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A Gramian-based Approach to Model Reduction for Uncertain Systems

Li Li, Ian R. Petersen

Abstract— The paper considers the problem of model re-
duction for a class of uncertain systems with structured norm
bounded uncertainty. The paper introduces controllability and
observability Gramians in terms of certain parameterized
algebraic Riccati inequalities. This enables a balanced trun-
cation model reduction procedure for uncertain systems to be
presented. Error bounds for this model reduction procedure
are derived. The paper also investigatesH∞ model reduction
for uncertain systems. The solution to this problem is shown
to involve constructing the underlying Gramians satisfying a
certain rank constraint.

I. I NTRODUCTION

Model reduction is an important aspect of linear systems
theory. One of the most commonly applied methods is
the balanced truncation method; e.g., see [1]. This method
involves finding the controllability and observability Grami-
ans for the system under consideration. Then a state space
transformation is found which simultaneously diagonalizes
the Gramians. This leads to a balanced realization of the
system from which the reduced order model is constructed
together with an a priori error bound; e.g., see [2], [3], [4].

Uncertain systems commonly arise in robust control the-
ory; e.g., see [5], [6]. Model reduction methods for uncertain
systems are very useful in the design of practical robust
control systems in which the dimension of the controller
needs to be limited. For the discrete-time case, the balanced
truncation method for uncertain systems can be traced back
to [7] within the framework of linear fractional transforma-
tions (LFTs). This technique was further developed in [8]
for multidimensional and uncertain systems. In [9], [10], bal-
anced model reduction was extended to linear time-varying
system. [11] considered model reduction for the class of
nonlinear systems described by a discrete-time state equation
containing a repeated scalar nonlinearity. For the continuous-
time case, [12], [13] considered the gain scheduling problem
for uncertain systems described by an LFT representation,
and derived some linear matrix inequality (LMI) conditions
to guarantee the existence of gain-scheduled controllers.This
included model reduction as a special case of these problems.
Model reduction for linear parameter-varying systems was
proposed in [14], [15], [16], [17]. Closely related problems,
such as approximation, truncation and simplification of un-
certain systems were presented in [18], [19].
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In the recent papers [20], [21], problems of controllability
and unobservability were investigated for a class of struc-
tured uncertain systems in which the uncertainty is described
by Integral Quadratic Constraints (IQCs). These results moti-
vate the question as to whether a balanced truncation method
can be obtained for uncertain systems. In this paper, we study
the balancing model reduction problem for continuous-time
uncertain systems modeled by an LFT representation, as a
counterpart to the corresponding results for discrete-time un-
certain systems [7], [8]. We consider uncertain systems with
norm bounded uncertainty rather than the IQC uncertainty
description considered in [22], [20], [21]. This enables us
to develop a balanced truncation method for the class of
uncertain systems under consideration. Gramians and related
realization theory topics for discrete-time uncertain systems
were discussed in [23], [24], [25].

In this paper, two parameterized algebraic Riccati
inequalities (ARIs) are introduced to characterize the
controllability and observability of the uncertain systems
under consideration. These results are closely related to
those in [20], [21]. We focus on the observability property
rather than unobservability as in [20], and thus a different
ARI is used to account for this. A sufficient and necessary
condition to guarantee the feasibility of the two ARIs
are provided. It is proved that the solutions to these
ARIs are controllability and observability Gramians of the
uncertain systems. Based on these results, we present a
balanced truncation algorithm to reduce the dimension of
the uncertain systems. Our proposed method is based on
the use of Linear Matrix Inequalities (LMIs) to construct
the desired reduced dimension uncertain system model. Our
main results give bounds on theH∞ norm error introduced
by the model reduction process. The first cost bound
obtained is of the same form as the bound which arises
in the standard balanced truncation approach. This bound
applies to the case in which the same uncertainty realization
is considered in both the original and reduced dimension
uncertain systems; see Theorem 11. The second bound
obtained applies to the case in which different uncertainties
are allowed in the original and reduced order uncertain
system. This bound is of a similar form to the first bound
but an extra term is introduced to allow for the different
uncertainties in the two systems; see Theorem 14.H∞ model
reduction for uncertain systems is also investigated, and a
sufficient condition for the existence of a reduced order
model is provided which involves the underlying Gramians
together with a rank constraint; see Theorem 16. Similar
H∞ model reduction results can also be found in [16] for
polytopic uncertain linear systems.



Notation Let Lm
2 [0,∞) be the space of square integrable

functions inRm, and L(Lm
2 ) denote the space of all linear

bounded operators mapping fromLm
2 to Lm

2 . The gain of an
operator∆ in L(Lm

2 ) is given by‖∆‖= sup
z∈Lm

2 [0,∞),z6=0

‖∆z‖
‖z‖ , and

the adjoint operator of∆ is denoted as∆∗ if ∆ is linear, and
if ∆ = ∆∗, ∆ < 0 means thatx∗∆x < 0 for anyx 6= 0 in Rm.
We also useM∗ to denote the complex conjugate transpose
of a complex matrixM. For z ∈ Rm and a nonnegative
matrix Λ ∈ Rm×m, |z|2Λ = z∗Λz, andΛ is omitted when it is
an identity matrix. The state-space realization of a transfer
matrix is denoted byG(s) =

[

A B
C D

]

:= C(sI−A)−1B+D.

II. PROBLEM FORMULATION

We consider the uncertainty structure

∆c∆c∆c = {diag(∆1, · · · ,∆k) : ∆i ∈ L(Lhi
2 ),∆i causal,‖∆i‖ ≤ 1},

and the following uncertain system:

G∆ :























ẋ = Ax+Eξ+Bu,

z= Kx+Gu,

y = Cx+Dξ,

ξ = ∆z, ∆ ∈∆c∆c∆c,

(1)

wherex∈Rn is thestate, u∈Rm is thecontrol input, z∈Rh

is theuncertainty output, y∈ Rl is themeasured outputand
ξ ∈ Rh is theuncertainty input; hereh = h1 + · · ·+hk.

Let the nominal system be denoted by

M =

[

M11 M12

M21 M22

]

=





A E B
K 0h G
C D 0l×m



 .

Then, the uncertain system (1) is defined by an LFT represen-
tation as follows. For any bounded linear operator∆∈L(Lh

2)
such thatI −M11∆ is non-singular, define

Fu(M,∆) := M22+M21∆(I −M11∆)−1M12.

Define the following operators
[

A∆ B∆
C∆ D∆

]

=

[

A+E∆K B+E∆G
C+D∆K D∆G

]

. (2)

If ∆ varies in the class∆RC∆RC∆RC of real constant matrices of the
underlying structure, the uncertain system (1) corresponds to

G∆ = Fu(M,∆) =

[

A∆ B∆
C∆ D∆

]

,∆ ∈∆RC∆RC∆RC.

Robust stability of the uncertain system (1) is defined
below. It is assumed that the system (1) is robustly stable
throughout this paper. As in the traditional balanced trunca-
tion, this assumption is essential for the balanced truncation
of the uncertain system (1), and guarantees the existence
of the solutions to certain ARIs arising from underlying
controllability and observability problems; see Theorem 5.

Definition 1 (Robust Stability [26]):The uncertain sys-
tem (1) is robustly stable if(I −M11∆)−1 exists in L(Ln

2)
and is causal, for all∆ ∈∆c∆c∆c.

The following lemma states a necessary and sufficient
condition for robust stability. It is given in terms of the
positive commutant set corresponding to∆c∆c∆c defined as

PΘPΘPΘ = {diag(θ1Ih1, · · · ,θkIhk) : θi > 0}. (3)

Lemma 2: (see [26]) The system (1) is robustly stable if
and only if there existΘ ∈PΘPΘPΘ andX > 0, such that

A∗X +XA+K∗ΘK +XEΘ−1E∗X < 0. (4)

III. C ONTROLLABILITY AND OBSERVABILITY

GRAMIANS

As is well known, the controllability and observability
Gramians play very important roles in the traditional bal-
anced truncation approach to model reduction; see [1]. In
this section, we introduce Gramians for the uncertain system
(1). First the controllability and observability Gramiansfor
the uncertain system (1) are defined as follows.

Definition 3: A matrix S> 0 is said to be ageneralized
controllability Gramian for the uncertain system (1) if the
following linear, operator inequality holds,

A∆S+SA∗
∆ + B∆B∗

∆ < 0 ∀∆ ∈∆c∆c∆c. (5)

Similarly, a matrixP> 0 is said to be ageneralized observ-
ability Gramian for the uncertain system (1) if

A∗
∆P+PA∆ + C ∗

∆C∆ < 0 ∀∆ ∈∆c∆c∆c. (6)

Here,A∆,B∆,C∆ are as defined in (2).
In [21], [20], issues of robust controllability and un-

observability for uncertain linear systems with structured
uncertainty were discussed in the framework of IQCs and
the S -procedure. In these references, a linear time varying
system with nonlinear uncertainties was studied, and certain
parameterized Riccati differential equations were derived to
characterize the robust controllability and unobservability of
the underlying uncertain system. In this paper, we will extend
these ideas to uncertain systems of the form (1), that is, we
consider an LTI system with linear norm bounded uncertain-
ties. Particularly, we focus on the observability rather than
the unobservability in [20], and thus a corresponding Riccati
representation is used to account for this.

Consider the following Riccati inequalities:

AS+SA∗+(SK∗+BG∗)(Λ−1
c −GG∗)−1(KS+GB∗)

+EΛ−1
c E∗ +BB∗ < 0, (7)

A∗P+PA+(PE+C∗D)(Λo−D∗D)−1(E∗P+D∗C)

+K∗ΛoK +C∗C < 0, (8)

whereS> 0,P> 0, andΛc ∈PΘPΘPΘ,Λo ∈PΘPΘPΘ are such thatΛ−1
c −

GG∗ > 0,Λo −D∗D > 0. Alternatively, (7) and (8) can be
rewritten as

AS+SA∗ +SK∗ΛcKS+EΛ−1
c E∗

+(B+SK∗ΛcG)(Im−G∗ΛcG)−1(B∗ +G∗ΛcKS) < 0, (9)

A∗P+PA+PEΛ−1
o E∗P+K∗ΛoK

+(C∗ +PEΛ−1
o D∗)(Il −DΛ−1

o D∗)−1(C+DΛ−1
o E∗P) < 0. (10)



The following example show thatS in (7) or (9) is
analogous to the traditional controllability Gramian for lin-
ear time-invariant systems. Similar result also hold for the
observability Gramian.

Observation 4:(Controllability Gramian ) Consider the
uncertain system (1) on the interval(−∞,0] with x(−∞) = 0,
and assume that the ARI (9) admits a solutionS> 0 for some
Λc ∈PΘPΘPΘ such thatIm−G∗ΛcG > 0.

Using x∗(t)S−1x(t) as a candidate Lyapunov function,
from (9) we have

∫ 0

−∞
|u|2dt

≥ x∗0S−1x0 +

∫ 0

−∞
(
∣

∣z
∣

∣

2
Λc

−
∣

∣ξ
∣

∣

2
Λc

)dt +
∫ 0

−∞

∣

∣

∣
ξ−Λ−1

c E∗S−1x
∣

∣

∣

2

Λc

dt

+
∫ 0

−∞

∣

∣

∣
u− (Im−G∗ΛcG)−1(B∗S−1 +G∗ΛcK)x

∣

∣

∣

2

(Im−G∗ΛcG)
dt

≥ x∗0S−1x0.

Therefore,

min
∫ 0

−∞
|u|2dt ≥ x∗0S−1x0.

Here the minimum is respect to both the control inputu and
the uncertainty inputξ.

We will show that the solutions to (7-8) or (9-10) are
closely related to the controllability and observability Grami-
ans for the uncertain system (1). Before doing that, it is
necessary to address the feasibility of these inequalities.

Theorem 5:The following statements are equivalent: (i)

1) The uncertain system (1) is robustly stable.
2) The Riccati inequality (7) admits a solutionS> 0 for

someΛc ∈PΘPΘPΘ.
3) The Riccati inequality (8) admits a solutionP > 0 for

someΛo ∈PΘPΘPΘ.
Proof: We only prove the equivalence between(i) and

(ii). The equivalence between(i) and (iii ) proceeds in a
similar fashion.

(ii) ⇒ (i) : It follows directly from (9) that (4) holds for
X = S−1,Θ = Λc. Then(i) follows using Lemma 2.

(i)⇒ (ii) : Using Lemma 2, it follows that (4) holds. Then
we can chooseε > 0 sufficiently small, such thatε−1Im−
G∗ΘG > 0 and

A∗X +XA+K∗ΘK +XEΘ−1E∗X (11)

+(XB+K∗ΘG)(ε−1Im−G∗ΘG)−1(B∗X +G∗ΘK) < 0.

Letting X = (εS)−1,Θ = ε−1Λc, from (11), it is not difficult
to derive (9), thus (7) holds.

The following theorem relates (7) and (8) to generalized
controllability and observability Gramians of the uncertain
system (1), as defined in Definition 3.

Theorem 6:If there existS> 0,P > 0,Λc ∈ PΘPΘPΘ,Λo ∈ PΘPΘPΘ
solving ARIs (7), (8), thenS,P are generalized controllability
and observability Gramians of the uncertain system (1).

Proof: We only prove the controllability part.

A∆S+SA∗
∆ + B∆B∗

∆

= (A+E∆K)S+S(A+E∆K)∗+(B+E∆G)(B+E∆G)∗

= AS+SA∗+E∆Λ−1
c ∆∗E∗ +BB∗

+(SK∗+BG∗)(Λ−1
c −GG∗)−1(KS+GB∗)

− [SK∗+BG∗−E∆(Λ−1
c −GG∗)](Λ−1

c −GG∗)−1

× [SK∗+BG∗−E∆(Λ−1
c −GG∗)]∗. (12)

Note that

E∆Λ−1
c ∆∗E∗ = EΛ−1/2

c ∆∆∗Λ−1/2
c E∗ ≤ EΛ−1

c E∗. (13)

Therefore, combining (12), (13), (7) andΛ−1
c −GG∗ > 0, we

conclude that (5) holds.

IV. BALANCED TRUNCATION

As seen in the last section, solutions to the ARIs (7)
and (8) are generalized Gramians for the uncertain system
G∆ in (1). Consequently, the traditional balanced truncation
technique for model reduction can be applied here. We are
now ready to present our main results. First, we provide a
numerical way to solve the ARIs (7) and (8). By using the
Schur complement and lettinḡΛc = Λ−1

c , (7) and (8) can be
transformed into LMIs, stated in the following propositions.

Proposition 7: If there existS> 0 and Λ̄c ∈ PΘPΘPΘ solving
the following Semi-Definite Programming (SDP) problem:

minimize trace(S): (14a)




SA∗+AS+EΛ̄cE∗ SK∗ B
? −Λ̄c G
? ? −Im



 < 0, (14b)

then S is a generalized controllability Gramian for the
uncertain system (1). Here the notation? in the above matrix
indicates that the corresponding elements in the matrix are
such that the overall matrix is symmetric.

Proposition 8: If there exist matricesP > 0 andΛo ∈PΘPΘPΘ
solving the following SDP problem:

minimize trace(P): (15a)




A∗P+PA+K∗ΛoK PE C∗

? −Λo D∗

? ? −Il



 < 0, (15b)

thenP is a generalized observability Gramian for the uncer-
tain system (1).

Definition 9: An uncertain system of the form (1) is said
to be balancedif it has generalized observability and con-
trollability Gramians which are identical diagonal matrices.

We summarize the proposed model reduction algorithm as
follows.

Procedure 10:
1) Solve SDP problems (14) and (15) to obtain general-

ized GramiansS> 0,P > 0.
2) BalanceS,P by constructing a state transformation

matrix T [3] such that

TST∗ = (T−1)∗PT−1

= Σ = diag(Σ1,Σ2) = diag(γ1, ...,γn),(16)



where γ1 ≥ ... ≥ γd > γd+1 ≥ ... ≥ γn > 0, Σ1 =
diag(γ1, ...,γd), Σ2 = diag(γd+1, ...,γn). The quantities
γ1, ...,γn are referred to as generalized Hankel singular
values for the uncertain system.

3) Write the transformed nominal system of (1) as

M =





Ā Ē B̄
K̄ 0h G
C̄ D 0l×m



 , (17)

where

Ā = TAT−1; Ē = TE; B̄ = TB;C̄ = CT−1; K̄ = KT−1.

The sub-matrices of this matrixM corresponding to the
matrix Σ2 in (16) are truncated to obtain the reduced
order uncertain system defined by

Mr =





Ār Ēr B̄r
K̄r 0h G
C̄r D 0l×m



 (18)

with orderd.
4) Write the reduced dimension uncertain system as

Gr∆ = Fu(Mr ,∆),∆ ∈∆c∆c∆c.
Theorem 11:Consider the uncertain system (1) and sup-

pose that the reduced dimension uncertain systemGr∆ is
obtained as described in Procedure 10. ThenGr∆ is also
balanced and robustly stable. Furthermore,

sup
∆∈∆∆∆c

‖G∆(s)−Gr∆(s)‖∞ ≤ 2(γt
1 + · · ·+ γt

q), (19)

where γt
i denote the distinct generalized Hankel singu-

lar values ofγd+1, . . . ,γn, that is, γt
1 > γt

2 > .. . > γt
q and

{γd+1, . . . ,γn} = {γt
1, . . . ,γ

t
q}.

Proof: Here we will only prove the case when∆ is
in the class∆RC∆RC∆RC of real constant matrices of the underlying
structure. For a more general case when∆ ∈∆c∆c∆c, the proof is
analogous to that of Theorem 14.

PartitionM in (17) accordingly as

M =







Ār Ā12 Ēr B̄r
Ā21 Ā22 Ē2 B̄2
K̄r K̄2 0h G
C̄r C̄2 D 0l×m






.

Then it follows from Theorem 6 thatΣ = diag(Σ1,Σ2) is the
balanced Gramian of the uncertain system

Fu(M,∆) =





Ār + Ēr∆K̄r Ā12+ Ēr∆K̄2 B̄r + Ēr∆G
Ā21+ Ē2∆K̄r Ā22+ Ē2∆K̄2 B̄2 + Ē2∆G
C̄r +D∆K̄r C̄2 +D∆K̄2 D∆G



 .

The reduced uncertain systemGr∆ corresponding toΣ1 is

Fu(Mr ,∆) =

[

Ār + Ēr∆K̄r B̄r + Ēr∆G
C̄r +D∆K̄r D∆G

]

,

where Mr is defined in (18). It is easy to show thatGr∆
satisfies (7) and (8) with balanced GramianΣ1. Therefore,
Gr∆ is balanced from Theorem 6, and robustly stable from
Theorem 5. The bound in (19) holds from the traditional
balanced truncation technique; e.g. see [26].

In the above theorem, we assume that the original system
and the reduced system have identical uncertainties. From
this, it follows that the D-matrix of the error systemG∆(s)−

Gr∆(s) is canceled. Therefore, an error bound of the form
(19) can be attained. If different uncertainties are allowed, the
error bound will require an additional term̄θ determined by
Λ̄c,Λo, as to be shown below.We need the following results
from [18] in the context of IQCs to provide such a bound.

Definition 12: Let Π : iR → C2n×2n be a bounded mea-
surable function, taking Hermitian values. The operator∆ :
Cn → Cn is said to satisfy the IQC defined by the multiplier
Π if for all vectors z,x = ∆z in Ln

2[0,+∞), their frequency
signalsẑ(iω), x̂(iω) satisfy

∫ +∞

−∞

[

ẑ(iω)
x̂(iω)

]∗

Π(iω)

[

ẑ(iω)
x̂(iω)

]

dω ≥ 0.

Lemma 13:[18] Assume that bothFu(M̄, ∆̄) andFu(M̄, ∆̂)
are robustly stable and operators

∆̄ = diag(∆̄1, · · · , ∆̄k̄), ∆̂ = diag(∆̄1, · · · , ∆̄k̂, ∆̂k̂+1, · · · , ∆̂k̄)

are linear. Also assume that̄∆i satisfies the IQC defined by
Πi for i = 1, · · · , k̄, and ∆̂i satisfies the IQC defined byΠi

for i = k̂+1, · · · , k̄. Let Π =

[

Π(1,1) Π(1,2)

Π(2,1) Π(2,2)

]

be defined as

Π(i, j) = diag(Π1(i, j), · · · ,Πk̄(i, j)), i, j = 1,2,

whereΠv =

[

Πv(1,1) Πv(1,2)

Πv(2,1) Πv(2,2)

]

for v = 1, · · · , k̄, and assume

[

M̄11 M̄12

I 0

]∗

Π
[

M̄11 M̄12

I 0

]

<

[

0 0
0 I

]

(20)

for all ω ∈ [0,∞]. If there exists a real matrixΣ̄ =
diag(σ1In1, · · · ,σk̄Ink̄

) > 0 compatible with∆̄, ∆̂ such that
[

M̄11

I

]∗ [

Σ̄2 0
0 Σ̄2

]

Π
[

M̄11

I

]

+ M̄∗
21M̄21 < 0 (21)

for all ω ∈ [0,∞], then

‖Fu(M̄, ∆̄)−Fu(M̄, ∆̂)‖ ≤ 2(σk̂+1 + · · ·+ σk̄).
Theorem 14:Consider the uncertain system (1) and sup-

pose that the reduced dimension uncertain systemGr∆ is
obtained as described in Procedure 10. Then

sup
∆̃,∆∈∆c∆c∆c

‖G∆̃(s)−Gr∆(s)‖∞ ≤ 2(γt
1 + · · ·+ γt

l + θ̄), (22)

where θ̄ = ∑k
i=1

√

θoiθ̄ci, andθoi, θ̄ci are repeated entries of
Λo, Λ̄c respectively, as defined in (3).

Proof: For any∆̃,∆ ∈∆c∆c∆c, let the parameters in Lemma
13 be defined as follows:

k̂ = 1, k̄ = 3,Π1 =

[

0 Σ−1
1

Σ−1
1 0

]

, Π2 =

[

0 Σ−1
2

Σ−1
2 0

]

,

Π3 =

[

Λ̄−1
c 0
0 −Λ̄−1

c

]

, Σ̄ = diag
(

Σ1,Σ2,(ΛoΛ̄c)
1
2

)

,

∆̄ = diag(s−1Id,s
−1In−d, ∆̃), ∆̂ = diag(s−1Id,0n−d,∆),

M̄11 =

[

Ā Ē
K̄ 0

]

, M̄12 =

[

B̄
G

]

, M̄21 =
[

C̄ D
]

, M̄22 = 0.

It is easy to check that (20) and (21) are equivalent to (14b)
and (15b) respectively. Therefore, the error bound (22) holds
from Lemma 13.



∆

∆

M̃

Mr

(a) Original configuration.

∆

∆

M̃

M̄r

(b) Equivalent configuration.

Fig. 1. LFT configuration.

Note that the above result provides an upper bound on
the Hausdorff distance, as defined below, between these two
uncertain model sets.

Definition 15: The Hausdorff distancedH(F ,H ) between
the model setsF andH is defined as follows.

dH(F ,H ) := max(~d(F ,H ), ~d(H ,F )),

~d(F ,H ) := sup
f (s)∈F

inf
h(s)∈H

‖ f (s)−h(s)‖∞.

If we denoteG∆∆∆ := {G∆ : ∆ ∈∆c∆c∆c} andGr∆∆∆ := {Gr∆ : ∆ ∈∆c∆c∆c},
the Hausdorff distance between the original system and the
reduced system satisfies the following upper bound:

dH(G∆∆∆,Gr∆∆∆) ≤ 2(γt
1 + · · ·+ γt

l + θ̄).

V. H∞ MODEL REDUCTION

As shown in [26, Theorem 4.20], for a nominal system
without uncertainties, generalized Gramians can also be used
to characterize theH∞ model reduction problem; see also the
original paper [27] and reference [28]. This is true for our
uncertain system (1) as well, which is stated as follows.

Theorem 16:Given a robustly stable uncertain system (1),

there existsMr =





Ar Er Br

Kr Dr11 Dr12
Cr Dr21 Dr22



 of orderd such that

sup
∆∈∆∆∆c

‖Fu(M,∆)−Fu(Mr ,∆)‖∞ < ε,

if there existS> 0,P > 0,Λc ∈PΘPΘPΘ,Λo ∈PΘPΘPΘ solving Riccati
inequalities (7), (8) and

Λo ≥ ε2Λc, λmin(SP) = ε2, rank(SP− ε2In) ≤ d. (23)
Proof: Define an augmented systemM̃ =





M11 M12 0
M21 M22 −I

0 I 0



 =







A E B 0
K 0 G 0
C D 0 −I
0 0 I 0






, and let Mr =

[

Mr11 Mr12

Mr21 Mr22

]

. Then the overall LFT interconnection of

the error systemFu(M,∆) − Fu(Mr ,∆) is shown in Fig.
1(a), which is equivalent to the one in Fig. 1(b) for

M̄r =

[

Mr22 Mr21

Mr12 Mr11

]

. Now our model reduction problem

is transformed into an LPVH∞ synthesis problem [12].
Therefore the above results can be proved by using Theorem
5.1 of [12]. Note that in [12]‖∆‖ < ε−1 is required rather
than ‖∆‖ < 1 in this paper, and thus a corresponding
adjustment is needed.
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(a) Balanced truncation
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(b) H∞ model reduction
Fig. 2. H∞-norm of the error system as a function ofδ.

Remark 1:Unfortunately, the conditions (7), (8) and (23)
are not jointly convex; indeed, they are equivalent to (14b),
(15b) and the conditions
[

Λo εIh
? Λ̄c

]

≥ 0,

[

S εIn
? P

]

≥ 0, rank

[

S εIn
? P

]

≤ n+d, (24)

which are rank constrained LMIs. In general, there is no
systematic way to solve such problems. However, some of
the currently available methods, such as LMIRank [29], per-
form well in practice. The reduced order model construction
follows in a similar way to that in [12] and therefore is
omitted here.

VI. EXAMPLE

Consider the following uncertain system of the form (1)
with ∆ = δ ∈ [−1,1], and

A =





−1 0 0
1 −2 0
0 1 −3



 , E =





0.1
0.1
0.1



 , B =





1
1
1



 ,

K = [1 1 1], C = [1 1 1], G = 1, D = 0.1.

(25)

Solving the SDP problems (14) and (15), we obtainΛ̄c =
32.8993,Λo = 0.3469, and the resulting Gramians are

S=





0.8327 0.8325 0.6092
0.8325 0.8327 0.6092
0.6092 0.6092 0.4621



 , P =





1.8721 0.9252 0.4918
0.9252 0.5746 0.3540
0.4918 0.3540 0.2466



 .

Then the balanced Gramian is

Σ = diag(2.1728,0.0319,0.0017).

Given these values, a natural choice in model reduction
would be to truncate the last 2 states. Then, the reduced
dimension uncertain system model is defined by

Ār = −1.0852, Ēr = −0.1693, B̄r = −1.6934,

K̄r = −1.6926, C̄r = −1.6926,

and the upper bound on the error system is given by

sup
δ∈[−1,1]

‖G∆(s)−Gr∆(s)‖∞ ≤ 2(0.0319+0.0017)= 0.0672.

(26)
Figure 2(a) showsH∞-norm of the error system as a function
of δ, and the dashed line indicates the bound in (26).

If different uncertainties are allowed, letting∆1 = δ1,δ1 ∈
[−1,1], the upper bound on the error system is given by

sup
δ,δ1∈[−1,1]

‖G∆1(s)−Gr∆(s)‖∞ ≤ 2(0.0319

+0.0017+0.3469×32.8993)= 22.8896. (27)
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Fig. 3. H∞-norm of the error system as a function ofδ, δ1.

Figure 3 showsH∞-norm of the error system as a function
of δ, δ1, which is less than the bound in (27).

Now we apply theH∞ model reduction algorithm in
Section V to the above uncertain system (25). The LMIRank
solver [29] is used to solve the rank constrained LMI
problem (14b), (15b) and (24). Forε = 0.04, we obtain

S=





0.8367 0.8246 0.6139
0.8246 0.8527 0.5951
0.6139 0.5951 0.4736



 , P =





1.8734 0.9207 0.4968
0.9207 0.5897 0.3377
0.4968 0.3377 0.2635



 ,

Λ̄c = 32.9027, Λo = 0.3470.

Then, following a routine similar to that in [12], the reduced
dimension uncertain system model is defined by

Ar = −1.0502, Er = 0.0118, Br = −1.7315,

Kr = 23.4812, Cr = −1.5945, Dr11 = 0.0028,

Dr12 = −15.1431, Dr21 = −0.0070, Dr22 = 0.0283.

Figure 2(b) showsH∞-norm of the error system as a function
of δ, and the dashed line indicates the boundε = 0.04.

VII. C ONCLUSIONS

In this paper a Gramian-based approach to model reduc-
tion for a class of uncertain systems with norm bounded
structured uncertainty is presented. We introduce notionsof
controllability and observability Gramians in terms of certain
parameterized algebraic Riccati inequalities. This enables us
to develop a balanced truncation model reduction method
for uncertain systems. Our proposed method is based on the
use of LMIs to construct the desired reduced dimension un-
certain system model. Error bounds for this model reduction
procedure are also derived.H∞ model reduction for uncertain
systems is also investigated. A sufficient condition for the
existence of a reduced model is provided which involves the
underlying Gramians with a rank constraint.
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