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Abstract— Wind power, as an important and promising 

renewable resource, is widely studied. Because the wind is highly 

variable, it is very desirable to operate a wind turbine at 

variable speeds. In this respect, doubly fed induction generator 

(DFIG) has become popular in wind power generation system. 

The steady state simulation analysis of a DFIG is essential to 

understand the behavior of DFIG such that it can operate at 

maximum power producing point for a given wind speed. This 

paper explores the steady state characteristic of a DFIG in wind 

power generation system using MATLAB.  
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I. INTRODUCTION 

Two major global crises that mankind is facing currently, 

are the energy crisis and the environment or climate crisis. It 

is becoming more and more obvious that wind energy may 

offer solutions to these enormous challenges. Wind energy 

has continued the worldwide success story as the wind power 

development is experiencing dramatic growth. According to 

the World Wind Energy Association (WWEA), the global 

wind installations reached 121,188 MW in 2008, after 59,024 

MW in 2005, 74,151 MW in 2006, and 93,927 MW in 2007 

[1]. Globally installed capacity growth has doubled every two 

to three years. Wind power is now being deployed in over 70 

countries around the world [2]. The dynamic growth of wind 

power directly pushes the wind technology into a more 

competitive area. It is essential for scientists and researchers 

to find out the effective technologies for the wind power 

generation system. The wind speed varies continuously as a 

function of time and height because of change in the thermal 

conditions of air masses. The motion of air masses is not only 

a global phenomenon but also a regional and local 

phenomenon. Because the wind is highly variable, it is very 

desirable to operate a wind turbine at variable speeds.  

With variable speeds the turbine is able to operate at its 

maximum power producing point for a given wind speed. The 

variable speed wind turbine with a Doubly Fed Induction 

Generator (DFIG), and partially rated power converter 

(approximately 30% of generator power) on the rotor circuit 

as shown in Fig. 1 are well-matched for the above needs.  The 

stator is directly connected to the grid, while a partially rated 

power converter is used to control the rotor frequency as well 

as rotor speed. The partially rated converter performs the 

reactive power compensation and the smoother grid 

connection. This system can not only increase energy transfer 

efficiency and decreasing mechanical stress, but also can 

achieve the decoupling control of generator active and 

reactive power [3].  
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Fig. 1  Basic block diagram of DFIG system 

II. WIND POWER MODEL  

Wind turbine converts the wind energy to electricity 

energy and it follows the energy conservation principle. Let 

A be the cross-sectional area through which the air flows at 

the velocity of V and P is the power. The theoretical power 

available in a wind stream is given by [4]. 
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AVP  (W)                             (1) 

where  is the air mass density (kg/m
3
). 

The wind turbine is required to operate within its 

maximum allowable limits of speed and power. The 

characteristic of P versus V is illustrated in Fig. 2. When V is 

larger than 20 m/s, the wind turbine reaches its rated power.  
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Fig. 2  Characteristic of wind power with the variation of wind speed 

 Actual power produced by the machine, PT would be 

determined by the efficiency with which the energy is 

transferred. The efficiency is usually termed as the power 

coefficient CP, so the theoretical power that can be extracted 

from the wind is  

PT CAVP 3

2

1
                                 (2) 



In practical case there is a limitation of maximum rotor 

torque. If CT is the torque coefficient, the actual torque 

developed by the rotor TT is  

TT TCT                                     
(3) 

The ratio between the velocity of the rotor tip and the wind 

velocity is the tip speed ratio which is defined by 

V

R
                                       (4) 

where   is the angular velocity of the rotor. By putting the 

value PT = TT and using (2) to (4) we have CP/CT = λ. 

 

The power coefficient can also be expressed as a function 

of tip speed ratio  and the pitch angle θ as [5] 
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where i can also be approximated by a function of the tip 

speed ratio and the pitch angle  , as 
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The characteristic of power coefficient versus tip speed is 

shown in Fig. 3. Under a certain V the wind power can be 

controlled by adjusting either tip speed ratio or pitch angle. 
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Fig. 3  Characteristic of power coefficient with the variation of tip speed ratio 

III. DFIG EQUIVALENT CIRCUIT 

It is based on an induction generator with a multiphase 

wound rotor and a multiphase slip ring assembly with brushes 

for access to the rotor windings. The principle of the DFIG is 

that rotor windings are connected to the grid via slip rings 

and a converter controls both the rotor and the grid currents. 

Thus rotor frequency can freely differ from the grid 

frequency. The speed of the generator will vary with the 

turning force applied to its rotor. The difference between this 

speed and the synchronous speed in per cent is called the 

generator’s slip, which sets the frequency of the generated 

voltage [6]. The schematic diagram of DFIG is shown in Fig. 

4 [7]. The per-phase equivalent circuit of the DFIG is shown 

in Fig. 5. 

IV. DFIG MODEL EQUATIONS 

When a mechanical torque is applied to the rotor shaft of 

DFIG, the rotor rotates with an angular speed ωm which 

corresponds to a slip s = (ω-ωm)/ω where ω is the 

synchronous speed. If α is the angle between stator and rotor 

applied voltages, the stator and rotor currents are [8] 
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Fig. 4  Principle of DFIG 
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Fig. 5  T-type per phase equivalent circuit of DFIG 
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The stator reactive power can be derived by using the relation 
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The power delivered to the rotor by the excitation source 

can be expressed in terms of equivalent circuit parameters is 
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The electromagnetic torque may be derived from the 

developed mechanical power and the synchronous speed. 
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By using equivalent circuit parameters the electromagnetic 

torque can be expressed as 
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V. SIMULATION RESULTS & DISCUSSION 

An effective way to understand the operating 

characteristics of a DFIG is to investigate DFIG characteristic 

curves through computer simulation. Unlike a traditional 

induction machine, these characteristics not only depend on 

the applied stator voltage, but also depend on the injected 

rotor voltage V2. A conventional fixed-speed induction 

machine operates in generating mode for - 01  s  and 

motoring mode for 10  s . DFIG can run at both over and 

below synchronous speed to generate electricity. The 

generating mode of DFIG corresponding to negative torque 

values extends from the negative slip to positive slip region. 

Hence, the turbine output power and electromagnetic torque 

characteristics of DFIGs are different from traditional fixed-

speed induction machine. The stator real and reactive power 

can be modified by varying the amplitude and phase angle of 

the equivalent injected rotor voltage. Fig. 6 shows the DFIG 

stator real power as variation in α while the rotor injected 

voltage magnitude is kept constant at 80 V and Fig. 7 shows 

the stator real power variation against rotor injected voltage 

magnitude while α is kept constant at  30
0
. Fig. 8 shows the 

injected rotor voltage magnitude versus stator real power 

when both slip and α are fixed. A traditional induction 

machine takes inductive reactive power from the power 

supply system that its leakage and magnetizing reactive 

power needs under both generating and motoring modes. It is 

different for a DFIG due to the injected rotor voltage. The 

variation of stator reactive power as the variation of α while 

voltage magnitude remains constant is shown in Fig. 9. The 

stator reactive power also changes with the variation of rotor 

injected voltage magnitude. Fig. 10 shows the stator reactive 

power characteristics of DFIG as the variation of rotor 

voltage magnitude while α is kept constant.  The variation of 

stator reactive power with respect of injected rotor voltage is 

shown in Fig. 11 where α and slip are constant.  
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Fig. 6  Slip versus real power delivered from mains to the stator for 

different values of α. 
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Fig. 7  Slip versus real power of the stator for different value of rotor voltage 
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Fig. 8  Rotor voltage versus stator real power for different value of slip 
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Fig. 9  Slip versus reactive power of the stator for different value of α 
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Fig. 10  Slip versus reactive power of the stator for different value of rotor 

voltage 
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Fig. 11  Rotor voltage versus stator reactive power for different value of slip 

The simulation results of torque-speed are shown in Figs. 

12 and 13. Unlike a traditional induction machine, these 

characteristics not only depend on the applied stator voltage, 

but also depend on the injected rotor voltage. 
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Fig. 12 Slip versus developed torque of DFIG for different values of α 

VI. CONCLUSIONS 

In this paper a simulation analysis on the operating 

characteristics of a DFIG is carried out. Stator and rotor real 

and reactive power as well as electromagnetic torque are 

analyzed as functions of the slip, the rotor injected voltage 

and the angle α. From the simulation results it is clear that the 

characteristics of DFIG are affected by its injected rotor 

voltage. 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-5

-4

-3

-2

-1

0

1
x 10

4

Slip

D
e
v
e
lo

p
e
d
 t

o
rq

u
e

40 V

30 V

20 V

 
Fig. 13  Slip versus developed torque of DFIG for different values of rotor 

voltage 

The variations of developed torque of DFIG with respect to 

injected rotor voltage are shown in Fig. 14 where slip and α 

are fixed. 

15 16 17 18 19 20 21 22 23 24 25
-2000

-1000

0

1000

2000

3000

4000

5000

6000

7000

Rotor voltage

D
e
v
e
lo

p
e
d
 t

o
rq

u
e

s=-0.1
s=-0.2 s=-0.3

 
Fig. 14  Rotor voltage versus developed torque of DFIG for different value of 

slip 
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