 5.11 Comparison of cyclic stress-strain predictions adopting the calibrated
kinematic hardening model and corresponding experimental data for clayey soils (a) clay
soil layer 1 (from 0.0 m to 15.0 m depth) and (b) clay soil layer 2 (from 15.0 m to 30.0 m
depth)168
Figure 5.12 The target acceleration response spectra and the original with the scaled
acceleration response spectrum for the applied earthquake
Figure 5.13 Earthquake records scaled and used from: (a) 1999 Chi-Chi earthquake; (b)
1968 Hachinohe earthquake
Figure 5.14 Fixed based LNG tank free vibration mode shapes for the Inner and outer
tanks; (a) Impulsive (b) convective modes for the proposed mechanical model used in this
study, and (c) the outer tank first mode shape177
Figure 5.15 The deformation value (U) of the fundamental vibration mode shape for LNG
tank with different soil deposit condition: (a) LNG tank on end-bearing piled foundation
with non-liquefied soil deposit, (b) LNG tank on end-bearing piled foundation with 5.0
m liquefied soil deposit, and (c) LNG tank on end-bearing piled foundation with 10.0 m
liquefied soil deposit, (d) LNG tank on end-bearing piled foundation with 15.0 m
liquefied soil deposit
Figure 5.16 Response spectrum derived from the motion of foundation slab with 5%
damping ratio under (a) 1999 Chi-Chi Earthquake, and (b) 1968 Hachinohe Earthquake.
Figure 5.17 Horizontal acceleration record of outer tank roof for different foundation
options subjected to (a) 1999 Chi-Chi Earthquake, and (b) 1968 Hachinohe Earthquake.
Figure 5.18 Maximum horizontal acceleration profile along outer tank wall for different
foundation options subjected to (a) 1999 Chi-Chi Earthquake, and (b) 1968 Hachinohe
Earthquake
Figure 5.19 Maximum horizontal acceleration profile along Inner tank wall for different

foundation options subjected to (a) 1999 Chi-Chi Earthquake, and (b) 1968 Hachinohe Figure 5.20 Horizontal displacement record of Inner tank top for different foundation options subjected to (a) 1999 Chi-Chi Earthquake, and (b) 1968 Hachinohe Earthquake. Figure 5.21 Distribution of the hoop forces in the tank wall at $\theta = 0^\circ$: to (a) 1999 Chi-Chi Figure 5.22 Distribution of the axial forces in the inner tank wall at $\theta = 0^\circ$: to (a) 1999 Figure 5.23 Distribution of the shear forces in the inner tank wall at $\theta = 0^\circ$: to (a) 1999 Figure 5.24 Distribution of the Radial displacement in the inner tank wall at $\theta = 0^\circ$: to (a) Figure 5.25 The maximum von Mises stress on the inner 9% Ni steel tank wall and the location of the maximum stress on the stress- strain under (a) 1999 Chi-Chi Earthquake, Figure 5.26 The maximum von Mises stress on the inner 9% Ni steel tank wall and the corresponding plastic strain at the end of the earthquake of (a) 1999 Chi-Chi Earthquake, Figure 5.27 The maximum von Mises stress on outer concrete tank under the effect of 1999 Chi-Chi Earthquake for different soil deposit scenarios namely, (a) non-liquified soil deposit, (b) 5.0 m liquified soil depth, (c) 10.0 m liquified soil depth and (d) 15.0 m Figure 5.28 The maximum von Mises stress on outer concrete tank under the effect of 1968 Hachinohe Earthquake for different soil deposit scenarios namely, (a) non-liquified soil deposit, (b) 5.0 m liquified soil depth, (c) 10.0 m liquified soil depth and (d) 15.0 m Figure 5.29 Maximum lateral pile displacement for different soil deposit scenarios along the pile length subjected to (a) 1999 Chi-Chi Earthquake, (b) 1968 Hachinohe earthquake. Figure 5.30 Maximum shear force profile imposed on the pile for different soil deposit scenarios along the pile length subjected to (a) 1999 Chi-Chi Earthquake, (b) 1968 Figure 5.31 Maximum bending profile imposed on the pile for different soil deposit

scenarios along the pile length subjected to (a) 1999 Chi-Chi Earthquake, (b) 1968
Hachinohe earthquake
Figure 6.1 The considered tank models, (a) tall Tank A with $H/D=0.95$, (b) medium Tank
B with $H/D=0.63$, and (c) broad Tank C with $H/D=0.40$
Figure 6.2 Impulsive pressure along tank wall
Figure 6.3 Mass-spring modelling technique used in this study to capture impulsive fluid
- structure interaction, the normal masses (a) along the cylinder height, (b) along tank
circumference
Figure 6.4 Finite element models for different tanks adopted in this study (a) Broad tank
C, (b) Medium tank B, and (c) Tall tank A
Figure 6.5 Adopted earthquake time histories of the ground accelerations, (a) 1994
Northridge earthquake and (b) 1995 Kobe earthquake
Figure 6.6 Fundamental natural period of the impulsive mode for (a) Tall tank A, (b)
Medium tank B, and (c) Broad tank C
Figure 6.7 Acceleration response spectra for the selected earthquakes
Figure 6.8 The maximum base shear force obtained from the analytical solution and 3D
FEA, (a) 1994 Northridge Earthquake and (b) 1995 Kobe Earthquake
Figure 6.9 The maximum overturning moment obtained from the analytical solution and
3D FEA, (a) 1994 Northridge Earthquake and (b) 1995 Kobe Earthquake
Figure 6.10 Illustration of different force components in the LNG tank wall
Figure 6.11 Distribution of hoop forces in the tank wall at $\theta = 0^\circ$, (a) 1994 Northridge
Earthquake and (b) 1995 Kobe earthquake
Figure 6.12 Distribution of the axial forces in the tank wall at $\theta = 0^\circ$, (a) 1994 Northridge
Earthquake, (b) 1995 Kobe earthquake
Figure 6.13 Distribution of the radial displacement along the normalized liquid height
level of the three aspect ratio tank walls at $\theta = 0^{\circ}$ for (a) 1994 Northridge Earthquake, (b)
1995 Kobe earthquake
Figure 6.14 Damage extend to the LNG tanks, (a) Broad tank C (no damage), (b) Medium
tank B (secondary elastic buckling mode), and (c) Tall tank A (elephant's foot buckling).
Figure 6.15 Formation of the elephant's foot buckling in tall Tank A ($H/D = 0.95$): (a)
distribution of the von Mises stresses exceeding the yield stress limit near the tank base
(i.e. Node A), (b) von Mises stresses (Pa) at Node A under 1994 Northridge earthquake

and (c) von Mises stresses at Node A under 1995 Kobe earthquake......226

Figure 6.16 Schematic view of the adopted reinforced concrete outer LNG tank 228
Figure 6.17 Three-dimensional numerical model of the concrete LNG tank
Figure 6.18 Uniaxial stress-strain curves of concrete and the damage variables with the
strain for concrete <i>C40</i> : (a) compression; (b) tension232
Figure 6.19 Ground supported tank support connections: (a) fixed base condition; (b)
hinged base condition based on ACI 350.3-06 (2008)
Figure 6.20: Adopted time histories of the ground accelerations for: (a) 1994 Northridge
Earthquake and; (b) 1995 Kobe Earthquake234
Figure 6.21 The fundamental mode shape: (a) for the fixed base tank; (b) for the hinged
base condition tank
Figure 6.22 Acceleration response spectrum for the selected earthquakes
Figure 6.23 Section A-A of the tank, (a) side view, (b) plan view
Figure 6.24 Distribution of hoop force along the height of the tanks wall along Section
A-A when the maximum hoop force was observed for (a) 1994 Northridge earthquake
and (b) 1995 Kobe earthquake
Figure 6.25 Distribution of the bending moments along the height of the tanks wall along
Section A-A when the maximum bending moment was observed for: (a) 1994 Northridge
and (b) 1995 Kobe
Figure 6.26 Distribution of radial displacements along the height of the tank wall along
Section A-A when the radial displacement was observed for: (a) 1994 Northridge and (b)
1995 Kobe
Figure 6.27 Strain time histories for the fixed base and hinged base tanks under at Element
A (wall-roof joint); (a) 1994 Northridge, (b) 1995 Kobe
Figure 6.28 Maps of the damage and stiffness degradation of the hinged and fixed base
tanks under: (a) 1994 Northridge, (b) 1995 Kobe

LIST OF TABLES

Table 2.1 Comparison between the LNG tanks' different integration systems (after Lee
et al. 2017)
Table 2.2 Malhotra et al. (2000) mechanical model parameters for different tank aspect
ratios
Table 3.1 Adopted parameters for concrete grade $C40$ for CDP model used in this chapter.
Table 3.2 Soil properties adopted in this chapter
Table 3.3 Adopted equivalent stiffness and damping values for the soil for different
earthquakes and foundation options
Table 3.4 details of the finite element types used in this chapter
Table 3.5 Evaluation the fundamental periods of vibration obtained from numerical model
and analytical solution
Table 3.6 Alterations of natural periods of LNG tank with different foundation types. 64
Table 4.1 Adopted soil characteristics of different site classes. 92
Table 4.2 Adopted earthquake records in this chapter. 97
Table 4.3 Soil properties and the calibrated nonlinear kinematic hardening model
parameters
Table 5.1 Parameters used in this study to simulate the C45 concrete adopting CDP
model
Table 5.2 Reinforcing bar parameters adopted in this study to simulate steel Grade 60.
Table 5.3 Linear kinematic hardening model parameters for inner 9% Ni steel tank used
in this study159
Table 5.4 Clay soil properties and calibrated nonlinear kinematic hardening model
parameters167
Table 5.5 Post-liquefaction residual properties for sand. 170
Table 5.6 The fundamental periods of vibration obtained from numerical model and
analytical solution
Table 5.7 Differences of natural frequencies of LNG tank with diverse sub soil conditions.
Table 6.1 Comparison between fundamental periods of vibration (T_i) for filled tank

obtained from FEA and API-650 (2007).	218
Table 6.2 Adopted parameters for simulation of concrete in this study	232
Table 6.3 Fundamental vibration period of the fixed base and hinged base tank condi	tions.
	235
Table 6.4 Structural response of the tanks with the fixed and hinged base condition	s.237

LIST OF NOTATIONS

$A_g(t)$	Horizontal ground acceleration
A_{loop}	Area of one hysteresis loop
A ^{ff}	Area of influence of free-field elements
C_b	Outward wave speed at the lateral boundaries of a numerical model
C_{con}	Sloshing period coefficient
$C_h(T)$	Spectral shape factor
C_{imp}	Acceleration coefficient
Ck	Initial kinematic hardening modulus
C_l	Coefficient of impulsive period
ср	Dilatational (pressure) speed
Cs	Kinematic hardening modulus for steel
C _{sv}	Shear wave speeds
Си	Undrained shear strength of soil
D	Tank diameter
D_K	Building damping ratio
dt	Tensile damage parameter
dc	Compressive damage parameter
d_s	damping of the infinite boundary in the normal directions
d_p	damping of the infinite boundary in the shear directions
E_0	Intial elastic stiffness of concrete
E _c	Elastic modulus of the concreter
E_s	Elastic modulus of the 9% Ni steel
E_{soil}	Modulus of elasticity of soil
E_r	Elastic modulus of the rebar
F	Yield surface function
$F_{boundary}$	Resultant normal force acting on an interface element
$f(\sigma - \alpha)$	Equivelant Mises stress
f_{bo}	Biaxial compressive yield strengths
f_{co}	Uniaxial compressive yield strengths

F^{ff}	Force generated in the free-field element
f'_{c}	Concrete compressive strength
$f_{\mathcal{Y}}$	Tensile yield stress
f_{ult}	Ultimate tensile strength
G_{inf}	Infinite element shear modulus of soil
G_{max}	Maximum shear modulus of soil
G_{sec}	Secant shear modulus of soil
G_{tan}	Tangent shear modulus of soil
h	Overclosure or gap level
Н	Height of tank
H_{con}	Convective mass height
H_{imp}	Implusive mass height
H_L	Fluid design level
I_{1}, I_{1}	Modified Bessel functions of order 1 and its derivative
I_g	Reduction factor modulus
K _c	Tensile to the compressive meridian ratio
K _{con}	Convective mode spring stifness
K_h	Horizontal stiffness for SFSI system
K_r	Rotational stiffness for SFSI system
M_{con}	Covective mass
M_{imp}	Implusive mass
M_{fod}	Foundation mass
M_{total}	Liquid mass
$(N_1)_{60cs-Sr}$	Equivalent SPT value
N _{max}	Cofficcient for fualt distance
Р	Contact pressure
PGA	Peak ground acceleration
p_{con}	Convective pressure
p_i and p_{imp}	Impulsive pressure
$ar{p}$	Hydrostatic stress
\overline{q}	Von Mises effective stress
R	Return period factor

<i>R</i> ²	Coefficient of determination
R _{tank}	Tank radiuos
r	Cylindrical coordinates of tank
S	Deviatoric stress tensor
Sr	Residual shear strength
t	Time
Т	Structure period
T_{imp}	Impulsive natural period
T^*_{imp}	Impulsive natural period with SFSI effect
T _{con}	Convective natural period
t_u	Equivalent uniform thickness of the tank wall
ν	Poisson's Ratio
V_s	Shear wave velocity
Ζ	Hazard factor
Ζ	Cylindrical coordinates of tank
(•)	Macaulay bracket
α	Back stress
$lpha^{dev}$	Devatoric part of back stress tensor
α^{s}	Back stress at large plastic strains
$\alpha_{damping}$	Rayleigh coefficients viscous damping
$\beta_{damping}$	Rayleigh coefficients viscous damping
$\dot{ar{arepsilon}}^{pl}$	Equivalent plastic strain rate
$ar{arepsilon}_{c}^{in}$	Inelastic crushing strain
$ar{arepsilon}_{c}^{pl}$	Compressive plastic strain
$ar{arepsilon}_t^{cr}$	Cracking strain
$ar{arepsilon}_t^{pl}$	Tensile plastic strain
$\dot{arepsilon}^{pl}$	Plastic flow rate
$arepsilon_t^{pl}$	Tensile plastic strain
Ec	Compressive strain
\mathcal{E}_{eng}	Nominal strain values
\mathcal{E}_t	Tensile strain

€ _{true}	True (logarithmic) strain
ϵ	Eccentricity of plastic potential surface
γ_k	Hardening modulus decreasing rate
γref	Refernce shear strain
γ	Cyclic shear strain
γ1	Non-diamntional factor
ho	Fluid density
$ ho_{soil}$	Soil density
$ ho_c$	Concrete density
$ ho_r$	Steel rebar density
$ ho_{steel}$	Ni steel desity
γ_k	Hardening modulus decreasing rate
δ	Elongation
ξ	Non-dimensional coordinates
$\xi_{damping}$	Soil damping
ξ_{max}	Maximum damping ratio
ς	Non-dimensional coordinates
$ar{\sigma}_{max}$	Maximum principal effective stress
$ar{\sigma}_c$	Effective compressive stress
$ar{\sigma}_t$	Effective tension stress
σ_c	Compression stress
σ_{eng}	Nominal stress-strain values
σ_t	Tensile stress
σ_{t0}	Tensile stress at failure
σ_{true}	Cauchy stress
σ_{ult}	Ultimate stress
$\dot{\sigma_{vc}}$	Effective vertical stress
σ_y	Yield stress
$\sigma _0$	Initial yield stress
θ	Cylindrical coordinates of tank
τ	The shear stress
$ au_{critical}$	Critical contact shear stress

$ au_{rev}$ Shear stress at the reversal point	int
--	-----

- ψ The dilation angle
- μ Friction coefficient

ABSTRACT

During the past decades, demand for Liquefied Natural Gas (LNG) tanks has increased. Indeed, the LNG is cleaner and cheaper fuel for power generation compared to oil and coal. The LNG industry is growing rapidly, and many LNG tanks are constructed in seismically active coastal regions; hence, potential damage or leakage due to cracking triggered by an earthquake can result in destructive environmental and safety issues. These LNG tanks are usually built near the seashore to reduce the cost and increase the flexibility of LNG transportation and storage. Often the foundation soil in coastal regions is not capable of bearing the load of such heavy structures. Thus usually, deep foundations are used to support these tanks. Indeed, pile foundations are commonly used for these large tanks to transfer the load to competent ground layers and control the settlement. Generally, assessing the seismic resilience of these critical infrastructures is essential to ensure the availability and security of services during and after large earthquakes. Considering the complexity of the seismic analysis and design of such structures due to the Fluid-Structure Interaction (FSI) and Soil–Foundation-Structure Interaction (SFSI) effects, advanced modelling and analysis are required.

This thesis conducts the three-dimensional fully nonlinear coupled SFSI and FSI numerical simulations for LNG tanks using the direct method. The nonlinear time history analysis and free vibration analysis are conducted to assess the seismic safety and dynamic characteristics of LNG tanks under different pile foundation types and liquefiable soil deposits. The fluid-structure interaction effects are captured using a mechanical model, which captures both convective and impulsive hydrodynamic components. Nonlinear kinematic hardening soil model adopted in this study is also

verified and implemented to capture the hysteretic damping of the soil and the variation of the shear modulus with the cyclic shear strain developed in the soil. Infinite boundary elements are assigned to the numerical model, and proper interface elements, capable of modelling sliding and separation between the foundation and soil elements, are considered. This thesis conducts the numerical analyses with the help of the High-Performance Computer (HPC) at the University of Technology Sydney (UTS), taking a few weeks to a month for a single analysis to run due to the complexity of the system.

To assess the effect of different pile foundation options on the seismic response of LNG tanks, different pile foundation types, including an end-bearing pile foundation and a pile-raft foundation with two different frictional pile lengths, are investigated. The results show the importance of the SFSI effect in evaluating the seismic response of LNG tanks built on pile foundations. Furthermore, the significant effect of the deep foundation system choice on the dynamic response of the LNG tanks is highlighted. Indeed, the seismic analysis and the design of LNG tanks in practice need to carefully consider the SFSI effects implementing direct method of analysis to ensure both kinematic and inertial interactions are captured accurately when analysis LNG tanks on pile foundations. Moreover, the numerical results show that presence of liquified soil layer alter the dynamic properties of LNG tank by lengthen the natural period and increase the damping of the LNG tank, soil, and foundation system. In addition, the presence of liquified soil layer significantly reduces the impulsive forces applied on LNG tank wall, while no significant change is observed for the convective forces. Hence, presence of the liquefied soil layer can absorb the seismic energy and reduce the seismic forces transferred to the superstructure. The predictions show that with increasing the thickness of the liquefied soil layer, the kinematic interaction increases, directing more seismic forces to the piles supporting the LNG tank, which can potentially result in yielding and failure of the piles.