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A Gramian-based Approach to Model Reduction for Uncertaiat&ns

Li Li, lan R. Petersen

Abstract— The paper considers the problem of model re- In the recent papers [20], [21], problems of controllailit
duction for a class of uncertain systems with structured nom  and unobservability were investigated for a class of struc-
bounded uncertainty. The paper introduces controllability and = ;e uncertain systems in which the uncertainty is desdrib
observability Gramians in terms of certain parameterized by Int | dratic C traints (10CS). Th It
algebraic Riccati inequalities. This enables a balanced tn- y Integra ng ratic Constraints (IQCs). These re§u mo
cation model reduction procedure for uncertain systems to b  Vate the question as to whether a balanced truncation method
presented. Error bounds for this model reduction procedure can be obtained for uncertain systems. In this paper, we stud
are derived. The paper also investigatesd, model reduction  the balancing model reduction problem for continuous-time
for uncertain systems. The solution to this problem is shown | ,certain systems modeled by an LFT representation, as a
to involve constructing the underlying Gramians satisfyirg a . . !
certain rank constraint. coun'Ferpart to the correspondmg.results for dllscrete—um .

certain systems [7], [8]. We consider uncertain systemb wit
|. INTRODUCTION norm bounded uncertainty rather than the IQC uncertainty
o , . description considered in [22], [20], [21]. This enables us

Model reduction is an important aspect of linear systemg, geyelop a balanced truncation method for the class of

theory. One of the most commonly applied methods i§ncertain systems under consideration. Gramians anedelat

the balanced truncation method; e.g., see [1]. This methedyjization theory topics for discrete-time uncertainteys
involves finding the controllability and observability &n& \yere discussed in [23], [24], [25].

ans for the system under consideration. Then a state spacg, ihis paper, two parameterized algebraic Riccati
transformation is found which simultaneously diagoneislizeinequa"ﬁeS (ARIS) are introduced to characterize the

the Gramians. This leads to a balanced realization of the, wqiability and observability of the uncertain system
system from which the reduced ordgr model is constructegjer consideration. These results are closely related to
together with an a priori error bound; e.g., see [2], [3], [4] those in [20], [21]. We focus on the observability property
Uncertain systems commonly arise in robust control thgxiher than unobservability as in [20], and thus a different
ory; e.g., see [5], [6]. Model reduction methods for underta AR is used to account for this. A sufficient and necessary
systems are very useful in the design of practical robughngition to guarantee the feasibility of the two ARIs
control systems in which the dimension of the controlleg, provided. It is proved that the solutions to these
needs to be limited. For the discrete-time case, the balancgr|s are controllability and observability Gramians of the
truncation method for uncertain systems can be traced bagKcertain systems. Based on these results, we present a
to [7] within the framework of linear fractional transforma pajanced truncation algorithm to reduce the dimension of
tions (LFTs). This technique was further developed in [8}he yncertain systems. Our proposed method is based on
for multidimensional and uncertain systems. In [9], [1&l-b he yse of Linear Matrix Inequalities (LMIs) to construct
anced model reduction was extended to linear time-varyinge gesired reduced dimension uncertain system model. Our
system. [11] considered model reduction for the class Ghain results give bounds on ti&, norm error introduced
nonlinear systems described by a discrete-time stateiequatby the model reduction process. The first cost bound
c_ontainingarepeated scqlar nonlineari_ty. Forthe_contiﬂu obtained is of the same form as the bound which arises
time case, [12], [13] considered the gain scheduling problej, the standard balanced truncation approach. This bound
for uncertain systems described by an LFT representatiogyjies to the case in which the same uncertainty realizatio
and derived some linear matrix inequality (LMI) conditionsis considered in both the original and reduced dimension
to guarantee the existence of gain-scheduled controlleis. | hcertain systems: see Theorem 11. The second bound
included model reduction as a special case of these problerggained applies to the case in which different uncertnti
Model reduction for linear parameter-varying systems Wagre allowed in the original and reduced order uncertain
proposed in [14], [15], [16], [17]. Closely related problem gy siem. This bound is of a similar form to the first bound
such as approximation, truncation and simplification of Ung,; an extra term is introduced to allow for the different
certain systems were presented in [18], [19]. uncertainties in the two systems; see TheorenHi4model
. . . reduction for uncertain systems is also investigated, and a
This work was supported by the Australian Research Council. sufficient condition for the existence of a reduced order
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Electronic Engineering, The University of Melbourne, VD10, Australia  model is provided which involves the underlying Gramians
Ii.1i@e. unimelb. edu. au. _ _ together with a rank constraint; see Theorem 16. Similar
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The following lemma states a necessary and sufficient

Notation Let LJ'0,) be the space of square integrablecondition for robust stability. It is given in terms of the
functions inR™, and L(LY") denote the space of all linear positive commutant set correspondingA® defined as

bounded operators mapping frdo§' to L5". The gain of an

Az

L= n
ry » and

operatorA in L(LY) is given by||Al| = sup

zeL §[0,00),240

the adjoint operator oA is denoted ad* if A is linear, and

if A=A* A< 0 means thak*Ax < 0 for anyx# 0 in R™

We also useM* to denote the complex conjugate transpose
of a complex matrixM. For ze R™ and a nonnegative
matrix A € R™M, |72 = z*Az, andA is omitted when it is
an identity matrix. The state-space realization of a transf

matrix is denoted by(s) = [-+4-5-] :=C(sl — A)~'B+D.
Il. PROBLEM FORMULATION
We consider the uncertainty structure

A® = {diagAg,--- D) : O € L(LY), 4 causal|Ai]| < 1},
and the following uncertain system:
x = Ax+ E& + Bu,

] z=Kx+Guy, 1)
98\ y—cxiDE,
E=NAz, AcA®

wherex € R" is thestatg u € R™ is thecontrol input z€ R"
is the uncertainty outpyty € R! is the measured outputnd
£ ¢ R" is theuncertainty inputhereh = hy +--- + hy.

Let the nominal system be denoted by

A| E B

M — {Mn Mlz} _ | %o, ©
M21 Mgy clD O.nm

X

Po = {diag61ln,,--- ,6kln, ) : 6; > O}. (©)]

Lemma 2:(see [26]) The system (1) is robustly stable if
and only if there exis® € Py and X > 0, such that

A'X + XA+ K*OK + XEO1E*X < 0. (4)

IIl. CONTROLLABILITY AND OBSERVABILITY
GRAMIANS

As is well known, the controllability and observability
Gramians play very important roles in the traditional bal-
anced truncation approach to model reduction; see [1]. In
this section, we introduce Gramians for the uncertain syste
(1). First the controllability and observability Gramiafos
the uncertain system (1) are defined as follows.

Definition 3: A matrix S> 0 is said to be generalized
controllability Gramianfor the uncertain system (1) if the
following linear, operator inequality holds,

ApS+ S+ BaBL <0 VA€ AC. (5)

Similarly, a matrixP > 0 is said to be generalized observ-
ability Gramianfor the uncertain system (1) if

ANP+PAN+ CaCa <0 VAEAS (6)

Here, 4a, Ba, Cp are as defined in (2).

In [21], [20], issues of robust controllability and un-
observability for uncertain linear systems with structure
uncertainty were discussed in the framework of 1QCs and
the S-procedure. In these references, a linear time varying
system with nonlinear uncertainties was studied, and icerta

Then, the uncertain system (1) is defined by an LFT represeparameterized Riccati differential equations were deritee

tation as follows. For any bounded linear operatar £(LY)
such thatl — M1;A is non-singular, define

Fu(M,4) := Moz + MaA(l — M11A) Mo
Define the following operators

4y By [A+EAK B+EAG
Cn Dp| _ |C+DAK  DAG

()

If A varies in the clasAgrc of real constant matrices of the
underlying structure, the uncertain system (1) correspomd

B
Ga = TulM,0) = [%}@—i] Aebre

characterize the robust controllability and unobservigtlf
the underlying uncertain system. In this paper, we will egte
these ideas to uncertain systems of the form (1), that is, we
consider an LTI system with linear norm bounded uncertain-
ties. Particularly, we focus on the observability rathearth
the unobservability in [20], and thus a corresponding Ricca
representation is used to account for this.

Consider the following Riccati inequalities:

AS+ SA + (SK* 4+ BG")(A; 1 — GG ) }(KS+ GB")

+EN;E* + BB <0, 7
A*P+ PA+ (PE+4C*D)(Ao — D*D) }(E*P+ D*C)
+K*AK +C*C <0, (8)

Robust stability of the uncertain system (1) is defined L
below. It is assumed that the system (1) is robustly stabihereS>0,P> 0, and/ € Pe,/\o € Po are such thaf\; = —

throughout this paper. As in the traditional balanced tainc
tion, this assumption is essential for the balanced trumcat

GG* > 0,A\o — D*D > 0. Alternatively, (7) and (8) can be
rewritten as

of the uncertain system (1), and guarantees the existencdS+SA +SK AKS+EA;'E*
of the solutions to certain ARIs arising from underlying + (B+ SK*A¢G)(Im— G*AcG) " 1(B* + G*AKS) < 0, 9)
controllability and observability problems; see Theorem 5 p+p . pa+ PEAGLE*P+K*AoK

Definition 1 (Robust Stability [26]):The uncertain sys-

tem (1) is robustly stable ifl —Mz14)~1 exists in £(L])
and is causal, for alh € A®.

+(C*+PEAGID*)(I - DA ID*)"H(C+DAGE*P) < 0. (10)



The following example show tha$ in (7) or (9) is
analogous to the traditional controllability Gramian faon-I
ear time-invariant systems. Similar result also hold fa th
observability Gramian.

Observation 4:(Controllability Gramian ) Consider the
uncertain system (1) on the intenfalo, 0] with x(—c) =0,
and assume that the ARI (9) admits a solut®r 0 for some
¢ € Po such thatly, — G*AcG > 0.

Using x*(t)S™x(t) as a candidate Lyapunov function,
from (9) we have

0
/ lu[2dt

0 0
%8 o+ [ (i~ [Efd+ [ [g-ActErs i

2
dt
Ac

0 2
U—(Im—G*AcG) 1(B*S 1+ G*AcK)x
+/—oo‘ (Im <G) +GAK) (In—G"AG)

dt

> x5S .
Therefore,
0
min/ Iu2dt > x5S Yxo.

Here the minimum is respect to both the control inpand
the uncertainty inpug.

Proof: We only prove the controllability part.
ApSH SAp + BaBr
= (A+EAK)S+ S(A+EAK)*+ (B+ EAG)(B+ EAG)*
= AS+SA + EANIA'E* + BB
+ (SK*4+BG") (A1 - GG") {(KS+GB)
— [SK'+BG" —EA(A;1 - GGY|(A;1 -GGt

x [SK*+BG* —EA(A; 1 — GGY)]". (12)
Note that
EANSIAE" = EAG Y20 AGYPE <EAJIE.  (13)

Therefore, combining (12), (13), (7) an¢! —GG* > 0, we
conclude that (5) holds. ]

IV. BALANCED TRUNCATION

As seen in the last section, solutions to the ARIs (7)
and (8) are generalized Gramians for the uncertain system
Ga in (1). Consequently, the traditional balanced truncation
technique for model reduction can be applied here. We are
now ready to present our main results. First, we provide a
numerical way to solve the ARIs (7) and (8). By using the
Schur complement and lettifg. = AZ?, (7) and (8) can be
transformed into LMIs, stated in the following proposition

Proposition 7: If there existS> 0 andA; € Py solving

We will show that the solutions to (7-8) or (9-10) arethe following Semi-Definite Programming (SDP) problem:

closely related to the controllability and observabilitya@i-

ans for the uncertain system (1). Before doing that, it is

necessary to address the feasibility of these inequalities
Theorem 5:The following statements are equivalent: (i)

1) The uncertain system (1) is robustly stable.
2) The Riccati inequality (7) admits a soluti&@r> 0 for
some/\¢ € Peg.
3) The Riccati inequality (8) admits a solutiéh> 0 for
some/\q € Po.
Proof: We only prove the equivalence betweghand
(ii). The equivalence betweefi) and (iii) proceeds in a
similar fashion.
(i) = (i) : It follows directly from (9) that (4) holds for
X =S"10=Ac Then(i) follows using Lemma 2.
(i) = (ii) : Using Lemma 2, it follows that (4) holds. Then
we can choose > 0 sufficiently small, such that 11, —
G*©G >0 and

A'X +XA+K*OK +XEO1E*X (11)
+ (XB+K*0G) (e tm— G'OG) " 1(B*X + G*OK) < 0.

Letting X = (€5)71,0 = e~ 1A, from (11), it is not difficult
to derive (9), thus (7) holds.

The following theorem relates (7) and (8) to generalized

controllability and observability Gramians of the uncerta
system (1), as defined in Definition 3.

Theorem 6:1f there existS> 0,P > 0,A\¢ € Po,\o € Po
solving ARIs (7), (8), thers, P are generalized controllability
and observability Gramians of the uncertain system (1).

minimize trace(S): (14a)
SA+AS+EAE* SK* B
* -Ac G | <o, (14b)
* * —Im

then S is a generalized controllability Gramian for the
uncertain system (1). Here the notatioin the above matrix
indicates that the corresponding elements in the matrix are
such that the overall matrix is symmetric.

Proposition 8: If there exist matrice® > 0 and/, € Pg
solving the following SDP problem:

minimize trace(P): (15a)
A'P+PA+K*AK PE C

* —No D* | <0, (15b)
* * —||

thenP is a generalized observability Gramian for the uncer-
tain system (1).

Definition 9: An uncertain system of the form (1) is said
to be balancedif it has generalized observability and con-
trollability Gramians which are identical diagonal magsc

We summarize the proposed model reduction algorithm as
follows.

Procedure 10:

1) Solve SDP problems (14) and (15) to obtain general-
ized GramianssS> 0,P > 0.

2) BalanceS P by constructing a state transformation
matrix T [3] such that

TST (T-HpT?
z =diag(X1,22) = diag(ya, .-, Yn) {16)



wherey1 > .. > Vg > Va1 > ... > ¥a > 0, 21 =  Gia(9) is canceled. Therefore, an error bound of the form

diag(yi,...,Yd), Z2 = diag(Yda+1,---,Yn). The quantities (19) can be attained. If different uncertainties are alldvike

Y1, ...,Yn are referred to as generalized Hankel singulagrror bound will require an additional teréhdetermined by

values for the uncertain system. Nc,N\o, as to be shown below.We need the following results
3) Write the transformed nominal system of (1) as from [18] in the context of IQCs to provide such a bound.

AlE B Definition 12: Let M : iR — C272" pe a bounded mea-
M=|K[0, G
C| D Oxm

7 (17) surable function, taking Hermitian values. The operdtor
A=TAT LE=TE;B=TBC=CT 5K=KT %

C" — C"is said to satisfy the IQC defined by the multiplier
/+°° 2iw)]” (i) 20)] 4550
The sub-matrices of this matri corresponding to the X(iw) X(iw) -

: IR [
where M if for all vectorsz,x = Az in L3[0,+), their frequency

signalsZ{iw),X(iw) satisfy
matrix X in (16) are truncated to obtain the reduced | emma 13:[18] Assume that botl¥,(M,A) and 7y (M, A)
order uncertain system defined by are robustly stable and operators

v — %’% ag  D=diagBy A, A=diaghy B by g, By
G| D Ouxm are linear. Also assume thAf satisfies the IQC defined by
with orderd. M fori=1,---,k and4; satisfies the 1QC defined biy;
4) Write the reduced dimension uncertain system agrj—fk+1.... k Letl = Ny Maz be defined as
Gra = Fu(My, ), A € A°. T N2y Me2
Theorem 11:Consider the uncertain system (1) and sup- Mgy = diagMy j), - Mig i) i = 1,2,

pose that the reduced dimension uncertain systgm is
obtained as described in Procedure 10. Thgp is also
balanced and robustly stable. Furthermore,

ASEUAEHQA(S), Gin(9) oo < 201+ -+ ), (19) [Mll Mlz]*n |:|\Z11 M12:| - [O O] (20)

wherel, = [n"(l’l) n"(“)] forv=1,--- k, and assume
Mye1 Myzo2)

I 0 I 0 0o I

where yt denote the distinct generalized Hankel SiNQUior all w c
lar values ofygy1,...,yn, that is, ¥} >V, > ... > Vj and
Yot Yo} = {Va ¥y - K -

Proof: Here we will only prove the case wheh is {Mn] [ZZ Q] n [Mn
in the clasdAre of real constant matrices of the underlying I 0 3? I
structure. For a more general case wilenA°®, the proof is for all we [0,0], then
analogous to that of Theorem 14. T

[0,0]. If there exists a real matrixz =
diag(o1ln,, - ,oglni) > 0 compatible withA, A such that

} +MyMap <0 (21)

PartitionM in (17) accordingly as Hfu(mj) — Fu(M,A)|| < 2(0p, 4+ +0p).
A Ab|E B Theorem 14:Consider the uncertain system (1) and sup-
Ay Axn|E B pose that the reduced dimension uncertain systgm is
M= Kk Ky | 0h G |- obtained as described in Procedure 10. Then
C CZ D OI><m —
_ _ _ sup [|G;(9) — Gra(S)lle <20+ -+ +6),  (22)
Then it follows from Theorem 6 th& = diag(21,%) is the A.nenc

balanced Gramian of the uncertain system _ _
wheref = z};ﬂ/eoieci, and 6,0 are repeated entries of

A+EDK A+ EDAKy | B +EAG i ined i
FuM.A) = | Por+ ExbKs  Ags+ xRy | B+ EoAG | . No, N\c respectlvely, as deﬂr;ed in (3). _
Cr+DAK,  C,+DAK, | DAG Proof: For anyA,A € A°, let the parameters in Lemma

13 be defined as follows:

I o =t o =t
k—l, k—3,|_|1— |:le 0 :|; M= |:Zzl 0o’

The reduced uncertain syste@, corresponding t&; is

A +E K, | B +EAG
f”(M“M:{ C + DAK, I DAG } Al 1 - _
c 0 .
where M, is defined in (18). It is easy to show thgia Ma = { 0 —Acl] ,Z:d|ag<21,zz,(/\o/\c)?),
satisfies (7) and (8) with balanced Gramian Therefore, E:diaQXsflld,sflln_d,E), A:diaQXsflld,On_d,A),
Gra is balanced from Theorem 6, and robustly stable from i —
Theorem 5. The bound in (19) holds from the traditional M, = ['}2‘— a , M= [2]7 Ma1=[C D], M =0.
balanced truncation technique; e.g. see [26]. ]
In the above theorem, we assume that the original systeltnis easy to check that (20) and (21) are equivalent to (14b)
and the reduced system have identical uncertainties. Fraand (15b) respectively. Therefore, the error bound (22)$ol

this, it follows that the D-matrix of the error systega(s)—  from Lemma 13. |
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(a) Balanced truncation (b) Heo model reduction
(@) Original configuration.  (b) Equivalent configuration. Fig. 2. He-norm of the error system as a function &f

Fig. 1. LFT configuration.
Remark 1:Unfortunately, the conditions (7), (8) and (23)
are not jointly convex; indeed, they are equivalent to (14b)
Note that the above result provides an upper bound qn5b) and the conditions
the Hausdorff distance, as defined below, between these tw Ao el S ¢l S ¢
uncertain model sets. c[ ° /Y} >0, [* P”} >0, rankL P”] <n+d, (24)
Definition 15: The Hausdorff distancey (7, H) between ¢

the model setsF and # is defined as follows. which are rank constrained LMIs. In general, there is no
. . systematic way to solve such problems. However, some of
Ay (F, H) == maxd(F,H),d(H, F)), the currently available methods, such as LMIRank [29], per-
J(T,}[) = sup inf |f(S)—h(S)] . form well in practice. The reduced order model construction
f(s)eg hisjeH follows in a similar way to that in [12] and therefore is

If we denoteGp :={Ga: A€ A%} and Gia :={Gia: A€A®},  omitted here.
the Hausdorff distance between the original system and the

reduced system satisfies the following upper bound: VI EXAMPLE

Consider the following uncertain system of the form (1)

d(Ga, Gra) <20y + - +Vi+6). with A= & ¢ [-1,1], and
V. Ho MODEL REDUCTION -1 0 0 0.1 1
A=|1 -2 0|, E=]|01], B=|1],

As shown in [26, Theorem 4.20], for a nominal system (25)
. o . . 0O 1 -3 0.1 1
without uncertainties, generalized Gramians can also éé us
to characterize thel, model reduction problem; see alsothe K=[1 1 1, C=[1 1 1, G=1 D=0.1
original paper [27] and reference [28]. This is true for our gsolving the SDP problems (14) and (15), we obtain=
uncertain system (1) as well, which is stated as follows. 32.8993 A, =0.3469, and the resulting Gramians are

Theorem 16:Given a robustly stable uncertain system (1), 0.8327 08325 06092 18721 09252 04918

. Ar E B, S= (0.8325 08327 06092/, P= |0.9252 05746 03540 .
there existsvw, = | 7K [ Dix D2 0.6092 06092 04621 0.4918 03540 02466
G | Dr2i Dr22

of orderd such that

Then the balanced Gramian is
sup|| Fu(M,A) — Fu(Mr, D) ||lo < €,

Achc > =diag(2.17280.03190.0017).
if there existS> 0,P > 0,A¢ € Po, /Ao € Po solving Riccati Given these values, a natural choice in model reduction
inequalities (7), (8) and would be to truncate the last 2 states. Then, the reduced
Ao > €A, Amin(SP) = €2, rank(SP— szln) <d  (23) dimeniion uncertain s_ystem model is_defined by
Proof: Define an augmented systemv = Ar=-10852 E,=-0.1693 By =-1.6934

0

=% Kr = —1.6926 C, =—1.6926
o -l
|

and the upper bound on the error system is given by

Al E
Mz Mz O
|:M21 Mz I :| = {é g , and let M, =
0|0

0 | 0

0

m:i mg; . Then the overall LFT interconnection of sup | Ga(S) — Gra(S)|l» < 2(0.0319+4-0.0017) = 0.0672
the error system#,(M,A) — F,(M;,A) is shown in Fig. ol (26)
1(a), which is equivalent to the one in Fig. 1(b) forrigure 2(a) showsl,-norm of the error system as a function
M, = erZ mrﬂ . Now our model reduction problem of 3, and the dashed line indicates the bound in (26).

ri2 ril If different uncertainties are allowed, lettidg = 61,01 €

is transformed into an LPW. synthesis problem [12].
Therefore the above results can be proved by using Theor
5.1 of [12]. Note that in [12]|A < &~ is required rather sup  [|Ga,(S) — Gra(9)]| < 2(0.0319

than ||A| < 1 in this paper, and thus a corresponding 3%€l-11]

adjustment is needed. ] +0.00174 0.3469x 32.8993 = 22.8896  (27)

éﬁl, 1], the upper bound on the error system is given by



(4]
(5]
(6]
(7]

16, (61,01,

(8]

(9

(20]

Fig. 3. He-norm of the error system as a function &f ;.

[11]

Figure 3 showdH.-norm of the error system as a function[12]

of 8, &1, which is less than the bound in (27). i

Now we aﬁply theH. model reduction algorithm in
Section V to the above uncertain system (25). The LMIRank3]
solver [29] is used to solve the rank constrained LMI
problem (14b), (15b) and (24). Fer= 0.04, we obtain

[14]
0.8367 08246 06139 1.8734 09207 04968
S=|0.8246 08527 05951, P= [0.9207 05897 03377|, [15]
0.6139 05951 04736 0.4968 03377 02635

Ac = 329027, Ao = 0.347Q

Then, following a routine similar to that in [12], the reddce
dimension uncertain system model is defined by
Ar =—1.0502 E,=0.0118 B, =-1.7315
Kr = 234812 C; =-15945 D;y; =0.0028
Dr1p= —151431 Dyp; =—0.007Q Dy =0.0283

[16]

(17]
(28]

[19]
Figure 2(b) showsl,-norm of the error system as a function

of §, and the dashed line indicates the bowund 0.04. [20]

VIlI. CONCLUSIONS

In this paper a Gramian-based approach to model redJcZ;-l]
tion for a class of uncertain systems with norm bounded
structured uncertainty is presented. We introduce notadns (22]
controllability and observability Gramians in terms of teém
parameterized algebraic Riccati inequalities. This esmbk [23]
to develop a balanced truncation model reduction meth i
for uncertain systems. Our proposed method is based on the
use of LMIs to construct the desired reduced dimension un-
certain system model. Error bounds for this model reductio®
procedure are also derivad,, model reduction for uncertain
systems is also investigated. A sufficient condition for the
existence of a reduced model is provided which involves tHé®!
underlying Gramians with a rank constraint. [27]
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