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ABSTRACT Motor imagery-based brain-computer interface (MI-BCI) currently represents a new trend in
rehabilitation. However, individual differences in the responsive frequency bands and a poor understanding of
the communication between the ipsilesional motor areas and other regions limit the use of MI-BCI therapy.
Objective: Bimanual training has recently attracted attention as it achieves better outcomes as compared
to repetitive one-handed training. This study compared the effects of three MI tasks with different visual
feedback. Methods: Fourteen healthy subjects performed single hand motor imagery tasks while watching
single static hand (traditional MI), single hand with rotation movement (rmMI), and bimanual coordination
with a hand pedal exerciser (bcMI). Functional connectivity is estimated by Transfer Entropy (TE) analysis
for brain information flow. Results: Brain connectivity of conducting three MI tasks showed that the bcMI
demonstrated increased communications from the parietal to the bilateral prefrontal areas and increased con-
tralateral connections between motor-related zones and spatial processing regions. Discussion/Conclusion:
The results revealed bimanual coordination operation events increased spatial information andmotor planning
under the motor imagery task. And the proposed bimanual coordinationMI-BCI (bcMI-BCI) can also achieve
the effect of traditional motor imagery tasks and promotes more effective connections with different brain
regions to better integrate motor-cortex functions for aiding the development of more effective MI-BCI
therapy.

INDEX TERMS Bimanual coordination, motor imagery, brain connectivity.
Clinical and Translational Impact Statement The proposed bcMI-BCI provides more effective connections
with different brain areas and integrates motor-cortex functions to promote motor imagery rehabilitation for
patients’ impairment.

I. INTRODUCTION
Recent studies have reached a consensus on the feasibility
of motor imagery-based brain-computer interface (MI-BCI)
for stroke rehabilitation applications, especially in upper limb
rehabilitation [1]–[3]. Motor imagery is the dynamic cog-
nitive state achieved by rehearsing a motor action in the
working memory without any overt motor output. In tra-
ditional MI-BCI therapy, patients perform one hand motor
imagery tasks through electroencephalography signals (Mu

and Beta sensorimotor rhythms, SMR) that communicate
between the human brain and a computer to provide sensory
feedback [1] or control the assistance device (e.g., exoskele-
ton) for muscle strength training [4], [5]. Patients exhibited
significantly improved the upper limb function [6], motion-
related neural activity in the ipsilesional site [7]–[9], and
brain connectivity of the motor cortex [10] with MI-BCI
therapy. Several researchers have also noted neuroplastic-
ity changes and structural reorganization in the brain of
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stroke patients [11]–[13] after a period of training with
MI-BCI. MI-BCI is known to repair and restore motor
functions [6], [10], [11], [14], [15] by inducing changes
in brain activity initiated by attempted movements of the
affected hand, promoting motor recovery of remaining neu-
rons and cortex reorganization in the ipsilesional motor areas.
Nevertheless, some studies note that it can have a negative
impact on motion recovery due to the plasticity of activated
ipsilateral motion projections, competitive interactions, and
compensatory movements after stroke [16]–[19]. As bilateral
motion facilitates both spatial and time coordination [20],
bilateral arm training (BAT) has been recently used to rec-
oncile these problems. Bilateral arm training is known to
enable (a) motor cortex disinhibition of the injured hemi-
sphere, (b) enhanced paths from the contralesional region to
recruitment, and (c) upregulation of descendingmotor neuron
commands to propriospinal neurons [21], [22]. Although the
effects of BAT are still debated [23], [24], few studies have
studied the bimanual MI [25], [26] and its effect on the
patients with movement deficits [27]–[29]. Bimanual move-
ment was associated with power suppression in alpha, beta
and gamma spectral bands. Even the activation pattern of
bi-manual MI is difference for these patients, it still can be
accurately classified and be used for restoration of motor
function of highly disabled patients.

A major challenge that limits the use of MI-BCI therapy
in stroke patients is the use of channel-based information
to discriminate MI patterns. This is because the respon-
sive frequency bands of MI-BCI are not consistent between
subjects and within subjects [30], and main MI-BCI fea-
tures and alpha (mu) rhythm event-related desynchronization
(ERD)/synchronization (ERS) responses may be altered after
stroke [31]. This instability is complex as the main ERD/ERS
features for MI-BCI could occur in different experiment
time intervals, on different frequency bands, and in different
brain areas. Even though some machine learning approaches
[32]–[36] can improve classification accuracy [37], [38],
these characteristics make it difficult to extract EEG features
for MI-BCI training [39], [40] and subsequent classification.
A promising approach to handle this limitation is to con-
sider the relationship between sources of brain signal using
brain connectivity method that offers linchpin information
about neural interactions related to MI and identifies reliable
biomarkers in stroke rehabilitation to assess motor recovery
[2], [41]–[43].

Although MI-BCI can improve the movement function
of the ipsilesional motor cortex, brain connectivity analysis
can provide more clear evidence to support the notion that
performing the unilateral motor imagery tasks benefits the
connections between the ipsilesional motor region and other
brain areas.

In this study, we designed a bimanual coordination
MI-BCI (bcMI-BCI) that incorporates the BAT concept to
study brain connectivity when performing unilateral motor
imagery tasks. In addition, we compare bcMI-BCI with
another two conditions: traditional signal static hand and

single hand with rotation MI-BCI for the differences in brain
connectivity, analyzed by transfer entropy (TE) [44], which
naturally merges directional and dynamic information.

This study will compare three different motor imagery
tasks: (a) Traditional MI (tMI) (b) Rotation Movement
MI (rmMI) and, (c) Bimanual Coordination MI (bcMI). For
the results of this study, we would approve the effect of
bcMI and rmMI by comparing with tMI using machine learn-
ing algorithms: common spatial pattern (CSP) for feature
extraction and linear discriminant analysis (LDA) for MI
classification. Furthermore, this study aims to explore brain
connectivity while performing ipsilateral motor imagery
tasks in tMI, rmMI, and bcMI. We hypothesized that
brain connectivity analysis would reveal that the proposed
novel rehabilitation approach of bimanual and rotated motor
imagery effectively reorganizes neurons for motor function
and reconnects other brain regions to achieve complete hand
coordination function.

II. MATERIALS AND METHODS
A. PARTICIPANTS
Fourteen healthy adults were recruited to participate the
experiments (mean age 23.2 years, range 21-27 years). All
subjects are right-handed with no mental or medical illnesses
and no previous experience with MI-BCI. Before the exper-
iment, they signed a consent form indicating that they have
a clear understanding of the experimental protocol, which
was approved by the Research Ethics Committee for Human
Subject Protection, National Chiao Tung University.

FIGURE 1. Three visual feedbacks for motor imagery tasks and the
experimental paradigm. (a) Traditional MI task (tMI): assigned hand is
static, (b) Rotation Movement MI task (rmMI): assigned hand performs
the rotation movement in a forward fashion, (c) Bimanual Coordination
MI task (bcMI): two hands perform the rotation movement in a forward
fashion. The orange arrow points to the assigned hand for the motor
imagery task. (d) The experimental procedure was divided into three
stages, including the fixation stage (-2∼0 s), motor imagery stage
(0∼10 s), and resting stage (10∼13 s).

B. EXPERIMENTAL DESIGN AND PROCEDURE
Three types of motor imagery tasks (as Fig. 1a-c) were
designed to investigate differences in brain connectivity,
including the (1) Traditional MI task (tMI), (2) Rotation
Movement MI task (rmMI), and (3) Bimanual Coordination
MI task (bcMI). Asmotor imagery and observation recruit the
same brain regions, the subjects were asked to watch a video
of the three conditions. In the tMI task, subjects performed
motor imagery by imagining the rotation movement of the
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assigned hand while watching a video of the designated
imagery hand statically holding one side of the hand pedal
exerciser. The designated hand is indicated by an orange
arrow in the middle of the exerciser. In the rmMI task, sub-
jects imagined rotation movement of the assigned hand while
watching a video of the designated imagery hand holding one
pedal of the exerciser and performing rotation movements
with it. In the bcMI task, subjects performed motor imagery
by imagining the rotation movement of only the assigned
hand while watching the video showing both hands holding
each pedal of the exerciser to perform rotation movements.
The assigned single hand was indicated by the yellow arrow
in the video.

During the MI experiment, all participants sat in an elec-
trically shielded cabin watching a 24’’ monitor from a 1-m
distance. As shown in Fig. 1d, each trial started with the fixa-
tion stage (−2 to 0 sec) where the participants were instructed
to look an image of a mini hand pedal exerciser in all three
MI conditions. Then, a specific video of the MI tasks, played
based on the MI condition of the trial, lasted for ten seconds
and served as the motor imagery stage (0 to 10 s). During
this motor imagery stage, subjects must imagine the rotation
movement of single-hand assigned by the orange arrow in
the top middle of the exerciser. Left and right arrows are
randomly presented with the same probability. Then, a blank
scenery screen is shown for three seconds as the resting
stage (10 to 13s). The duration of each trial is 13 seconds
(as Fig. 1d). For the three MI conditions, twenty trials are
performed for each hand imagery and there were a total of
120 trials. The participants were instructed to remain still
during the trial to reduce noise in the recorded EEG signal.

C. EEG ACQUISITION AND SIGNAL PREPROCESSING
EEG data were acquired with a 32 Ag/AgCl electrode
cap referenced to the average of left and right mastoids
and a SynAmps amplifier (Compumedics Neuroscan Ltd,
Australia) digitized at a 1000-Hz sampling rate. The contact
impedance between all electrodes and the skin was main-
tained at <5 k�. Before further data analysis, the raw EEG
signals were bandpass filtered between 0.5 and 50 Hz using a
zero-phase FIR filter (EEGLAB toolbox [45]). Then, filtered
data were downsampled from 1000 Hz to 250 Hz to reduce
computational complexity. In addition, independent Compo-
nent Analysis (ICA) was applied to decompose the EEG sig-
nals into independent time courses presumably arising from
distinct brain sources [46]–[48]. Components related to eye
movements and blinking were identified by visual inspection
and removed. And each channels’ related components were
selected to reconstruct EEG channels’ signals which preserve
the original signal feature as much as possible. After which,
the trials relating to the three different MI conditions were
extracted as epochs.

D. QUANTIFICATION OF ERD AND ERS
Since the mu (alpha) ERD and ERS are the main index for
MI-BCI [30], we used this index to confirm whether these

three tasks can evoke the same MI phenomena. To compute
the time course of ERD in alpha band (8 to 13 Hz), a similar
procedure was adopted as reported in the literature [49], [50].
These procedure involves the following four steps: (1) band-
pass filtering of all event-related MI trials, (2) squaring of
the amplitude samples to obtain power samples, (3) averaging
of power samples across all trials, and (4) averaging samples
over time to smooth the data and reduce the variability. The
ERD/ERS was here defined as percentage power decrease
(ERD) or power increase (ERS) in relation to the average of
first two seconds fixation stage (−2∼0 s) before the motor
imagery stage (0∼5 s). The power in the interested frequency
band in the period after the event is given by ‘A’, whereas
baseline is given by ‘R’. ERD% is expressed as follows:

ERD (%) =
A− R
R
× 100 (1)

where both A and R are EEG power averages of all trials in
the specific MI tasks.

E. FEATURE EXTRACTION AND CLASSIFICATION OF
MOTOR IMAGERY
After EEG signal preprocessing, a typical signal process-
ing pipeline is used for feature extraction and classification
approaches for MI-BCI verification and applications. Cur-
rently, common spatial pattern (CSP) is one of the most com-
mon feature extraction methods used in MI BCI [51], [52].
CSP is a spatial filtering method used to minimize the vari-
ance of one class and maximize the variance of another
class simultaneously [53]–[57]. Therefore, it is sensitive to
binary differences, such as the left- and right-motor imagery
[51], [52]. However, it is not easy to identify the optimal
frequency range for each subject. To solve this problem, the
sub band CSP (SB-CSP) method [58], a filter bank composed
of different interested sub bands as inputs, was applied in this
study. The equations are as follows:

Two windows from the multivariate signal are represented
as S1 with size (n, t1) and t1 samples and S2 with size (n, t2)
and t2 samples. To make the rate of variance maximum
between two windows, the CSP algorithm defines component
W T and is represented as follows:

W =maxw
‖wS1‖2

‖wS2‖2
(2)

The solutions are obtained by calculating the two covariance
matrices below:

R1 =
S1ST1
t1

and R2 =
S2ST2
t2

(3)

When computing the generalized eigenvalue decomposition
of the two matrices, eigenvectors are obtained for matrix as
E = [e1 . . . en] and sorted by the descending diagonal matrix
D of eigenvalues {λ1 . . . λn}as follows:

ETR1E = DandETR2E = In (4)

Then, W T will be w = eT1 .
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Subsequently, linear discriminant analysis (LDA) is
applied to identify the EEG signals in each sub-band spec-
trum [59]. LDA is a well-known binary classification method
that can project data in a new space using y =wT x to
minimize the within class scatter and maximize the scatter
between classes [56]. The accuracy of CSP combined the
LDA approach for MI BCI classification had been discussed
in our previous work [60], and detailed information can be
found in those studies. In this study, the raw EEG data are fil-
tered into three frequency bands including alpha (8 to 13 Hz)
and beta (13 to 30 Hz) for adopting the SB-CSP and LDA to
investigate the accuracy of each MI task.

F. FUNCTIONAL CONNECTIVITY ESTIMATED BY TRANSFER
ENTROPY
Brain connectivity analysis, particularly functional and effec-
tive connectivity, represents one of the most promising
approaches to investigate the brain operation of MI and
improve MI-BCI performance [2], [42], [61]. Transfer
entropy (TE) is the best-known method in this area, which
naturally incorporates directional and dynamical information
because it is inherently asymmetric and based on transition
probabilities [44]. In previous works, TE has demonstrated
its robustness against volume conduction and its effective-
ness in investigating nonlinear interactions between brain
areas [44], [61]–[63].

TE is a model-free measure based on information the-
ory and can be used to calculate the amount of directed
information transmission between two systems [64]. TE is
deduced from information and conditional transition prob-
abilities between any two processes evolving in time. Let
X = {x1, x2, · · · , xn} and Y = {y1, y2, · · · , yn} be
two processes that represent two interacting systems (time
series) that can be approximated by stationary Markov pro-
cesses. Thereupon, using a delay embedded vector (xdt ={
xt , xt−τ , xt−2τ , · · · , xt−(d−1)τ

}
), we could easily recon-

struct the full state space of the processes of interest. The
dimension of the embedding space was d, and the delay was
τ [44]. According to the assumption, the system S could be
approximated by a stationary Markov process of order d.
Then, the transition probability of the system was described
as follows: P(xi+1|xdt ). The entropy rate of system X is
defined as the amount of additional information required to
represent the value of the additional state. All previous states
of the systems are known and can be computed as follows:

H
(
xt+u | xdt

)
=−

∑
xt+u,xdt

P
(
xi+u | xdt

)
logP

(
xt+u | xdt

)
(5)

The conditional probability P
(
xi+u | xdt

)
is calculated from

the joint probabilities P
(
xi+u | xdt

)
= P(xi+u, xdt )/P(x

d
t ). The

probabilities P (∗) are estimated via kernel estimation or the
k-nearest neighbor approach [65]. To measure the amount
of information transferred from process Y to process X,
the entropy rate of system X is defined as the amount of

additional information required to represent the value of the
additional state. As noted for all previous states of the sys-
tems, we deduce this state as follows:

H
(
xi+u | xdt , y

m
t

)
= −

∑
xt+u,xdt

P
(
xt+u | xdt , y

m
t

)
log

×P
(
xi+u | xdt , y

m
t

)
(6)

If two different processes were not dependent, there
is no transfer of information, and it would cause
H
(
xi+u | xdt

)
=H

(
xi+u | xdt , y

m
t
)
, where the state of X only

depends on d states of X. According to previous work, it used
Kullback divergence or mutual information to compute a
measure of deviation from this generalized Markov property.
The information flow from Y to X, which is called transfer
entropyTE(Y→ X), was computed as follows [64]:

TE (Y → X) =
∑

P
(
xt+u, xdt , y

m
t

)
log

P
(
xt+u | xdt , y

m
t
)

P
(
xt+u | xdt

)
(7)

where u was the prediction time. The joint probabilities P (∗)
can be estimated by kernel density estimation or the k-nearest
neighbor approach [62]. Conditional transition probabilities
were determined from the embedding vector to sum the TE
value. To estimate the TE value, it is necessary to reconstruct
the embedding space of the data [63]. The embedding space
was reconstructed by xdt =

{
xt , xt−τ , xt−2τ , · · · , xt−(d−1)τ

}
.

The dimension d was obtained by an effective search algo-
rithm, and the delay τ was determined by Cao’s criterion [66].
The equation can be rewritten as follows:

TE (Y → X) = H
(
xdt , y

m
t

)
− H

(
xt+u, xdt , y

m
t

)
+H

(
xt+u, xdt

)
− H

(
xdt
)

(8)

TE indicates directional information flow and was inher-
ently asymmetric; thus,TE (Y → X) 6=TE (X → Y ). How-
ever, when the two signals of processes are independent,
TE (Y → X) = TE (X → Y )= 0.

The estimation of parameters and the calculation of TE
were performed using TRENTOOL (Version 2.0.4) [63].
In this study, prediction time u was set to 1 and K was set
to 4 for the k-nearest neighbor approach as suggested by a
previous study [65]. Thewindow(T) of Theiler correctionwas
set to 1 to remove the autocorrelation effect from the density
estimation.

In this study, the estimation of effective connectivity
between the selected channels have been conducted over var-
ious MI conditions and different EEG frequency bands, alpha
(8-13Hz), beta (14-30Hz), and gamma (31-50Hz) bands, for
both left- and right-hand motor imagery. The TE mean values
and standard deviations of any two of the selected channels’
connectivity pairs (source to sink) across all subjects have
been calculated for each MI task under three frequency bands
when they performed left- and right-hand imagery.
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G. STATISTICAL ANALYSIS
The TE values of the MI stage in three EEG frequency bands
were normalized by subtracting the mean baseline (fixation
stage) for the motor imagery of both hands under each MI
condition. Therefore, in this study, the normalized TE values
are relative-TE values, which represent the changes with
respect to the baseline period. Nine electrodes (F3, Fz, F4,
C3, Cz, C4, P3, Pz and P4) were selected to investigate brain
connectivity during the motor imagery stage of the three MI
conditions. For further analysis, subjects’ TE values of the
connectivity pairs in each MI task were averaged and tested
using the Wilcoxon signed rank test with an FDR correction
(p<0.05). Given the complexity of the MI task, two compar-
isons (rMI vs rmMI; bcMI vs rmMI) were taken in this study
to test whether the rotation movement and bilateral coordina-
tion can evokemore brain interaction when performing single
hand motor imagery tasks.

FIGURE 2. Mu (alpha) ERD comparisons of contralateral and ipsilateral
channels under left and right-hand motor imagery (corresponding to a
and b) for three MI tasks, including the traditional MI task (tMI), rotation
movement MI task (rmMI) and bimanual coordination MI task (bcMI). The
stars (∗) represent the statistical significant levels (Wilcoxon signed rank
test), ∗ for p<0.05 and ∗ ∗ ∗ for p<0.001. The y-axis is alpha power change
relative baseline (%).

III. EXPERIMENTAL RESULTS
A. ERD/ERS FOR THREE MI TASKS
Fig. 2 shows the comparisons of averaged ERD of con-
tralateral and ipsilateral channels under left and right hand
motor imagery for threeMI tasks (tMI, rmMI,and bcMI). The
Wilcoxon signed rank test with FDR-adjusted was used to
compare the difference between the ERD at the two channels
(C3 and C4) under the motor imagery stage of both hands
for the three MI tasks. As shown in Fig. 2, the alpha power
was significantly suppressed at the contralateral channel as
compared to the ipsilateral channel for motor imagery of both
hands under all MI tasks (p<0.05), except for the right hand
imagery in the tMI condition (p=0.061). The results demon-
strate that the slightly complex video feedback employed
in these MI conditions did not disturb the MI performance,

and all participants were able to successfully perform the
assigned motor imagery, which were reflected in the alpha
desynchronization changes at the motor area.

B. CLASSIFICATION ACCURACY OF THREE MI TASKS
To confirm whether MI-BCI performance is influenced by
the rotation movement (rmMI) and both hands representa-
tion (bcMI) designed in this study, the CSP and LDA were
applied to test the classification accuracy of these three MI
conditions.

The optimal value for the parameter ‘m’ in the CSP algo-
rithm was determined by testing values in the range of 1 to
8 to maximize the classification accuracy. For each value
of m, after the CSP projection, 10-fold cross validation was
applied to data 100 times. The test results for all subject under
the three MI conditions were averaged and these results are
shown in Fig. 3 Based on these results, ‘m’ = 5 achieves the
highest accuracy value (90.83). Thus, m = 5 is selected for
the CSP projections under every MI condition.

FIGURE 3. The selection of parameter comparisons for CSP.

FIGURE 4. Box plot of classification accuracy distributions of tMI, rmMI,
and bcMI (Wilcoxon rank sum test, p < 0.05).

After extracting the EEG features by CSP, LDA was
applied to perform the classification for all the three MI con-
ditions. Here, 10-fold cross validation was applied 100 times.
Fig. 4 shows the accuracy distributions of three MI tasks.
Although the highest accuracy rate (92.1 ± 6) is noted for
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tMI condition, the rmMI and bcMI conditions still achieve
high classification accuracies (91.5 ± 6.7 and 87.1 ± 5.2).
In Fig. 2, tMI and rmMI seem to be more lateralized than
bcMI, but in Fig. 4, the accuracy of MI tasks has no signifi-
cant difference among the three tasks. Therefore, the rotation
movement and the bi-hand presentations of visual feedback
do not impede the operation and the classification of motor
imagery. These results demonstrate that the participants were
able to follow the experiment instructions and perform motor
imagery of the assigned single hand successfully in all three
MI tasks without any distraction.

The above accuracy results of LDA classification with CSP
filters among three MI tasks indicate that the newly proposed
MI conditions can also evoke similar responses as compared
to the traditional MI condition as all participants were able
to correctly perform the motor imagery under all conditions
without any prior experience.

FIGURE 5. Pairwise comparisons of TE topographic connectivity between
rmMI and tMI tasks. Only statistical tests that achieved significance
(p<0.05) were retained. 2R > 1R and 2L > 1L mean the significantly
increased amount of connectivity of the rmMI task under right-hand
motor imaginary and left-hand motor imagery relative to the tMI task,
respectively.

C. FUNCTIONAL CONNECTIVITY UNDER VARIOUS MI
CONDITIONS
In Fig. 5 and Fig. 6, the TE mean values of 72 connectivity
pairs (source to sink) from nine selected channels for eachMI
task have been evaluated under three frequency band (alpha,
beta, and gamma bands).

FIGURE 6. Pairwise comparisons of TE topographic connectivity between
bcMI and rmMI tasks. Only statistical tests that achieved significance
(p<0.05) were retained. 3R > 2R and 3L > 2L mean the significantly
increased amount of connectivity of the bcMI task under right-hand
motor imaginary and left-hand motor imagery relative to the rmMI task,
respectively.

The pairwise connectivity measures that achieve statistical
significance (FDR-adjusted p<0.05) during tMI and rmMI
conditions are shown in Fig. 5. Fig. 6 shows the statistically
significant pairwise connectivity measures during rmMI and

bcMI conditions. These results illustrate minimal differences
among three frequency bands in the comparisons between the
tMI and rmMI conditions. In the contrast, the bcMI shows
more significant and complex connectivity than the rmMI for
all three bands, especially in the left hand imagery.

As shown in Fig. 5, no significant differences in alpha
bands were found between the rmMI and tMI. However,
rmMI exhibited increased information flow of the beta band
from C4 to C3 (right-hand imagery), Pz to Cz (left-hand
imagery) and C4 to Fz (left-hand imagery). The difference
was also shown in the gamma band analysis for left-hand
imagery only, including from Pz to Cz, Pz to Fz, Fz to Pz and
F3 to P3. Since the alpha and beta are the basic brain indices
for motor imagery, the rotation movement of rmMI does not
seem to influence the operation of motor imagery at the motor
area. The space information of visual rotation exhibits a feed-
forward pattern from the parietal to central area with the beta
rhythm and can be used to adjust the position of the imaged
hand via fronto-parietal gamma synchronization.

In Fig. 6, the bcMI task demonstrated an increase amount
of connectivity compared to the rmMI task. With the EEG
alpha features, bcMI task infers directional flow from Pz to
Cz, P3 to P4, P3 to F3, C3 to P4 and F3 to P3when performing
right-hand imagery tasks and from P3 to F4, Pz to P3, Pz to
F3 and Pz to F4 in the left-hand MI condition. In the beta
analysis, observed significant brain connectivity changes are
found from P3 to F3, P3 to F4, C3 to P4, C3 to Fz and Cz to P4
in the right handMI and from P3 to Pz, P3 to F4, Pz to F4, C3
to P3, F3 to F4 and F4 to P3 for imaging the left hand. Similar
results are found in the gamma band. Compared to the rmMI,
the bcMI task exhibited increased information flow from P3
to Fz, Pz to Cz and C3 to P4 for right-hand MI and from P3
to F4, Pz to F3, Pz to F4, C3 to P3, F3 to F4 and Fz to P3 for
the left-hand imagery condition. Significant differences are
noted when performing the right- and left-hand imagery tasks
in this comparison.

IV. DISCUSSION AND CONCLUSION
In this study, novel MI-BCI, bimanual and rotated motor
imagery is proposed to explore brain connectivity when per-
forming ipsilateral motor imagery tasks. The basic MI phe-
nomena were supported in all three conditions based on the
ERD changes in the contralateral alpha frequency band, and
the results were classified by CSP and LDA.

The subjects performed the ipsilateral motor imagery task
with bilateral or rotation visual feedback. Based on these MI
criteria, the bcMI-BCI can evoke increased brain connectiv-
ity, especially when performing the left-hand imagery task.

As shown in Fig. 6, in the right-hand imagery task, the
contralateral parietal site was strongly connected to the con-
tralateral frontal region across all frequency bands and pro-
vided two-way communication via alpha rhythm. Moreover,
left motor area showed increased information flow to the
ipsilateral parietal region with all three frequency EEG fea-
tures. In the left-hand imagery task, with the exception of the
space information of rotation movement that was sent from
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the parietal to both lateral frontal regions that are related to
motor action planning, the ipsilateral parietal region had a
strong connection with the contralateral frontal areas across
all frequency bands. However, bidirection flows were noted
in the beta and gamma analysis. A more interesting finding
is the interaction between the bilateral frontal electrodes via
beta and gamma rhythms.

Based on our experimental results, this study supports the
following conclusions:

(1) mutual communication occurs between the prefrontal
area (F3 and F4), which indicates that the nonimagined hand
(ipsilateral site) and imagined hand (contralateral site) inter-
act with each other for motor preparation and bilateral arm
coordination after receiving visual feedback;

(2) communication occurs from the parietal region to bilat-
eral frontal area (Pz to F3 and F4), which indicates that
rotation of the hand-bike kept providing the spatial location
information of each hand for motor planning. Because the
neural patterns are influenced by the function of handedness,
less connectivity in right hand condition could be due to all
participants are the same right-handed and can image more
efficiently [67].

In summary, this study demonstrates the dynamic con-
nectivity when using bcMI and could be used as the index
to investigate the reorganization and reconnection of motor
cortex with the MI rehabilitation approach.

V. LIMITATIONS
Although the current study validated the brain connectiv-
ity while executing bcMI to investigate the reorganization
and reconnection of the motor cortex with the MI rehabil-
itation approach, the present demonstration still has some
limitations.

First, the connectivity of bimanual and rotated motor con-
dition could be still influenced by the methodological limita-
tion. Therefore, the weighted effect of rotation movement or
solely the bimanual component should be further investigated
with bimanual static imagery.

Second, although the study has yielded consistent results
across the subjects participating in the experiment, more test-
ing samples and comparison tests were still needed to confirm
effectiveness and robustness.

Third, our findings exhibit the ordinary people’s brain con-
nectivity of bcMI as the index; however, for further MI reha-
bilitation, the future work of the study should collect more
data from the patient subjects, such as the stroke patients, for
validation.
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