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ABSTRACT 

Greenhouse gas emission related to the burning of fossil fuels for energy production is the 

main driver responsible for the climate crisis our society is facing. To avert climate change, 

the transition toward renewable energy production is urgent. However, the intermittence of 

these energy sources restrict their implementation. Coupling sustainable energy sources with 

energy storage systems could solve this issue. Since its commercialisation, Lithium (Li) -ion 

batteries have been at the centre of the attention for high-energy storage systems. As the 

global energy demand keeps increasing, new battery requirements are expected such as 

higher energy density and improved safety, which cannot be met by the current commercial 

Li-ion batteries. The thermally instable liquid electrolyte (containing highly flammable and 

toxic solvents, and thermally instable Li salts) usually employed in Li-ion batteries causes 

serious safety concerns. Many fires and explosions incidents occurred in the past few decades 

due to over-heating Li-ion batteries. Herein, various non-flammable electrolytes such as 

deep-eutectic-solvents and aqueous electrolytes were engineered to answer safety, dendrite 

growth and cost issues in Li and zinc (Zn) –based batteries. A fluorinated self-healing deep 

eutectic solvent quasi-solid electrolyte allowed long cycling performance of a Li-metal battery 

(Li||lithium manganese oxide (LiMn2O4, LMO) by creating a robust protective layer on the Li 

anode meanwhile the gel matrix helped guiding the Li deposition, thereby reducing dendrite 

growth and maintaining high safety. Then, a localized highly concentrated aqueous quasi-

solid electrolyte was designed for low-cost Li-ion aqueous batteries with high voltage LMO 

cathode. Finally, a molecular crowding strategy was employed to suppress dendrite growth 

and corrosion on Zn metal anode in hybrid Zn||LMO aqueous batteries. These electrolyte 

designs opened up fascinating ways to tailor electrolyte properties for high safety and low-

cost next battery generation. 
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