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Abstract: This paper discusses a novel approach to an EEG (electroencephalogram)-based driver
distraction classification by using brain connectivity estimators as features. Ten healthy volunteers
with more than one year of driving experience and an average age of 24.3 participated in a virtual
reality environment with two conditions, a simple math problem-solving task and a lane-keeping
task to mimic the distracted driving task and a non-distracted driving task, respectively. Independent
component analysis (ICA) was conducted on the selected epochs of six selected components relevant
to the frontal, central, parietal, occipital, left motor, and right motor areas. Granger–Geweke causality
(GGC), directed transfer function (DTF), partial directed coherence (PDC), and generalized partial
directed coherence (GPDC) brain connectivity estimators were used to calculate the connectivity
matrixes. These connectivity matrixes were used as features to train the support vector machine
(SVM) with the radial basis function (RBF) and classify the distracted and non-distracted driving tasks.
GGC, DTF, PDC, and GPDC connectivity estimators yielded the classification accuracies of 82.27%,
70.02%, 86.19%, and 80.95%, respectively. Further analysis of the PDC connectivity estimator was
conducted to determine the best window to differentiate between the distracted and non-distracted
driving tasks. This study suggests that the PDC connectivity estimator can yield better classification
accuracy for driver distractions.

Keywords: distracted driving; brain connectivity; GGC; DTF; PDC; GPDC; driver distraction
classification; PSD; SVM

1. Introduction

The driver must keep full attention to control the vehicle as the driving task requires
the driver’s full attention [1]. Statistics given by the World Health Organization indi-
cate that 1.3 million people die per year due to roadside accidents worldwide. In the
present day, driver distractions have become a huge concern among commuters on the
road [2–4]. A study found that 6.7% of middle-aged drivers and 8.8% of elderly drivers
engage in distracting activities that could lead to a high risk of accidents [1]. Distractions
can be classified as the devices or activities that lead the driver’s attention away from the
driving task [5]. Primarily, driver distractions can be classified into four main categories.
(i) Auditory distraction: listening to something unrelated to driving while driving is con-
sidered an auditory distraction [6]; (ii) visual distraction: glancing at something other than
the road while driving is considered a visual distraction [5,7]; (iii) cognitive distraction:
thinking about things unrelated to the driving task while driving is classified as a cognitive
distraction [5]; and (iv) manual distraction: participating in activities unrelated to driving
while driving is classified as a manual distraction [5]. These above-mentioned categories
can interact together to create distractions. The aforementioned distractions can result in
injuries, property damage, and sometimes fatalities. Numerous efforts have been taken
to detect driver distractions promptly to develop a reliable system to support the drivers
accordingly [8,9].
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Prominent techniques to detect driver distractions are monitoring the driver’s behavior
using a camera and image processing technique or monitoring the brain’s activity using
an electroencephalogram (EEG) [10–15]. When monitoring the driver’s behavior, image
processing techniques are used to detect either the eye movement or the driver’s activities
using a camera. Physiological assessment of facial or eye movements using captured
images or video recordings of the driver’s face may lead to privacy issues compared
to the physiological measurement methods [16]. Furthermore, an EEG [17,18] directly
measures the neurophysiological signals from the source, and it can easily be correlated
with distractions [19–22], driver fatigue [13,23], and drowsiness [24].

When designing an EEG-based classification countermeasure system, EEG signal
measurement and preprocessing, feature extraction, and classification modules are essen-
tial. During the EEG signal measurement and preprocessing phase, data acquisition and
the initial preprocessing are conducted. The popular feature extraction method in brain
monitoring is based on frequency analysis such as power spectral density and fast Fourier
transform. Different EEG frequency bands were also used in mental fatigue classifica-
tion [25]. An automatic EEG classification of EEG for dementia stages was investigated by
using wavelet analysis to construct five EEG bands [26]. In event-related desynchroniza-
tion/synchronization (ERD/ERS)-based BCI, it used mu rhythm (9–13 Hz) as a feature [27].
Power spectral density shows the strength of each frequency [28]. To obtain more useful
features, it is recommended to consider the relationships between EEG source/sensor
signals in brain connectivity [29], in which brain connectivity estimators can show the
relations between each selected brain area. Thus, this paper proposes to use the brain
connectivity method as a feature extractor in the EEG-based classification of distracted and
non-distracted driving tasks.

Brain connectivity estimators can describe the organization of the brain and pat-
terns of links. Brain connectivity can be divided into three main categories. (i) Structural
connectivity [30], where anatomical connections are described. (ii) Functional brain con-
nectivity [31,32], where statistical dependence patterns are captured. (iii) Effective brain
connectivity [33] describes the influence of one neural system over another.

Functional brain connectivity can be further divided into two subcategories: time
domain functional brain connectivity and frequency domain functional brain connectiv-
ity [34]. One of the most popular time domain functional brain connectivity estimator
methods is the Granger–Geweke causality (GGC) connectivity estimation method [35],
whereas for the frequency domain directed transfer function (DTF) [36], partial directed
coherence (PDC) [37,38], and generalized partial directed coherence (GPDC) [39] are some
of the most commonly used brain connectivity estimators [40]. In our previous study [41],
we were able to conclude by using the Student t-test and the Anova test that there is a
difference between the connectivity values of the distracted driving and non-distracted
driving tasks for the GGC, PDC, and DTF connectivity estimators. In this study, we were
able to conclude that the PDC has the highest classification accuracy. GPDC is a modified
variant of PDC.

When the classification modules are considered, artificial intelligence (AI) plays an
important role. Artificial intelligence (AI) is a method to mimic human decision-making
procedures. Machine learning is an AI type where the software application is capable
of making accurate predictions without being told to [42]. Prominent machine learning
subcategories are supervised and unsupervised learning [43]. Due to being one of the better
performing linear classifiers and having low computational complexity, the support vector
machine (SVM) is one of the popular supervised learning models. SVM can be used to
develop a classification prediction model using input and output data [17,44]. Support vec-
tor machine classifications can be subcategorized into two main categories, such as binary
classification and multiclass classification [45], where binary support vector machines can
be further categorized as binary linear classification and binary kernel classification [46].

The main contribution of this paper is the novel approach of using brain connectiv-
ity [29] estimators as features to classify distracted driving and non-distracted driving
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tasks, which have not been explored previously for the driver distraction classification to
improve the classification accuracy. This paper will investigate a few connectivity analysis
estimators as features for classification.

The structure of the paper is as follows: Section 2, materials and the methods, covers
the general structure of the experiment, data collection, experiment conditions, EEG data
processing, connectivity analysis, and classification. In Section 3 are the results of the
independent component analysis, connectivity analysis results, and classification accuracy
results. Section 4 discusses the results, and Section 5 follows up with the study’s conclusion.

2. Materials and Methods
2.1. General Structure

The general structure of the study is shown in Figure 1. In the initial stage, driver
distraction data were collected from 10 participants. Data were collected using 32 EEG
channels and four 15 min sessions per participant [23]. In the next stage of the study,
collected data were filtered and downsampled before the necessary event-related epoch
extractions. Next, an independent component analysis (ICA) was conducted on the neces-
sary data. Furthermore, relevant components were selected, and the connectivity analysis
was conducted for each required condition in the EEG band from 1 Hz to 20 Hz. In the
final stage, both distracted and non-distracted driver data were divided into a test set and
a training set at a ratio of 50:50. Then support vector machine (SVM) model with radial
basis function (RBF) kernel was trained using the training data to test the classification of
the testing data.
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Figure 1. Graphical description of the analysis for the study.

2.2. Data Collection

The experiment for the data collection was conducted using 10 healthy participants.
The average age of the participants was 24.3 (SD 2.05), with a minimum driving experience
of 1 year. Furthermore, male to female ratio was 9:1 for this study, and the data were
collected from 1 pm to 4 pm on a given day. The study was conducted with the recommen-
dations and the accordance of Taipei Veterans General Hospital. Taipei Veterans General
Hospital approved the protocol for the study, and all subjects gave written consent. All
the participants had a normal or corrected vision and were forbidden to take any drugs,
caffeine, or alcohol before the experiment. Two sessions of 15 min were used as training
sessions for each participant to become familiar with the environment, the lane-keeping
task (non-distracted driver data), and the problem-solving task (distracted driver data).

A dynamic motion simulator with a simulation environment was used to obtain more
realistic data. The motion simulator was a real car with a 3D simulated environment
mounted on a 6-DOF motion platform. As shown in Figures 2 and 3, simulation scenes
were developed using World Tool Kit (WTK) library. Six screens were used, with the
frontal field of view of 206◦ and the backfield of view of 40◦. The size of each screen had a
diagonal measuring of 2.6 m–3.75 m. In the simulation environment, the car was cruising
at a speed of 100 km/h in the third lane of a four-lane highway. Car speed being fixed
at 100 km/h is a limitation in this study. Two experimental conditions were introduced
randomly throughout the sessions to collect distracted data and non-distracted driver data.
A lane-keeping task was introduced to collect the non-distracted driver data, whereas a
math problem-solving task was introduced to collect the distracted driver data.
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Non-distracted driver data were collected by using the car’s condition gradually
drifting randomly towards the right or the left side of the designated lane (lane 3). The
participant had to move the car back to the designated lane. To collect the distracting data,
a simple math equation appeared on the screen. The participant had to confirm whether the
equation is correct or incorrect by pressing the designated buttons on the steering wheel.
Correct to incorrect equation appearance rate was 50:50, and the complexity of the equation
remained the same throughout the experiment. The right-side button of the steering wheel
was allocated for the correct answers, and the left-side button on the steering wheel was
assigned for the incorrect answers. The 6-s to 8-s intervals were introduced between the
two tasks [21]. In this study, we selected only the data with correct responses.

2.3. EEG Data Acquisition and Preprocessing

A modified 10/20 BCI system with 32 Ag/AgCl EEG channels with the NuAmps
Express system was used for the EEG data acquisition. A 16-bit quantization at a frequency
of 500 Hz was used for the data collection. The use of the conductive gel helps the
impedance to be under 10 Kohm. Channel locations and the raw EEG data sample are
shown in Figure 4. The 32 channels used in this study include FP1, FP2, F8, F4, Fz, F3, F7,
FC4, FCz, FC3, C4, Cz, C3, CP4, CPz, CP3, P4, Pz, P3, T6, T5, T8, O2, Oz, O1, F8, F7, TP8,
TP7, A1, and A2.
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MATLAB’s EEGLAB extension was used for the preprocessing of the data. All the
EEG data collected from the participants were downsampled to 250 Hz. A 0.5 Hz high pass
filter was used to remove the DC drift and the noise. A 50 Hz low pass filter was used.
To obtain the 0.5 Hz low pass filter and the 50 Hz high pass filter, the pop_eegfiltnew()
function with the input parameters of lower edge 0.5, the higher edge of 50, and second
order filter was used. Relevant EEG data for the Math problem-solving task and the Lane
keeping task were extracted from the continuous EEG data. Reference A1 and A2 were
removed before the analysis. Furthermore, channels FP1 and FP2 were removed to negate
the effect of blinking. Figure 4 shows the used channels in this study.

2.4. Preprocessing: Independent Component Analysis

Independent component analysis (ICA) was conducted to remove the artifact further
and select the required component for the brain regions [48]. Independent components can
be determined as follows

S = WX (1)

where S is the source activity, W is the weight matrix, and X is data in the original space.
EEGLAB’s RUNICA plugin was used to decompose data using the Infomax-ICA algo-
rithm [49]. To cover the activities from the frontal, central, parietal, occipital, left, and right
motor areas, in this study, brain components covering frontal, central, parietal, occipital,
left motor, and right motor were selected. EEGLAB’s independent component label plugin
was used first to classify the components. After that, with the help of an expert in ICA,
relevant brain components were selected. ICA component label plugin failed to classify a
proper right motor component. Hence, participant 7 was removed from the study analysis.

2.5. Feature Extractions: Power Spectral Density Analysis

After removing the noise and artifacts, EEG signals of the selected six components
were used to estimate the power spectral density of the signal [28]. Spectral density was
calculated by using the bias estimation of the autocorrelation sequence; in other words, the
periodogram. The following equation can be used to determine the periodogram.

p̂( f ) =
∆t
N

∣∣∣∑N−1
n=0 xne−j2π f ∆tn

∣∣∣2;−1
2

∆t < f ≤ 1
2

∆t (2)

where single xn is sampled at f at a unit time and ∆t is the sampling interval. EEG data
containing the six components were used separately to calculate the power spectral density
using the periodogram function. This yields 1542 features for each epoch of distracted and
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non-distracted driving. The data set was divided into training and testing data sets with a
ratio of 50:50 before the classification steps.

2.6. Feature Extractions: Brain Connectivity Analysis Structure

Brain connectivity analysis can be divided into three main categories. First, the
model order selection, then the multivariate autoregressive model (MVAR), and finally, the
connectivity estimation.

Connectivity estimation heavily depends on the MVAR model reliability. Model order
and the epoch length have a considerable effect in MVAR modeling [50]. Non-distracted
epochs in this study have a length of 1200 ms, and for distracted, it is 1600 ms. In MVAR
modeling, it is crucial to select suitable sliding windows as it will not lose any data while
processing. Furthermore, using higher or lower time duration can cause the connectivity
analysis to be redundant [51]. To calculate the optimal MVAR model, EEG epoch was
divided into steps with a length of 400 ms and an overlap of 50 ms. Overlap time windows
make the estimation model smooth [52]. Furthermore, longer time steps will lose the
temporal dynamics [52].

To calculate the MVAR model, model order should be calculated. To estimate the
optimal model order EEGLAB’s Source Information Toolbox (SIFT) was used [53]. Bayesian
information criterion (BIC) (Schwarz–Bayes criterion (SBC)), Akaike’s information criterion
(AIC), Hannan–Quinn criterion (HQ), and the Akaike’s final prediction error criterion
(FPE) with the elbow of the mean curve and the min of mean curve methods were used.
Model order range from 1 to 30 was selected to estimate the optimal model order for the
given epoch.

The multivariate autoregressive model is the base of brain connectivity estimators
such as Granger–Geweke causality (GGC), directed transfer function (DTF), partial directed
coherence (PDC), generalized partial directed coherence (GPDC). The following equation
can be used for the AR model interpretation.

X(t) = ∑p
j=1 A(j)X(t− j) + E(t) (3)

where sample data X(t) is given by the sum of previous p samples from the set of k signal
weighted model coefficient A and random E value, where p is the model order. Model
order p can be estimated by using the Bayesian information criterion (BIC) (Schwarz–Bayes
criterion (SBC)), Akaike’s information criterion (AIC), Hannan–Quinn criterion (HQ), and
the Akaike’s final prediction error criterion (FPE).

Granger–Geweke causality index was used as a time domain connectivity estimator.
GGC index (GCI) can be calculated by using the following equation.

GCIi→j(t) = ln
(

Vi,n(t)
Vi,n−1(t)

)
(4)

where Vi,n(t), Vi,n−1(t) denotes the residual variance for n, n − 1 dimensional MVAR; i and
j are the channels by which GCI is calculated.

The directed transfer function (DTF) is a frequency domain brain connectivity estima-
tor. DTF connectivity values can be estimated by using the function described in (3). This
function explains the influence of channel j on channel i.

γ2
ij( f ) =

∣∣Hij( f )
∣∣2

∑k
m=1|Him( f )|2

(5)

where elements of the multivariate autoregression model transfer function matrix are
denoted as Hij( f ).
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Partial directed coherence (PDC) can be used for the detection of the directed and
cascade flows [54]. PDC function describes the influence of channel i on channel j. PDC
can be determined as follows

Pij( f ) =
Aij( f )√

a∗j ( f )aj( f )
(6)

where Aij( f ) denotes an element from the Fourier transform matrix from the multivariate
autoregression model coefficient A(t) and jth column of A( f ) is denoted as aj.

gPDCij( f ) =

∣∣∣∣∣∣∣∣
1
σ Aij( f )√

∑m
i=1

1
σ2

i

∣∣Aij( f )
∣∣2
∣∣∣∣∣∣∣∣

2 (7)

In this equation Aij( f ) yields an element from the Fourier transform matrix from the
multivariate autoregression model coefficient A(t). Furthermore, σ2

i is the residual variance
of the variable i.

2.7. Classification and Optimization

Each connectivity estimator matrix was divided into training and testing data sets
with a ratio of 50:50. Source, target, frequency, and MVAR model time steps were used as
the classification features. Furthermore, in the power spectral density analysis, frequency
features of distracted and non-distracted driving were divided into training and testing
data sets with a ratio of 50:50.

Radial basis function (RBF) SVM or Gaussian SVM can be determined as follows.

K(x1, x2) = exp
(
‖x1 − x2‖2

2σ2

)
(8)

where x1, x2 denotes the data points, and σ indicates the width of the kernel. Bayesian opti-
mization was used with the expected improvement plus acquisition function to optimize
the training model. Furthermore, 30 object evaluations were considered in the optimization
process [55]. Hyperparameters were tuned by minimizing the five-fold cross-validation
loss using the Bayesian optimizer and expected improvement plus acquisition function.

3. Results
3.1. Independent Component Analysis

Independent component analysis (ICA) was used on both extracted epochs of dis-
tracted and non-distracted driving. Twenty-eight independent components were formed
from the twenty-eight channels. Figure 5 shows the non-distracted driving output of the
ICA for a participant, whereas Figure 6 shows the distracted driving output of the ICA for
the same participant.

EEGLAB’s ICLabel tool was first used to determine the components to remove
the noisy components. EEGLAB’s ICLabel tool initially classified the formed com-
ponents as brain, muscle, eye, and other components. The output of a participant’s
independent component label toolbox is shown in Figures 7 and 8. It shows the filter
output for the same participant’s non-distracted and distracted driving tasks shown in
Figures 5 and 6, respectively.

Brain components were selected from the ICA analysis, and the noise components were
removed. A previous study [47] showed that the frontal, central, parietal, left motor and
right motor areas are more useful in driver distraction detection. Hence, with the expert’s
help, relevant components for the frontal, central, parietal, left motor, and right motor were
selected. Selected independent components of non-distracted and distracted tasks for a
participant are shown in Figures 9 and 10. ICs 2, 3, 4, 8, 12, and 17 in Figures 6 and 8 are
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equivalent to ICs 1, 2, 3, 4, 5, and 6 in Figure 10, respectively. ICs 2, 3, 6, 7, 10, and 18 in
Figures 5 and 7 are equivalent to ICs 1, 2, 3, 4, 5, and 6 in Figure 9, respectively.
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3.2. Model Order Calculation

SIFT was used to calculate the model order. Figure 11 shows the elbow of the mean
curve plot for participant 1. All information criteria (SBC, AIC, FPE, HQ) yield the model
of 5 when the elbow of the mean curve method is selected.

The mean curve minimum method with SBC, AIC, FPE, and HQ information crite-
ria was used to find the optimal model order for each participant’s distracted and non-
distracted driving tasks. Table 1 shows the summary of model order selection for the
distracted and non-distracted driving tasks for all the participants. For both scenarios, the
SBC elbow of the mean curve and the min of the mean curve yielded the model order
of five. In comparison, the AIC elbow of the mean curve for the distracted driving and
non-distracted driving task yielded the model order of five, and the mean curve minimum
for both scenarios yielded the model order of nine. For both the distracted driving scenario
and the non-distracted driving scenario, the FPE elbow of the mean curve gave the model
order of five, and the min of the mean curve yielded the model order of nine for both
scenarios. For both the distracted and non-distracted driving scenarios, the HQ elbow
of the mean curve yielded the model order of five, and the minimum of the mean curve
yielded eight. In this study, for the multivariate auto-aggressive model calculation model
order, five was used.
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Figure 11. Model order selection elbow of the mean curve method for a participant.

Table 1. Model order selection summary.

Criteria Distracted Driving Non-Distracted Driving

Elbow Min Elbow Min

SBC 5 5 5 5
AIC 5 9 5 9
FPE 5 9 5 9
HQ 5 8 5 8

After the model order was determined, the Granger–Geweke causality connectivity
estimator, partial directed coherence connectivity estimator, generalized partial directed
coherence connectivity estimator, and directed transfer function connectivity estimator
connectivity matrix were used to calculate the connectivity matrixes for each epoch. The
final connectivity matrix for each estimator has the dimensions of 6 × 6 × 20 × 17 for
non-distracted driving and 6 × 6 × 20 × 25 for distracted driving, whereas it represents the
source × target × frequency × time steps. Source and target represent the six components,
frontal, central, parietal, occipital, right motor, and left motor. This study considered
frequencies from 1 Hz to 20 Hz for the binary classification between the distracted and
non-distracted driving tasks.

3.3. Classification

MATLAB’s fitcsvm function with the RBF kernel was used to train and classify the
model. The inputs for this function are EEG connectivity features and SVM parameters,
which require optimization. Output from this function yields the optimized SVM model.
Data preparation for the SVM function is as follows, distracted and non-distracted epochs
were separated for each subject, and for each subject, epochs were divided in the ratio
of 50:50 as the training and testing data set. The training data were mixed in order from
different participants before feeding them into the SVM training function. Furthermore,
30 object evaluations with Bayesian optimization were used to find the optimized training
model. Figure 12 shows the minimum objective for each function evaluation from 1 to
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30 function evaluations for the PDC connectivity estimator. Each evaluation minimizes the
five-fold cross-validation loss by tuning the hyperparameters automatically.
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The object function model for the PDC connectivity estimator is shown in Figure 12.
Furthermore, box values and sigma values for each estimated object value are shown in
Figure 13. The selected optimized box value and the sigma value are used as the values for
the parameters for box constraint and the kernel scale, respectively.
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After the trained model was optimized for each feature acquisition method, the testing
data set was used to calculate the classification accuracy of each relevant SVM model.
Classification accuracy results for the testing data set with the optimal SVM model are
shown in Table 2.

Table 2. Classification accuracy summary.

Features for the Classification Classification Accuracy

Power Spectral Analysis 74.05%
DTF 70.02%
GGC 82.27%
PDC 86.19%

GPDC 80.95%

DTF connectivity estimator yielded a 70.02% classification accuracy for distracted and
non-distracted driving. Whereas GGC yielded 82.17%, PDC yielded 86.19%, and GPDC
yielded 80.95%. Furthermore, the features using the conventional method of EEG data
analysis, in other words, power spectral density (PSD), yielded a classification accuracy
of 74.05%.

The highest classification accuracy was obtained using the PDC connectivity estimator.
Hence, the PDC connectivity estimator was selected for further analysis. To determine
the best time window to separate the distracted and non-distracted driving tasks, features
containing connectivity matrixes for each time window were used to train and optimize
an SVM model with an RBF kernel. Figure 14 shows the classification accuracies for the
17 time windows.
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Figure 14. Classification accuracies for PDC time windows.

4. Discussion

This study aims to investigate and compare the brain connectivity estimators as the
features to classify distracted vs. non-distracted driving. To mimic distracted driving, a
math problem-solving task was introduced, and to mimic the driving task, a lane-keeping
task was introduced in the experiment. Directed transfer function (DTF), Granger–Geweke
causality (GGC), partial directed coherence (PDC), and generalized partial directed coher-
ence (GPDC) connectivity estimators were considered in our study.

Connectivity matrixes for the distracted and non-distracted driving tasks containing
the frontal, parietal, central, left motor, and right motor occipital independent components
were estimated. After that, the SVM with an RBF kernel was used for the classification
of the distracted and non-distracted driving tasks. The highest classification accuracy



Sensors 2022, 22, 6230 14 of 18

obtained when using the PDC brain connectivity was 86.19%. Furthermore, features
obtained through GGC and GPDC connectivity estimators yielded a classification accuracy
of 82.27% and 80.95%, respectively. Moreover, features obtained by the conventional
method of EEG data analysis, power spectral density (PSD), yielded the classification
accuracy of 74.05%. With the above results, it is safe to assume that the features obtained
using PDC, GGC, and GPDC connectivity estimators have a better classification accuracy
than the features obtained through the power spectral density analysis for this given data
set. However, features obtained through the DTF connectivity estimator have a lower
classification accuracy than those of the PSD. Table 2 shows the classification accuracy
summary for each type of feature. As shown in Figure 14, the highest classification accuracy
of 73.19% was obtained between distracted and non-distracted driving during the 200 ms
of the onset stimulus and 600 ms of the onset stimulus, whereas the lowest accuracy of
62.62% was obtained during the 700 ms and 1100 ms window step. Hence, we can safely
assume that 200 ms to 600 ms of the stimulus is the best time to classify the distracted and
non-distracted driving tasks for this given data set.

From the above conclusions, the time window of 200 ms to 600 ms was further
analyzed. Connectivity values between each component were compared between the
distracted and non-distracted driving tasks. Connectivity estimations between distracted
and non-distracted driving are shown in Figures 15 and 16. For visualization purposes, an
average of nine participants of the connectivity matrixes was taken. Then the average was
displayed for a given time window in Figures 15 and 16 to have a general idea of the brain
connectivity throughout the distracted and non-distracted driving scenarios. Figure 15
shows the important brain connections obtained by using the PDC connectivity estimator
for the distracted driving of a participant, where IC1 is the central component, IC2 is the
parietal component, IC3 is the occipital component, and IC4 is the frontal component.
Connectivity between the parietal and occipital components during distracted driving is
the highest for the given data set, whereas connectivity between the central and frontal
areas is the second highest. Furthermore, connectivity power between the central and
occipital areas is the third highest, and connectivity power between the parietal and frontal
areas is the fourth.
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Figure 15. Brain connectivity visualization for the period window of 200 ms–600 ms for distracted
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The non-distracted driving task connectivity brain component map for a participant
is shown in Figure 16. IC components are similar to the above-mentioned components.
During the distracted driving scenario, high connectivity can be seen between the central
and occipital components. Moderate connectivity power can be seen between the central
and frontal components compared to the distracted driving scenario at the given time
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window of 200 ms to 600 ms of the onset stimulus while using the PDC connectivity
estimator for the selected participant.
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In this study, brain connectivity was used to investigate driver distractions. The above
results indicate how the brain networks become dense when the driver is distracted. When
the driver is distracted, brain connections between multiple regions become significant.
Moreover, compared to the non-distracted driving scenario, distracted driving causes more
correlations between numerous regions of the brain. Hence, the use of brain connectivity
estimators to differentiate between distracted and non-distracted driving is an effective
method. Furthermore, the partial directed coherence brain connectivity estimator yields a
better classification accuracy than the conventional method of power spectral analysis.

5. Conclusions

In this study, ten participants who participated in a simulated driving experiment with
two experimental conditions were analyzed. A math problem-solving task was considered
a distracted driving scenario, and the lane-keeping task was considered a non-distracted
driving scenario. Brain connectivity estimators were used as the features for the SVM
classifier. The highest accuracy of 86.19% was obtained when using the PDC connectivity
estimators as the features. Moreover, this study compared different brain connectivity
methods and the conventional EEG features based on PSD.

For the application in driver distraction detection methods, this paper offers a unique
insight into using brain connectivity estimators as features for the classification. Results of
this study suggest that to detect driver distractions the partial directed coherence (PDC)
connectivity estimator is better suited as features compared to the direct transfer func-
tion (DTF), Granger–Geweke causality (GGC), and generalised partial directed coherence
(GPDC) connectivity estimators.

The main challenges in detecting driver distractions in real time would be choosing
the optimal method to acquire features and using the optimal number of EEG channels
for the detection. In this paper, the optimal method for driver distraction is proposed,
and selecting the optimal number of EEG channels remains challenging. These results
are expected to provide a foundation to develop driver distraction detection methods in a
real-time environment to reduce the roadside fatalities caused by distracted drivers.
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