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Abstract

The widespread and increased use of smartphones, equipped with the global positioning
system (GPS), has facilitated the automation of travel data collection. Most studies on travel
mode detection that used GPS data have employed hand-crafted features that may not have
the capabilities to detect all complex travel behaviours since their performance is highly
dependent on the skills of domain experts and may limit the performance of classifiers.
In this study, a genetic programming (GP) approach is proposed to select and construct
features for GPS trajectories. GP increased the macro-average of the F1-score from 77.3
to 80.0 in feature construction when applied to the GeoLife dataset. It could transform the
decision tree into a competitive classifier with support vector machines (SVMs) and neural
networks that are both able to extract high-level features. Simplicity, interpretability, and
a relatively lower risk of overfitting allow the proposed model to be readily used for pas-
sive travel data collection even on smartphones with limited computational capacities. The
model is validated by a second dataset from Australia and New Zealand, which indicated
that a decision tree with the GP constructed features as its input has a considerably higher
transferability than SVMs and neural networks.

1 INTRODUCTION

Individuals use different modes of transportation for travelling,
such as walking, biking, cars, buses and trains, which are referred
to as their travel modes. Travel mode is a key attribute of travel
behaviour, always considered for effective travel demand man-
agement and transportation planning. Transportation agencies
can adopt mode-specific strategies to reduce travel time, traffic
congestion and air pollution [1]. Providing users with person-
alized information, and incentivizing them toward sustainable
travel behaviour can also be achieved when individuals’ travel
modes are known. Data on travel attributes, including mode,
can be collected by traditional survey methods; however, these
methods have major drawbacks, such as low response rates, high
involvement of respondents, and misreporting of travel details
[2, 3]. Automatic methods of collecting data, mostly based on
global positioning systems (GPS), can provide accurate spa-
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tiotemporal attributes of travel and can be used as a supplemen-
tary or an alternative method of data collection.

GPS has been used for travel data collection since the mid-
1990s [4]. The increase in and widespread use of smartphones,
which are equipped with GPS technology, has enabled collect-
ing of such data at a much lower cost, and the smartphones’
access to the internet has facilitated the transmission of col-
lected data. As smartphones have turned into an inseparable
part of people’s lives, and are carried by users most of the times,
they can contain invaluable information about individuals’ trav-
els. Although temporal and spatial attributes of travel can be
extracted directly from GPS data, attributes such as travel mode
need to be questioned or inferred. Different methods have
been applied to automatically detect travel modes; nonethe-
less, similarities between the characteristics of different travel
modes, such as private cars and buses, make it difficult to dis-
tinguish them from one another. Hand-crafted features, such as
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maximum velocity and mean acceleration, have been used for
travel mode detection, which are usually defined by domain
experts. Therefore, the ability of experts in defining effective
features has a fundamental role in the performance of travel
mode detection algorithms [1]; such features may be ineffec-
tive for detecting complex travel attributes [5]. For instance, a
private car in traffic congestion may have a similar maximum
velocity to a pedestrian. This issue especially limits the perfor-
mance of algorithms—such as decision trees (DTs)—that are
not capable of extracting features from inputs intrinsically [6].
One way to address this issue is by constructing features auto-
matically. Although complex models, such as neural networks,
can be used for this purpose, the created features cannot usu-
ally be identified explicitly and there is a high potential of over-
fitting [7]. Therefore, in this study, genetic programming (GP)
is used for feature construction that can lead to the develop-
ment of simpler models and provide a better understanding of
the learned concepts [8].

GP is an evolutionary computation technique that can evolve
a mathematical model without the need to fully specify the
model in advance [9]. The flexibility of GP allows adapting to
the particular needs of each problem, and makes it a poten-
tially suitable tool for addressing different classification tasks
[10, 11]. GP can be used to extract classifiers using different
kinds of representations, such as DTs and classification rules.
It can also be used for pre-processing tasks, such as feature
selection and construction, and post-processing purposes, such
as constructing ensemble classifiers [10]. In this study, the fea-
ture selection and construction capabilities of GP are investi-
gated for travel mode detection, using the GeoLife GPS dataset
collected by Microsoft Research Asia [12]. After cleaning the
data and extracting the initial features defined based on the lit-
erature, four different approaches are investigated to construct
features using GP. Then, their performance in mode detection
is evaluated using a DT. The best results are compared with
the results of other classification algorithms and other relevant
studies. The selected approach is then implemented on another
dataset, which is collected in New Zealand and Australia [13, 14]
to validate the obtained results.

Improving the performance of travel mode detection using
only GPS data, while keeping the constructed models sim-
ple, is an important step toward the automation of travel data
collection. This study proposes a methodology that uses GP
to construct features that can improve travel mode detection.
GP is a building block that can improve the performance of
simple classifiers, such as DTs. DTs can be used to develop
interpretable models with low computational costs [6]. Conse-
quently, they can be readily used for passive travel data collection
even on smartphones with limited computational capacities. GP
has been used in many different fields for classification tasks but
its applications in travel mode detection are unexplored.

The remainder of the paper is organized into several sec-
tions. The background of travel mode detection and genetic
programming is reviewed in Section 2. The details of the pro-
posed methodology, including the data preparation steps and
settings of different GP approaches for feature construction,

are explained in Section 3. The results are presented and anal-
ysed in Section 4, and the study is concluded in Section 5.

2 BACKGROUND

2.1 Travel mode detection

Automated travel mode detection generally includes three steps
of data cleaning, identifying single modal trip segments, and
inferring the travel mode of each segment, as explained next.

GPS data might include poor-quality points due to several
error sources, such as receivers or satellites, atmospheric dis-
turbances, and urban canyons [4]. Therefore, raw GPS data is
usually passed through some rule-based filters, and erroneous
points are detected using velocity, location, or other local fea-
tures of GPS points [1, 14–19].

Then, single modal trip segments should be identified. A trip
is the movement of a person for a specific purpose, and a single
modal trip segment is a part of a trip which is traversed using
a single mode [18]. Most researchers have adopted rule-based
methods to detect trip segments [2], which often include con-
sidering a threshold of dwell time, such as 120, 150, 180, 200, or
even 300 s with or without other conditions [4, 14]. The selected
thresholds may vary based on the attributes of local activities
[4]. If the dwell time exceeds the considered threshold, the seg-
ment ends. The identified trip segments are used for travel mode
detection in the next step.

Methodologies for travel mode detection using GPS data can
be classified into three main categories: (1) rule-based methods,
(2) probabilistic methods, and (3) machine learning algorithms
[4]. In rule-based methods, travel mode is detected based on
some predetermined criteria [4, 16, 18]. In probabilistic meth-
ods, the probability of each mode is estimated based on char-
acteristics of GPS data and respondents; probability matrix and
fuzzy logic are examples of this method [4, 17]. Finally, differ-
ent machine learning algorithms, such as Bayesian and neural
networks, support vector machines (SVMs), DTs, and random
forests have also been used for travel mode detection [1, 3, 5,
19–21].

Several studies have integrated GPS data with other sources
of information to improve the performance of mode detec-
tion. For example, Stopher et al. [16], Tsui and Shalaby [17],
and Gong et al. [18] combined GPS and Geographic Infor-
mation Systems (GIS) data. Feng and Timmermans [20], and
Ansari Lari and Golroo [19] integrated GPS and accelerome-
ter data. Other sources of information, such as personal and
socio-demographic characteristics of travellers, or data from
other smartphone sensors, such as gyroscope and magnetome-
ter, have also been used along with GPS data to detect travel
mode [22, 23]. Deploying multiple sources of data can lead to
better results, however, the application of such methods is often
limited due to a lack of access to such information sources on
a large scale. Accordingly, only GPS trajectories are used in this
research to demonstrate the advantage of GP to detect travel
modes.
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Assemi et al. [14] applied multinomial logistic regression,
nested logit, and multiple discriminant analysis models to detect
travel modes using only GPS data. Seven major categories of
features were used in this study, and different statistical variables
were defined for each category. Zheng et al. [24] applied three
classification methods, namely DT, SVM, and Bayesian net-
work while using bootstrap aggregating as an ensemble meta-
algorithm to detect travel mode by specifying a set of features.
In a later study [25], Zheng et al. introduced three new features
and proposed a graph-based post-processing algorithm to fur-
ther improve their method’s performance. However, these stud-
ies have all used hand-crafted features which limits the perfor-
mance of proposed methods to the skills of experts in defining
discriminative features.

Several studies have used the features proposed by Zheng
et al. [24, 25] to construct high-level features which can improve
the accuracy of travel mode detection [5, 26]. Endo et al. [26]
represented raw GPS data of each segment as a two-dimensional
image, which was fed into a deep learning model to extract
high-level features. Then, they combined these model-generated
features and hand-crafted features to create several feature
sets, which were used to evaluate the performance of several
classifiers.

Wang et al. [5] extracted deep point-level features from hand-
crafted point-level features, such as velocity and distance of
GPS points, by using a sparse auto-encoder. Deep trajectory-
level features were then extracted from deep point-level features
using a convolutional neural network. Both deep and hand-
crafted trajectory-level features were used separately and then
together as the feature set, and their performance was evaluated
using a number of classifiers. However, the results of these stud-
ies could not outperform the results of Zheng et al. [25] which
only used hand-crafted features.

Dabiri and Heaslip [1] constructed high-level features by
applying a convolutional neural network (CNN). They used
speed, acceleration, jerk (the rate of change in the acceleration),
and bearing rate of GPS points as the input to their model.
Trip segments were divided in such a way that all have the same
number of GPS points, since the structure of input instances in
CNN should be similar. As a result, 14,000 real segments were
converted to about 32,000 segments. Consequently, these sub-
segments might not include all characteristics needed to detect
travel modes, and thus the performance of the model could
adversely be affected.

Nawaz et al. [27] used the four features in [1], and added other
features, including a regional index, time of day, day of the week,
and weather features in a convolutional long short-term mem-
ory model to detect travel mode. They showed the performance
could improve by adding the above-mentioned features. How-
ever, similar to [1], segments had to have similar lengths, and
while using additional features in a more sophisticated model,
results could not outperform those of [1].

To address the aforementioned limitations, this study investi-
gates the possibility of using GP as a technique for automatic
feature selections and construction. Although GP has been
used for classification tasks in many fields, to the best of the
authors’ knowledge, it has not been explored for improving the
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FIGURE 1 Example of a tree representation in GP

performance of travel mode detection. In this study, multiple
approaches are investigated for this purpose, and the best results
are compared with those classifiers which are able to construct
high-level features, such as SVM and neural networks.

2.2 Genetic programming (GP)

GP is an evolutionary computation technique in which a pop-
ulation of individuals (called a GP population here) is evolved
stochastically to a population that is potentially better than the
previous one, given a specific fitness function (performance
measure) that determines the fitness (quality) of each individ-
ual [28]. It cannot guarantee optimality but is equipped with
processes to avoid local minima/maxima in which deterministic
methods potentially get trapped [9]. GP has been used success-
fully for developing novel solutions for many problems [9].

2.2.1 Structure and algorithm

Individuals of a GP population can have different structures
out of which the tree structure is the most common one [9].
For example, if equation max (y + y, x × (5 − y)) is given,
Figure 1 depicts its equivalent tree structure. The terminal set of
{x, y, 5} is the variables and constants that constitute the leaves
(terminal nodes) of the tree. Functions of maximum, addition,
multiplication, and subtraction are arithmetic operations that
constitute the interior nodes of the tree and form the function
set. Any possible combination of variables, constants, and arith-
metic operations create an individual of the GP population. The
depth of the tree is determined by the depth of its deepest node,
which is equal to 3 in this example.

The evolution of populations in GP is illustrated in Figure 2.
Six principal steps are involved in this process:

1. An initial and usually random population of individuals is
generated using the defined function and terminal sets. Dif-
ferent approaches, such as full, grow or ramped half-and-half
methods can be used for this purpose [9].

2. The fitness of each individual is determined using a prede-
fined fitness function [29]. These functions are discussed in
the next section.

3. One or two individuals of the population are selected to par-
ticipate in genetic operations (see the next step). Individu-
als with better fitness are more likely to be chosen for this
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FIGURE 2 Flowchart of the genetic programming (GP) process

participation, and have a higher chance of transferring their
genetic information to the next generation [10].

4. Genetic operations of crossover, mutation, and reproduction
are applied to the selected individuals of the previous step to
create the new individuals (offsprings). Generally, crossover
swaps the randomly chosen parts of the two selected individ-
uals; mutation randomly changes a small part of the selected
individual; and reproduction copies the selected individual
[10, 29, 30].

5. A specific number of the newly created offspring are selected
based on their fitness to go to the next generation.

6. If a termination criterion is satisfied (such as reaching a spe-
cific number of generations or reaching a predefined fitness
level), the evolutionary process stops, and the best-found
individual is represented as the output of the process; oth-
erwise, the process goes back to Step 2.

2.2.2 Applications in classification

GP has successfully been applied to many different fields,
including classification [10, 11, 31]. In classification problems,
each instance is represented by a number of features. The role
of classifiers is to predict the class of each instance by learning
from the training data. The original features are directly entered
into the classifier, and the process of training and prediction
is performed based on these original features. Previous stud-
ies have indicated that the representation of features has a great
impact on the performance of classifiers [8, 32]. Many classifiers
(such as decision trees or decision rules) do not perform well
due to their limited ability in transforming initial features into a
suitable form. This issue is especially prevalent in symbolic clas-
sification [33]. In contrast, classifiers such as SVMs and neural
networks can have a better performance in discriminating dif-
ferent classes by transforming the input features in their inter-
nal structure into high-level features. However, such high-level
features are difficult to be explicitly expressed and the models
have a high risk of over-fitting [7, 33].

When the original features do not have a desirable perfor-
mance, it is essential to perform a feature construction or
transformation step to improve the performance of symbolic

classifiers [8]. In this step, the representation of the original fea-
tures is changed, so that a set of new high-level features replaces
the original ones. In this process, new features are derived from
the original ones in a way that they would have a better perfor-
mance than the original features. The process of creating a new
representation of features is a non-deterministic polynomial-
time (NP)-hard problem; therefore, finding an exact solution
is not justifiable [33]. Metaheuristic methods, such as evolu-
tionary computation techniques (e.g. GP), are used for the pur-
pose of finding suboptimal solutions in a reasonable time [33].
GP has unique capabilities for feature transformation, including
feature selection and construction, that can improve the perfor-
mance of classifiers, specifically the symbolic ones, while main-
taining their interpretability [6, 8, 11, 33]. Feature selection can
be regarded as a special case of feature construction as there is
usually no limitation in cloning original features in the feature
construction process.

Two different approaches can be implemented for feature
construction using GP from a functional (defining the fitness
function) viewpoint [10]:

1. Filter or non-wrapper approach: In this approach, separate
measures, such as statistical, logical, or information-content
principles, are defined as the fitness function of GP [10].
The filter approach, compared to the wrapper approach,
usually requires less computational time for evaluation of
individuals’ fitness and has usually the advantage of con-
structing very general features, since the classification is not
dependent on any external classifier [6]. However, features
are constructed based on a measure that may not be effi-
cient for the classifier that is finally selected for classification
[33].

2. Wrapper approach: The fitness function of GP in this
approach is a performance measure of the same classifier
that is eventually used for classification–in other words, a
particular classifier is wrapped in the fitness function. Thus,
for the evaluation of each individual, a model is developed
by the classifier to measure its performance. Although this
approach usually requires a higher computational effort,
constructed features usually have a better performance com-
pared to those of a filter approach [30].
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Single or multiple features can be constructed as the output
of the GP using both approaches. When constructing a sin-
gle feature, each individual is a single high-level feature repre-
sented by a single tree [30]. Different methods have been used
for multiple feature construction. For instance, each individual
may consist of multiple trees, while each tree is representative
of one feature. Therefore, the collection of these trees in one
individual constitutes multiple features [32, 33]. Alternatively,
each individual may represent a single feature, and multiple fea-
tures are constructed by implementing GP multiple times [6]. As
another option, after the completion of a GP run and construc-
tion of a single high-level feature, other feature sets are extracted
from that single feature [30]. For example, in [34], each individ-
ual is considered as a single tree, while all possible subtrees of
this tree are considered as constructed features. Hence, the out-
put of this GP can be multiple features that are displayed in the
form of a single tree by an individual. These methods are imple-
mented and compared in the following sections. An expanded
review of different feature construction methods using GP can
be found in [8].

3 METHODOLOGY

In this section, the steps of data preparation are presented first,
followed by the details of the proposed approaches for fea-
ture construction. The overview of this process is illustrated in
Figure 3.

3.1 Data preparation

GPS data contain a set of GPS points that are sorted in chrono-
logical order. In the simplest case, each GPS point includes lati-
tude, longitude, timestamp, and a trip mode label (e.g. car, train,
or bus) given that the data is used for supervised learning.

3.1.1 Data cleaning and trip segment detection

If more than one GPS point is recorded with the same times-
tamp, duplicate points are excluded. Reviewing the range of
considered thresholds for dwell time in the literature [4, 14], if
the time interval between two consecutive GPS points is more
than 150 s, the trip is split into two segments at that point. A
maximum length of 40 km is considered for segments; the first
40 km of a long segment is taken as an independent segment

and breaking stops when the remaining part is less than 40 km
itself.

To decrease the impact of random variations caused by
sources, such as urban canyons or weak signal strength, smooth-
ing techniques are applied. Data smoothing is essential to
increase mode detection accuracy in future steps. In this study,
latitudes and longitudes are smoothed separately using a modi-
fied version of the moving average method as follows: for each
point, the average of the three preceding and the three succeed-
ing points is computed, if their temporal distance from the point
of interest is less than 60 s. When less than three points exist
in the 60 s interval, equal numbers of preceding and succeed-
ing points are used for averaging. The average of the value at
the point of interest and the calculated mean, substitute for the
current value. If none of the adjacent points meet the temporal
condition, the point’s value remains unchanged. This process is
presented in Algorithm 1.

Algorithm 1 Data Smoothing

n: number of GPS points of a segment
ti: timestamp of point i

Pi: unsmoothed coordinate (latitude or longitude) of point i

Si: smoothed coordinate (latitude or longitude) of point i

1. for i ← 0 to n − 1 do

2. sum = 0

3. count = 0

4. for j ← 1 to 3 do

5. i f (i − j ≥ 0) & (i + j < n) then

6. tbe fore = ti − ti− j

7. ta fter = ti+ j − ti

8. i f (tbe fore < 60) & (ta fter < 60) then

9. sum = sum + Pi− j + Pi+ j

10. count = count + 2

11. endi f

12. endi f

13. endfor

14. i f count > 0 then

15. Si = 0.5(
sum

count
) + 0.5(Pi )

16. else

17. Si = Pi

18. endi f

19. endfor
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TABLE 1 Maximum velocity and acceleration of different transportation
modes

Travel

mode

Maximum

velocity

(m/s)

Maximum

acceleration

(m/s2)

Walk 7 3

Bike 10 3

Bus 35 10

Car 50 10

Train 75 3

After data smoothing, points with a velocity or accelera-
tion above an acceptable threshold are removed. The max-
imum velocities and accelerations of different transportation
modes considered for this purpose are extracted from different
sources, such as [1] and [19], and presented in Table 1. Segments
with less than 10 GPS points or 30 m are also removed.

3.1.2 Construction of original features

After data cleaning, the original features are calculated. The fea-
tures proposed by Zheng et al. [24, 25]–used frequently by pre-
vious research [1, 5, 26, 27]–are used as the original features
in this study. These original features are later used for the con-
struction of high-level features by the GP. These 14 features,
all calculated at the segment level, include length, time dura-
tion, mean velocity (length of the segment divided by its time
duration), expectation of velocity (average of velocities of the
GPS points in a segment), velocity variance (variance of veloc-
ities of the GPS points in a segment), top three velocities, top
three accelerations, heading change rate (number of GPS points
of a segment with a heading change of more than a specific
threshold divided by the segment length), stop rate (number of
GPS points of a segment with a velocity of less than a specific
threshold divided by the segment length), and velocity change
rate (number of GPS points of a segment with a velocity rate of
more than a specific threshold divided by the segment length).

The distance between two consecutive GPS points is calcu-
lated using Vincenty’s formula [35] in this study, and the sum
of consecutive calculated distances is considered as the segment

length. Expanded definitions and details of other features can
be found in [24] and [25].

3.2 Feature construction using GP

As depicted in Figure 4, a filter approach and three wrapper
approaches are evaluated in this study. The wrapper approaches
are divided into two different groups based on the structure of
each individual in the GP population. In the first group, each
individual is a single tree, while in the second group, an individ-
ual consists of multiple trees. The details of each approach are
explained next.

3.2.1 Approach 1

The method proposed by Neshatian et al. [6] is used in
Approach 1. In this method, the output of every GP run is one
high-level feature constructed for a particular class of the clas-
sification problem. Thus, for a mode detection problem with n

distinct modes, n high-level features will be constructed.
Each individual in this approach is a tree, which represents

a high-level feature. Each tree (feature) that is constructed dur-
ing the GP process is a function that its value is determined
based on the original features. Thus, the values of the high-level
features can be calculated for the training instances. The fitness
function in Approach 1 is defined based on the concept of infor-
mation entropy; it minimizes the impurity of the desired class
(the class for which the GP is run to construct a high-level fea-
ture). To determine the impurity, the “class interval” over the
high-level feature should be calculated first. The class interval
is the smallest interval that covers a given portion of all high-
level feature values for that class (i.e., excluding extremely high
or low values). The impurity of an interval (individual’s fitness)
is equal to the number of instances of undesired classes that are
in the desired class interval. The lower this number, the better
and purer the desired class interval over the high-level feature
will be. More details of the algorithm can be found in [6].

The GP settings used for the implementation of this
approach are presented in Table 2, which were determined
based on [28] and [6]. The function set includes four basic
arithmetic operators. The division operator is protected, which
means it returns zero if the denominator is zero. All operators
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TABLE 2 GP settings

Function set +,−, ×, ÷( protected division)

Variable terminals Original features (x1, x2, …, x14)

Constant terminals Random float values ranging from
−10 to +10

Population size (mu) 1000

Number of generated offsprings
for each generation (lambda)

2 × mu = 2000

Number of generations 50

Initialization Ramped half-and-half

Selection method Tournament (size = 7)

Crossover method One-point

Mutation method Uniform (random subtree creation)

Maximum tree depth 10

Mutation probability 30%

Crossover probability 60%

Reproduction probability 10%

have two arities/arguments. The terminal set contains the 14
original features and a random constant float value. To provide a
suitable search space, the population size and the number of fea-
tures should be proportionate [30]. Since the number of features
of this study is in the same order as Neshatian et al. [6], the pop-
ulation size is set to 1000. The number of generated offspring
for each generation is assumed to be twice the size of the pop-
ulation (mu). To prevent bloating [28, 36], the maximum tree
depth is set to 10. The GP process is terminated when a max-
imum number of 50 generations is reached, which always con-
verged in the conducted experiments. Mutation and crossover
probabilities were selected by comparing the results of different
combinations of multipliers of 10 for these probabilities. The
best results were obtained when mutation and crossover proba-
bilities were set to 30% and 60%, respectively.

Based on the constructed high-level features, two feature sets
are created: (1) the first one includes n high-level features for n

travel modes and (2) the second one includes n high-level fea-
tures and the 14 original features.

3.2.2 Approach 2

In the wrapper approach, individuals are evaluated using an
external classifier. A decision tree is selected for this purpose. In
Approach 2, each individual is a GP tree that represents a high-
level feature (F’0). The GP tree is used to construct a high-level
feature, which is then used in the decision tree for classification.
Thus, the two trees (one in the structure of GP and one as the
external classifier) have different functionalities. For each indi-
vidual, the value of the high-level feature is calculated. Thus, the
number of features is reduced from 14 to 1 in the projected data.
For evaluation of each GP individual, the classification accuracy
is determined by a decision tree using five-fold cross-validation.
This process is illustrated in Figure 5.

To choose a suitable measure for evaluation of GP indi-
viduals, macro- and micro-averages of both F1-score and area
under the receiver operating curve (ROC), which is denoted by
AUC (Area Under Curve) [37], are investigated, all of which
can be determined using a decision tree. In the macro-average,
the desired measure is computed for each class and then aver-
aged regardless of the number of instances in each class, while
the micro-average is determined by calculating the average over
all instances. The macro- and micro-averages can result in dif-
ferent values if one class is dominant (i.e. one travel mode).
After the selection of a suitable measure, the impact of max-
imum tree depth in GP settings is studied by reducing it
from 10 to four. Other GP settings are similar to those in
Table 2.

A significant reduction is achieved in the complexity of the
problem by reducing the number of features from 14 (original)
to one (high-level), although the one high-level feature may not
have the same performance as the original features. Therefore,
after the completion of the GP process (termination of 50 gen-
erations), six different feature sets introduced by Tran et al. [30]
are constructed. Figure 6 shows an example of a constructed
high-level feature; original features of F1, F3, and F4 were used
to construct this feature. The six feature sets for this example
are specified next.

Set 1: The single high-level feature, which is F ′
0 =

(F1 − F4) × (F3 + F1).
Set 2: Original features and the high-level features, which are

{F1,F2, … ,F14,F
′

0 }.
Set 3: Original features that appeared in the terminal nodes

of the high-level feature, which are {F1,F3,F4}.
Set 4: Combination of sets 1 and 3, which are {F ′

0 ,F1,F3,F4}.
Set 5: All possible subtrees of the high-level feature, which

are {F ′
0 ,F

′
1 ,F

′
2 }, where F ′

1 = (F1 − F4) , and F ′
2 = (F3 + F1).

Set 6: Combination of sets 3 and 5, which are
{F1,F3,F4,F

′

0 ,F
′

1 ,F
′

2 }.

After constructing these feature sets, their performance is
evaluated using a decision tree. The advantage of Approach 2 is
its simplicity and lower execution time, compared to Approach
3 and 4 since only a single feature is constructed and evaluated
during the GP process, and feature sets are constructed after the
completion of the GP process.

3.2.3 Approach 3

Similar to the previous approaches, each individual is a tree in
Approach 3. However, for the evaluation of each individual,
as proposed by Ahmed et al. [34], all possible subtrees of that
individual are specified and included in the feature set of the
decision tree, as shown in Figure 5. Approach 3 has a higher
execution time compared to Approach 2 because of its higher
computational complexity. To compare the approaches at a
relatively similar execution time, the population size and the
number of generations are reduced to 100 and 30, respectively.
The maximum tree depth in GP settings is also set to four.
Other settings are similar to those in Table 2.



106 NAMDARPOUR ET AL.

FIGURE 5 GP individual evaluation process in approaches 2 to 4

FIGURE 6 An example of a high-level feature

The output of Approach 3 is a high-level feature in which
all of its subtrees were evaluated as a feature set of a decision
tree. After the completion of the GP process, the six feature
sets introduced in the previous section are constructed based
on the best-generated individual. While in Approach 2, feature
set 1 of these six sets has already been evaluated during the GP
process, in Approach 3, set 5 has already been evaluated. The
advantage of Approach 3 compared to Approaches 1 and 2 is
that the performance of a group of features (e.g., F’0, F’1) is
evaluated in the GP process. A single feature may have a good
performance to identify a class in Approach 1; however, their
collation (a set of separately developed features for each class)
may not perform well. Approach 3 finds a group of features that
have a good performance in tandem.

3.2.4 Approach 4

In this approach, each individual consists of multiple trees, and
each tree represents a single high-level feature. Therefore, each
individual constitutes multiple high-level features. The number
of trees of each individual is predetermined. For mutation, one
of the trees of a given individual is chosen randomly; then a ran-
dom subtree of this tree is replaced by another randomly gener-
ated subtree. In the crossover, two individuals are selected, and

one subtree of a randomly chosen tree is swapped between indi-
viduals. This process is shown in Figure 7.

The evaluation of individuals is shown in Figure 5. Similar to
Approach 3, the performance of a group of features is evalu-
ated in this approach; however, features of each individual have
a higher degree of freedom to evolve since these features are
independent of each other and can evolve separately specifi-
cally to improve their collective performance. The execution
time is longer for Approach 4 because of its higher complex-
ity compared to Approaches 1 and 2. To enable comparability
of the approaches at a relatively similar execution time, the max-
imum tree depth in the GP settings and the population size are
decreased to 4 and 500, respectively. The number of trees of
each individual can also be adjusted. It is set once to the num-
ber of classes of the classification problem and is set to twice
this value at another time for sensitivity analysis.

4 RESULTS

The data preparation steps were coded in Java. GP was imple-
mented using the DEAP library in Python [38], and the Scikit-
learn library in Python [39] was used for developing classifica-
tion models. Eighty per cent of the data was used for training to
construct features using GP, and the remaining was later used
for testing. The results reported next are based on the test data.
A decision tree classifier was used for the final evaluation of
constructed feature sets in all approaches. The GP processes
were run on a system with a Core i7-4790 CPU @ 3.60 GHz
and 16 GB of memory.

4.1 Data preparation

To implement and evaluate the proposed methodology, the
GeoLife dataset [12] collected by 64 users mostly in China was
used. This dataset includes trips performed by different modes
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FIGURE 7 Mutation and crossover operations in Approach 4

TABLE 3 Distribution of segments in travel modes

Travel mode Walk Bike Bus Car Train

Number of segments 6395 2142 2787 2165 1834

of transportation, among which the five land transportation
modes of walk, bike, bus, car, and train are considered in this
study. Both the car and taxi modes are considered as cars, and
all rail-based modes (light rail, subway and train) are considered
as trains in this research. After applying all the preparation steps
described in Section 3.1, 15,323 segments were obtained as pre-
sented in Table 3.

4.2 Feature construction using GP

The process of feature construction in each approach was
repeated 30 times using a set of 30 different random seeds
because of the stochastic behaviour of GP. The evaluation of
GP individuals in the population was performed in parallel using
six processor cores to minimize the execution time.

4.2.1 Approach 1

The test results in terms of the macro-average of F1-score
(which will be discussed in the next section) are reported in
Table 4. The optimal value of maximum depth of the decision
tree was determined by applying five-fold cross-validation to the
training data. The number of features in each set is shown in
column “#F”. The best, average, and standard deviation of 30
sets of results is presented in Table 4, while each set was gen-
erated using a different random seed for feature construction.
The results corresponding to the application of 14 original fea-
tures as the input of the decision tree are used as the baseline for
comparison. To compare the results of different GP approaches

with the original features, the t-test has been conducted. The t

values and their statistical significance according to one tail t-
distribution are reported in the table.

As shown in Table 4, the performance of feature set 1 could
not reach the performance of original features, which indi-
cates that developing a number of features separately may not
result in a good performance. In set 2 of Approach 1, the
mean value was slightly improved compared to the original set,
after adding five constructed high-level features to the original
features. Given the small improvement in the F1 value, more
approaches are investigated in the following to achieve better
results.

4.2.2 Approach 2

The results of using different performance measures as the fit-
ness criterion are presented in Table 5. Regardless of the perfor-
mance measure being tested, the values of other performance
measures were also calculated and reported in this table.

The average values of all performance measures were less
when the AUC (either macro- or micro-averages) was used as
the GP fitness criterion rather than the F1-score. Therefore,
the F1-score had a better performance than the AUC. Since
no considerable differences between the results of the macro-
and micro-average of F1 were found, the best fitness measure
was selected based on the concept of these two measures. In
many transportation systems, the mode share is unbalanced (in
the GeoLife dataset, for example, walking constitutes 42% of
the trip segments). Thus, the macro-average that assigns equal
weights to different classes/modes can result in a model that
can predict all travel modes with an acceptable level of accu-
racy and is not biased towards the dominant mode. Therefore,
the macro-average of F1 was used as the GP fitness measure in
Approaches 2–4.

The best and average values of different performance mea-
sures by a single feature were less than their respective values in
the original features, which demonstrates that a single high-level
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TABLE 4 GP settings and test results of different approaches

F1 macro

Approach

Maximum

tree depth

Set

Original

#F
14 Best

Mean

77.3 SD t Sig. Mu Lambda

No. of

generations

Execution

time (min)

1 10 1 5 75.5 72.5 1.66 – 1000 2000 50 69

2 19 78.6 77.9 0.37 8.88 ***

2 10 1 1 73.6 71.0 1.20 – 1000 2000 50 44

2 15 78.9 77.9 0.43 7.64 ***

3 9.6 78.8 77.4 1.02 0.54

4 10.6 79.0 77.6 0.85 1.93 *

5 25.1 77.8 75.6 1.16 –

6 34.8 79.1 77.4 0.90 0.61

4 1 1 72.6 70.1 0.99 – 1000 2000 50 40

2 15 78.6 77.7 0.43 5.10 ***

3 6.4 77.9 76.2 1.08 –

4 7.4 78.8 76.3 1.20 –

5 9.3 78.0 74.5 1.51 –

6 15.8 79.2 76.4 1.37 –

3 4 1 1 62.0 46.1 11.03 – 100 200 30 172

2 15 78.7 77.9 0.38 8.65 ***

3 8.6 79.0 77.7 0.56 3.91 ***

4 9.6 79.2 77.9 0.60 5.48 ***

5 13.5 79.3 78.0 0.72 5.33 ***

6 22.1 79.4 78.1 0.53 8.27 ***

4 4 1 5 79.3 77.5 0.72 1.52 500 1000 50 66

1 10 80.0 78.5 0.74 8.88 *** 500 1500 50 176

*Significance at 95% confidence level.
***Significance at 99.9% confidence level.

TABLE 5 Test results of approach 2 to determine GP fitness criterion

AUC macro AUC micro F1 macro F1 micro
Performance measure used

as the GP fitness criterion Set #F Best Avg SD Best Avg SD Best Avg SD Best Avg SD

original 14 92.3 94.3 77.3 81.5

AUC macro set 1 1 89.7 88.4 0.56 92.7 91.8 0.48 67.9 64.6 1.62 74.3 72.1 1.07

AUC micro set 1 1 88.9 88.1 0.58 92.4 91.9 0.27 65.2 62.9 2.34 72.8 71.3 0.93

F1 macro set 1 1 90.0 89.2 0.75 93.0 92.2 0.70 73.6 71.0 1.20 78.6 76.4 0.99

F1 micro set 1 1 90.3 89.5 0.41 93.1 92.6 0.31 73.0 71.2 1.21 78.2 76.9 0.95

feature could not have a similar performance to the 14 original
ones.

To investigate the impact of maximum tree depth in GP set-
tings on the performance of constructed features, particularly in
feature selection, the maximum depth was set to ten and four.
The results of the six feature sets for these maximum depths
are shown in Table 4. Overall, set 2 had a better performance
compared to the other sets. Although this set achieved similar
results to set 2 of Approach 1, it contained a smaller number

of features, which means it performed better than Approach 1.
However, the improvement in performance in this set was still
not considerable compared to the original set.

The average values of F1 decreased in all sets by reducing the
maximum tree depth from 10 to four, and the standard devia-
tions increased in almost all sets. Nevertheless, the average num-
ber of features in sets 3 to 6 was also significantly decreased,
which demonstrates the effectiveness of reducing maximum
tree depth in feature selection by choosing features that play a
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FIGURE 8 An example of constructed feature set using Approach 4

critical role in detecting travel mode. Therefore, the maximum
tree depth can be determined based on the factor that has a
higher priority (achieving a higher accuracy or constructing sim-
pler models with less execution time).

4.2.3 Approach 3

The results of Approach 3 are presented in Table 4. Except for
set 1, all values of F1 were higher than those of the original
set. Although the maximum tree depth was 4, the average and
the best values of F1 scores (of sets 2 to 6) were increased and
the standard deviations were decreased compared to Approach
2 at a maximum depth of both 10 and 4. The average num-
ber of features in sets 3 to 6 was slightly increased compared to
Approach 2 at a maximum depth of 4; while these sets produced
better results and had an acceptable performance in feature
selection. In set 3, for instance, the six features of length, expec-
tation of velocity, velocity variance, first maximum velocity, first
maximum acceleration, and velocity change rate produced val-
ues of 78.4 and 82.4 for the macro- and micro-averages of F1,
respectively.

4.2.4 Approach 4

In Approach 4, only feature set 1, which contained the high-
level features of an individual, was created. The number of high-
level features was set to either five (equal to the number of travel
modes) or ten for sensitivity analysis. The results are presented
in Table 4.

In the first case, the five high-level features could achieve the
performance of the 14 original features. The superiority of this
approach is clearly evident over Approach 1 in which the five
high-level features had a lower performance compared to the

original features; while the maximum depth of each tree (fea-
ture) was set to ten in Approach 1 and four in Approach 4. The
superiority of Approach 4 compared to Approach 1 is because
the five features in the latter were constructed separately, while
a group of five features were constructed simultaneously in the
former. An example of evolved GP individual by this approach
is presented in Figure 8. This individual consists of five trees
representing five high-level features. This feature set produced
the value of 79.3 for the macro average of F1, when used as the
input of the decision tree. In this figure, Amax1, V̄ , Vvar , Vmax1,
Amax3, E (V ),Δt , and VCR represent first maximum accelera-
tion, mean velocity, velocity variance, first maximum velocity,
third maximum acceleration, expectation of velocity, time dura-
tion, and velocity change rate, respectively.

The results of constructing ten features in Approach 4 were
significantly better than the original set (based on the t-test at a
significance level of 0.05) as well as the other approaches. The
best high-level feature set yielded an increase in the value of
macro-average of F1 by more than 2.5% compared to the orig-
inal set. The mean execution time of constructing features for
a single random seed in each approach is reported in Table 4.
Approaches 3 and 4 were the slowest approaches despite the
smaller population size and number of generations in Approach
3, reflecting the higher computational complexity of Approach
3 compared to the other approaches. Overall, Approach 4 per-
formed better in constructing new features and Approach 3 in
feature selection (see set 3 of Approach 3).

The best high-level feature set (the ‘best’ set of Approach 4
with 10 features) was used as the input of a decision tree, and the
confusion matrix was calculated, as presented in Table 6. The
optimal value of maximum depth of the decision tree was iden-
tified by performing a five-fold cross-validation on the training
data, and the performance of the developed model was evalu-
ated on the test data. As shown in Table 6, walk and bike modes
had the highest F1 values, while the car had the lowest. The
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TABLE 6 The confusion matrix, recall, precision, and F1-score for the
best-constructed feature set of approach 4

Predicted class

Walk Bike Bus Car Train Sum Recall (%)

Actual class Walk 1207 22 5 4 6 1244 97.0

Bike 48 381 11 6 1 447 85.2

Bus 56 14 394 71 21 556 70.9

Car 31 6 75 285 23 420 67.9

Train 38 7 17 48 288 398 72.4

Sum 1380 430 502 414 339 3065

Precision (%) 87.5 88.6 78.5 68.8 85.0

F1-score (%) 92.0 86.9 74.5 68.6 78.2

largest prediction error for cars corresponds to identifying seg-
ments as bus and vice versa. In addition to the typical similar-
ities of bus and car segment characteristics, taxis compared to
private cars have more stops to pick-up or drop-off passengers,
which makes them even more similar to buses that have regular
stops at stations, and can lead to a false prediction. Separating
car and taxi labels by providing more instances of them can be
an effective way to reduce this error.

4.3 Comparison of GP with other
classification algorithms

SVMs and neural networks are both capable of constructing
high-level features, which makes them similar to the proposed
GP feature construction approach. Therefore, the best results
of the proposed GP approaches are compared with results of
optimized SVM and neural networks to provide a better per-
spective of the GP performance. In addition to SVM and MLP,
a standalone DT (i.e. without being combined with a GP) is
applied. The 14 original features were used as the input of
these models. The SVM was implemented with a radial basis
function, and its regularization parameter (c) was optimized by
five-fold cross-validation on the training set. For the gamma
coefficient, the default value of ‘scale’ in the Scikit-learn library
was used. For the neural network, a multilayer perceptron
(MLP) was implemented in which the optimal number of hid-
den layers was determined by five-fold cross-validation. Fol-
lowing Dabiri and Heaslip [1], the number of nodes in each
hidden layer was set to twice the number of nodes of its previ-
ous layer. For DT, the maximum tree depth was optimized. The
range of hyperparameters and their optimal values are provided
in Table 7. The test results are presented in terms of macro-
average of F1-score, and the micro-average of F1 (which is equal
to the measure of ‘accuracy’ in a multiclass classification with
each instance assigned to exactly one class). The measures of
recall and precision are not shown to keep the results concise.
Since SVM and MLP models are not scale-invariant, data were
first standardized using the z-score for these two models so that
each feature would have a zero mean and a unit variance [40].

TABLE 7 Comparison of GP system performance with SVM, MLP and
DT

Model HP range

Optimal

HP F1-score Accuracy

DT [5–20] 8 77.3 81.5

MLP [1–10] 2 80.7 84.0

SVM [0.1, 1, 10, 100, 1000] 100 81.0 83.9

DT[GP] [5–20] 10 80.0 83.4

TABLE 8 Comparison with relevant studies

Study

Best

model DT MLP SVM

Endo et al. [26] 67.9 – – –

Wang et al. [5] 74.1 68.9 – 52.3

Dabiri and Heaslip [1] 84.8 75.2 59.4 65.4

Nawaz et al. [27] 83.8 – 57.1 66.2

This study 83.4 81.5 84.1 83.9

The last row of the table presents the results of using the best-
constructed feature set by the GP as the input of a decision tree
in the proposed approach (DT[GP]).

It is important to repeat that SVM and MLP parameters are
optimized to produce their best results. The performance of
optimized SVM, MLP, and DT[GP] are very similar to each
other, while the performance improvement of the standalone
DT using the constructed features by a GP is evident. These
results indicate that GP could significantly improve the perfor-
mance of a simple classifier, such as a DT, and while maintaining
simplicity, it could produce competitive results with classifiers
that are able to construct high-level features intrinsically.

4.4 Comparison with relevant studies

The results of this research were also compared with a number
of studies that used the GeoLife dataset. These studies include
Nawaz et al. [27] that used a convolutional long short-term
memory (CLSTM) and Dabiri and Heaslip [1] that employed
a convolutional neural network (CNN) to infer travel mode,
Wang et al. [5] and Endo et al. [26] that applied deep learn-
ing to construct high-level features. Although the definition of
segments, and consequently, the level of aggregation differs in
these studies, because of using the same dataset it is possible to
have a general comparison of their performance. Since the mea-
sure of accuracy is common in all of these studies, their highest
reported accuracy along with other provided classification algo-
rithm results are presented in Table 8. These results are directly
taken from the original papers.

According to Table 8, Dabiri and Heaslip [1] achieved the
highest accuracy; however, similar to Nawaz et al. [27], there is
a considerable difference among the results of different clas-
sification algorithms in their study. This bias could be the
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TABLE 9 Distribution of segments among different travel modes in
Australia and New Zealand dataset

Travel mode Walk Bike Bus Car

Number of segments 719 65 470 2578

TABLE 10 Test results of Australia and New Zealand dataset

F1 macro

Set #F Best Mean SD

GP execution

time (min)

Original 14 70.9 –

1 (Approach 4) 8 75.6 72.3 2.17 36

consequence of limiting the segments to have equal sizes since
equal sizes was a requirement for their utilized CNN archi-
tecture; thus, the performance of DT, MLP, and SVM was
adversely affected. The results of the present research (the last
row of Table 8) demonstrate that data preparation steps have a
significant impact on the results, and similar outcomes can be
obtained through different algorithms. Not applying data stan-
dardisation before feeding data into the SVM and MLP models
could be another reason for the observed differences among
outcomes of classical classification algorithms in Nawaz et al.
[27], Dabiri and Heaslip [1] and Wang et al. [5].

By using GP to extract high-level features for a DT, the over-
all accuracy became similar to those of sophisticated models,
such as CNN and CLSTM. Notedly, this competitive result is
achieved using a classifier that is not only simpler, but also has a
higher level of interpretability, and a lower risk of over-fitting.
Therefore, the proposed model can be used even on smart-
phones with limited computational capacities in order to pas-
sively collect travel data with a high level of accuracy for mode
detection.

4.5 Validation of the proposed method

To validate the proposed approach and the best-constructed
features, the approach is applied to another dataset collected in
Australia and New Zealand [13,14]. The New Zealand data was
collected in 2014 corresponding to 76 users, and the Australian
data was collected in 2014 corresponding to 99 users. Both
datasets contain four travel modes of walk, bike, bus, and car.
After applying data preparation steps according to Section 3.1,
3832 segments were produced, which were distributed among
different modes as illustrated in Table 9.

Approach 4 in constructing features using the GP, which pro-
duced the best results in the GeoLife dataset, was applied to this
dataset by setting the number of trees in each individual to twice
the number of travel modes (i.e. eight). Because of the strongly
unbalanced distribution of data among different transportation
modes, the macro-average of F1 was again used as the fitness
measure of individuals. Other settings were similar to the pre-
vious sections. Table 10 compares the test results of using the

TABLE 11 Comparison of the performance of the developed models for
the Geolife dataset on the Australia and New Zealand dataset

Model #F F1-score Accuracy

DT 14 59.1 57.1

MLP 14 31.0 24.1

SVM 14 43.4 47.1

DT[GP] 10 61.9 62.9

constructed features by GP through 30 different random seeds
as the input of decision tree with results of using the 14 orig-
inal features. The results are again significantly better than the
original set according to the t-test at a significance level of 0.05.

To investigate the transferability of different models, Table 11
compares the performance of the developed models for the
GeoLife dataset on the Australia and New Zealand data. The 14
original features were used as the input of DT, MLP, and SVM,
and the best-constructed features for the GeoLife dataset were
used as the input of DT[GP]. In this validation stage, the devel-
oped models of Table 7 are applied to a totally new dataset (the
Australia and New Zealand data). Consequently, the results of
these models on the new dataset are not expected to be compa-
rable with the best-found results in Table 7 or Table 10, where
features and models were exclusively constructed and developed
for the datasets. According to Table 11, the results of DT and
DT[GP] were considerably better than MLP and SVM, which
indicates that a DT is much less prone to over-fitting. DT[GP]
outperformed the other models and achieved the best results in
terms of both measures of F1-score and accuracy.

5 CONCLUSIONS

In this paper, the possibility of using GP as a method for
feature selection and construction of high-level features was
investigated for travel mode detection. Feature selection and
construction can be used to improve the performance of clas-
sification algorithms, such as a DT, which are not capable of
changing the representation of inputs in the model develop-
ment process. The GeoLife dataset [12] and the 14 original fea-
tures proposed by Zheng et al. [24, 25] were employed for this
purpose.

After applying data preparation steps, four different
approaches for feature construction using GP, including one fil-
ter and three wrapper approaches were examined. A DT was
used to evaluate GP individuals in wrapper approaches, while
different fitness measures including macro- and micro-averages
of both F1-score and the area under the ROC curve were
investigated. Feature selection as a special case of feature con-
struction was also investigated through these approaches. The
performance of high-level feature sets was also evaluated by a
decision tree.

Overall, the wrapper approaches (Approaches 2–4) had a bet-
ter performance compared to the filter approach. Based on the
results of Approach 2, the macro-average of F1 was selected
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as the fitness measure. Approach 3 was successful in feature
selection; it needed less computational effort by reducing 14
original features to six and had a higher classification accuracy.
Approach 4 was the most efficient for feature construction.

The results of the best high-level features were compared to
SVM and MLP, both of which were capable of changing the
representation of features, and then compared to a number of
relevant studies in the literature. Results of these comparisons
indicate that a simple classifier, such as a DT, can demonstrate
a competitive performance to more sophisticated algorithms by
extracting high-level features using GP, while being less prone
to over-fitting.

The proposed approach was validated by another dataset col-
lected in Australia and New Zealand, which indicated that a
DT with the GP constructed features as its input has a higher
transferability than SVM and MLP. As for future research direc-
tions, different techniques for controlling bloat in GP individu-
als could be investigated; bloat problem in GP is an increase in
average tree size and depth without any significant increase in
fitness. In this study, the maximum depth of trees was adjusted
for this purpose. The generated numeric constants in GP indi-
viduals could also be optimized to improve the performance of
mode detection. In addition, the impact of using other classifi-
cation algorithms such as random forests of a DT in wrapper
approaches can be studied.
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