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Aquatic deoxygenation has been flagged as an overlooked but key factor contributing to
mass bleaching-induced coral mortality. During deoxygenation events triggered by
coastal nutrient pollution and ocean warming, oxygen supplies lower to concentrations
that can elicit an aerobic metabolic crisis i.e., hypoxia. Surprisingly little is known of the
fundamental hypoxia gene set inventory that corals possess to respond to lowered
oxygen (i.e., deoxygenation). For instance, it is unclear whether gene copy number
differences exist across species that may affect the efficacy of a measured
transcriptomic stress response. Therefore, we conducted an ortholog-based meta-
analysis to investigate how hypoxia gene inventories differ amongst coral species to
assess putative copy number variations (CNVs). We specifically elucidated CNVs for a
compiled list of 32 hypoxia genes across 24 protein sets from species with a sequenced
genome spanning corals from the robust and complex clade. We found approximately a
third of the investigated genes exhibited copy number differences, and these differences
were species-specific rather than attributable to the robust-complex split. Interestingly, we
consistently found the highest gene expansion present in Porites lutea, which is
considered to exhibit inherently greater stress tolerance than other species.
Consequently, our analysis suggests that hypoxia stress gene expansion may coincide
with increased stress tolerance. As such, the unevenly expanded (or reduced) hypoxia
genes presented here provide key genes of interest to target in examining (or diagnosing)
coral stress responses. Important next steps will involve determining to what extent such
gene copy differences align with certain coral traits.

Keywords: hypoxia, coral reef, gene expansion, orthology, copy number variation
1 INTRODUCTION

Aquatic deoxygenation is one of the most pressing and intensifying concerns worldwide, driving
mass mortality to both marine (Diaz and Rosenberg, 2008; Schmidtko et al., 2017; Breitburg et al.,
2018) and freshwater biota (Pollock et al., 2007). Since 1960, more than 400 coastal ‘dead zones’
have formed, where nutrient-overloaded waters are deprived of oxygen (O2) exposing aquatic
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organisms to reduced concentrations – typically < 2mg O2 L
-1 –

that elicit aerobic metabolic crisis, i.e., hypoxia (Diaz and
Rosenberg, 2008; Altieri et al., 2017). Hypoxic regions are
considered to be particularly underreported by an order of
magnitude for tropical compared to temperate regions (Diaz
and Rosenberg, 2008). Where dead zones have been reported in
tropical regions to date, over half have been associated with coral
reefs (Altieri et al., 2017; Nelson and Altieri, 2019; Hughes et al.,
2020). Recent observations have indeed recorded deoxygenation
events on shallow reefs off the Caribbean coast of Panama,
whereby both chronic and acute hypoxic episodes have
resulted in mass coral bleaching-induced mortality (Altieri
et al., 2017; Johnson et al., 2021a). As such, the significance
and contribution of hypoxia as a driving factor of coral bleaching
in tropical reef systems has likely been overlooked (Hughes et al.,
2020; Suggett and Smith, 2020; Johnson et al., 2021a).

Of all tropical reef biota, sedentary calcifiers – such as hard
corals – have been proposed to suffer the most under hypoxia
(Hughes et al., 2020); for example a lethal threshold of 4 mg O2 L

-1

has been shown to drive a key reef-building coral species to
mortality within 12 hours (Acropora yongei; Haas et al., 2014).
However, corals have recently demonstrated the ability to oxy-
regulate rather than -conform, showing a large variation between
species (Hughes et al., 2022). Other recent studies have also
demonstrated that hypoxia responses appear to vary
substantially amongst coral taxa. Notably, two evolutionarily
distinct Caribbean coral species, Acropora cervicornis and
Orbicella faveolata, exhibited stark differences in susceptibility to
severe deoxygenation (~0.5 mg L-1): while Acropora cervicornis
suffered tissue loss and mortality within a day of exposure, O.
faveolata remained unaffected after ~10 days (Johnson et al.,
2021b). Also, two Indo-Pacific Acropora species, Acropora tenuis
and Acropora selago, demonstrated contrasting bleaching
phenotypes to deoxygenation (~2mg O2 L-1), where only A.
selago bleached after 12 hours exposure (Alderdice et al., 2021).
Further, deep-sea corals in the Red Sea live at remarkably low O2

levels of ~2 mg L-1 (Roder et al., 2013) with putative distinct
adaptations, such as mitochondrial hypometabolism, anaerobic
glycolysis, and microbiome restructuring (Röthig et al., 2017a;
Röthig et al., 2017b; Yum et al., 2017), and show broad capacity for
acclimation to high and low oxygen levels (Roik et al., 2015). All
studies raise the question whether some coral species have an
inherently greater capacity to withstand lower dissolved oxygen
(DO) levels predicted for future reefs. Alderdice et al. (2021)
demonstrated that differences in stress susceptibility to
deoxygenation involved a varied ability to upregulate an array of
hypoxia response genes that are transcriptionally controlled by the
Hypoxia-inducible Factor (HIF; consisting of a and b subunits).
More specifically, HIF transcription is known to be activated
under limited O2 when the proteasomal degradation capacity of
prolyl hydroxylase domain proteins (PHD) ceases, allowing HIFa
proteins to accumulate (Kaelin and Ratcliffe, 2008). The cohort of
HIF target genes function to reprogram bioenergetic pathways for
anaerobic respiration (e.g., lactate dehydrogenase and pyruvate
dehydrogenase kinase) and lipid resourcing (e.g., scavenger
receptor, CD36), manage proteome homeostasis (e.g., heat shock
Frontiers in Marine Science | www.frontiersin.org 2
protein 70), and finely regulate cell cycling and apoptosis (e.g.,
BCL2 Interacting Protein 3, BNIP3; Alderdice et al., 2021).

Looking beyond the HIF gene network, a recent study that
exposed Acropora selago larvae to 12 hours of deoxygenation
(~2mg O2 L

-1), reported a significantly greater expression of HIF
and non-HIF targeted hypoxia stress genes compared to control
samples (Alderdice et al., 2022). The non-HIF targeted genes
included melatonin receptors (Yan et al., 2018; Buttar et al.,
2020) and universal stress proteins (USPs; Chi et al., 2019) that
can function to alleviate cellular stress associated with a
disruption in reactive oxygen species (ROS) homeostasis,
another known consequence of hypoxia stress in model
organisms (Blokhina et al., 2003; Solaini et al., 2010). In corals,
excessive ROS levels have mostly been associated with damage to
both photosynthetic and mitochondrial membranes and widely
implicated to induce symbiosis dysfunction and coral bleaching
(Lesser, 2006; Weis, 2008; Suggett and Smith, 2020; Rädecker
et al., 2021). However, the contribution of hypoxia stress on such
elevated ROS levels and subsequent susceptibility to coral
bleaching remains to be determined. Despite HIF-targeting
lactate dehydrogenase (LDH), opine dehydrogenases (OpDH)
have not yet been defined as targets of HIF. Interestingly, opine
dehydrogenases are found to be the preferred glycolytic enzymes
for anaerobic respiration in marine invertebrates given that the
glucose-opine pathway does not change the intracellular pH to
the same extent as the glucose-lactate pathway, therefore
allowing for sustained energy production (Harcet et al., 2013).
Montipora capitata and Acropora yongei have been previously
identified to have greater activity of different OpDHs compared
to that of LDH under nighttime hypoxia (Richmond and
Murphy 2016; Linsmayer et al., 2020). Together, these findings
provide motivation to extend the search for key coral hypoxia
stress genes to consider besides the ‘classic’ HIF gene network.

Taken together, the large discrepancies in tolerance to
deoxygenation therefore reinforces the need to extend analyses
to a greater range of coral species to better understand putative
mechanisms underlying the phenotypic variation observed in the
field. Whilst hypoxic events can occur naturally during seasonal
heating when the water column stratifies and the solubility of O2

in water decreases, climate-induced ocean warming – coupled
with eutrophication – is accelerating the frequency and intensity
of acute ocean deoxygenation events (Keeling et al., 2010;
Schmidtko et al., 2017; Breitburg et al., 2018). Despite the
wealth of evidence that ocean acidification and warming can
induce coral bleaching (reviewed in Albright, 2018; Cziesielski
et al., 2019; Suggett and Smith, 2020), the effect ocean
deoxygenation has, either in isolation (Alderdice et al., 2021)
or in combination with warming and acidification, on bleaching
thresholds remains unclear (Ziegler et al., 2021). Intriguingly,
studies on both heat stress (Desalvo et al., 2008; Kenkel et al.,
2013; Innis et al., 2021) and acidification stress (Kaniewska et al.,
2012; Griffiths et al., 2019) consistently report a reduced
oxidative metabolism, an impaired acid-base homeostasis, and
an altered lipid content that are common hypoxia responses – a
process that is also evident in our recent observations of corals
that bleach under deoxygenation (Alderdice et al., 2021).
May 2022 | Volume 9 | Article 834332
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Therefore, it is plausible that a common gene repertoire exists
that assists more stress-tolerant corals in sustaining a depressed
metabol ism under these – and ult imately other –
environmental stressors.

Copy number variation (CNV) recently emerged as an
important genetic mechanism for phenotypic heterogeneity,
outperforming single nucleotide polymorphisms in
characterising population structure of non-model species
(Dorant et al., 2020). Such structural variants (insertions/
deletions) that create CNV can influence distinct expression
levels of stress-response proteins through gene-dosage effect, and
in turn, may impact the adaptive capacity between different coral
to cope with local environmental stressors (Barshis et al., 2013).
For example, Acroporids with a greater gene copy number of
pigments from the green fluorescent protein (GFP) family, that
can provide photoprotective properties under light stress,
demonstrated an increased dynamic range over which the
corals modulated their transcript levels in response to the light
environment (Gittins et al., 2015). Under heat stress, individuals
of Pocillopora verrucosa from shallow reefs exhibit greater basal
heat shock 70kda (hsp70) gene expression compared to deeper
sites and appear able to transcriptionally upregulate hsp70 more
rapidly in response to experimental heating – alluding to the
potential presence of CNVs for key heat stress genes that are due
to environmental selection (Poli et al., 2017). However, at present
it remains unknown whether CNV can be observed for key
hypoxia stress response genes.

Here we investigate how the hypoxia gene set inventory –
many genes of which were recently identified through RNA-Seq
analyses of adult and larval Acropora samples exposed to low O2

stress (Alderdice et al., 2021; Alderdice et al., 2022) - differ
amongst coral species at large. We specifically characterised
CNVs for a compiled list of 32 putative hypoxia homologs
across the fraction of protein-coding genes from 24 coral
genomes, consisting of species that span the robust and
complex clade. Orthologous genes were predicted by
OrthoFinder and assigned to categories according to their
evolutionary relationship e.g., one-to-one and many-to-one
orthologs (Voolstra et al., 2017). We were specifically
interested in the presence of unequal gene expansion patterns
across coral species and to what extent the distribution of such
expansions could align to ascribed differences in coral
bleaching susceptibility.
2 METHODS

2.1 Coral Genomes
A list of all sequenced coral genomes with protein-coding (i.e.,
genomic) gene sets available, up until June 2021 (at the time of
analysis), was compiled using the following repositories:
reefgenomics.org (Liew et al., 2016), NCBI (www.ncbi.nlm.nih.
gov/), and marinegenomics.oist.jp (Table 1). Genomes were
selected based on their availability, level of genome assembly,
level of protein annotation, and taxonomic relatedness. While
gene copies can be compared between genomes when present, it
Frontiers in Marine Science | www.frontiersin.org 3
is difficult to make unequivocal statements when genes or gene
sets are missing, as their absence may be either genuinely
biological or methodological in nature. For our analysis, we
therefore considered genomic gene sets where the number of
predicted genes was ~30,000 to minimise artifacts arising from
discrepant genome and gene assemblies (Table 1). Although
Acropora echinata deviated from these criteria by having more
genes (43886 genes), this species was from a large comparative
genomic study of 16 Acropora coral genomes (Shinzato et al.,
2021), for which we assumed consistency in methodology used to
assemble the genome and predict the genes (information on
sequencing platform, genome assembly, and gene annotation
methods is available in Table S1). Additionally, to test whether
missing genes of interest (GOIs) could be caused by a gene set
calling artefact (i.e., the sequences existed in the assembled
genome but were not present in the gene set), we searched for
the nucleic acid sequences of certain missing proteins. We
conducted such searches when the GOI was: 1) known to be
highly conserved among metazoans and therefore its absence
was unexpected and, 2) missing in only 1 species. In the single
case that we tested, the missing gene was not found in the
assembled genome, which gave us a higher confidence in the
completeness of the gene sets and resultant orthogroups
(although we realise that genes could still be missing due to
absence in the original assembly).

2.2 Hypoxia Gene Repertoire
A list of candidate GOIs was built based on genes that were
1) previously implicated in the hypoxia stress response in
association with both HIF and non-HIF pathways and
2) reported in coral stress response studies. Genes associated
with coral stress at large were also included to examine whether
or not the suspected commonality of their function to different
stressors would result in copy number differences or aligned to
coral species considered as more stress-tolerant e.g., Porites lutea
(Voolstra et al., 2015; Robbins et al., 2019). The complete list of
genes is available in Table 2 with corresponding source references.
These criteria resulted in a total of 32 GOIs (Tables 2 and S2),
which is by no means comprehensive but enabled us to examine
whether different coral species exhibit CNV.

2.3 Orthology Analysis
OrthoFinder v2.5.2, was used to predict orthogroups from the 24
sets of protein sequences derived from 24 coral genomes
(Table 1, see Data Availability section). An orthogroup is
defined as the set of genes from multiple species descended
from a single gene from the last common ancestor (LCA) of that
set of species (Emms and Kelly, 2019). Of note, multiple proteins
in a single species may be assigned to the same orthogroup due to
gene duplication of a given gene after a speciation event. As such,
for any given orthogroup, for a given pair of species, one-to-one
(one gene per species), one-to-many (one gene in one species,
multiple in the other), and many-to-many (multiple genes in
both species) categorizations are possible (Voolstra et al., 2017).
Accordingly, the multiple proteins in a single species assigned to
the same orthogroup are paralogs of each other, but orthologs of
the proteins in the other species. Single copy orthologs (i.e., those
May 2022 | Volume 9 | Article 834332
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exhibiting one-to-one relationships across all species) can aid
assessing completeness of sequenced genomes, but in this study
one-to-many and many-to-many relationship were of most
interest as they represent expanding genomic gene content that
can reveal important functional differences.

OrthoFinder (Emms and Kelly, 2019) was run under default
settings within a Nextflow pipeline using the Docker file
davidemms/orthofinder:2.5.4 with the Docker engine. The
Nextflow file and associated documentation on its execution
are available at the associated GitHub repository (https://github.
com/didillysquat/alderdice_2021). For each genomic gene locus,
only the longest coding sequence (CDS) was kept, excluding
possible splice variants (isoforms), while retaining our ability to
determine whether genes were orthologs or paralogs.
Consequential to the coral genomic gene sets available, we
included a large number of species from the same genus (i.e.,
Acropora), which in turn could affect the number of orthogroups
assigned to the different relationship categories, i.e., lead to an
artificially low number of many-to-many (MM) and many-to-
one (MO) orthogroups. We tested for such bias by performing
OrthoFinder analyses that each contained only one species per
genera (Acropora, Astreopora, Montastraea, Montipora,
Pocillopora, Stylophora, and Porites) for three different
Acropora species (A. acuminata, A. cytherea, A. digitifera).
Orthogroups relating to each GOI were identified by searching
for the A. millepora representative of each of the GOI based on
their KEGG and EggNOG annotations (Alderdice et al., 2021;
Frontiers in Marine Science | www.frontiersin.org 4
Alderdice et al., 2022). However, for some GOIs this method of
identification was not possible, e.g. melatonin receptors (MTNR),
which could have been due to the GOI not having a
representative in A. millepora. Further, we found that in 12
cases there were multiple orthogroups that had the same gene
name (Table S3). EggNOG mapper results of Montastraea
cavernosa, another species considered in our analysis, were also
available and so we used this additional EggNOG annotation
resource to try to identify missing GOIs or further orthogroups
with the same gene name (Table S3). The relationship between
these two coral species is phylogenetically characterised by a deep
evolutionary divergence and so can possess significant genomic
differences in the distribution and number of certain proteins
(Ying et al., 2018). Therefore, by incorporating both species there
was a greater likelihood in identifying representative
orthogroups of the GOIs for all the considered coral species.

As mentioned above, in 12 cases, we identified multiple
orthogroups that were annotated with the same gene name. To
validate and better understand their placement in distinct
orthogroups (i.e., whether this grouping may represent
paralogs, or genetically distant orthologs), we performed inter-
group alignments of representative sequences from these
orthogroups using MAFFT (Katoh et al., 2018; option ‘—
auto’). The results demonstrated a considerable dissimilarity
between the sequences and so we considered such groupings
valid (Data S1). However, given that we had insufficient
information to determine these orthogroups to be paralogous
TABLE 1 | Coral genomic gene sets used for the OrthoFinder analysis.

Taxonomy Genomic gene sets

Clade Fam. Species (abbreviation) Size Predicted
Genes

Reference Gene model data link access

C Acr. Acropora tenuis (aten) 403 23118 (Shinzato et al., 2021) http://yurai.aori.u-tokyo.ac.jp/orthoscope/Acropora.html
C Acr. Acropora yongei (ayon) 438 23500 (Shinzato et al., 2021) http://yurai.aori.u-tokyo.ac.jp/orthoscope/Acropora.html
C Acr. Acropora gemmifera (agem) 401 22247 (Shinzato et al., 2021) http://yurai.aori.u-tokyo.ac.jp/orthoscope/Acropora.html
C Acr. Acropora florida (aflo) 442 23857 (Shinzato et al., 2021) http://yurai.aori.u-tokyo.ac.jp/orthoscope/Acropora.html
C Acr. Acropora awi (aawi) 429 22653 (Shinzato et al., 2021) http://yurai.aori.u-tokyo.ac.jp/orthoscope/Acropora.html
C Acr. Acropora intermedia (aint) 417 23343 (Shinzato et al., 2021) http://yurai.aori.u-tokyo.ac.jp/orthoscope/Acropora.html
C Acr. Acropora acuminata (aacu) 395 22306 (Shinzato et al., 2021) http://yurai.aori.u-tokyo.ac.jp/orthoscope/Acropora.html
C Acr. Acropora nasta (anas) 416 23319 (Shinzato et al., 2021) http://yurai.aori.u-tokyo.ac.jp/orthoscope/Acropora.html
C Acr. Acropora microphthalmia (amic) 384 22618 (Shinzato et al., 2021) http://yurai.aori.u-tokyo.ac.jp/orthoscope/Acropora.html
C Acr. Acropora echinata (aech) 401 43886 (Shinzato et al., 2021) http://yurai.aori.u-tokyo.ac.jp/orthoscope/Acropora.html
C Acr. Acropora muricata (amur) 421 23646 (Shinzato et al., 2021) http://yurai.aori.u-tokyo.ac.jp/orthoscope/Acropora.html
C Acr. Acropora selago (asel) 393 23115 (Shinzato et al., 2021) http://yurai.aori.u-tokyo.ac.jp/orthoscope/Acropora.html
C Acr. Acropora hyacinthus (ahya) 447 23147 (Shinzato et al., 2021) http://yurai.aori.u-tokyo.ac.jp/orthoscope/Acropora.html
C Acr. Acropora cytherea (acyt) 426 23363 (Shinzato et al., 2021) http://yurai.aori.u-tokyo.ac.jp/orthoscope/Acropora.html
C Acr. Astreopora myriophthalma (astr) 373 28711 (Shinzato et al., 2021) http://yurai.aori.u-tokyo.ac.jp/orthoscope/Acropora.html
C Acr. Montipora cactus (mcac) 653 21983 (Shinzato et al., 2021) http://yurai.aori.u-tokyo.ac.jp/orthoscope/Acropora.html
C Acr. Montipora efflorescens (meff) 643 21369 (Shinzato et al., 2021) http://yurai.aori.u-tokyo.ac.jp/orthoscope/Acropora.html
C Acr. Acropora digitifera (adig) 416 22326 (Shinzato et al., 2021) http://yurai.aori.u-tokyo.ac.jp/orthoscope/Acropora.html
C Acr. Acropora millepora (amil) 420 28188 (Fuller et al., 2020) Request data from Zach Fuller
C Por. Porites lutea (plut) 552 31126 (Robbins et al., 2019) http://reefgenomics.org/
R Poc. Pocillopora damicornis (pdam) 234 26077 (Cunning et al., 2018) http://reefgenomics.org/
R Poc. Pocillopora verrucosa (pver) 380 27439 (Buitrago-López et al.,

2020)
http://reefgenomics.org/

R Poc. Stylophora pistillata (spis) 434 25769 (Voolstra et al., 2017) http://reefgenomics.org/
R Fav. Montastraea cavernosa (mcav) 448 30360 (Rippe et al., 2021) https://www.dropbox.com/s/yfqefzntt896xfz/

Mcavernosa_genome.tgz
Total genome assembly size in million base pairs (Mb); C, complex clade; R, Robust clade; Fam., Family; Acr., Acroporidae; Por., Poritidae; Poc., Pocilloporidae; Fav., Faviidae.
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or distantly related orthologos, we considered these inter-group
genes as distant homologs (Katoh et al., 2018). When
investigating these genes for copy number expansions we
searched across all identified orthogroups related to the
gene name.

The gene names assigned to the orthogroups are based on
EggNOG annotations predominantly from model organisms.
Thus, the identical naming of certain orthogroups, despite
being genetically distinct, likely represents an artefactual
similarity and such groups warrant further revision with
phylogenetic analyses. Overall, we focused on GOIs that
demonstrated expansion of gene families, in particular uneven
expansion distributed across species. Of note, gene expansions
from certain species may also be a result of a reduction in other
species. A heatmap table was created using the R package ‘ztable’
to view the copy number variation of GOI more easily across all
species. Of note, in cases where GOIs were represented by
multiple orthogroups, the orthogroup with the greatest
Frontiers in Marine Science | www.frontiersin.org 5
variance across coral species was selected for the heatmap
table. For each GOI we were interested to see whether
identified CNVs correlated with either the robust-complex
split, or whether these CNVs were specific to a particular
species. To do this, we extracted the gene trees for those GOIs
that demonstrated significant CNVs for visual examination. The
gene trees were annotated using the R package ‘ggtree’.
3 RESULTS

3.1 Overall Gene Distribution
Orthogroups were predicted at the protein level for a total of 24
coral genomic gene sets that consisted of ~25,300 ± 4,700
protein-encoding genes per genome on average (Table 1).
OrthoFinder assigned 97.3% of the total number of genes
(564,602 out of 589,304) into 24,643 orthogroups, leaving only
TABLE 2 | Genes of interest (GOIs) associated with the hypoxia stress response.

Gene abbrev Gene full name Putative function

i. HIF subunits
HIFA/EPAS1 Hypoxia inducible factor alpha Alpha subunit of transcription factor hypoxia-inducible factor-1 (HIF-1).
HIFB/ARNT Hypoxia inducible factor beta/aryl hydrocarbon receptor

nuclear translocator
Beta subunit of transcription factor HIF-1, also involved in xenobiotic
metabolism.

ii. HIF suppressors
PHD2/EGLN1 HIF Prolyl hydroxylase domain/Egl nine homolog 1 Catalyses post-translational proteasomal degradation of HIF alpha.
HIFAN/FIH Factor inhibiting HIF Hydroxylates HIF-1 alpha to repress transcription.

iii. HIF targets
LDHD/B lactate dehydrogenase Catalyses interconversion of pyruvate & lactate with concomitant

interconversion of NADH and NAD+.
CA9 carbonic anhydrase 9 Zinc metalloenzymes catalyse reversible hydration of carbon dioxide.
CD36 cluster of differentiation 36 Binds to collagen, thrombospondin, anionic phospholipids & oxidized low-

density lipoproteins.
PDK4 Pyruvate dehydrogenase kinase Inhibits pyruvate dehydrogenase complex via phosphorylation: glucose

metabolism.
HIGD1A Hypoxia-inducible gene domain 1 Subunit of cytochrome c oxidase, terminal component of mitochondrial

respiratory chain.
KCNK18/17 (K2P) Two-pore domain potassium channels Activates outward rectifier K+ currents to maintain action potential.
HMOX1 Heme oxygenase Cleaves heme to form biliverdin for cytoprotective effects.
BNIP3 BCL2 adenovirus interacting protein 3 Apoptosis-inducing protein that can overcome BCL2 suppression.
PEPCK/PCK1 Phosphoenolpyruvate carboxykinase Catalyses phosphoenolpyruvate from oxaloacetate: gluconeogenesis.
NOS nitric-oxide (NO) synthase Synthesises NO to promote O2 delivery.
P4HTM/EGLN4 Prolyl 4-Hydroxylase, Transmembrane Degradation of HIFa under normoxia.

iv. Non-HIF targets
HSP90B1/AB1 heat shock protein 90 Molecular chaperone of proteins.
HEBP2 heme binding protein Induce collapse of mitochondrial membrane potential prior to cell death.
HYOU1 Hypoxia upregulated protein Heat shock protein 70 family, triggered by hypoxia.
MTNR melatonin receptor Receptor for melatonin, an antioxidant.
USP universal stress protein Resistance to DNA-damaging agents (e.g., ROS) from environmental stress.
MDH1 Malate dehydrogenase Reversible oxidation of malate to oxaloacetate.
ODH Octopine dehydrogenase Reversible oxidation of opine to pyruvate.
ERR/ESRRG Estrogen-related receptor Orphan receptors, act as transcription activator in the absence of bound

ligand.
TET2 Tet methylcytosine dioxygenase 2 DNA methylation dependent on O2.

GABR A/B gamma-aminobutyric acid receptor Forms functional inhibitory GABAergic synapses.
SDHB Succinate dehydrogenase B Complex II of the respiratory chain.
HES7 Hairy enhancer of split Transcriptional suppressor.

v. ‘General’ stress response
HMCN1 Hemicentin Forms adhesive epithelial cell junctions.
SACS Spastic ataxia of Charlevoix-Saguenay (Sacsin) Co-chaperone of Hsp70.
Corresponding full gene names and putative function summarised from GeneCards, NCBI Entrez, or UniProt function descriptions. See Table S2 for more details on the GOIs.
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2.7% of the genes unassigned (15,702). Of the 24,643
orthogroups, 5,125 contained representatives from all 24
species of which only 879 were single copy orthogroups (i.e.,
only 1 protein present in all species considered) and 4,246
contained at least one instance of many-to-one or many-to-
many relationships (i.e., sets of proteins with a paralogous
relation to each other belonging to a single orthogroup and
multiple species). When considering the 24,643 orthogroups,
those that assigned to an expanded gene set category (many-to-
many or many-to-one) were on average consistently lower in
Acropora species compared to all other genera examined. To
assess whether this finding is potentially biased by the large
number of Acropora species in the analysis, we conducted three
additional OrthoFinder analyses where we consistently
considered one species per coral genus (Acropora, Astreopora,
Montastraea, Montipora, Pocillopora, Stylophora, and Porites)
for three different Acropora species (A. acuminata, A. cytherea,
A. digitifera). These additional analyses showed that the number
of many-to-many orthogroups for the Acropora species was no
longer significantly lower in comparison to the other genera
(Data S2). However, Porites lutea and Montastraea cavernosa
still exhibited higher many-to-many and many-to-one
orthogroups compared to all other genera. Lastly, 1.1% of
genes (6,387) were assigned to species-specific orthogroups,
with the smallest and largest proportion of these genes
assigned to species of Acropora and Porites lutea (11 and 429,
and 1% and 31%, respectively; Figure 1). Thus, the majority of
orthogroups exhibited a large disparity in terms of CNV.

3.2 Genes Associated With Hypoxia Stress
Exhibit Copy Number Variation
Of the 24,643 orthologs considered, we were most interested in a
set of 32 hypoxia-related genes (Tables 2 and S2) and in
particular copy number differences in these genes that may
explain differences in hypoxic stress susceptibility. We
examined their CNV from the predicted gene inventory of 24
coral genomes and explored whether expanded gene families
correlated to the robust-complex split or certain species.
Frontiers in Marine Science | www.frontiersin.org 6
For 20out of the 32GOIs, therewere noorminimal predicted gene
expansions (i.e., there were at most 1 or 2 copies of each protein per
species per orthogroup). Although only 1 of these proteins, the heat
shock protein 90kDA alpha class B, hsp90AB1, had a representative in
every species. The remaining 12GOIs exhibiteduneven expansion in a
subset of the species, falling into the many-to-one or many-to-many
orthogroups, and warranted further examination.

Of these 12 unevenly expanded genes, most could be
categorised into 3 groups according to their role within the
mammalian-based HIF gene network following recent studies
(Alderdice et al., 2021; Alderdice et al., 2022): i) HIF transcription
factor subunits, ii) HIF suppressors, and iii). HIF target genes. We
uses two additional categories to classify remaining genes:
iv) Non-HIF targets, which consist of genes associated with
hypoxia stress that are not considered to be transcriptionally
regulated by HIF in model organisms and, v) ‘General’ stress
response genes that have been repeatedly reported in coral studies
associated with a ‘general’ stress response to bleaching (Hemond
et al., 2014; Cunning et al., 2018). In the following sections we
assess the gene trees of the GOIs categorised into one of these 5
categories to determine whether gene expansion aligned to the
robust-complex evolutionary split or certain species.

3.2.1 HIF Subunits (HIFa and HIFb)
The O2-sensitive alpha subunit of the hypoxia-inducible factor
(HIFa) exhibited duplication in Montipora efflorescens, Acropora
nasta, A. echinata, and two duplication events in A. florida
(Figure 2) in the respective orthogroup. Interestingly, the robust-
clade species, Montastraea cavernosa, lacked a representative
protein in this orthogroup (confirmed by the absence of a match
for the A. millepora HIFa sequence in its genomic gene set and
assembled genome sequence; see Methods) suggesting a putative
loss of the highly conserved metazoan HIFa gene. HIFb
demonstrated uneven expansion with P. lutea, M. cavernosa, and
A. muricata exhibiting independent duplication events. While
HIFa demonstrated a clear clustering according to the robust-
complex split, the stable subunit HIFb showed no such clustering
(Figure S2).
A B

FIGURE 1 | Classification of genomic protein sets. (A) Average counts of genes assigned to many-to-many (grey bars) or many-to-one (white bars) orthogroups
across the coral genera examined (sensu Voolstra et al., 2017). Note that most genera consisted of one species except for Montipora (2), Pocillopora (2) species,
and Acropora (16). Error bars denote standard error. (B) Average proportions of species-specific orthogroups within each genus.
May 2022 | Volume 9 | Article 834332

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Alderdice et al. Disparate Hypoxia Coral Gene Inventories
3.2.2 HIF Suppressors
Asopposed to theHIFsubunits, ProlylHydroxylaseDomain2 (PHD2;
also known as EGLN1 or HIF-P4H-2), Prolyl 4 Hydroxylase
Transmembrane (P4HTM; also known as EGLN4 or PHD4) and
Factor Inhibiting HIF (FIH), which facilitate proteasomal degradation
ofHIFawhenO2 is limited, remained consistent in their copynumber
presenting a single gene copy across nearly all species and clearly
clustered by the robust-complex split (Figures 2 and S2).
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3.2.3 HIF Targets
Carbonic anhydrase 9 (CA9), a zinc metalloenzyme that functions
in stabilising the intracellular accumulation of acidic metabolic
products (e.g., lactic acid) under hypoxia stress, consistently
presents 2 gene copies across species (Figure 2). However, P.
lutea, M. efflorescens, and M. cavernosa each exhibit independent
duplication events, with P. lutea possessing the greatest number
of CA9 gene copies at three times of that found in most corals
FIGURE 2 | Gene count heatmap table for coral hypoxia genes of interest (GOIs) across 24 coral genomic gene sets ordered by descending variance. The first
column denotes the orthogroups that OrthoFinder assigned each gene. Types of genes are grouped according to categories i-v as referred to in Table 2. For genes
that had multiple orthogroups, the heatmap details only the orthogroup with the highest variance (see Tables S4–S7 for heatmap tables showing all orthogroups for
GOIs with unequal expansion across species). Coral species are grouped according to taxonomy, with R and C indicating Robust and Complex clade species,
respectively. Yellow stars flag those coral species that have been reported as more stress-tolerant. Colour gradient from light to dark blue represents increasing
variance. Refer to Table 1 for the corresponding full species names.
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examined (Figure 3). Nitric-oxide synthase (NOS) increases the
production of NO, a reactive nitrogen species (RNS), that can
promote O2 delivery to cells and also signal to prevent HIFa
proteasomal degradation during hypoxia (Poyton and
Hendrickson, 2015). Within our analysis, NOS ranged from a
single copy to up to 6 across species, with greater copy numbers
found in coral species of the Acroporidae family.

3.2.4 Non-HIF Targets
Melatonin receptors (MTNR) and universal stress proteins (USP)
are known to signal for, and facilitate, ROS scavenging to alleviate
oxidative stress inmammals (Yan et al., 2018;Chi et al., 2019; Buttar
et al., 2020). Genes assigned to one of the MTNR orthogroups
exhibited one of the greatest variances in distribution of gene copies
across species, with the lowest counts between 1-3 found almost
exclusively in Acropora species while the highest counts were
presented by P. damicornis and P. lutea, which independently
expanded up to 21 and 30 gene copies, respectively (Figures 2, 3).
Whilst theUSP orthogroups showed gene counts to vary randomly
Frontiers in Marine Science | www.frontiersin.org 8
across species and the robust-complex split, P. lutea exhibited the
greatest number of gene copies (Table S4). In one of the
orthogroups, P. lutea demonstrated species-specific duplications,
leading to anadditional 4 copies ofUSP (Figure3) in comparison to
the gene complement of the other species in that orthogroup.

Genes encoding for gamma-aminobutyric acid receptor
(GABR) that help to restore membrane potential from ROS-
induced disruptions and signals to promote the ‘GABA shunt’
that can suppress aerobic respiration during hypoxia (Wu et al.,
2021), exhibited unequal distribution with only 3 gene copies in
M. cactus and up to 12 gene copies in A. millepora, M. cavernosa,
and P. lutea. Gene trees showed species-specific clusters of
expanded genes in the latter two species (Figure S3). Genes
assigned to the orthogroup annotated as octopine dehydrogenase
(ODH), that provide an alternative, more pH-stable anaerobic
pathway to glycolysis, had the third greatest variance of all GOIs
across species. Interestingly, this variance was driven by an
independent expansion in P. lutea where gene copy number
was at least double that found in the other species (Figures 2, 3).
A

B

C D

FIGURE 3 | Rooted phylogenetic gene trees across 24 coral species showing species-specific expansions of hypoxia-associated genes that exhibit disparate copy
number variation: (A) Carbonic anhydrase 9, CA9; (B) Universal stress protein, USP; (C) Melatonin receptor, MTNR; (D) Octopine dehydrogenase, ODH. Species-
specific expansion of > 2 genes in a cluster for each gene family is indicated by the following highlighted boxes: Plut, Porites lutea in turquoise; Pdam, Pocillopora
damicornis in purple; and Mcav, Montastraea cavernosa in orange.
May 2022 | Volume 9 | Article 834332

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Alderdice et al. Disparate Hypoxia Coral Gene Inventories
3.2.5 ‘General’ Stress Response
Both Hemicentin (HMCN1), which functions in promoting
extracellular adhesion during stress, and sacsin (SACS), which
acts as a heat shock protein co-chaperone, showed expansions of
proteins within their corresponding orthogroups. However,
these expansions did not appear to align to those of hypoxia
stress associated GOIs or coral species considered more stress-
tolerant e.g., P. lutea (Figure 2). Notably, HMCN1 demonstrated
the greatest copy number variation across species out of all the
GOIs with a range of 8 copies in M. cactus all the way up to 55
copies in A. millepora (Figure 2).
3.3 Genes Assigned to Multiple
Orthogroups Exhibit Large Copy
Number Differences
Out of the 12 cases of which multiple orthogroups were
annotated with the same gene name, SACS, MTNR, and GABR
showed a large degree of unequal expansion across the 24 coral
species (Tables S5–S7, respectively). Interestingly, more than
half of the SACS orthogroups were only present in a few coral
species, with few of the represented coral species found in
common between the orthogroups. For example, orthogroups
OG0023363, OG0022987, and OG0021814 contained a single
gene copy in 3 different coral species (Table S5). Within the GOI,
the number of orthogroups associated with a given gene name
varied considerably, with GABR assigned to the greatest number
of different orthogroups (48; Tables S3, S7).

In summary, a high level of disparity existed in the overall
proportions of expanding genes (many-to-one or many-to-
many) across the 24 coral genomes. Despite most coral species
possessing at least one gene copy of the key hypoxia response
genes considered, approximately a third of the GOIs exhibited
uneven expansions. In particular, P. lutea demonstrated the
greatest number of species-specific orthogroups out of all
considered coral species and consistently demonstrated a
greater number of gene copies for the majority of highly
disparate GOIs, including CA9, MTNR, USP, and ODH.
4 DISCUSSION

Despite the growing evidence implicating hypoxia as a key factor
contributing tomass coralmortality (Altieri et al., 2017; Suggett and
Smith, 2020; Altieri et al., 2021; Johnson et al., 2021a), surprisingly
little is known of the responsive gene set inventory corals possess to
respond to hypoxic events. Within gene inventories, variation in
gene copy number affect gene expression levels with subsequent
differences in the effectiveness of any given stress response (Gittins
et al., 2015; Żmieńko et al., 2014). Ultimately, such genomic
differences can contribute to the acclimation of marine
invertebrates to prevailing environments (Dorant et al., 2020).
Therefore, analysing copy number differences amongst corals
could provide insight into how some populations (Barshis et al.,
2013; Palumbi et al., 2014; Voolstra et al., 2020; Voolstra et al.,
2021b) or individual coral genotypes (Palumbi et al., 2014; Dixon
Frontiers in Marine Science | www.frontiersin.org 9
et al., 2015) with enhanced bleaching resilience exist. Here we
considered the extent to which the coral hypoxia stress gene
repertoire is variable across species by examining CNV from the
protein-coding genes of 24 coral genomes. We followed an
ortholog-based approach where proteins were assigned into
different categories according to their evolutionary relationship,
such as one-to-one and many-to-one ortholog pairwise
comparisons. Our meta-analysis of 24 coral genomes of species
from both the complex and robust clade complements previous
approaches (Voolstra et al., 2017; Cunning et al., 2018; Ying et al.,
2018; Shinzato et al., 2021). Our analysis demonstrates comparable
numbers of orthogroups that are present in all examined species, i.e.
putative coral ‘core’ proteomemembers, whether the comparison is
withonly 2 species (6,302 orthogroups;Voolstra et al., 2017) orwith
24 coral species as in our study (5,125 orthogroups). Among the
5,125 orthogroups identified here, we found 879 assigned as single
copy, similar to reports of comparisons between 18 Acropora spp.
gene sets from only the complex clade (818 orthogroups; Shinzato
et al., 2021), which can be considered ‘core’ coral genes that have
likely retained their function across species.

4.1 Differences in Protein Inventories
Between Species at Large
Evidence for high levels of genomic variation was observed. Firstly,
there was variation in the total number of genes that were
expanded. For example, the number of many-to-many
orthogroups was consistently and significantly higher in P. lutea
compared to all other genera/species, while a higher number of
many-to-one orthogroups was consistently found in A.
myriophthalma, M. cavernosa, and P. lutea (Figure 1A, Figure
S1, Data S2). In general, the greatest contrast was found between
those species that occupymassive (A.myriophthalma, P. lutea, and
M. cavernosa) and branching growth forms (remaining species;
Figure 1A). Interestingly, species exhibiting massive growth forms
have previously been reported to have higher bleaching resilience
(Marshall and Baird, 2000; Pratchett et al., 2013; Sutthacheep et al.,
2013). Secondly, the massive growth form species from the
complex clade, P. lutea, possessed the highest number of genes
in species-specific orthogroups compared to all other species
examined. This outcome is consistent with Cunning et al.
(2018), examining the genomic gene sets across four
scleractinians, where another ‘massive’ coral, Orbicella faveolata,
exhibited approximately twice the number of species-specific gene
families compared to those of the branching corals P. damicornis,
S. pistillata, and A. digitifera. Together, these results indicate
disparities in gene copy number in line with, but not limited to,
growth form. Furthermore, higher gene copies of different heat
shock proteins have been observed in coral species reported to
have greater bleaching resilience under thermal stress (Poli et al.,
2017; Ying et al., 2018). In these cases, sample site depth (Poli et al.,
2017) and species coral morphology (Ying et al., 2018), e.g.
massive or solitary versus branching growth forms, have
similarly been considered factors aligning with gene copy
variation. Therefore, the possibility that a higher gene copy
number of key genes could be recognisably aligned with specific
coral traits, warrants further investigation.
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4.2 Orthogroups of Hypoxia-Associated
Genes Exhibiting Stark Differences
Between Species
We examined copy number differences of 32 hypoxia-associated
genes thatwere compiledbasedon those 1) previously implicated in
the hypoxia response of corals (Acropora sp., see Alderdice et al.,
2021), 2) reported as being implicated in coral stress responses such
as heat or, 3) associatedwith hypoxia in othermodel organisms, e.g.
mammals (Table S2). The set of genes activated under varying
hypoxia levels can cover a diverse range of critical cellular processes
including glycolyticmetabolism, decelerated cell proliferation, ROS
management, and energy-saving alterations in catabolic processes
(Semenza, 2012; Yum et al., 2017). Such processes are also
important in the stability of the coral-microalgal symbiosis and
ultimate survival of the host (Rädecker et al., 2021) and therefore,
expansion of these gene families could be indicative of bleaching
resilience differences amongst coral taxa.

Amongst our GOIs, we found that those exhibiting little copy
number variationmostly grouped according to the robust-complex
split (for examples seeFigureS2),while approximately a thirdof the
GOIsdemonstrateduneven expansion across species (Figures 2,3).
We particularly focused on those that demonstrated independent
expansionsof>2 genecopies. Interestingly, for themajority of these
genes thehighest copynumberwas consistently found inP. lutea– a
species classified as ‘massive’ in growth form and commonly
Frontiers in Marine Science | www.frontiersin.org 10
reported to demonstrate relative greater stress tolerance to
bleaching (see Figure 4; Marshall and Baird, 2000; Pratchett et al.,
2013). Such genes included the HIF-targeted carbonic anhydrase
(CA9) which counteracts the accumulation of acidic metabolites to
avoid acidosis during anaerobic-dominated respiration (Swietach
et al., 2010; Parks et al., 2011; Zoccola et al., 2016; Osinga et al.,
2017). Both P. lutea and M. cavernosa exhibited the greatest
independent expansion of CA9 (Figures 2, 3). Interestingly,
carbonic anhydrases have also been associated with assisting acid-
base balance during coral calcification (Moya et al., 2008; Bertucci
et al., 2013; Goff et al., 2016) and studies have shown a greater
reliance on CA activity for coral calcification rates during dark
conditions (Goreau, 1960) when photosynthesis ceases and coral
tissues become hypoxic (Kühl et al., 1995). Therefore, possessing
higherCA9 gene copies may enhance a coral’s ability to buffer their
intracellular pH and ion exchange, facilitating night-time
calcification rates and better yet, surviving longer hypoxic events.

Two non-HIF targeted GOIs also with the greatest gene
expansion in P. lutea, MTNR and USP, function in mammals
and plants to alleviate cellular stress associated with ROS (Yan
et al., 2018; Chi et al., 2019; Buttar et al., 2020). ROS-handling
responses are of particular interest for understanding coral
stress tolerance as such oxidative defense strategies become
overwhelmed during coral bleaching (Weis, 2008; Rädecker
et al., 2021). Interestingly, genes assigned to one of the multiple
FIGURE 4 | Hypoxia stress gene set expansion may coincide with increased coral stress tolerance and bleaching resilience. Schematic illustration of hypoxia-stress
associated genes with > 2 independent expansions: melatonin receptors (MTNR), universal stress protein (USP), octopine dehydrogenase (ODH), and carbonic
anhydrase 9 (CA9). Genes represented by a thick blue frame were found expanded in Porites lutea, a species ascribed as more stress tolerant, in contrast to
Acropora species.
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MTNR orthogroups demonstrated one of the highest CNV
across species, ranging from the lowest counts almost
exclusively in Acropora species to the highest counts in P.
lutea, which independently harboured up to 30 gene copies
(Figures 2, 3C). Such an outcome could suggest Acropora
species examined here have an inherently lower capacity to
ROS scavenging. As for the USP orthogroups, P. lutea solely
exhibited gene expansion of the USP gene family (4 copies) in
one the orthogroups (Figure 3B). So far neither of the genes
have been extensively studied in corals. Although melatonin
receptors have been shown to increase during the night in
Acropora species in association with the circadian rhythm
(Hemond et al., 2014), as per their commonly described
function in other invertebrates (Vivien-Roels and Pévet,
1993). However, prolonged hypoxia can also alter circadian
activities as the circadian clock is dependent on changes in
metabolic rate (Mortola, 2004; Tjong et al., 2006) and therefore
melatonin receptor activity in coral is likely not only be bound
to the night cycle but also stimulated by a shift to
hypometabolism during hypoxia stress. To date, coral USPs
have been reported to be expressed under heat stress
(Bellantuono et al., 2012), and while we focus on their
potential ROS scavenging role, they may also conduct in
parallel more diverse roles in resistance to hypoxia stress.

Another non-HIF targeted GOI includes octopine
dehydrogenase (ODH), an opine dehydrogenase in the glucose-
opine anaerobic pathway, which exhibited an independent
expansion in P. lutea where gene copy number was at least
double that found in the other species (Figure 2). Opine
dehydrogenase (OpDH) rather than lactate dehydrogenase
(LDH) activity, often predominates sessile organisms as it
generates an end-product with much weaker acidity and so
maintains more stable levels of intracellular pH under
prolonged low O2 (Zammit, 1978). As previously mentioned,
corals have been identified to have greater activity levels of
different OpDHs compared to that of LDH under nighttime
hypoxia (Richmond and Murphy 2016; Linsmayer et al., 2020),
and so may be part of a key hypometabolic pathway in coral
during hypoxia stress. Though the types of dominant OpDHs may
differ between coral species (e.g., alanopine, octopine, or
strombine), our analysis suggests that a higher gene copy number
of OpDH may facilitate more stress-tolerant coral to reduce the
acidic products of anaerobic respiration and create more favourable
conditions for managing prolonged hypoxia. Characterising the
nature of these enzymes and determining whether OpDHs are part
of the HIF target gene network, or another, will be important next
steps for understanding the extent or capacity for corals to sustain a
continuous flux of ATP during low O2.

5 SUMMARY

Our study corroborates recent comparative ortholog analyses
that support the notion of a conserved coral core proteome on
the one hand and high levels of disparity between coral genomes,
even for species within the same genus, on the other hand. In
examining the genomic protein inventories of 24 coral species,
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we found that most species possess copies for key hypoxia
response genes. However, approximately a third of the
orthologs exhibited significant gene copy number differences
across species. Notably, such differences did not map onto
differences between robust and complex clade corals and were
rather species-specific. However, more sequenced genomes are
necessary to provide better insight at which phylogenetic level
such effects become pre-dominantly apparent, respectively
evolutionary emerge. Interestingly, the consistently highest
number of gene expansions were found in P. lutea, a coral
species that exhibits a massive growth form and is commonly
ascribed to exhibit greater stress tolerance. Our analyses suggest
that possessing expanded copy numbers of hypoxia stress genes
may be associated with increased stress tolerance, in particular
hypoxia. As such, the unevenly expanded hypoxia genes
presented here provide genes of interest to target in examining
or diagnosing coral (thermal) stress thresholds. Ideally, such
studies will examine the transcriptional response and
corresponding gene copy inventory to elucidate a link between
greater gene copy number and greater ability to respond to stress
through upregulation of gene expression.
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(2008). Carbonic Anhydrase in the Scleractinian Coral Stylophora Pistillata:
Characterization, Localization, and Role in Biomineralization. J. Biol. Chem.
283, 25475–25484. doi: 10.1074/jbc.M804726200

Murphy, J. W. A., and Richmond, R. H.. (2016). Changes To Coral Health And
Metabolic Activity Under Oxygen Deprivation. PeerJ 4, 160. doi: 10.7717/peerj.1956

Nelson, H. R., and Altieri, A. H. (2019). Oxygen: The Universal Currency on Coral
Reefs. Coral Reefs 38, 177–198. doi: 10.1007/s00338-019-01765-0

Osinga, R., Derksen-Hooijberg, M., Wijgerde, T., and Verreth, J. A. J. (2017).
Interactive Effects of Oxygen, Carbon Dioxide and Flow on Photosynthesis and
Respiration in the Scleractinian Coral Galaxea Fascicularis. J. Exp. Biol. 220,
2236–2242. doi: 10.1242/jeb.140509

Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N., and Bay, R. A. (2014).
Mechanisms of Reef Coral Resistance to Future Climate Change. 344, 895–
898. doi: 10.1126/science.1251336

Parks, S. K., Chiche, J., and Pouyssegur, J. (2011). pH Control Mechanisms of Tumor
Survival and Growth. J. Cell. Physiol. 226, 299–308. doi: 10.1002/jcp.22400

Poli, D., Fabbri, E., Goffredo, S., Airi, V., and Franzellitti, S. (2017). Physiological
Plasticity Related to Zonation Affects Hsp70 Expression in the Reef-Building Coral
Pocillopora Verrucosa. PloS One 12, e0171456. doi: 10.1371/journal.pone.0171456

Pollock, M. S., Clarke, L. M. J., and Dubé, M. G. (2007). The Effects of Hypoxia on
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