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Abstract

Natural-ventilation flow through a two-dimensional but real-
sized square room is investigated numericaily, wsing a
commercial Computational Fluid Dynamics (CFD) software
package. The flow is induced by a solar chimney positioned on
the room’s roof, and it is desired to have this flow passing
through the tower part of the room for ventilation purpose. The
chimney in turn is in the form of a parallel channel with one plate
kept at a uniform {emperailure that is higher than that of the
ambient air (by up to 40°C), while the other plate and all of the
room’s walls are insulated, Effects on ventilation flow rate and
flow pattern due 10 a range of changing factors are investigated,
The factors include temperature of the chimney’s heated plate,
length and inclination of the chimney, its Iocation and locations
of the room’s other openings, and the presence of a vertical
partition in the room. It is found that all these factors affect either
the flow rate or flow pattern, or both. Maximum flow rate is
obtained when solar chimney is in a vertical position at a roof’s
corner, with its heated plate on the room side. On the other hand,
flow rate increases with increasing solar plate’s temperature and
length, as expected, but the manner of the increase varies with
relative positions between the chimney and room inlets,

Introduction

People spend most of their time indoors. A comfortable indoor
enivironment is thus essential for the occupants' good health and
productivity, Buildings are responsible for about half of a modern
society's total energy consumption. HVAC (Heating, Ventilation
and Air-Conditioning), in turn, accounts for a major proportion of
this energy demand, thus estimated to be about 63% in non-
industrial (commercial and residential) buildings [16); HVAC is
often used to provide thermal comfort to the occupants.
Minimising HVAC energy consumption will thus result in great
economic benefits. It also coniributes beneficially to the issue of
sustainable future and climate change, by reducing fuel burning.

Natural ventilation can be used to help reduce significantly
HVAC energy demand. A solar chimney (thermal chimney) helps
enhance natural ventilation by being heated with solar radiation,
causing hot air to rise and inducing the ventilation flow. This
device has been much investigated [1-6, 9-10, 12-17]; but there
are still many factors affecting its performance (measured by the
induced flow rate, for example) not yef considered, especially in
building settings, This work investigates computationally natural
ventilation induced by roof-mounted solar chimneys through a
two-dimensional but real-sized square room. Air-mass-flow rate
and flow pattern will be considered in terms of chimney-room
configuration, the presence of a vertical partition in the room,
chimney's length and inclination, position of the chimaey’s
heated plate, and its temperature.

Modelling and Compufation

The flow model is depicted in figure 1. A two-dimensional but
real-sized square room of width W = 3m and height H = 3m is
considered. Flow is induced by a solar chimrey (SC) positioned

on the room’s roof. The chimney in turn is in the form of a
parallel channel with one plate kept at a uniform temperature that
is higher than the ambient-air temperature which is assumed to be
fixed at 300K (27°C). Two inclination states of the chimney are
considered: "inclined" when the chimney is inclined at an angle
of 30° above the horizontal (shown in figure 1), and "vertical”
when chimney is vertical. When the chimney is inclined, its
heated plate can be the lower or upper one; and when the
chimney is vertical, its heated plate can be on the left or right.
Chimney’s length is 1.56m in most cases; but a length twice as
long, at 3,12m, is also considered.

Air is induced into the chimney through its lower opening which
is a slot on the room’s roof either at B (the middle} or C (right
corner), and flows out of the chimney through its upper opening.
Alir enters the room via one or 2 slots located at A {on the roof),
I (at bottom of the left vertical wall} or E (bottom of right wall).
Opening slots’ locations A, B, C, D, and E are shown in figure 1;
all slots are 0.3m wide, Note that when SC is inclined, the
distance between its 2 plates is only 8.260m [= 0.3cos(309)]; but
when SC is vertical, this distance is 0.3m. Another factor is the
presence or absence of a vertical partition which is a thin solid
wall hanging down from the roof, ending at 0.3m above the floor.
Table | shows the various configurations (series} considered.
Computational flow domain thus consists of the room’s space
plus the space belween the SC’s plates.

All fluid properties are assumed to be constant and corresponding
to those of air at 300K (constant ambient temperature T,) and
standard pressure at sea level (101.3kPa); but Boussinesq
approximation is also assumed for the buoyancy force arising
from density variation as a result of femperature change. The
following values of molecular properties are used (using common
netation): p = L1610 kg/m®; pn = 1.846%107° N-s/m’; v =
1.589x107° m%s; k = 0.0263 W/m-K; ¢ = 1007 VkgK; v =
2.25x107 m%s; Pr = via = 0.707; p = UUT, = 1/300 K"\, With
these values, the Rayleigh number Ra, which is a key parameter
in free convection and based on the inclined chinmey’s internal
gap size (0.260m), is Ra = 1.60xI0%AT), where AT is the
temperature difference between the SC’s heated plate and the
amblent air. In this work, AT can be up to 40°C. Since turbulence
is expected at Ra > 10° for free conveclion in similar
configurations [11], all cases considered in this work are taken 1o
be turbulent. Following a common practice, turbulent Prandtl
number is faken (0 be constant at 0.9. It should be noted,
however, that since laminar flow is a special case of turbulent
flow with zero turbulence level, use of a turbulence model (see
below) in laminar flow should not affect the computational
results' correctness. Thus, for example, with a case from the ¢
series with heated plate's temperature 301K wherein laminar flow
is expected in the room, computation with a turbulence model
(versus laminar-flow computation) results in a difference of only
0.02% in the air-mass-flow rate through each of the room's inlets.

A Reynolds-Averaged Navier-Stokes (RANS) formulation is
used, wherein turbulence affects the mean flow through a
turbulent viscosity p,: turbulent stresses are assumed to be



proportional to the mean rates of strain via py. The low-Reynolds-
number K-g turbulence model of Chien [7] is adopled, where K
stands for the turbulent kinetic energy and s its dissipation rate.
Thus, governing equations are those of Reynolds-averaged
conservation of mass and momentum, and balance of energy,
plus the two transport equations for K and ¢ of the Chien model.
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Figure 1. A typical geometry of the 2-dimensional flow model; room size
is W x H=23 m x 3 m; all openings are 0.3m-wide slots,

Reterring to figure [, boundary conditions for the mean variables
(velocity components, pressure and temperature) are as follows

* All openings on the flow domain’s boundary (SC’s upper
opening, inlets to the room at A (figure 1), and D and E in
some configurations) are prescribed with ambient conditions;
the fluid has constant ambient pressure and femperature,
namely p =0 (gauge, without the hydrostatic component), T =
T, = 300K. However, the thermal condition here applies only
on those sections of an opening where there is inflow; if the
computation reveals outflow on any sections, the consfant
temperature  condition there will be ignored; instead,
temperature will be computed, Similarly, the constant pressure
condition applies only on those sections of an opening where
there is outflow; if the computation reveals inflow on any
sections, the constant pressure condition there will be ignored,
and pressure will be computed instead

isothermal wall condition is prescribed to the heated plate of
the chimney: zero velogity, T = Ty (constant, and > T,)

All other solid surfaces (walls, roof and floor of the room, SC’s
non-heated plate, and the partition when it is present} are
adiabatic walls: zero velocity; 81/on=0

»

The turbulence-model variables K and & are prescribed as follows

+ On all solid surfaces; default solid-surface condition of the
software package (see below) is adopted; this entails K =0 and
g= 0, following Chien [7]

¢ At all openings, K and ¢ are assumed fo be constant. However,
these conditions apply only on those sections of an opening
where there is inflow; if the computation reveals outflow on
any sections, the prescribed values for K and & there will be

ignored; instead, these will be computed. It is found that the
small turbulence level prescribed on the openings has very
small effeets on the results. For example, when an arbitrary
value of K = [x107° m¥%s® and & = 1x10°° m*/s® are prescribed,
the air-mass-flow rate varies by less than 0.3% from when K
and € are both zero. From considerations similar fo this, K =
1107 m%s” and e = 1x10™° m?/s® are used on all openings.

Series  Partition 1 I""?t SC. . .SC . 8C's heated
ocation  location  inclination plate
d Yes A C inclined Lower
e No A C inclined Lower
g No D C inclined Lower
h No E C inclined Lower
i No D&E C inclined Lower
1 No A C vertical Left
m No A C vertical Right
t No D&E B inclined Lower
u No D B inelined Lower
X No D&E B inclined Upper
¥ No A C inclined Upper
Z No E C inclined Upper
b* No A C inglined Lower

Table 1. Series (configuration) of the cases considered. In each series
terperature of the solar chimney (SC)’s heated plate is varied. SC’s
length is 1.56m, except for series b* wherein this length is 3.12m.

The commercial Computational Fluid Dynamics (CFD) software
package CFD-ACE from the ESI Group is used for the
computation, The package is quite well known, and its validation
is thus assumed to have been adequate. Some further tests had
also added positively to its validity [8]. Numerical scheme is the
Finite Volume method, and the coupled system of governing
equations is solved ieratively for the two mean velocity
components, mean temperature and pressure, plus K and €. Both
upwind and central-difference differencing schemes are used. A
convergence criterion of reduction of residuals in the solved
variables by 3 orders of magnitude is adopted. This is adequate;
comparison of the solutions with residual reduction of 3 orders of
magnitude and those with 4 orders of magnitude shows very
small difference, For examnple, with a test case from series u with
plate temperature 310K, the above change of convergence
criterion results in the air-mass-flow rate changing by only
0.0013%. Computation is done with 64-bit preeision.

Grid convergence tests have also been performed to ascertain the
adequacy of the grid patterns used. For example, with a case from
t series with plate temperature 320K, as the number of grid points
on each edge (see figure 1) is increased by 20% (resulting in 44%
increase in the number of 2-D computational ¢ells), change in the
net mass in-flow to the room is only 0.41%. From this and
similar tests, patterns with 300360 grid points for the room (300
in the vertical direction) and 60x160 for the chimney {60x320 for
the long chimney of serics b¥) are used. Also, post-solution
checks of values of ¥*, the non-dimensionat distance from closest
wall, of grid points closest to the walls show y* being well below
1, thus confirming that the grid patterns used are sufficiently fine
for the Chien turbulence model.

Results and Discussion

Afr-mass-flow rate and flow pattern have been considered for a
range of configuration of the flow domain, and temperature of the
chimney’s heated plate. The configuration’s factors include
length and inclination of the chimney, its location and locations
of the room’s other openings, and the presence of a vertical



partition in the room, The considered configurations (series) are
shown in table 1. Location of the chimney refers to focation of
the opening slot on the room’s roof, which is also the lower
entrance to the chimney. Tn all series, SC’s length is 1.56m [= (3
— 0.3)/{2c0s30°)], except for series b* wherein this length is
twice as long, at 3.12m,

Figure 2 shows the net air-mass-flow rate m in terms of the
temperature difference AT between the chimney’s heated plate
and ambient air, for different configurations (series). On log-log
scales, the m-versus-AT curves are nearly straight lines, but with
different slopes. The highest flow rates occur when chimney is
located af a roof corner and inlet to the room at the opposite roof
corner {series d, ), but only at sufficiently high AT (in contrast to
low-AT results indicated by y-series), With inlets to the room at
its lower corners, there is little difference in m (series t, h, u and
z); 2 inlets {series ) give slightly more flow than a single inlet
(series u); similarly with series i versus g (shown in figure 3).
That maxinuim flow rates occur with series d and e is believed to
be due to the lenger and not-so-twisted flow path (as in series h,
z) from room’s infets to the chimney, resulting in stronger stack
eftect (flow patiern is shown in figure 4).

Figure 2 also shows that a partition reduces m slightly (series e
versus d). This agrees with expectation, as partitions offer extra
resistance to the fluid motion,

Figure 3 shows an increasing m with configuration for AT =
20°C. Values from series z versus h (figure 2) and x versus t
indicate that a slightly higher m is obtained when chimney’s
upper plate is heated, But when chimney is upright, a left heated-
plate (on the room side, series 1) gives a much higher flow rate
than the right one {series m, whose flow paltern (figure 4) shows
much more back-flow at chimney exit than series 1 (not shown)).
Series | gives maximum flow rate, much farger than that from
series d and e. This is believed to be due fo a taller vertical height
rather than a larger internal passage, however. If’s interesting to
nofe that air flow in series 1 would be sufficient to supply an
amble rate of 8 Is to 19 persons in a room of 5-m length.
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Figure 2. Net air-mass-flow rate m versus temperature difference AT
between the solar chimney (SC)’s heated plate and ambient air.

Readings from series e and b* show that doubling the chimney’s
length results in near double in flow rate; thus m is nearly
proportional to chimney’s length.

Flow patlerns corresponding fo a number of series are shown in
figure 4, with AT = 20°C. Note that in this figure, the horizontal

and 2 vertical lines inside the room should be disregarded {except
for the section of the vertical line corresponding to the partition at
A (see figure 1) when this is present); these lines are used in the
discretisation of the computational domain, and thus are not part
of the solution contours, The figure shows that the presence of a
partition (series d) results in the lower part of the room being
ventilated better, This is often a very desirable aspect in
ventilation. This and other similar figures {not shown) also
indicate that when there is significant back-flow at the chimney’s
exit, flow rate is correspondingly low; an example is series m
(versus series 1).
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Figure 3. Net air-mass-flow rate m versus configuration (series) of the
flow domain, for AT =20°C.

Conclusions

Natural ventilation induced by solar chimneys through a two-
dimensional but real-sized square room has been investigafed
numerically. Net air-mass-flow rate m through the room is seen
to increase with temperature of the chimney’s heated plate; the
increase follows approximately straight lines on log-log scales
but with different slopes for different configurations. m is also
affected to varying degree by factors [ike location of the chimney
and of the room’s other openings, which of the chimney's two
plates that is heated, length and inclination of the chimney, and
the presence of a vertical partition in the room. Largest flow rate
occurs in scries 1 when a vertical chimney is positioned at a
corner of the room’s roof, while inlet to the room is at the
oppasite corner and chimney’s heated plate being on the room
side. Doubling the chimney’s length results in near double in
flow rate in one considered configuration. A partifion reduces m
ornly slightly, but helps ventilate the lower part of the room better.
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