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Abstract. A meaningful understanding of clinical protocols and patient
pathways helps improve healthcare outcomes. Electronic health records
(EHR) reflect real-world treatment behaviours that are used to enhance
healthcare management but present challenges; protocols and pathways
are often loosely defined and with elements frequently not recorded in
EHRs, complicating the enhancement. To solve this challenge, healthcare
objectives associated with healthcare management activities can be indi-
rectly observed in EHRs as latent topics. Topic models, such as Latent
Dirichlet Allocation (LDA), are used to identify latent patterns in EHR
data. However, they do not examine the ordered nature of EHR sequences,
nor do they appraise individual events in isolation. Our novel approach,
the Categorical Sequence Encoder (CaSE) addresses these shortcomings.
The sequential nature of EHRs is captured by CaSE’s event-level rep-
resentations, revealing latent healthcare objectives. In synthetic EHR
sequences, CaSE outperforms LDA by up to 37% at identifying health-
care objectives. In the real-world MIMIC-III dataset, CaSE identifies
meaningful representations that could critically enhance protocol and
pathway development.

Keywords: topic modelling · healthcare management · healthcare rep-
resentation · sequence encoding · electronic health records

1 Introduction

A high-level understanding of healthcare patterns is critical for management
optimisation, protocol development, and resource allocation in healthcare. Health-
care patterns can provide a schematic for understanding healthcare processes,
protocols, and pathways. Understanding healthcare patterns is especially relevant
to population-scale healthcare management as exemplified in the studies from
the United States [16], Australia [1], and Canada [6].

? This work was supported by Cancer Australia in the form of a doctoral research
stipend (to A. Caruana).
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Population-scale healthcare management tools are typically developed manu-
ally using clinical best practice guidelines. This presents a challenge for developing
further management tools for other diseases, and maintaining them to reflect
new or updated guidelines. Furthermore, these tools may not accurately reflect
how patients are treated in practice, since treatment patterns typically vary with
demographic or geographic factors. The development of population-scale health-
care management tools should be informed by electronic health records (EHR)
since they reflect actual treatment behaviour across a healthcare system.

EHRs contain sequences of treatment events, such as diagnostic activities,
drug prescriptions, or surgical procedures. These events are typically recorded
using a categorical coding system. The International Classification of Diseases
(ICD) codes are one example of such a system, and its ninth version, ICD-9 [19],
contains over 13,000 unique codes. In contrast, the clinical protocols that are
used to systematise patient care typically describe a set of guidelines, procedures,
or objectives. Healthcare protocols vary by region and organisation, are not
standardised, and consequently are not recorded in EHRs.

This paper defines an abstraction layer, referred to as ‘healthcare objective’,
that encapsulates reasoning behind the formation of particular EHR sequences.
Healthcare objectives group and abstract individual events in EHR sequences
can facilitate analysis of EHR sequences for understanding healthcare patterns.
An EHR sequence may consist of many latent healthcare objectives. For example,
a ‘diagnostic’ objective may occur before a ‘treatment’ objective in the treatment
of a broken limb. Healthcare objectives also influence the specific events which
are recorded in an EHR sequence. In the same example, the specific ICD codes
that are recorded will depend on the location or severity of the injury. Treatment
codes may be associated with many distinct healthcare objectives, and a patient
may express many latent healthcare objectives during a treatment sequence.

Topic models can identify groups of elements within a sequence that likely
occurred due to a latent theme or state. In natural language processing (NLP),
topic models determine the topic of a document from the words which it contained.
Topic modelling has also been used for clinical pathway analysis in healthcare [10].
Topic models use collective, unordered, macro-scale views of sequences (e.g. entire
documents in NLP, or entire hospital visits in EHR). They do not appraise
individual elements in isolation, nor do they consider the sequential relation-
ship between elements. In this paper, we transcend topic modelling to consider
event-level associations of treatment events in pursuit of rich representations of
healthcare objectives.

The contributions of this paper are:

1. Characterisation of healthcare objectives, and prerequisites for identifying
them from EHR sequences.

2. Description of a synthetic data model for modelling of healthcare objectives.
3. Introduction of Categorical Sequence Encoding (CaSE), a generalised method-

ology for generating representations of categorical sequences.
4. Experimental validation of healthcare objective identification in synthetic

and authentic EHR data.
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This paper is organised as follows: Sec. 2 outlines healthcare objective charac-
teristics and discusses related work, Sec. 3 details our synthetic data model and
CaSE, Sec. 4 applies our methodology to synthetic and authentic EHR sequences,
and Sec. 5 summarises our work and discusses some limitations and future work.

2 Preliminaries and Related Work

2.1 Prerequisites for Representing Healthcare Objectives

EHR sequences contain rich, yet sometimes loosely defined concepts and informa-
tion. The relationship between healthcare events and their associated healthcare
objective is complex since healthcare events could be associated with multiple
healthcare objectives, resulting in out-of-order healthcare events and other re-
lational complexities. Furthermore, EHRs seldom accompany any structured
information concerning healthcare objectives, so it is not possible to learn this
structure in a supervised manner. Approaches that seek to represent EHR se-
quences to reveal healthcare objectives must: appraise individual events in EHR
sequences, consider the sequential nature of the data, and learn this relationship
in a unsupervised manner.

2.2 Topic Modelling in Sequence Data

Natural language is structurally similar to EHR. In each case, data is recorded
as a sequence of items (tokens in NLP, and events in EHR), each drawn from
a discrete sample space (dictionary in NLP, and ICD codes in EHR). Long
sequences may be delineated into smaller groups (paragraphs or documents in
NLP, and hospital visit or departmental segregation in EHR).

Topic models are statistical models employed to discover latent topics in
documents. Topic models assume that documents are about particular topics;
keywords appearing more or less frequently because of the topic being discussed
in the document. A significant method for topic modelling is Latent Dirichlet
Allocation (LDA) [2], and is part of a larger family of Bayesian approaches to
clustering grouped data [24]. A key limitation of LDA is the modelling of topics at
a document level. Relationships that occur on a more minute lexical scale (such
as a sentence or paragraph) are smaller than can be perceived by the document
analysis performed by LDA. Further, the positional relationships between words,
sentences, and paragraphs cannot be captured through the LDA.

Clinical pathway (CP) analysis is a healthcare research approach that sys-
temically aims to manage patient care. Bayesian approaches [10,11] have been
employed to analyse EHR in pursuit of CP analysis. Like in NLP, Bayesian
modelling of EHR does not directly consider the sequential nature of the data.
This limits their capacity to reveal the dependencies between events in a sequence.

Sequence-based learning methods, such as long short-term memory (LSTM) [8],
recurrent neural networks (RNN) [23], and most recently transformer net-
works [25], have shown success in several NLP tasks including topic mod-
elling [5, 9, 17]. Unlike Bayesian approaches, these approaches consider the se-
quential nature of the data and learn item-level relationships of sequences.
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Neural network-based approaches have been applied to learn representations
of healthcare events. Choi et al. [4] learn visit-level representations in healthcare.
In their approach, events in an entire sequence are aggregated into a binary
vector, ignoring the sequential information carried by the healthcare sequence.
Like topic models, this approach is not capable of determining patterns that occur
on a finer scale than a hospital visit. Siamese networks [3] are neural networks
that use the same parameters to encode pairs of inputs to the same feature space.
They been used for text similarity and sentence embedding in NLP [18,22].

We propose to observe healthcare objectives in EHR sequences. Using a
synthetic data model of healthcare objectives, we hypothesise that a sequence-
based approach will distinguish treatment events in EHR sequences that are
expressed by distinct healthcare objectives. This model can subsequently be
applied to authentic EHR sequences to observe similar structures and illustrate
other natural characteristics of healthcare objectives.

3 Methodology

3.1 Latent Treatment Groups in Electronic Health Records

Observed treatment events are categorical samples from the discrete set of all
possible treatment events E. Let x be a sample in an EHR dataset where X ∈ E
such that X ∼ P with P a discrete probability distribution over the set E.

In practice, P is not uniformly distributed and depends on the healthcare
objective being applied. Each healthcare objective will alter the distribution
of observed treatment events, resulting in a ‘treatment group’ g. Accounting
for g, the distribution of treatment events is given by P (X,G), and each event
is sampled based on which treatment group g is being expressed from a set
of possible treatment groups G where g ∈ G. Given many treatment event
observations, we seek to construct a representation P̂ that approximates P . The
goal of this methodology is to identify areas of high local density in P̂ to infer
the existence latent treatment groups G ∈ G.

Synthetic Electronic Health Records We implement a synthetic data model
defining a set of possible treatments E, a set of treatment groups G, and yields
observations x drawn from a discrete probability distribution P (X,G) where
X ∈ E and G ∈ G. The distribution of P for a particular treatment group
g is P (X | G=g) ∼ Zipf(βg) with βg indicating the parametrisation of the
distribution. Additionally, each g corresponds to a random choice from the
automorphism-group Aut(E) denoting all possible permutations over the set E
as shown in Fig. 1. A patient sequence of i ∈ [1, n] events is then defined as

x1, x2, x3, ..., xi, ..., xn, (1)

and at each element in the sequence the patient expresses a treatment group

g1, g2, g3, ..., gi, ..., gn. (2)
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The 1st treatment group g1 is determined by a random sample from G where
P (G) ∼ Uniform over G. The ith treatment group gi is determined as either gi−1
or as a random sample from G where

P (G = gi | Q = q) =

{
g ← P (G) q < α

gi−1 q ≥ α
, (3)

where α ∈ [0, 1] and Q is a random variable following a continuous uniform
distribution over the interval [0, 1]. α indicates the likelihood that a treatment
group g changes between any two consecutive treatment events. Finally, the ith

treatment event is determined by

xi ← P (X | G = gi). (4)

This synthetic data model yields synthetic EHR datasets such that treatment
events for patients exhibit a relationship to a latent treatment group (Eq. 4).
However, the latent treatment group can at any point change to any other
treatment group (Eq. 3), influencing the treatment events observed (Fig. 2). E is
a set of categorical items, encoded as one-hot vectors xi ∈ {0, 1}|E|.

a b c d e
X ∈ E

P
(X

|g
1
)

a b c d e
X ∈ E

P
(X

|g
2
)

Fig. 1: The distribution of treatment events X ∈ {a, b, c, d, e} given a latent
treatment group gi, with |G| = 2 and |E| = 5. Each group G ∈ G randomly
permutes E, with the distribution being Zipf.

xi
xi+1 xi+2 xi+3 xi+4 xi+5

ga gb

Fig. 2: The diagram depicts a sequence of observed treatment events x (circles),
sequence progression (arrows), and the latent treatment groups g (rectangles).

MIMIC-III The MIMIC-III dataset [12] is a large, freely-available database
comprising de-identified health-related data associated with over forty thousand
patients who stayed in critical care units of the Beth Israel Deaconess Medical
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Center between 2001 and 2012. We use sequences of ICD-9 [19] diagnosis codes of
events observed by patients during hospital visits. Visits of sixteen or fewer events
were removed. The dataset contains 46,520 patients, 58,976 separate hospital
admissions, and 267,703 diagnosis events; from which 5,262 unique ICD-9 codes
are observed. The codes form the set E and are encoded as one-hot vectors.

3.2 Treatment Group Representations

We propose Categorical Sequence Encoding (CaSE): a generalised method for
representing sequences of categorical items. CaSE consists of a two-stage encoding
process: First, a siamese network encodes categorical items. Subsequently, a
transformer network generates an encoded representation of the sequence.

The siamese network learns a representation of categorical treatment events
such that local neighbourhoods of events emerge. To do this, we employ a
multilayer-perceptron (MLP), which we will refer to as Cat2Vec, that encodes
an input vector x to a latent space vector y as Cat2Vec(θ) : x→ y. θ comprises
the parameters fully-connected layers `1 and `2 from the input of dimension D to
a hidden layer of dimension H and H to the encoding dimension N respectively.
`1 may be repeated to consider multivariate categorical event data, in which case
each repetition is concatenated before being passed forward to `2. `1 and `2 are
activated using ReLU and sigmoid functions respectively.

To optimise the parameters θ, each training step encodes a pair of successive,
one-hot encoded events xi and xi+1 from a sequence to yield vectors yi and
yi+1. The parameters θ are optimised using Adam stochastic optimisation [13] to
minimise the mean-squared error as in (5). In effect, Cat2Vec learns to encode
sequential events closely in the latent encoding space, as shown in Fig. 3a.

min
θ

1

N

∑
(yi − yi+1)2 (5)

The transformer architecture from Vaswani et al. [25] is uniquely positioned
to capture event-level detail due to the attention mechanism. In a self-attention
configuration, the mechanism considers the relationship between all pairs of
elements from a sequence. Furthermore, the architecture’s use of positional
encoding is also critical as it carries positional features of the input sequence.

We use the Transformer Module from PyTorch [20], which implements the
architecture from Vaswani et al. [25]. We configure it as follows: Model depth is
equivalent to the encoding dimension N from Cat2Vec. Other parameters – the
number of heads H, sequence length L, feed-forward dimension F , and number
of encoder E and decoder D layers – are determined experimentally. Masking of
source or target sequences is not relevant to our learning task.

The transformer model is configured in an auto-encoder fashion [7], which
we will refer to as Seq2Seq. The architecture contains two main sections, an
encoder which produces an encoding from the input sequence, followed by a
decoder, which can be used to produce a resultant sequence. In the auto-encoder
configuration, the model learns to reproduce the input sequence from its internal
learned representation of the input sequence ω (Fig. 3b).
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xi

xi+1

Cat2Vec

yi

yi+1

(a) Cat2Vec

...

yi:i+L

...

p1:L

+

Seq2Seq

ω

...

ŷi:i+L

(b) Seq2seq

Fig. 3: Fig. 3a depicts the siamese network, which learns to minimises the distance
(violet) between adjacent events (red and blue) encoded to the latent vector
space. Fig. 3b depicts the transformer model, which sums an input sequence y
with a positional encoding vector p (blue). The model encodes (red) the sequence
to produce an internal, encoded representation of the input sequence ω (green),
before decoding (violet) ω to produce an output sequence ŷ.

Seq2Seq is trained on sequences of L consecutive events, each encoded by
Cat2Vec, for a given patient treatment sequence. The input y is a sequence of
length L with N features for each event. Seq2Seq produces an encoded represen-
tation of the sequence ω, and decodes ω to generate a resultant sequence ŷ. The
parameters η of Seq2Seq are optimised using Adam stochastic optimisation [13]
such that the mean-squared error is minimised (6). Once trained, the encoder
stage of Seq2Seq produces an encoded representation ω of the sequence, which
can then be used for subsequent analytics tasks.

min
η

1

N

∑
(yi:i+L − ŷi:i+L)2 (6)

4 Experiments

4.1 Treatment Groups in Synthetic Data

First, we perform a visual experiment to demonstrate CaSE identifying latent
treatment groups in synthesised EHR sequences (Sec. 3.1). We configure the
synthetic data model with |G| = 6, |E| = 100, α = 0.03, and {βg = 2 ,∀ g ∈ G}.
Appendix 6.1 outlines further configuration parameters. Fig. 4 shows a 2D UMAP
embedding [15] of Cat2Vec and Seq2Seq event representations. Cat2Vec
captures the categorical nature of the |E| = 100 events (Fig. 4a), while Seq2Seq
groups these events into clusters of the |G| = 6 treatment groups (Fig. 4b).

Next, we evaluate our treatment group identification approach via a clustering
task. We vary the number of treatment groups |G| and the number of treatment
events |E| in the synthetic data model configuration. LDA is used as a baseline.
For a set of sequences, LDA yields a distribution over topics for each sequence.
However, each patient treatment sequence expresses many topics throughout the
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(a) Cat2Vec (b) Seq2Seq

Fig. 4: UMAP visualisation of events encoded from treatment sequences in syn-
thetic treatment data. Points represent treatment events, and colour depicts the
treatment group expressed by the event.

sequence. A sliding window of 32 events1 over each patient sequence is used to
enable LDA to identify many treatment groups throughout a single sequence.
Treatment group identification performance is first evaluated at the window-level
for context, and at the event-level to compare against our method.

For CaSE, treatment groups are assigned using the HDBSCAN [14] clustering
algorithm clustering with default configuration on the Seq2Seq encodings. A post-
hoc clustering (PHC) acts on events that are classified as noise by HDBSCAN
using a consensus of a local neighbourhood of the 20 nearest events2 in the
encodings. PHC is appropriate in our case as P (G) ∼ Uniform, (Sec. 3.1).

Table 1 shows the treatment group identification performance quantified by
the Adjusted Mutual Information score [26]. LDA performs well at the window-
level as expected, but suffers at the event-level task. In contrast, CaSE with
PHC exceeds the event-level performance of LDA in all experiments. The results
indicate that treatment group classification suffers as |E| decreases. This is
because the task is more difficult for small values of |E| due to a phenomenon we
refer to as ‘cross-talk’. Cross-talk is inversely proportional to |E|, and it describes
the tendency for events to occur in more than one treatment group as the sample
space of possible events is restricted. Appendix 6.2 provides further details on
the CaSE and LDA implementations.

4.2 Group Representations in MIMIC-III

In Fig. 4, we observed CaSE clustering synthetic treatment events into treat-
ment groups without prior knowledge of the treatment groups. We now observe
how treatment events behave when applying CaSE to the MIMIC-III dataset
(Sec. 3.1). We learn representations using events from individual patient treatment

1 The sliding window length of 32 is the mean length (1/α) of treatment groups.
2 Because HDBSCAN is nonlinear, PHC works best when the neighbourhood is small.
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LDA (window) LDA (event) CaSE (event) CaSE + PHC (event)

|E| 100 1000 10000 100 1000 10000 100 1000 10000 100 1000 10000

|G|

6 0.866 0.894 0.840 0.655 0.656 0.627 0.803 0.962 0.960 0.878 0.995 0.996
12 0.886 0.891 0.909 0.707 0.704 0.709 0.771 0.887 0.958 0.821 0.976 0.990
24 0.899 0.908 0.931 0.749 0.750 0.774 0.705 0.845 0.878 0.788 0.947 0.966
48 0.880 0.925 0.931 0.763 0.795 0.796 0.655 0.775 0.844 0.783 0.878 0.953

Table 1: Adjusted mutual information score of treatment group identification
using LDA and our method as |G| and |E| vary. LDA works well in a window-
level configuration, however this is not sufficient for event-level classification of
healthcare objectives. Window-level LDA is included only for context.

sequences, where each event contains an ICD-9 code, and the ontological infor-
mation associated with the code from the Clinical Classifications Software (CCS).
The multivariate event data is used to contextualise the events and is encoded via
Cat2Vec using the method described in Sec. 3.2. We visualise the representations
using a 2D UMAP embedding. Appendix 6.3 contains configuration parameters.

Fig. 5 illustrates three findings: 1. Like the experiment depicted in Fig. 4,
Cat2Vec captures the categorical nature of treatment events, while the Seq2Seq
representation captures the sequential context of EHR sequences. 2. When colour-
ing events by their level-1 CCS categorisation, the Seq2Seq representation
separately clusters different types of treatment events indicating different treat-
ment groups (Fig. 5a). 3. When colouring events by their position in a treatment
sequence, clusters of events express a dominant colour indicating inter-treatment
group dynamics (Fig. 5b). These findings demonstrate that CaSE captures the
features that are characteristic of healthcare objectives as prescribed in Sec. 2.1.

4.3 Implementation Details

Cat2Vec and Seq2Seq were each implemented in Python 3.9 using the python
package PyTorch [20] V. 1.9.0. V. 0.8.27 of the HDBSCAN [14] python package
was used for clustering. V. 0.24.2 of the Scikit-learn [21] python package was used
for computing the adjusted mutual information metric and implementing LDA.

5 Conclusion and Future Work

This paper explores the task of using EHR to better inform population-scale
healthcare management. Using EHR data to facilitate this understanding is
valuable but challenging. We introduce the ‘healthcare objective’ to bridge
between loosely defined healthcare management tools and well defined event-
level EHR information. Sec. 3.1 describes the interaction between healthcare
objectives and healthcare events in EHR sequences, and Sec. 3.2 outlines why
the macro-scale approach of topic modelling can not capture the nuance of this
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(a) MIMIC-III: by CCS

(b) MIMIC-III: by sequence

Fig. 5: UMAP visualisation of Cat2Vec encodings (left) and Seq2Seq encodings
(right) of events from MIMIC-III treatment sequences. In Fig. 5a, points are
events coloured by their Level 1 categorisation in CCS. In Fig. 5b, points are
events coloured by their position in their source treatment sequence.
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interaction. This interaction results in ‘treatment groups’, which are groups of
healthcare events that are thematically linked to a healthcare objective. Our
methodology, Categorical Sequence Encoder (CaSE), considers the sequential
nature of EHR and uses treatment groups to capture the event-level relationships
and thematic links between categorical items in EHR data. We demonstrate
that CaSE outperforms topic models at identifying healthcare objectives in our
synthetic data experiment, and we establish the capacity of CaSE to identify
temporal characteristics of healthcare objectives in MIMIC-III.

One limitation of our synthetic data model is the sampling of treatment events
x and treatment groups g does not depend on their position i in the sequence
(Eq. (3,4)). Future work will extend this approach to impose structure on how
treatment events and treatment groups are sampled, and perform sensitivity
analysis on model parameters. One further limitation of our work is that we were
unable to evaluate healthcare objectives identified by CaSE in the MIMIC-III
experiment because MIMIC-III does not contain any structured information
concerning healthcare objectives. Acquiring meaningful healthcare objective
labels aligned to EHR sequences is an ongoing challenge in our research.
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6 Appendix

6.1 Visual Representation of Synthetic Treatment Events

The synthetic data model synthesised treatment sequences for 100 patients,
with 1,000 treatment events in each sequence. Treatment group representations
are learned using the method described in Sec. 3.2, configuring Cat2Vec with
D = |E| and H = N = 8, and configure Seq2Seq with H = 8, L = 64, F =
64, E = 4, and D = 1. as these parameters were found to produce consistent
results during testing. Each model is trained until its loss converges. UMAP was
configured with n neighbors=15 and min dist=0.1.

6.2 Treatment Group Identification in Synthetic Data

Latent Dirichlet Allocation: Window vs Event LDA requires the number
of components or topics (in our case, the number of treatment groups) as a
hyper-parameter, and is provided by counting the number of unique treatment
groups in the dataset |G|.

The use of a sliding window over treatment sequences yields many sequences
for which a minimum number of treatment events is expressed. Each sequence is
aggregated into a fixed-length vector of length |E| with the frequency of each event
in the window as values. LDA is used to transform the window into a fixed-length
vector of length |G|, and the component with the highest likelihood is taken as
the inferred treatment group for the entire window. Event-level treatment group
labels are determined as the modal topic of the treatment groups of all windows
that a given treatment event appears.

The treatment group identification of LDA is then evaluated both at the event
level and the window-level. At the window level, a majority of treatment group
labels for each event within the window is taken as the label for the window,
whereas at the event level each topic that has been assigned to a window by LDA
is inherited by each event within the window. It is critical to note that EHR data
seldom includes treatment group data, and so an approximation |Ĝ| is required in

practice when using LDA as it is not known a priori. When |Ĝ| 6= |G|, treatment
group identification performance suffers. In contrast, this is not the case for our
approach as |Ĝ| is approximated quantitatively by a clustering algorithm.

CaSE Configuration for Synthetic Data Treatment group representations
are learned using the method described in Sec. 3.2, configuring Cat2Vec with
D = |E| and H = N = 128, and configure Seq2Seq with H = 128, L = 64, F =
64, E = 4, and D = 1. Each model is trained until its loss converges.

Adjusted Mutual Information The Adjusted Mutual Information score is
implemented as

AMI(y, ŷ) =
MI(y, ŷ)− E(MI(y, ŷ))

avg(H(y), H(ŷ))− E(MI(y, ŷ))
(7)
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where the clusters y are the treatment groups G that produced the event, the
clusters ŷ are the treatment groups identified by the analysis method, MI is the
Mutual Information, and H is entropy.

6.3 CaSE Configuration for MIMIC-III

We configure Cat2Vec with D = |E|, H = 64, and N = 256, and configure
Seq2Seq with H = 32, L = 16, F = 64, E = 4, and D = 1. Cat2Vec is
configured with two `1 layers: one for ICD-9 codes, and another for their CCS
designation. Activations from each `1 are then concatenated before `2. Each model
is trained until its loss converges. UMAP was configured with n neighbors=15

and min dist=0.1.
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