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Abstract: Viral infections contribute to neurological and immunological dysfunction driven by
complex genetic networks. Theiler’s murine encephalomyelitis virus (TMEV) causes neurological
dysfunction in mice and can model human outcomes to viral infections. Here, we used genetically
distinct mice from five Collaborative Cross mouse strains and C57BL/6J to demonstrate how TMEV-
induced immune responses in serum may predict neurological outcomes in acute infection. To test
the hypothesis that serum cytokine levels can provide biomarkers for phenotypic outcomes of acute
disease, we compared cytokine levels at pre-injection, 4 days post-injection (d.p.i.), and 14 d.p.i.
Each strain produced unique baseline cytokine levels and had distinct immune responses to the
injection procedure itself. Thus, we eliminated the baseline responses to the injection procedure
itself and identified cytokines and chemokines induced specifically by TMEV infection. Then, we
identified strain-specific longitudinal cytokine profiles in serum during acute disease. Using stepwise
regression analysis, we identified serum immune markers predictive for TMEV-induced neurological
phenotypes of the acute phase, e.g., IL-9 for limb paralysis; and TNF-α, IL-1β, and MIP-1β for limb
weakness. These findings indicate how temporal differences in immune responses are influenced by
host genetic background and demonstrate the potential of serum biomarkers to track the neurological
effects of viral infection.

Keywords: TMEV; cytokine; acute; infection; virus; immune response-profile; neurological; disease

1. Introduction

Viruses are abundant, ubiquitous in nature, and may be deleterious to human health.
Prior viral infections, including Epstein-Barr virus (EBV) [1,2], Herpes Simplex virus
(HSV) [3,4], Human immunodeficiency virus (HIV) [5,6], poliovirus [7,8], Zika virus [9,10],
and many others have been associated with subsequent neurological damage [11]. Co-
morbidities and predisposing genetic risk factors for neurological and immunological
dysfunction often vary among individuals in natural populations. As a result, any single
viral infection may contribute to a spectrum of neurological and immunological outcomes,
including diseases such as amyotrophic lateral sclerosis (ALS) [12,13], epilepsy [14,15],
multiple sclerosis (MS) [16,17], and Parkinson’s disease (PD) [18,19].

Theiler’s murine encephalomyelitis virus (TMEV) is a naturally occurring neurotropic,
single-stranded RNA murine virus, often used to model human neurological damage
associated with viral infections, e.g., epilepsy and MS [20,21]. While studies in inbred
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mouse models have established different pathologies after TMEV infection, including
seizures and demyelinating disease [22,23], a consistent finding is the variability of immune
responses detected among infected models [24,25].

Research with TMEV infected models suggests that neurological damage can be
attributed to improper induction and regulation of the immune response during the acute
phase of infection (the first two weeks post-infection) [26]. In vitro experiments show that
TMEV infects the following cells lytically: neurons, oligodendrocytes [27], and endothelial
cells [28], resulting in cell lysis and viral persistence in macrophages and astrocytes [23,27].
Similarly, in vivo TMEV infection is evident in neurons during early disease and later in
astrocytes, oligodendrocytes, microglia, and macrophages [29,30]. This infection of resident
central nervous system (CNS) cells activates both innate and adaptive immune responses to
induce a rapid pro-inflammatory response needed to restrict viral replication. This response
to TMEV infection generally includes the initiation of leukocyte extravasation, neutrophil
production, and macrophage infiltration for the removal of virally-infected cells by the
release of pro-inflammatory cytokines and chemokines such as IL-1, IL-6, and TNF-α, [31].
In seizure-susceptible strains, such as C57BL/6 (B6) mice, this response effectively clears
the virus but results in severe bystander damage that promotes epilepsy. In contrast, mouse
strains susceptible to TMEV-induced demyelination, such as SJL/J, fail to clear the virus
due to a dampened pro-inflammatory response and ensure debilitating CNS pathology in
the chronic phase, resembling MS [32,33].

Previous research has exploited the phenotypic reproducibility and utility of inbred
mice, such as C57BL/6J and SJL/J, to produce in-depth analyses of host-pathogen interac-
tions. However, the limited genetic diversity in common inbred strains underrepresents
the phenotypic outcomes in heterogeneous populations comparable to humans. The
Collaborative Cross (CC) resource, composed of many recombinant and reproducible
inbred mouse lines, overcomes this issue [34,35]. The CC model was established by cross-
breeding eight genetically diverse founder strains (A/J, C57BL/6J, 129S1/SvImJ, NOD/LtJ,
NZO/HlLtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ) in a combinatorial funnel scheme until
achieving maximum recombination [36]. As a result, the expanded pool of genetic variation
rendered each CC mouse strain a genetically unique “individual”—a model for human
genetic heterogeneity.

In the present study, immune responses from CC mice representing different TMEV-
induced phenotypes, reminiscent of human neurological diseases, were evaluated during
the acute phase of infection. We hypothesized that different clinical outcomes induced by
TMEV infection are associated with unique cytokine and chemokine profiles in serum. To
test our hypothesis, we selected a pre-injection time point and two time points within the
acute phase of infection to characterize longitudinal cytokine and chemokine profiles in
serum for each strain. Our findings provide an understanding of temporal changes in the
immune response to neurotropic viral infections and reveal those changes which contribute
to neurological disease. Furthermore, we associated profiles of pre-injection (baseline) levels
of cytokines and chemokines as predictors of relative risk for developing TMEV-induced
neurological dysfunction. Identifying the time sequence of the immunological response
may inform the development of appropriate models of disease and immunotherapies for
humans susceptible to virus-induced neurological disorders such as ALS, MS, and PD.
Importantly, these predictive biomarkers can be evaluated in serum, offering a valuable
approach for diagnostic and prognostic testing in patients.

2. Materials and Methods
2.1. Ethics Statement

All animal care protocols were approved by Texas A&M University Laboratory Animal
Care and Use Committee (AUP 2020-0065, approved 21 May 2020) and complied with NIH
Guidelines for Care and Use of Laboratory Animals. Mice were group-housed, and all
testing was performed during the light phase.
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2.2. Experimental Design

In the present study, we hypothesized that different TMEV-induced phenotypic out-
comes are associated with unique cytokine and chemokine profiles in serum. To test our
hypothesis, we established the experimental design described below (Figure 1).
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Figure 1. Schematic of experimental design used for this study. “Euth: Euthanasia”.

2.3. Mouse Management

The strains and numbers of mice in the study depended on the reproductive success
of our in-house breeding system. The mice were maintained under 14-h light and 10-h dark
cycles with ad libitum food and water. Mice were specific pathogen-free and housed in
polycarbonate cages with filtered lids, with a maximum of four adult mice per cage and
cage cleanouts twice per week. The facility where the mice were housed adheres to federal
regulations and guidelines (Animal Welfare Act; Guide for the Care and Use of Laboratory
Animals; Guide for the Care and Use of Agricultural Animals in Agricultural Research and
Teaching) regarding animal housing, hygiene, and care.

Female and male mice of five Collaborative Cross (CC) strains and C57BL/6J (B6)
were randomly assigned to two study cohorts– A (studied up to four days post-injection
[d.p.i.]) and B (up to 14 d.p.i.). Mice from each strain were then randomly sorted into
exposure groups—PBS-injected or TMEV-infected (Table 1). Mice at four weeks of age
were anesthetized by isoflurane inhalation (MWI, Meridian, ID, USA) and inoculated into
the right mid-parietal cortex at a depth of ~1.5 mm with 20 µL of 1 × Phosphate Buffer
Solution (PBS) (PBS-injected/control mice), or with 5.0 × 104 plaque-forming units (PFU)
of BeAn strain of TMEV (TMEV-injected/infected mice) (American Type Culture Collection
[ATCC] VR 995, Manassas, VA, USA), as previously used in [25,37–40]. Mice were housed
separately by exposure groups.

Table 1. Mice were allocated to treatment groups after weaning at three to four weeks of age.

Complete Mouse List

Strain Gender
Cohort A Cohort B

Total
PBS TMEV PBS TMEV

C57BL/6J
F 3 4 4 4 15
M 3 4 4 4 15

CC002
F 2 4 3 4 13
M 3 4 3 4 14

CC023
F 4 4 3 4 15
M 9 6 3 4 22

CC027
F 3 4 3 4 14
M 3 4 3 4 14
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Table 1. Cont.

Complete Mouse List

Strain Gender
Cohort A Cohort B

Total
PBS TMEV PBS TMEV

CC057
F 4 4 3 4 15
M 3 4 3 5 15

CC078
F 3 3 3 7 16
M 3 4 3 4 14

Total 43 49 38 52 182

2.4. Qualitative Neurological Phenotyping

Mice were weighed and phenotypically evaluated before and after injection until
either 4 d.p.i. (Cohort A) or 14 d.p.i. (Cohort B). Phenotypes, such as limb clasping and
delay in righting reflex, were evaluated and scored as described previously [38]. Control
and infected mice were scored for all phenotypes, with the findings from PBS-injected mice
serving as a control for scoring the infected mice. Therefore, behaviors such as ruffling
(piloerection) were recorded only if seen in infected but not control mice of the same gender
and strain [41–44]. Limb clasping was evaluated and scored as previously described [38,45];
righting reflex scores were determined by how long each mouse took to right itself from
a prone position, as described [38]. Clinical signs of limb weakness and paralysis were
observed and scored on a scale of 0–4, with a score of 0 given to mice having normal stride
and no signs of weakness, and a score of 4 representing the total loss of limb mobility
characterized by lack of grip function and flaccid limb extension [25].

2.5. Serum Collection and Euthanasia

Blood was collected before injection (at four weeks of age) from the submandibular
vein via puncture with a 25-gauge needle at a depth of ~1 mm. At the end of the study,
mice were euthanized at 4 d.p.i. or 14 d.p.i. by intraperitoneal (IP) injection of Beuthansia
150 mg/kg (Merck & Co., Kenilworth, NJ, USA) as described [44]. Then, blood was
collected from the right axillary vessel, and mice were perfused with a 1 × PBS solution
through the left ventricle. Collected blood was refrigerated at 4 ◦C for an hour and then
centrifuged at 2000× g rpm. Sera collected from the supernatants were stored at −20 ◦C
for further analysis.

2.6. Cytokine and Chemokine Assays

We used the serum collected before (baseline) and after injection (at 4 d.p.i. and
14 d.p.i.) to evaluate TMEV-induced immune responses. Immune response proteins were
measured with Bio-Plex ProTM Mouse Cytokine 23-plex Assay kit (Bio-Rad, Hercules, CA,
USA) to determine concentration levels of 23 cytokines and chemokines (IL-1α, IL-1β, IL-2,
IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12p40, IL-12p70, IL-13, IL-17α, IFN-γ, CCL11 [Eotaxin],
G-CSF, GM-CSF, CXCL1 [KC {keratinocyte-derived chemokine}], CCL2 [MCP-1 {Monocyte
Chemotactic Peptide 1}]), CCL3 [MIP-1α {Macrophage Inflammatory Protein 1α}], CCL4
[MIP-1β], CCL5 [RANTES], and TNF-α). Data were processed and analyzed using the
Bio-Plex Manager software program (Bio-Rad version 4.1.1, Hercules, CA, USA).

2.7. Statistics

GraphPad Prism version 9.3.1 for Mac (GraphPad Software, San Diego, CA, USA)
was used to perform nonparametric Mann-Whitney U tests for comparing cytokine and
chemokine levels among control and TMEV-infected mice within the same CC strain.
Prism was also used to perform 2-way ANOVA for comparing gender-specific differences
among control and TMEV-infected mice of each gender. All reported p values are based on
two-tailed statistical tests with a significance level of 0.05.
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Paired, two-sample t-tests and stepwise regression statistical analyses were performed
using R software (version 4.0.3, R Core Team, Vienna, Austria) Paired t-tests revealed
statistically significant temporal production of cytokines and chemokines concerning resid-
ual responses from the intracranial (i.c.) injection and to TMEV infection (Figure 2). The
stepwise regression model allows for the identification of a list of plausible explanatory
variables that have causal effects on the dependent variable. In our study, this method was
implemented to identify predictive biomarkers using pre-injection cytokine serum levels
to the viral-induced neurological symptoms. The algorithm performs stepwise regression
based on a nested model test for the inclusion and exclusion of a predictor. The stepwise
regression procedure involves a forward selection mechanism that starts with the intercept-
only model and proceeds according to the optimal stopping criterion to choose the final
model. Following [25,46], inclusion and exclusion of variables were controlled by alpha
to enter and alpha to leave parameters, in which both were set to 0.05. Additional details
about these statistical analyses are available in Supplementary Statistical Methods.
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Figure 2. Step-by-step analyses revealed cytokines and chemokines with changes attributable solely
to immune responses to the i.c. injection for each strain. (A) Paired t-test analysis to determine
differences between pre-and post-injection responses (pre-injection vs. 4 d.p.i. and pre-injection vs.
14 d.p.i.). (B) Two-sample t-test analysis to identify differences between the 4 and 14 d.p.i. period
after normalizing both post-injection time points with their respective pre-injection values (Created
with BioRender.com).

3. Results
3.1. TMEV-Induced Phenotypes

We focused on five CC strains we had found to represent maximum phenotypic
divergence (e.g., mild to severe disease) based on their phenotypic responses to TMEV
during the chronic phase of infection, described in detail [25,38,39,47]. In the current
study, TMEV significantly induced various clinical symptoms such as a decreased righting
response, hunching, and limb paralysis in those strains most severely affected by TMEV,
allowing for strain categorization based on acute phenotypes. No neurological symptoms
associated with TMEV infection occurred in any PBS-injected mice.

Frequency scores for each phenotype were calculated as we have described previ-
ously [38]. Essentially, these scores reflect how often each phenotype was observed and to
what extent (e.g., how many limbs were concurrently affected and the degree of function
lost relative to PBS-injected mice of the same gender and strain). Cumulative frequency
scores are the total values for all frequency scores at a given time point and provide a snap-
shot of the degree to which an individual mouse presented TMEV-induced phenotypes
at a given time (Supplementary Figure S1). We focused on disease progression, which
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we defined as the difference of cumulative frequency scores between two time points;
calculated for each strain by obtaining the differences between scores at 4 and 14 d.p.i.
Based on the degree to which cumulative frequency scores increased or decreased for each
strain, we classified the strains into three categories (Figure 3).
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Figure 3. Cumulative progression scores of neurological phenotypes varied by strain. The difference
between the cumulative scores for all neurological phenotypes (listed in the legend) between 4 and
14 d.p.i. summarized how each strain fared following TMEV infection. These scores are presented
above or below each phenotype column. The y-axis shows the cumulative frequency score for each
strain; these scores reflect the relative frequency difference of observation for each listed symptom
over time. Positive frequency scores indicate symptoms worsened (more frequent) from 4 to 14 d.p.i.;
negative scores indicate symptoms improved (less frequent) from 4 to 14 d.p.i. Each CC strain is listed
along the x-axis by increasing the cumulative frequency score. These strains were classified based on
whether their symptoms showed overall improvement (group 1), a balance between worsening and
improving symptoms (group 2), or showed overall worsening (group 3). Not shown are phenotypes
with scores of 0.

Strains CC002, CC023, and CC078 were the most susceptible to TMEV acute phase
symptoms as demonstrated by the progression of clinical signs from 4 d.p.i. to 14 d.p.i. and
were then assigned to group 3. Although B6 mice developed seizures, this strain has been
consistently described as “resistant” to demyelination and TMEV persistence [20,48,49],
so we grouped B6 mice in the less-affected group 2. We previously defined CC057 as
TMEV-susceptible based on phenotypic progression over 90 d.p.i. [38]. However, the focus
of the current study was the acute phase of infection, and CC057 mice did not exhibit
progressive TMEV-induced phenotypes during this stage. Therefore, we classified CC057
as group 2. Any phenotypes experienced by CC027 mice were restored to pre-injection
levels by the end of the acute phase; CC027 mice were scored as group 1.

3.2. Identification of Immune Responses Influenced by Intracranial Injection

Cytokine and chemokine production is essential to avoid the detrimental effects of
acute-phase viral infection. However, levels of and interactions between serum and CNS
cytokines and chemokines may initiate a cascade of events leading to irreversible damage.
While, typically, immune responses are measured in CNS tissue, we focus on profiling
the immune responses in sera to further characterize the overall impact TMEV has in the
periphery. A total of 23 cytokines and chemokines were measured in serum collected
before and after i.c. injection. We performed paired t-tests between pre-injection and
post-injection (pre-injection vs. 4 d.p.i. and pre-injection vs. 14 d.p.i.) measurements



Cells 2022, 11, 2044 7 of 22

as described (Figure 2A). Thus, we accounted for the baseline responses to the injection
procedure itself and identified cytokines and chemokines induced specifically by the i.c.
injection (Supplementary Table S1).

Our analysis revealed distinct changes in the production of many cytokines and
chemokines influenced by the i.c. injection throughout different post-injection time points,
4 and 14 d.p.i. (Table 2). Accordingly, these changes were attributed solely to the injury
induced by the injection itself. Typically, after a brain injury, such as the i.c. injection
procedure, inflammatory responses would be activated, resulting in the production of
inflammatory agents (e.g., IL-1α, IL-1β, TNF-α, IFN-γ, IL-7, RANTES, and others) [50].
Therefore, it was not surprising to find changes in the levels of these proteins. However,
TNF-α, which has been previously associated with brain injury [51], was not influenced
by the injection procedure (TNF-α column; Table 2). Similarly, the pre-injection procedure
affected anti-inflammatory IL-4 responses in CC078 mice, levels of pro-inflammatory IL-1α
only in CC057 mice, and granulocyte stimulator GM-CSF in B6 mice. Therefore, it would
seem the effects of the i.c. injection procedure does not resemble those of a traumatic brain
injury. Interestingly, IL-9 was the only cytokine produced at both time points in all strains
within the same phenotypic group, in this case, Group 2 (B6 and CC057 mice). The rest of
the cytokines and chemokines produced in response to the i.c. injection have the potential
to aggravate further or resolve TMEV-induced phenotypic outcomes.

3.3. Characterization of Immune Responses Elicited Solely by TMEV Infection

We sought to identify differences in cyto/chemokines between PBS-injected and
TMEV-infected strains across the acute phase of infection. In Table 2, we summarized
the strain-specific impacts of the i.c. injection on the immune profiles. We next focused
on the effects of TMEV infection, specifically on cyto/chemokine levels. Cytokines and
chemokines produced in response to the i.c injection were normalized via paired difference
analysis by subtracting pre-injection measurement levels from measurements taken at 4 and
14 d.p.i. Then, we performed a two-sample t-test on control and infected mice, as described
in Figure 2B, to identify significant variations between cytokines and chemokines produced
between the 4 and 14 d.p.i time points (Table 3). We anticipated strain-specific differences
in the cytokines and chemokines produced by control and infected mice, which allowed for
identifying responses solely induced by TMEV infection. Overall, those cytokines that vary
throughout the acute phase of infection are characteristic of inducing and maintaining a
pro-inflammatory environment (e.g., GM-CSF, IL-17α, MIP-1α, and RANTES).

Typically, cytokines belonging to the pro-inflammatory triad (IL-1, IL-6, and TNF-α)
are induced in response to pathogens. However, we observed that only IL-6 was identified
throughout the acute phase in this analysis, while IL-1 and TNF-α were not produced
in response to TMEV infection. High levels of TNF-α may lead to cytotoxicity and the
induction of harmful molecular mechanisms known to cause CNS damage. However, we
found TNF-α levels at 4 and 14 d.p.i. to be consistent with pre-injection levels, meeting
the criteria for inclusion in Table 2 but not in Table 3—suggesting TNF-α did not play
a significant role in acute phase phenotypes for any strain but rather was induced in
response to the i.c. injection. Those cytokines and chemokines identified in both sets
of analyses suggest an augmentation might have occurred throughout the acute phase.
Overall, the cytokines and chemokines produced during the acute infection were not in
the pro-inflammatory triad but instead consisted of other cytokines known to promote an
inflammatory environment, such as IL-12p40, IL-17α, RANTES, and IFN-γ.
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Table 2. Highlighted are cytokines and chemokines produced in response to the i.c. injection. We summarized the cytokine and chemokine responses induced by the
injection procedure, identified via paired difference analysis between pre-injection and post-injection (4 and 14 d.p.i.) levels, as described in Figure 2A. The immune
responses to the injection varied by mouse strain at each time point. Individual changes to each exposure group can be found in Supplementary Table S1.

Cytokines and Chemokines Affected by Intracranial Injection throughout Post-Injection Timepoints

Strain D.P.I. IL-1α IL-1β IL-2 IL-
3

IL-
4

IL-
5

IL-
6 IL-9 IL-

10
IL-

12(p40)
IL-

12(p70)
IL-
13

IL-
17α Eotaxin G-CSF GM-

CSF IFNG KC MCP-
1

MIP-
1α

MIP-
1β RANTES TNF-α

C57BL/6J 4
14

CC002
4

14

CC023
4

14

CC027
4

14

CC057
4

14

CC078
4

14
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Table 3. Acute phase immune responses varied by strain and infection status. We identified strain-
specific differences in immune response between 4 and 14 d.p.i. that were attributable to TMEV
infection or, in the case of those observed in PBS-injected mice, inherent to the strain from the injection
procedure. Cytokines and chemokines induced by the stress of the injection procedure itself were
eliminated from consideration (Table 2) by normalizing post-injection levels to the strain-specific
pre-injection (baseline) levels.

Cytokine and Chemokine Changes throughout 4 d.p.i. and 14 d.p.i.

Strain Control Infected

C57BL/6J Eotaxin IL-5 Eotaxin GM-CSF

CC002 IL-6 IL-12(p40) KC MIP-1β RANTES IL-3 IL-6 IL-12(p40) IL-17α G-CSF
RANTES

CC023 IL-12(p70) IL-5 IL-6 IL-13 KC MIP-1α

CC027 IL-4 IL-17α GM-CSF IFN-γ IL-3 IL-10 IL-17α G-CSF GM-CSF KC
RANTES

CC057 IL-6 IL-12(p40) IL-6 IL-12(p40) MIP-1β
CC078 GM-CSF KC MCP-1 MIP-1α RANTES IL-12(p40)

3.4. Cytokine and Chemokine Influence on TMEV-Induced Phenotypes

Next, we quantified 23 different cytokine and chemokine serum levels at individual
time points to capture a “snapshot” of the differences between control and infected mice,
including any residual responses to the injection. Similar to findings from our previous
study of chronic phase (90 d.p.i.) cytokine and chemokine levels [25], most cytokine
and chemokine levels in infected mice mirrored those measured in PBS-injected mice
(Supplementary Figure S2A–D).

Here, we summarized the cytokine and chemokine profiles of those produced at
significant levels compared to strain-specific control mice at both time points among the six
different strains (Figure 4). Early post-injection responses at 4 d.p.i. showed strain-specific
production of primarily pro-inflammatory cytokines and chemokines, e.g., IL-1α, IL-3, IL-5,
IL-6, IL-12(p40), G-CSF, KC, MCP-1, MIP-1α, RANTES, and TNF-α. For example, infected
mice from strain CC078 at 4 d.p.i. produced elevated levels (compared to PBS-injected
CC078) for 8 of the 11 aforementioned cytokines and chemokines. Infected mice from the
other strains produced elevated levels of one or two cytokines and chemokines. At the
end of the acute phase (14 d.p.i.), most (13 out of 23) cytokines and chemokines remained
at basal levels compared to control mice. The exceptions were IL-4, IL-5, IL-6, IL-10,
IL-12(p40), IL-17α, GM-CSF, MCP-1, MIP-1β, and RANTES. Of these ten cytokines and
chemokines, infected mice of strain CC078 had higher levels of four at 14 d.p.i. compared
to PBS-injected CC078. Compared to strain-matched control mice, infected mice of the
other strains produced elevated levels of up to three cytokines and chemokines, except
for low levels of IL-17α in strain CC057. Strain CC023 produced significantly low levels
of IL-12(p40) at 4 d.p.i. and IL-5, IL-10, and GM-CSF at 14 d.p.i. when compared to
PBS-injected mice.

3.5. Gender-Specific Differences Were Identified for Certain Cytokine and Chemokine Levels at 4
and 14 d.p.i.

We sought to identify gender-specific differences in cyto/chemokine levels at 4 and
14 d.p.i. for each strain (Table 4). There were more gender differences at 14 d.p.i. compared
to 4 d.p.i. Also, the chemokine Eotaxin was disproportionately represented as 8 of the
12 differences identified overall for both genders at both time points, and all strains except
CC078. These gender differences were also related to control vs. infected mice of the same
strain (Supplementary Figure S3). For example, at 4 d.p.i., Eotaxin levels were significantly
higher in TMEV-infected vs. PBS-injected CC023 females; however, levels were significantly
higher in PBS-injected (vs. TMEV-infected) CC023 males. By 14 d.p.i., female CC023 mice
no longer showed a substantial difference in Eotaxin levels in control vs. infected mice.
However, male PBS-injected CC023 continued to show significantly higher Eotaxin levels
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at 14 d.p.i. Furthermore, G-CSF levels at 4 d.p.i. were significantly lower in TMEV-infected
males compared to PBS-injected or any females of strain CC027. At 14 d.p.i., this difference
was even more pronounced.
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Figure 4. Summary snapshot of cytokines and chemokines significantly produced in response to
TMEV at two time points post-injection. Strain-specific cytokines and chemokines were produced at
significantly different levels in infected compared to PBS-injected mice (Mean ± S.E.M.; * p < 0.05,
** p < 0.01, *** p < 0.001). We classified the strains according to their phenotypic response to TMEV,
as described in the legend of Figure 3: Group 1 (A), Group 2 (B), and Group 3 (C). The 23 cy-
tokines and chemokines measured at 4 and 14 d.p.i. are available in Supplementary Figure S2A–D
(23 cyto/chemokine levels for pre- and post-injection time points).
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Table 4. Certain cyto/chemokine levels in control vs. infected mice were significantly different for
females and males of different strains. Cells are highlighted according to the p-value of significance.

Gender-Specific Differences among Cytokine and Chemokine Levels across the Acute Phase
of Infection

Strain Female Male p-Value
4 d.p.i. 14 d.p.i. 4 d.p.i. 14 d.p.i.

C57BL/6J Eotaxin 0.05 *
CC002 Eotaxin s 0.01 **
CC023 Eotaxin Eotaxin s Eotaxin s 0.001 ***

CC027
Eotaxin 0.0001 ****IL-12(p40) Eotaxin G-CSF s G-CSF s

CC057 IL-12(p40) s

Eotaxin s

CC078 RANTES
s Those cyto/chemokines with higher levels in PBS-injected mice than in TMEV-infected mice.

3.6. Pre-Injection Serum Levels Serve as Predictive Markers for TMEV-Induced Phenotypes

We hypothesized that levels of cytokines and chemokines in serum correlate with
TMEV-induced phenotypes during the acute phase of infection. We performed a step-
wise regression analysis to identify significant relationships between pre-injection cy-
tokine/chemokine levels and specific TMEV-induced phenotypes (Table 5). For all strains,
we determined that pre-injection levels of IL-1β (p < 0.01) and TNF-α (p < 0.001) were
associated with observations of decreased righting reflex. However, TMEV infection sta-
tus, as a variable for stepwise regression, did not significantly correlate with decreased
righting reflex.

Table 5. Analyses identified cytokines and chemokines of interest as potential biomarkers for certain
TMEV-induced phenotypes of acute disease.

Stepwise Regression Analysis Output per Phenotype

Phenotype Variables Estimate Std. Error p-Value Significance

Reflex
TNF-α −0.078 0.015 1.28 × 10−6 ***

IL-1β 0.035 0.01 0.0015 **

Limb Paralysis
IL-9 −0.060 0.027 0.0305 *

TMEV
infection −0.0120 0.028 1.47 × 10−4 ***

Limb Weakness

TNF-α −0.057 0.014 7.31 × 10−5 ***

IL-1β 0.031 0.010 0.0021 **

MIP-1β −0.020 0.008 0.0114 *

TMEV
infection −0.073 0.026 0.0053 **

* p < 0.05, ** p < 0.01, and *** p < 0.001.

Next, serum levels of TNF-α (p < 0.001), IL-1β (p < 0.01), and MIP-1β (p < 0.05) were
associated with limb weakness. Though we sought to identify relationships between
immune responses and paralysis, not all mice displayed limb paralysis during the acute
phase of infection. Therefore, we included in our analysis only those strains that lost
limb mobility: CC002, CC023, and CC078. We found associations between limb paralysis
and IL-9 (p < 0.05) among the three strains. TMEV infection (but not PBS-injection) was
associated with both limb weakness (p < 0.01) and limb paralysis (p < 0.001) observed
by 14 d.p.i. Finally, we did not identify associations between the seizure phenotype and
immune responses during the acute phase since few mice evaluated had seizures.

Serum levels for cytokines and chemokines varied across all time points (pre-injection,
4 d.p.i. and 14 d.p.i.) throughout the acute phase of infection (Figure 5; also, Supplementary
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Figure S2A–D). In general, these cytokines and chemokines were not found at uniformly
high levels throughout the acute phase nor had a correlative relationship with the induced
phenotype; rather, these levels fluctuated throughout the acute phase depending on the
strain. In some cases, even prior to injection, mice from control and infected groups of the
same strain did not have similar cytokine and chemokine levels due to the heterogeneity
established by the CC strains. Because mice were randomly assigned to treatment groups,
this observation reflected pre-existing individual-level variation; similar findings have
been reported for plasma cytokine levels in humans, e.g., [52,53]. This variability, prior
to injection with TMEV, could be hypothesized to be due to prior subclinical infections,
different stress responses to transport stress (from their birth colony to our procedure
room), behavioral aggression from new cage mates, puberty, etc. More relevant to acute-
phase phenotypes was how these levels changed following the i.c. injection procedure,
and thereafter.
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Figure 5. Strain-specific temporal changes in phenotype-associated cytokines and chemokines.
To reflect average strain-specific differences produced throughout the acute phase, we subtracted
average control levels from average infected levels respective to the observed time point. The y-axes
demonstrate the differences among concentration levels for the selected cytokines and chemokines.
Levels below the x-axis demonstrate that PBS-injected mice produced these cytokines at higher levels
than TMEV-infected mice at that specific time point. Levels above the x-axis illustrate that TMEV-
infected mice produced these responses at higher levels than PBS-injected mice. These cytokines and
chemokines can be used as potential serum biomarkers for the different TMEV-induced phenotypes
observed throughout the first 14 days of infection.

The stepwise regression analyses identified four serum cyto/chemokines of interest
as potential biomarkers for certain TMEV-induced phenotypes of acute disease. These
included TNF-α, IL-1β, MIP-1β, and IL-9. Cytokines TNF-α and IL-1β, and the chemokine
MIP-1β (induced by IL-1β), are generally considered pro-inflammatory; however, IL-1β
and MIP-1β can also moderate inflammation. IL-9 is regarded as a pleiotropic cytokine
with either pathogenic or beneficial effects, depending on the broader context. Accordingly,
molecular networks regulated by (or involving) these cyto/chemokines influence differ-
ences in neurological sequelae and, by extension, the differences distinguishing Groups 1,
2, and 3.

4. Discussion

In this study, we identified the effects of the intracranial injection procedure on strain-
specific immune responses. We characterized temporal changes from baseline (pre-injection)
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to 14 d.p.i. levels of cytokines and chemokines in serum after TMEV infection. Additionally,
we found associations between pre-injection immune responses in serum and specific neu-
rological sequelae induced by acute TMEV infection. Thus, we identified serum biomarkers
for viral-induced neurological disease.

TMEV has been critical for modeling human neurological damage associated with
viral infections, such as demyelinating disease and epilepsy. Intracranial inoculation of
TMEV infects resident CNS cells, such as oligodendrocytes, astrocytes, microglia, and
macrophages, which prompt immune responses to restrict viral replication [29,30,54]. The
source of cytokine and chemokines in serum stem from the CNS or peripheral lymphoid
organs as a result of viremia, which occurs following i.c. injection and activates the
immune system. The immune response may cause severe bystander damage during
acute infection by eliciting a rapid and prolonged inflammatory response resulting in
neurological symptoms. Both TMEV-susceptible (e.g., SJL/J) and TMEV-resistant (e.g.,
C57BL/6J) inbred mouse strains mount a strong pro-inflammatory cytokine response
within the CNS during the acute phase of infection, for example as shown by increased
transcript levels for cytokines IFN-γ, IL-1, IL-6, IL-12p40, and TNF-α. By the middle of the
acute phase (around 8 d.p.i.), SJL/J mice continue to exhibit a highly pro-inflammatory
immune response throughout the CNS, unlike B6 mice. Interestingly, also at day 8, SJL/J
mice develop high levels of TGF-b following TMEV infection, which is thought to inhibit
cytotoxic T cells [55]. Pro-inflammatory inducers, including MCP-1, MIP-1α, and RANTES,
have been found upregulated in the cerebrospinal fluid (CSF) of TMEV-infected (compared
to PBS-injected) SJL/J mice [56]; pro-inflammatory cytokines IL-1β, IL-6, and TNF-α have
also been observed to be elevated in serum from TMEV-infected BALB/c [57], CBA [44],
and SJL/J [25] mice. In fact, the pro-inflammatory cytokines IL-6 and IL-1β have critical
roles in the pathogenic immune responses leading to TMEV-induced demyelinating disease
in SJL/J mice [26,58]. Differences in cyto/chemokine expression continue throughout
TMEV infection, ultimately contributing to dramatically different disease outcomes.

Before determining which immune responses were attributable solely to TMEV, we
accounted for the effects of the i.c. injection TMEV (Table 2) as prior TMEV studies have
largely overlooked differences in immune profiles in response to i.c. injection. Furthermore,
the fact that these differences were reflected in serum levels almost immediately after
injection underscores the traumatic nature of the injection procedure. The widespread
strain-specific immune responses to this procedure, based on our findings, are of importance
when evaluating subsequent responses to TMEV infection as it is possible the injection
procedure itself could set the stage for immune-mediated damages to the CNS.

We characterized baseline responses using pre-injection levels of immune response
to identify specific cytokine and chemokine fluctuations during this critical period of
symptom susceptibility. Our analysis indicated that in infected mice, a mix of IL-3, IL-5,
IL-6, IL-10, IL-13, IL-12(p40), IL-17α, G-CSF, GM-CSF, KC, MIP-1α/β, and RANTES levels
differed throughout 4 d.p.i. and 14 d.p.i. (Table 3). These responses are distinct from other
TMEV studies as they do not consist of typical IL-1, IL-6, or TNF-α. There are cytokines
and chemokines within the same strain that overlap in both PBS- and TMEV-infected mice.
These can be considered inherent to the strain itself, as we have normalized the levels
produced according to each strain’s baseline (pre-injection) response.

We further depicted serum profiles at specific post-injection time points (4 d.p.i. and
14 d.p.i.), including those residual responses to the i.c. injection. We revealed distinctive
cytokine and chemokine patterns produced in response to TMEV for each strain, inde-
pendent of similar phenotypic response profiles (e.g., Groups 1, 2, and 3; Figures 3 and 4)
based on prior findings from virus-infected CC strains [25]. We focused on profiling serum
cyto/chemokine responses in greater detail to identify the potential utility of CC strains as
models for specific diseases.

We determined that at 4 d.p.i., CC027 mice (Group 1) produced high levels of cytokines
and chemokines (IL-5, IL-12[p40] and RANTES) known for the cellular maintenance of
eosinophils [59], chemoattraction of macrophages, and stimulation of dendritic cells [60]
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and other inflammatory cells [61], potentially contributing to viral encephalitis [62,63].
Another abundant chemokine in infected CC027 mice, RANTES, has previously shown
neuroprotective effects in mice infected with West Nile Virus (WNV) by regulating the traf-
ficking of leukocytes to the brain [64]. At 14 d.p.i., higher levels of IL-4 and IL-5 in infected
mice suggested an attenuation of inflammatory responses, with improved cell survival
and maturation of B cells and eosinophils [65] and increased growth of Th2-type cells [66].
IL-4 and IL-5 have been associated with positive outcomes to infection by Hepatitis B
virus [67] and influenza [68] and aid in the clinical recovery of experimental autoimmune
encephalomyelitis (EAE) models [69] of multiple sclerosis. Significant differences in G-CSF
levels in control and infected females and males, for both time points, could indicate dif-
ferences in the degree of overall inflammation (e.g., [70]). Gender differences in levels of
G-CSF are not widely reported but could have far-reaching implications; therefore, this
finding is worth further investigation. Overall, the acute phase immune profile for CC027
(Group 1) mice indicated resilience to viral-induced neurological dysfunction.

Mice from Group 2, strains B6 and CC057, developed seizures and mild encephalitis
during the acute phase. B6 mice produced a response characteristic of a typical inflamma-
tory milieu (IL-1α and IL-6 at 4 d.p.i. and RANTES at 14 d.p.i.), consistent with previous
studies of TMEV-induced seizures [23]. CC057 mice had increased production of G-CSF, an
inducer for regulated neutrophil trafficking from bone marrow with potentially protective
effects against viral infections [71]. These mice also produced low pro-inflammatory cy-
tokine IL-17α [72]. IL-17α can be protective by inducing secretion of G-CSF, or pathogenic
if dysregulated, promoting the accumulation of neutrophils at the injection site [73,74]. In
the case of CC057 mice, high levels of G-CSF prevailed, contributing to a protective effect
that was likely key to the minimal clinical symptoms observed during the acute phase.
Furthermore, CC057 PBS-injected males had significantly higher levels of IL-12 (p40) and
Eotaxin at 14 d.p.i. compared to their infected counterparts. Sera levels of IL-12(p40) have
been shown to differ by gender in humans with schizophrenia [75], as well as in mouse
models of Alzheimer’s disease [76] and blood-brain barrier disruption [77]. B6 infected
females, on the other hand, had significantly higher levels of Eotaxin at 14 d.p.i. Serum
levels of Eotaxin in humans infected with WNV indicated immune responses differed by
gender [78], suggesting a role in the physical manifestation and severity of the disease;
gender differences in serum Eotaxin levels have also been observed in humans concerning
allergic inflammation [79]. Additionally, mouse strain has been shown to influence gender
differences in Eotaxin levels (e.g., [77]). Given the role of Eotaxin in immune diseases, and
the fact that not all strains showed a gender bias in Eotaxin levels, this chemokine may play
a subtle but important role in the variable appearance of TMEV-induced diseases.

Group 3 strains CC002, CC023, and CC078 developed limb paralysis after inducing
unique strain-specific immune responses in serum. In the case of CC002 mice, 22 of the
23 cytokines and chemokines examined were maintained at basal levels at 4 d.p.i. and
14 d.p.i. The sole exception was RANTES, a chemokine attractor possessing the potential
of being both neuroprotective or pathogenic [80]. At 4 d.p.i. we found high levels of
RANTES in the serum of CC002 mice, implying very high levels were produced in the
CNS. CC002 mice lost limb mobility early during the acute phase, suggesting axonal loss
or death of motor neurons [23,81,82] and a likely pathogenic role for RANTES in this strain,
supporting previous associations found with chronic TMEV-induced paralysis [25]. On
the other hand, infected CC023 mice produced low levels of IL-12(p40) at 4 d.p.i. and
low levels of IL-5, IL-10, and GM-CSF at 14 d.p.i. compared to their PBS-injected (control)
counterparts. Low levels of IL-12(p40) have been linked to less-severe clinical disease
after infection by mouse hepatitis virus [63]. HIV-infected human cell lines showed no
relationship between decreased IL-12 and production of the anti-inflammatory cytokine
IL-10 [83]. However, low levels of IL-5 have been associated with disease progression in
HIV infection [84,85], and while GM-CSF has been suggested as a possible treatment for
neutropenia in AIDS patients, increased infiltration of inflammatory mediators in some
patients is alarming [86]. Overall, the cyto/chemokine profile of TMEV-infected CC023
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mice is reminiscent of HIV infection [87], characterized by insufficient protection from
the virus and its physical consequences. Furthermore, the chemokine Eotaxin modulates
susceptibility to disease progression following HIV infection [88,89]; levels of Eotaxin were
significantly different between CC023 females and males, with control vs. infected mice
having opposite levels. This was true at 4 d.p.i. for both genders, and for males only at
14 d.p.i.

Conversely, at 4 d.p.i., infected CC078 mice produced high levels of inflammatory
inducers (IL-3, IL-12[p40], KC, MCP-1, MIP-1α, RANTES), and two of the three cytokines
in the pro-inflammatory triad (IL-6 and TNF-α). IL-3 has been associated with relapse
in EAE models of MS [90,91], and IL-12[p40] can induce tissue pathology and chronic
inflammation [92,93]. Concurrent production of KC with MCP-1 may increase neutrophil
recruitment involved in blood-brain-barrier (BBB) permeability, associated with increased
morbidity and mortality [94]. Finally, MIP-1α/β and RANTES can bind to C-C chemokine
receptor 5 (CCR5), rendering CCR5 unable to engage in defense against viruses [95–97].
Failure to clear the virus from infected cells can result in persistent production of IL-6
and TNF-α, which contribute to demyelinating diseases [97–99]. Indeed, levels of IL-6,
IL-12(p40), and MCP-1 remained high at 14 d.p.i. in CC078 mice, along with high levels of
MIP-1β. Furthermore, compared to males, infected females had significantly higher levels
of RANTES at 4 d.p.i.; gender differences in RANTES expression have been described in
humans as well, though typically, males have higher levels than females [100,101]. Overall,
the immune responses observed in the CC078 strain were analogous to the cytokine storm
observed in COVID-19 patients [102,103] and HIV patients [104,105].

Finally, we identified significant associations between pre-injection serum levels of
cyto/chemokines and TMEV-induced phenotypes during the acute phase via stepwise re-
gression modeling. This analysis enables the identification of a list of plausible explanatory
variables associated with a given outcome. Here, the model revealed that TNF-α and IL-1β
were predictive markers for delayed righting reflex responses. TNF-α and IL-1β were also
associated with limb weakness, along with MIP-1β. The model also revealed a signifi-
cant association between TMEV infection and limb weakness and paralysis. Furthermore,
the model revealed IL-9 as a predictive marker for limb paralysis. In fact, IL-9 has been
associated with autoimmunity in EAE models [106,107] and in the pathogenic induction
of mast cells [108,109], which may influence BBB permeability and neurodegeneration in
MS [110]. Levels of these predictive biomarkers varied across the strains in this study,
underscoring how a single key contributor’s interaction can influence the outcome of a
complex condition. By finding significant contributors to viral-induced phenotypes, which
interact dynamically and fluidly, we may better understand why a single viral infection (or
complex condition such as MS, ALS, and PD) manifests in multiple outcomes.

While levels present in the serum do not represent a perfect reflection of those in the
CNS, we report serum cytokine levels rather than CNS levels to compare systemic immune
differences without being limited to the immune-privileged CNS environment. Thus, these
serum biomarkers reflect the overall immune environment in response to TMEV infection.
From the perspective of animal model research, measuring and comparing cytokine and
chemokine levels in serum rather than directly in CNS tissues is a more tenable solution
for developing longitudinal immune profiles without requiring excessive animal numbers.
Moreover, serum measurements provide a translational perspective, for instance, relevant
to humans with conditions or infections affecting the CNS. Blood sampling is less invasive,
with fewer side effects and risks than CSF sampling via lumbar puncture, which carries
a higher chance of adverse events such as headaches and hemorrhages [111]. The work
described in this study represents the first to characterize the longitudinal immune profiles
in serum of genetically diverse mouse strains, valuable for less invasive model development
involving neurological diseases.
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5. Conclusions

In conclusion, we have, for the first time, identified the cytokines and chemokines pro-
duced in response to the intracranial injection process, allowing us to identify the immune
responses attributed solely to TMEV. We have characterized longitudinal strain-specific
systemic immune profiles underlying various TMEV-induced clinical symptoms. We
identified significant associations between pre-injection serum levels and TMEV-induced
phenotypes during the acute phase, thereby identifying cytokines and chemokines as pre-
dictive markers for acute viral-induced disease symptoms. Importantly, these biomarkers
can be evaluated via serum, offering the possibility of a valuable and cost-effective approach
for prognostic testing in humans. Further quantification and characterization of specific
immune cells within serum and CNS will augment these findings and represent a critical
need to explore central detrimental mechanisms involving sera and CNS pathological
cytokine and chemokine induction. Overall, the findings reported here provide insight
into the complex interactions of the immune response in the pathogenesis of viral-induced
neurological disease, necessary to improve model fidelity and development of preventive
treatments associated with human neurological disease.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11132044/s1, Figure S1: 14 d.p.i. Frequency scores of neuro-
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levels at Pre-injection for A cohort (mice studied until 4 d.p.i.). (B) Strain specific individual cytokine
and chemokine concentration levels at 4 d.p.i. (C) Strain specific individual cytokine and chemokine
concentration levels at Pre-injection for B cohort (mice studied until 14 d.p.i.) (D) Strain specific indi-
vidual cytokine and chemokine concentration levels at 14 d.p.i.; Figure S3: 4 d.p.i. Cyto/chemokine
sex differences between control and infected groups. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001;
Table S1: Strain specific paired difference analysis of cytokines and chemokines.
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