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Abstract

Cattle’s body shape and joint articulation carry
significant information about their well-being.
Building a large dataset of any animals’ 3D
scans is a challenging task. However, such a
dataset is required for training deep learning al-
gorithms for 3D body pose estimation. In this
work, we investigate how such a dataset can be
constructed for cattle from a single 3D model
animated by a digital artist. Further, we reduce
the simZ2real gap between the virtual dataset
and real scans of animals by augmenting the
shape of the 3D model to cover the range of
possible body shapes. The generated dataset is
tested on semantic keypoints detection with an
encoder-decoder architecture.

1 Introduction

Robotics and automation are being adopted in live-
stock agriculture production systems, assisting in labor-
intensive tasks. Perception systems are critical to col-
lect robust and precise information about the farm and
animals on it [Duong et al., 2020]. The animal body
structure has an impact on behavior, well-being, and
fertility |Saad et al., 2021]. Changes in the locomotion
of cattle are often a potential indicator of health issues
[B. Sadiq et al., 2017]. Specifically, in cattle, farmers
often monitor their herd for structural soundness [Saad
et al., 2021], body condition score [Bell et al., 2018], and
lameness [Russello et al., 2021] that can all affect the
profitability of a herd. Crucial in their assessment is
identifying the pose of joints and limb actuation while
cattle are in motion, which is referred to as body pose
estimation.

Human pose detection and tracking frameworks have
already received significant attention, stemming from
their wide-ranging use for human-computer interaction
or activity recognition [Wang et al., 2021]. Animal pose
frameworks are emerging; the difficulty of data acquisi-
tion is a byproduct of unwilling cooperation and implicit

difficulty coordinating animals in the process. Available
animal data sets, such as [Yu et al., 2021], |Jianguo et
al., 2019], are 2D images or sequences with no ground
truth for joint position containing significant human-
annotation |Joska et al., 2021].

Attempts to estimate animal pose have relied on do-
main adaptation, transferring knowledge from human
datasets |Cao et al., 2019a]. Using synthetic training
data for 3D pose estimation of animals |[Fangbemi et al.,
2020] leverages human pose estimation, creating RGB
images that can be fed into networks. The focus is on
generating realistic views by minimizing the difference of
distributions between the synthetic RGB training data
and real data of animals from the wild. The approaches
generally consider a single animal in the wild, not part of
a herd (group). Apart from pose estimation, the quality
of the joints and general shape of animals are not ex-
ploited for animal assessment. Further, the simulations
used do not include variability within the animal species
[Fangbemi et al., 2020] and therefore do not fully ac-
count for sim2real challenges of shape variability under
deformation while animals are in motion [Hofer et al.,

2021].

Our previous work directly exploits cattle shapes cap-
tured in high fidelity for beef cattle assessment [McPhee
et al., 2017]. Such data requires close proximity of depth
sensors to cattle isolated from the group, thus obtaining
unobstructed complete views of the body. Requirements
of reliable depth and adequate coverage of animals’ bod-
ies, together with the constraint of the limited camera
field-of-view, require a multi-depth camera system for
acquisition. Generating a realistic RGB view from such
a system, which is non-trivial, could be orthogonal to
the use of this data for 3D pose estimation. Data from
unstructured point clouds may present a challenge for
some of the deep learning models. Pointnet++ [Qi et
al., 2017 solves this problem by dealing with raw point
cloud data while respecting the permutation invariance
of individual points in the input.

This work deals with the lack of realistic synthetic an-



imal data and proposes a methodology to directly learn
joint coordinates from 3D pointcloud data. We present
an approach for scaling a single model animation into a
dataset with a large variety of body shapes and postures.
The sim2real gap is investigated by comparing the train-
ing of a model for keypoint detection [Falque et al., 2022
on our generated dataset and on a real dataset collected
by scanning more than 200 animals. We further propose
reformulating the encoder-decoder proposed in [Falque et
to solve the problem of keypoints located out-
side of the pointcloud collected from the animals (e.g.,
skeletal joints prediction).

2 Related Work

Human pose detection and tracking frameworks have re-
ceived significant attention, stemming from their wide-
ranging use for human-computer interaction in virtual
reality and gaming consoles to human activity recog-
nition for surveillance applications. Seminal work on
utilizing depth data for this task by
leveraged a significant amount of data from con-
trolled environments (motion capture room) where ac-
tors perform a variety of actions. This work was fol-
lowed by a raft of RGB-based approaches that leverage
deep learning frameworks such as [Mehta et al., 2017;
Mathis et al., 2018] to learn body joints pose. OpenPose
[Cao et al., 2019b], a benchmark for human pose estima-
tion, represented the first real-time multi-person system
for body keypoints.

Animal pose estimation models are mainly inspired by
human models and have progressively evolved through
the last decade. Available animal data sets, such as
let al., 2021} Jianguo et al., 2019; Russello et al., 2022,
are 2D images or sequences with no ground truth for
joint positions. Custom animal datasets, such as Aci-
noSet for cheetahs [Joska et al., 2021], contain significant
human annotation.

As a result of a shortage of data sets in the ani-
mal field, data input can be expanded by either trans-
forming learning models from another domain (an-
other animal) or humans and fine-tuning [Sanakoyeu
et al., 2020] [Mathis et al., 2021} [Pereira et al., 2020;
Cao et al., 2019al, or by using synthetic data augmen-
tation process |Mu et al., 2020; Del Pero et al., 2017;
Del Pero et al., 2015; Li and Lee, 2021} Zuffi et al., 2019).
While some of these approaches extract 3D keypoints,
they may not be on actual joints [Badger et al., 2020],
or the fitted 3D models do not have an evaluation of
mesh quality [Yao et al., 2019; |Li and Lee, 2021|. Diffi-
culties also arise in assigning keypoint locations, needing
imputable relationships between the model and the ac-
tual animal shape [Zuffi et al., 2019]. Further, the result
might be a visually appealing 3D shape, though it is not
geometrically consistent with the animal structure

Figure 1: Skeletal view of a cattle. The generation of the
simulated dataset leverage the scaling of anatomically
correct skeletal components to create a variety of body
shapes. Illustration amended from [Black et al., 2001].
Areas in blue represent four of the local areas that are
scaled for augmentation.

et al., 2022|.

Existing work on synthetic animated training data for
3D pose estimation of animals [Fangbemi et al., 2020]
leverages human pose estimation, retraining existing net-
works such as OpenPose and Pose3D with RGB and joint
pose data from a simulator. In doing so, the main chal-
lenge to overcome is creating RGB images where the
difference in distribution between the synthetic training
data and the real data from the wild is minimized. While
overcoming significant difficulties in getting anatomically
related keypoints (on animal joints), this approach re-
quires transforming RGB images into realistic scenes.
There is no attempt to validate the sim2real gap of key-
point locations on real data, or use the 3D data for the
purpose of animal assessment.

3 Methodology

3.1 Dataset generation from a 3D model
animation

A large dataset is generated by augmenting an artist-
created animated 3D model of a bovine (steer) into a set
of point clouds that represent scans with different body
shapes. The 3D model animation is made of a triangle
mesh defined as a set of vertices and faces {V, F'} and
an animated skeleton defined as a graph which defined
a set of nodes and edges {G, E}. The mesh, from which
the vertices are defined as V' = {vy1,...,v,} such that
v; € R3, is sculpted digitally to provide a realistic 3D
shape of cattle. The skeleton joints, G = {g1,...,94}
such that g; € R3, are anatomically correct and located
to provide realistic degrees of freedom when compared
to a skeleton such as the one shown in Figure[I] The an-



Table 1: Parameters Scaling Factors Limits. Parameters
unmentioned in the truncated column are set to 1.

Parameter I o truncated

Sacral Vertebrae 1.2 0.2 1<s, <14
Lumbar Vertebrae 1.1 0.2 1<s, <12
Thoracic Vertebrae 1.15 0.2 1<s, <13
abdomen 1.2 0.2 1<s, <14
full scale (length) 0965 0.2 093<s,<1

full scale (height) 09 02 0.85<s,<0.95

imation is then constructed by morphing the mesh with
linear blend skinning using the guidance of the animated
skeleton.

Mesh deformation

Two augmentation methods are used for generating the
different body shapes. First, an augmentation of the ani-
mal’s joint positions is performed by selecting a different
pose from the animation and non-uniformly scaling the
skeleton structure. This provides us with a variety in
terms of under-laying shapes of animals (i.e., variation
in the joints’ position). Secondly, the shape of the 3D
model is then augmented to generate animals that have
different body shapes (e.g., animals with more/less fat
and muscle).

More specifically, the joints’ position augmentation is
achieved by selecting one of the poses from the first forty
frames of the model animation. For each frame, eight
parameters were assigned to the scaling of anatomical
parts as in , from which three points are assigned to
the spine (Sacral Vertebrae, Lumbar Vertebrae, Thoracic
Vertebrae), abdomen, and full body scale (length and
height). These anatomical areas can be visualized in
Figure [T}

Each anatomical area that requires scaling is included
into the skeleton as an additional armature and is as-
signed a dedicated scaling matrix defined such that the

4t armature is scaled with:

s, 0 0
S;=10 s, O (1)
0 0 s,

where s, ~ N(u,0?), s, ~ N(p,02), s, ~ N(u,0?), the
parameters applied for scaling the areas in the X, Y,
and Z direction respectively. The parameters for each
respective area are defined in Table [T]

The mesh is then deformed with respect to the skele-
ton animation using linear blend skinning (LBS). The
mesh vertices’” position is calculated by the weighted lin-
ear combination of transformations of armature joints as
follows:

’U;( = ijMijvi (2)
J

Figure 2: Each model is annotated by thirteen points,
including three points at each of the front legs, two at
the back legs, two at the hip bones, and one on the front
side of the spine.

where v} is the transformed vertex position of i*" ver-
tex, w; is the weight, M; is the transformation matrix
(rotation and translation) of joint j, and S; the scaling
matrix defined in .

Additionally, the shape of the 3D model is augmented
by using the smooth Laplacian modifier. The Laplacian
operator offers the advantage of smoothing or sharpen-
ing the shape of the 3D model [Sorkine et al., 2004].
This allows for generating shapes which look more/less
fat depending on the sign of the weight applied to the
Laplacian operator. The Laplacian smoothing is defined
using the standard cotangent Laplacian operator defined
as:

1
Av; = Q—AZ Z (COtO{i,j + COtBiJ)(’Uj — ’UZ‘) (3)
’UjEN1(’v-;)

where Aw; is the Laplacian of vertex i on a mesh, A;
the vertex area, A contains the one-ring neighborhood
of the il vertex, a; ; and f3; ; are the opposite angle to
the edge {v;,v;} with respect to the mesh faces. The
smoothing of the shape is applied locally by assigning
weights to the vertices in the hip area.

From the skeleton joints G, a set of these joints are
selected as annotations and stored in J = {J1,...,JJm},
such that J; € G. More specifically, the semantic mean-
ing of these joints is defined as follows: knee joints, hock
joints, shoulder joints, and hip joints. The location of
these joints is displayed in Figure

Raycasting and point cloud generation
To generate the required point cloud, seventeen realsense
D432 depth-cameras are used, eight on each side, and
one at the top, to replicate the real setup, as shown in
Figure[dl The cameras are hardware synchronized as per
[Sterzentsenko et al., 2018].

After defining the intrinsic cameras’ parameters, we
found the center of each pixel (u,v) while taking the top




Figure 3: Sample of mesh generated with different body
positions.

Figure 4: Seventeen depth-cameras are used in the simu-
lation (left) to replicate the physical setup used for data
collection of cattle (right).

right side of the image plane as a reference point as
v Yy — 0.5)]
Puyov = - 4
Hg W
where p, ., is the center of pixel (u,v), (w, h) image
width and height respectively, (n, m) image resolution
(number of pixels).
Afterward, an iteration over each pixel is performed

to project a ray and determine if it intersects the 3D
model,

Ur,, = [Pl — O ()

where o*: the camera focal point location, p;, ,: Puu
translated to the image plane, w.., ,: directional vector
of each raycast pixel from the focal point towards each
pixel,

X(t) = tur, , (6)

where t: distance along the ray, X: points on u,, .
The raycasting can then be performed with an AABB
tree [Bergen, 1997], which returns the point 4 where the
ray hits the surface and returns nothing if the ray does
not hit anything.

The pointcloud viewed by one depth-camera is then
the concatenation of all points hit by the rays. More
formally, the pointcloud of the k' camera is obtained

as Ijj, = |J tuw. The point clouds from all depth-

Yu,Vv
cameras are then concatenated into a single point cloud

such as:
17
I; = U I; (7)
k=1

The i** instance of our dataset now had the point cloud
I, and its associated annotations J;.

3.2 Network Architecture

Given a set of point clouds {Iy, ..., I,} and correspond-
ing anatomically correct joints position {Ji,...,J,}
generated following Section we train an encoder-
decoder that takes as an input a point cloud I, and
predict the position of the joints J;. The architecture
builds upon [Falque et al., 2022] where the distance
on the manifold to the joints’ keypoints is estimated
through an encoder-decoder. In contrast with
et al., 2022], where particular care is given to the data
augmentation of the limited dataset, here we solve the
data augmentation through the generation of a larger
dataset. The encoder-decoder used for the experiments
is Pointnet++ [Qi et al., 2017]. The generation of the
simulated dataset and its integration with the network
is represented in the diagram shown in Figure 5]

In brief, [Falque et al., 2022] precomputes the distance
on the manifold D using the heat kernel method |Crane
et al., 2017| by leveraging the tufted Laplacian [Sharp
and Crane, 2020] which can be computed directly on a
point cloud structure. The distance on the manifold is
then estimated through learning as a feature using an
encoder-decoder network. The inputs of the encoder-
decoder are defined by the size of the pointcloud (i.e., a
matrix I of size n x 3) and the outputs by the number of

joints that should be predicted (i.e., a matrix D of size
n X m).

In contrast to the method proposed in
, this paper investigates the prediction of joints’
position. Inherently, the joints are not located on the
surface, and their position has to be estimated from the
distances on the manifold. We propose to define the
joint position as the weighted sum of the point cloud
position with respect to the encoder-decoder prediction
of the distance on the manifold D such that:

1]

1 .
Zi D;; i=0

This formulation allows predicting joints’ position out-
side of the point cloud in the case where the underlying
shape is convex. This is particularly relevant for joints
located in the legs. A sample of the joint detection using
argmaz and the weighted sum is displayed in Figure [6]
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Figure 5: Method overview: from the simulated model, the armature undergoes rigid scaling and meshes a non-rigid
deformation. Through raycasting over a number of cameras, individual pointclouds are generated and merged. At
inference time, the point cloud is passed into an encoder-decoder architecture (Pointnet++ [Qi et al., 2017]) to

extract the keypoints.

During training, the dataset uses keypoints from the armature and the distances on the

manifold are pre-computed. The encoder-decoder inputs are n x 3 points and the outputs are the n x 13 distances

to the 13 joints keypoints.

Figure 6: Given the predicted distance on the manifold
shown in red for the rear leg: joint prediction using the
argmax of the network prediction (on the left) versus
the weighted sum of the point cloud described in (on
the right). The side view (on top) and the bottom view
(below) are displayed.

In Figure p| a diagram of the proposed methodology
is provided, showing how a random sample can be gen-
erated and passed through the encoder-decoder.

4 Experiments

Within the simulated dataset, a set of 1200 samples has
been generated by producing 30 different shapes for each
of the 40 frames.

First, a quantitative evaluation of the simZ2real gap
generated by training the network on a simulated dataset
versus a real dataset annotated manually. This is
achieved by comparing the performance of the proposed
method to the unmodified network proposed in [Falque

et al., 2022] (only the training data is changed). To per-
form a fair comparison, the canonical mesh of the 3D
model is annotated manually, and the vertices (with the
same indexes) of the deformed mesh, generated by fol-
lowing the method described in Section [3.1] are used as
keypoints. In contrast with [Falque et al., 2022], this pro-
vides the advantage of annotating the 3D model a single
time instead of manually annotating all the instances
from the dataset. The RMSE for both the keypoints
prediction and the estimated distance on the manifold is
reported in Table 2l In the first column, the training set
is the simulated dataset, and in the second column the
training set is real data with 200 samples annotated man-
ually. These dataset are used to train Pointnet++ [Qi ef,
al., 2017 to predict the distance on the manifold to an-
notated keypoints [Falque et al., 2022]. The evaluation is
performed on real data with 100 samples. As expected,
there is a sim2real gap which creates a drop in perfor-
mance when training the encoder-decoder on simulated
data. Further qualitative results are available in Fig-
ure [7] As shown in the figure, the learned distances on
the manifold are similar.

Table 2: Study of the sim2real gap. The RMSE of the
keypoint annotation is reported in centimetres. For ref-
erence, the bounding box around the animal would have
a length of approximately two meters.

trained with simulated real data
RMSE (keypoints) 11.44 5.57
RMSE (D — D)  4.94.107% 21.10°*

A further qualitative evaluation is performed by di-



real data manual

simulation

Figure 7: Comparison between the encoder-decoder de-
scribed in [Falque et al., 2022] using the generated
dataset and real data. The first column shows the pre-
diction of the joints’ distance while training with the
simulated dataset, the second column shows the predic-
tion using the real dataset with data augmentation, and
the last column shows the distance with respect to the
manual annotation.

rectly regressing the distance to the 13 joints position J
defined in Section Samples of the joints prediction
are shown in Figure |8| For this experiment, it is impos-
sible to compare quantitatively with [Falque et al., 2022]
as the joints’ position can not be annotated manually.

5 Discussion

The results from Table 2| show that the augmentation
of the shape described in Section [3.1| can be used as a
synthetic data to train a neural network for semantic
keypoints annotation. While a simZ2real gap still exists,
the experiment shows promising generalization on real
data. In the case where a limited real dataset is avail-
able, the synthetic data provides valuable pre-training of
the network and would bootstrap the fine-tuning of the
model on more realistic data.

Additionally, the main advantages of the proposed
method are the automation of the annotation (removal of
the erroneous and cumbersome human annotation pro-
cess) and the possibility of annotating points external to
the point cloud (e.g., joints).

6 Conclusion

In this paper, we propose a method for generating a large
dataset from a single 3D model animation. We propose
to augment this model through variations of poses, skele-
tal scaling, and local smoothing of the shape. The ap-
plication of such dataset is studied by investigating how
the dataset can be used for estimating joints positions.
The sim2real gap between training a deep model with
a simulated dataset versus real data is investigated for
this application.

Figure 8: Qualitative evaluation of the learning of the
joints prediction. Each colour represents the distance to
the joint learned by the network (i.e., the stronger the
colour is, the closer to the joint). In column (a), the
prediction of the network on the simulated dataset. In
column (b), the prediction of the network for the real
dataset.

While the results for joint prediction look promising,
further work is needed to see if such an approach would
translate well to other applications (e.g., body condition
score). In terms of additional future work, we are plan-
ning to investigate how the Euclidean distance can be
used as an alternative to the distance on the manifold.
This would provide a better proxy to estimate the joints’
positions compared to Equation , though implemen-
tation is not trivial as the Euclidean distance still needs
to be clamped on the local manifold.

Furthermore, the anatomically correct modelling of
body muscle and fat layers would open doors for many
additional applications. Such modelling is extremely
challenging and rarely performed by a few talented 3D
artists. Making these models parametric to cover the
different types of body conditions for large data aug-
mentation would add an extra layer of complexity.
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