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Abstract  This paper based on the winding function 

algorithm presents an improved equivalent circuit to analyze 

single linear induction motors (SLIMs) applied in the linear 

metro. The circuit deduced from the air-gap magnetic flux 

density equations can analyze steady and transient 

performances considering end effects, half filled slots, saturated 

iron and skin effect. Firstly several stable cases like constant 

thrust/power region, constant current constant frequency or 

variable frequencies, constant voltage constant frequency or 

variable frequencies are presented in detail. Then, maximal 

thrust at a given speed is optimized by modifying the optimal 

slip frequency. Finally, transient characteristics of SLIM under 

constant current constant frequency are investigated. The 

results indicate that winding function method is one effective 

way to study SLIM, especially its end effects. It can be used in 

the electromagnetic design and performance investigation for 

SLIM combining relative control schemes. 
 

Index TermsSingle-sided linear induction machine 

(SLIM); longitudinal end effect; transversal edge effect; 

winding function method; linear metro; performance analysis; 

equivalent circuit. 

I.  INTRODUCTION  

HE linear induction motors (LIMs) have been used 

for many industrial applications, for shuttle and 

medium speed transportation drive systems, such as 

propulsion system in the high speed surface transport (HSST) 

developed by Japan, and the linear metro exploited by 

Bombardier company in Canada [1-5]. Some advantages of 

using an LIM for vehicle propulsion are direct thrust 

achieved without reliance on friction between wheel and rail, 

great hill-climbing ability, and reduced cross-sectional area 

without large volume of gear boxes. The simple diagram of 

linear metro propelled by LIM is shown in Fig. 1. 

Comparing to rotary induction motor (RIM) drive system, 

the primary from stator is placed on the vehicle, while the 

secondary from rotor is fixed in the rail track [6-10]. 

From Fig. 1, the primary of single-sided LIM (SLIM) is 

nearly the same as that of RIM. When balanced three-phase 

currents flow in the windings, a spatially sinusoidal 

magnetomotive force is produced. For the SLIM is 

conceptually from cut-open RIM, a problem of arranging 

the conductors near both terminals in primary will occur 

when a double-layer winding is adopted. This phenomenon 

is half-filled slot that could reduce the average flux linkage 

in the air gap. The SLIM secondary usually consists of a 

sheet rail with laminated back iron that has great robustness 
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suitable to the transportation. By plenty of investigation, the 

greatest thrust could be obtained with an aluminum-capped 

rail together with high power factor and efficiency [4], 

which is the structure discussed in this paper. 

 

Fig. 1.  Simple diagram of linear metro driven by SLIM. 

Some papers are available on the analysis of SLIM 

performance. An equivalent circuit is one effective method. 

Ref. [1] has proposed a T-model equivalent circuit and 

corresponding correction coefficients for end effects, which 

could be applied in wide range. However, it is not suitable to 

control and dynamic analysis for the whole derivation is 

based on the steady-state equations. Refs. [2] and [11] have 

gained one function according to secondary eddy current 

average and conversion energy balance, which is affected by 

speed and structure parameters. This method can be applied 

easily in SLIM control schemes. However, this algorithm is 

very coarse, whose error would increase as the velocity goes 

up. Ref. [3] can theoretically simulate stable and dynamic 

performance by space harmonic method, but it requires 

more substantial computing time to gain the useful results. 

The precision of final results is closely relative with the 

initial evaluation. If some deviations from actual values exit 

at the beginning of solution, great error might occur in the 

end. Some experts have developed coupled-circuit methods 

to investigate the SLIM steady-state and dynamic (transient) 

performance, such as Elliott, Ooi, North and Lipo. In all the 

methods, it is supposed that end effects do not allow the use 

of modeling similar to that for an RIM. As we know, the 

RIM behavior needs to be computed only over one pole 

pitch, and then the whole performance over the remaining 

pole pitches could be obtained only by using the property of 

symmetry. However, symmetry arguments are not suitable 

to SLIM, because some severe electromagnetic conditions 

could change both at entry and exit ends.  

This paper sets out an improved model, which can be 

used conveniently to analyze steady and transient 

performances of SLIM. The steady performance includes all 

kinds of behaviors in steady voltage or current excitations, 

and transient performance includes electromagnetic 
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transitional behavior. Winding function method is also used 

to calculate circuit parameters, such as mutual inductance 

and secondary resistance. 

II. EQUIVALENT CIRCUIT MODEL OF SLIM 

In order to simplify the whole derivation, we firstly 

suppose the following assumptions [1, 8, 10]: 

(a) The stator iron has infinite permeability.  

(b) All magnetic variables are sinusoidal time functions.  

(c) Winding space harmonics are negligible.  

(d)The primary and secondary currents flow in 

infinitesimally thin sheets. 

(e) Three-phase currents in the primary are balanced.  

On the base of air-gap flux density equation, the paper 

divides secondary winding function of SLIM into 

fundamental component and end effect component. To begin 

with, it deduces the primary two-phase stationary axis 

according to the primary winding distribution. The 

secondary fundamental one and end effect one are gained 

separately from stable state and dynamic state of gap 

magnetic flux equations. Moreover, it calculates all 

inductances, goodness factor, secondary resistance and 

speed voltage coefficients, then achieves voltage and flux 

equations. On the energy conversion relationship between 

primary and secondary, it gets the expressions of thrust, 

power factor and efficiency. In general, the whole derivation 

progress is a little complex, more details are shown in [4, 8]. 

A summary of this model is presented below. 

From Ampere’s law, Faraday’s law and Maxwell’s law, 

the air-gap flux density equation of SLIM can be expressed 

by [4]  

2

( / )

0 2 0 0 12
e

y y j t x

e y

b b
v j b j J e

x x

  
   




 

   
 

  (1) 

where σ is the secondary conductivity, µ0 the air 
permeability, v2 the primary operating speed, ωe the angular 
frequency of primary power supply, τ the primary pole pitch, 
J1 the equivalent primary sheet current density, and by the 
flux density in the y-axis direction. The solution of by(x, t) is  
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where by consists of three parts, B0, B1 and B2. B0 is the 
normal traveling wave which travels forward like the 
fundamental flux density in the RIM. B1 and B2, determined 
from boundary conditions, are the entrance and exit 
end-effect waves, respectively. α1 is the penetration depth of 
entry-end-effect wave, α2 the penetration depth of 
exit-end-effect wave, and τe the half wavelength of end 
effect wave, which are functions of speed and motor 
structural parameters [8]. 

On the base of air-gap flux density equation, this paper 

divides SLIM secondary winding function into fundamental 

and end effect components. Firstly it deduces the primary 

two-phase stationary axis model according to the primary 

winding distribution. Then the secondary fundamental and 

end effect parts are gained separately from the steady state 

and dynamic state of air gap magnetic flux equations. 

Moreover, it calculates all inductances, goodness factor, 

secondary resistance and speed voltage coefficients. On the 

energy conversion relationship between primary and 

secondary, the mathematic expressions of thrust, power 

factor and efficiency are derived. Generally, the whole 

derivation progress is complex, and more details can be 

found in [4, 8]. A brief summary is made below. 

The primary stationary three-axis winding functions are 
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where Ns is the fundamental part per pole winding series. 

In order to gain the stationary two-axis stator winding 
function expressions, Nαs and Nβs, from the stationary 
three-axis winding distributions, the following rules 
according to the flux linkage balance theory should be 
obeyed  
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where iαs and iβs can be achieved from ias , ibs and ics by using 
static 3/2 coordination transformation. Hence, the primary 
stationary two-axis winding functions are expressed by 

3
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The secondary winding functions including both the 
fundamental and end effect parts are abstract, which can be 
gained from the electromagnetic relationship between 
primary and secondary [1, 8]. The secondary fundamental 

winding function 
rsN


 is derived by  
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where rsB
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and ge are the secondary fundamental 

complex flux density, secondary fundamental complex 
current and equivalent electromagnetic air gap width 
respectively. From the air gap flux density steady equation, 
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where s is the slip, G the goodness factor, θs the angle 
between the primary and secondary fundamental currents, 
and Is the RMS value of primary phase current. From the 

T-model equivalent circuit of one dimension, rsI


can be 

drawn by 
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where Xm and Rr are the mutual inductance and secondary 
resistance. Hence, from (6) to (8), the secondary 



fundamental winding functions 
rsN


 are indicated by 

3
( ) sin( / )

4

3
( ) cos( / )

4

rs s

rs s

N x N x

N x N x





 

 





  


            (9) 

Similar with the solution of secondary fundamental part, 

the secondary end effect part winding function 
reN


 can be 

deduced by 
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where 
reB


and
reI


are the secondary end effect complex flux 

density and secondary end effect complex current, 
respectively. From the air gap flux density dynamic equation, 

reB
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can be derived by 
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From [5], 
reI


is  
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where K is a function of the SLIM velocity and primary 
length, etc. From (10) to (12), the secondary end effect 

winding function reN


 is shown as 
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where N2 and θe are related with the slip, goodness factor 

and SLIM structural parameters. 

According to aforementioned three groups of winding 
function equations, their profiles are indicated in Fig. 2 
based on a 6-pole SLIM. It is interesting to see that the 
primary two-axis parts are the same as the secondary 
fundamental ones, which are sinusoidal waves within the 
primary length. For the influence of primary half-filled slots, 
the β-axis wave can be regarded as lagging the α-axis one by 
π/2. The secondary end effect parts attenuate gradually from 
entrance side to exit side for the longitudinal end effect 
influence.  

The SLIM voltage equation in matrix form is given by 
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where several vectors are expressed by the following.  
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where L is an inductance matrix, in which the element 
between any two winding functions mentioned in (5), (9), 
(13) may be calculated by  
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where N1(x) and N2(x) are two arbitrary winding functions, 
lδ is the primary stack width, and p is number of primary 
poles. There are 36 inductances to be calculated, where 18 
of them are independent [4].  

 

(a) 

 

(b) 

Fig. 2.  Profiles of different winding functions: (a) primary and secondary 

fundamental parts, (b) secondary end effect parts. 

According to the energy conversion balance theorem 
between primary and secondary, the thrust is  
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where matrix i1 including the end effect part is expressed by 

1[ ] [ , , , ,( ),( )]T

s s r r s r s ri i i i i i i i i         
  

(17) 

and matrix G is the speed voltage coefficient matrix, which 
may be calculated in the similar way of inductance matrix L.  

The input active power is 

3
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The input reactive power is 
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The output active power is 

2( )out e mp F F v           (20) 



where Fm is the total mechanical resistant force involving 
wind and friction forces. 

The power factor is 

2 2cos in in inp p q  
   

 (21) 

The efficiency is 

           out inp p 
     

(22) 

III. SIMULATION AND EXPERIMENTATION 

The above derivations describe transient state of SLIM 
in differential form of linkage. The equations could be 
solved by numerical step by step method. In most dynamic 
cases, the state variables include secondary linkages and 
primary currents. The equations can also be readily used to 
steady-state analysis, which can be calculated by simply 
setting d/dt to jω and solving (14). This paper has studied 
steady and dynamic states thrust curves of high power SLIM 
under current control or voltage control. The main 
parameters are shown in table I.  

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

  Velocity v
2
(Km/h)

  
V

ar
ia

b
le

s

 

 

Simulation of Thrust (1:1)(KN)

Experiment of Thrust(1:1) (KN)

Simulation of Efficiency(10:1)

Experiment of Efficiency(10:1)

Simulation of Stator current(1:10)(A)

Experiment of Stator current(1:10)(A)

 
Fig. 3.  Primary phase current, thrust, and efficiency variable curves. 

Fig. 3 has analyzed the SLIM steady-state drive 
performance in the overall working region and compared 
simulations with measurements including the phase current, 
thrust and efficiency curves [9]. 40 km/h is chosen as the 
base speed according the practical requirement. Simulation 
evaluations on the phase current, thrust, and efficiency are 
made according to the steady equations of the winding 
function equations. The experimental setup and 
measurement values are referred in [3]. Simulated phase 
current is close to its measurement, which is kept constant 
below base speed and decreases linearly beyond that for its 
limitable maximal phase voltage. The thrust below the base 
speed decreases a little as the speed goes up for the end 
effect although the phase current is constant. Beyond the 
base point, thrust decreases linearly for the reducing phase 
current. Error in the base speed is obvious because the 
control manner and slip frequency have been changed 
greatly. The efficiency calculation and measurement agree 
with each other approximately, which meet engineering 
application requirement. 

Fig. 4 is the thrust curves calculated by stable state 
equations whose primary current is kept constant, 280 A. 
Dash lines indicate thrusts without considering end effects, 
but the continuous lines consider end effects. Due to larger 
air gap and end effects, the thrust should decrease as 

velocity goes up [5]. Fig. 5 is the thrust curves calculated by 
stable state equations whose primary phase voltage is kept 
constant, 635 V. The trend of thrust is similar to that of Fig. 
4. For the quick attenuation of the phase current, the thrust 
in constant voltage decreases more quickly for the 
increasing total impedance than that of constant current. 

 
Fig. 4.  Thrust curves with constant current variable 

frequency, calculated by stable state 

 

 
Fig. 5. Thrust curves with constant voltage variablefrequency, calculated by 

stable state. 

 

Maximal thrust in all supply frequencies is desirable if 
the normal force is within the acceptable limitation. In the 
traditional design method, slip frequency is simply one 
constant below the base speed, linearly increases above the 
base one. Actually, maximal thrust at a given speed as a 
function of slip frequency can be optimized by iterative 
solution. The maximum thrust and relative slip frequency 
are shown in Fig. 6. 

TABLE I 

DIMENSIONS OF THE SLIM 

Pole pitch Pole pairs Primary length/width 

0.2808 (m) 4 2.476/0.3 (m) 

Secondary width Secondary sheet thickness Air gap 

0.36 (m) 7 (mm),Copper 9 (mm) 

Base frequency Thrust Primary phase voltage 

22.5 (Hz) 25 (KN) 635 (V) 

Line current Number of slots Secondary sheet width 

280 (A) 79 0.36 (m) 

Fig. 7 shows the constant current start-up process, 
including the velocity, thrust, secondary fundamental-, 
and eddy-current curves solved by transient equations. In 
the overall operation region, the motor has constant stator 
current of 280 A and constant primary frequency of 10 Hz. 
The secondary fundamental current, similar to that of 



RIM, decreases gradually as the speed rises, and equals 
zero at the synchronous point. However, the secondary 
end effect part ascends with its incremental speed, and 
reaches the maximum at the synchronous speed for the 
quick air gap flux linkage change resulted from the 
longitudinal end effect.  

 
(a) 

 
(b) 

Fig. 6. Traditional slip frequency and maximal torque algorithms: (a) 

Torque, (b) Slip frequency. 
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(d) 

Fig. 7.  Constant current start-up performance analysis: (a) velocity, (b) 
thrust, (c) secondary fundamental current (RMS), and (d) secondary eddy 
current. 

IV. CONCLUSIONS 

This paper has set out an improved equivalent circuit 
of SLIM based on winding function method. The end 
effects are automatically included in machine parameters. 
It can analyze steady and dynamic states of SLIM in a 
similar way to RIM. This circuit is a very useful way to 
study steady, dynamic and control schemes in SLIM. 
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