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ABSTRACT 

 During the past decades, demand for Liquefied Natural Gas (LNG) tanks has 

increased. Indeed, the LNG is cleaner and cheaper fuel for power generation compared to 

oil and coal. The LNG industry is growing rapidly, and many LNG tanks are constructed 

in seismically active coastal regions; hence, potential damage or leakage due to cracking 

triggered by an earthquake can result in destructive environmental and safety issues. 

These LNG tanks are usually built near the seashore to reduce the cost and increase the 

flexibility of LNG transportation and storage. Often the foundation soil in coastal regions 

is not capable of bearing the load of such heavy structures. Thus usually, deep foundations 

are used to support these tanks. Indeed, pile foundations are commonly used for these 

large tanks to transfer the load to competent ground layers and control the settlement. 

Generally, assessing the seismic resilience of these critical infrastructures is essential to 

ensure the availability and security of services during and after large earthquakes. 

Considering the complexity of the seismic analysis and design of such structures due to 

the Fluid-Structure Interaction (FSI) and Soil–Foundation-Structure Interaction (SFSI) 

effects, advanced modelling and analysis are required.  

 This thesis conducts the three-dimensional fully nonlinear coupled SFSI and FSI 

numerical simulations for LNG tanks using the direct method. The nonlinear time history 

analysis and free vibration analysis are conducted to assess the seismic safety and 

dynamic characteristics of LNG tanks under different pile foundation types and 

liquefiable soil deposits. The fluid-structure interaction effects are captured using a 

mechanical model, which captures both convective and impulsive hydrodynamic 

components. Nonlinear kinematic hardening soil model adopted in this study is also 
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verified and implemented to capture the hysteretic damping of the soil and the variation 

of the shear modulus with the cyclic shear strain developed in the soil. Infinite boundary 

elements are assigned to the numerical model, and proper interface elements, capable of 

modelling sliding and separation between the foundation and soil elements, are 

considered. This thesis conducts the numerical analyses with the help of the High-

Performance Computer (HPC) at the University of Technology Sydney (UTS), taking a 

few weeks to a month for a single analysis to run due to the complexity of the system. 

 To assess the effect of different pile foundation options on the seismic response of 

LNG tanks, different pile foundation types, including an end-bearing pile foundation and 

a pile-raft foundation with two different frictional pile lengths, are investigated. The 

results show the importance of the SFSI effect in evaluating the seismic response of LNG 

tanks built on pile foundations. Furthermore, the significant effect of the deep foundation 

system choice on the dynamic response of the LNG tanks is highlighted. Indeed, the 

seismic analysis and the design of LNG tanks in practice need to carefully consider the 

SFSI effects implementing direct method of analysis to ensure both kinematic and inertial 

interactions are captured accurately when analysis LNG tanks on pile foundations. 

Moreover, the numerical results show that presence of liquified soil layer alter the 

dynamic properties of LNG tank by lengthen the natural period and increase the damping 

of the LNG tank, soil, and foundation system. In addition, the presence of liquified soil 

layer significantly reduces the impulsive forces applied on LNG tank wall, while no 

significant change is observed for the convective forces. Hence, presence of the liquefied 

soil layer can absorb the seismic energy and reduce the seismic forces transferred to the 

superstructure. The predictions show that with increasing the thickness of the liquefied 

soil layer, the kinematic interaction increases, directing more seismic forces to the piles 

supporting the LNG tank, which can potentially result in yielding and failure of the piles. 
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