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Abstract

Computed Tomography (CT), as a 3D imaging technique, has greatly facilitated
bone analysis over the past few decades. This thesis aimed to design novel deep
learning approaches to analyse human bone CT. Four works have been conducted,
i.e., anatomical segmentation of foot weight-bearing cone beam CT (CBCT), instance
segmentation of wrist CT, semi-supervised segmentation of bone CT, and bone health
analysis via bone fracture prediction.

In the first work, we developed a multi-stage method, FootSeg, for the anatomical
segmentation of foot CT. FootSeg consisted of three parts, foot preprocessing, foot
region segmentation, and foot bone classification. The multi-stage framework greatly
simplified the implementation of the FootSeg method and achieved both qualitatively
and quantitatively remarkable results. The mean Intersection-Over-Union on the bone
parts was 90.3% on the testing set. To the best of our knowledge, this was the first
research of fully automatic foot anatomical segmentation from weight-bearing CBCT
via deep learning methods.

The second work focused on the instance segmentation of wrist CT. A novel semi-
automatic method was designed to annotate 5K wrist CT slices. The annotation
workload and time have been greatly reduced. An end-to-end edge reinforced U-net
segmentation model was developed and demonstrated satisfying results. To the best of
our knowledge, this was the first work on wrist CT instance segmentation using deep
learning methods.

The third work aimed to solve the bone segmentation problem with fewer annotation
data via semi-supervised learning. A patch-shuffled data transformation method was
developed, and a patch-shuffle-based semi-supervised segmentation method was pro-
posed for bone CT segmentation. Two supervised losses and a consistent unsupervised



vi

loss were employed to utilize both the labeled and unlabeled data. The proposed
method was evaluated on various bone CT datasets, and the results demonstrated
superior performance.

The last work was about bone health analysis via bone fracture prediction. We
collected data from three population-based cohorts and processed the unstructured
raw data as a structured database for model training and evaluation. We developed a
deep learning-based fracture prediction model to predict the bone fragility fracture
in the next five years. Compared with the clinical index of BMD T-score and FRAX,
the proposed model could identify the bones with fragility fracture within five years
with higher AUC values. This was the first research using the deep learning models to
identify individuals with upcoming fragility fractures using wrist CT.
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Chapter 1

Introduction

This chapter started with the background and motivation of this thesis, then introduced
the objectives and contributions, and finally listed the structure of this thesis.

1.1 Background and Motivation

Computed Tomography (CT), as a 3D imaging technique, has been widely used for
the clinical diagnosis of bone in the past decades, such as surgery planning [1, 2],
fracture detection [3, 4], and osteoporosis detection [5, 6]. Compared with the other
radiology techniques such as X-ray or Magnetic resonance imaging (MRI), the bone
and its microstructure are depicted more clearly in the CT scans as depicted in Fig.
1.1. In recent years, different kinds of CT machines, such as high resolution peripheral
quantitative (HRpQCT), micro CT, and cone-beam CT (CBCT), have been developed
to meet the particular needs for orthopedics clinical usage. Doctors have employed
these high-quality CT for the medical diagnosis of various body parts, such as foot,
wrist, vertebra, and pelvic. More and more bone CT data are generated. Manually
analyzing these CT data is time-consuming and depends on the experience and expert
knowledge of the doctor. However, the automatic bone CT analysis tools are still
immature and in urgent demand.
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MRI CT X-ray

Fig. 1.1 Comparison of CT, MRI and X-ray data on the human spine.

The traditional bone CT analysis studies [7–11] focused on hand-crafted features,
and were brittle to complicated occasions, which led to unsatisfactory results. Deep
learning (DL) [12], as a subset of Artificial Intelligence (AI), extracted discriminative
features and learned the representation of the data using neural networks. Using the
convolutional neural networks (CNN), deep learning has achieved state-of-the-art per-
formance in image classification [13, 14] and medical image analysis [15, 16]. Employing
the deep learning approaches for bone CT analysis has gained increasing attention, and
promising results have been achieved on tasks such as vertebral segmentation [17–21],
and disease classification [22–27].

Recently, a new CT technique, weight-bearing cone beam CT (CBCT), has been
developed for foot medical analysis. The weight-bearing CBCT could provide high-
resolution foot scans in the natural weight-bearing position. Figure 1.2 [28] depicts
the scanning procedure of weight-bearing CBCT. The high quality scans from CBCT
machines have greatly facilitated the treatment and diagnosis of human foot [29], such
as foot align [2] and foot surgery [30, 31]. In these clinical treatments, a fundamental
step to analyze the foot CBCT scan is the anatomical segmentation of foot bones, which
aims to distribute the correct class to each pixel in the foot CT according to the foot
structure. There are thirty-one bones in the human foot, including tibia, fibula, talus,
navicular, calcaneus, cuboid, three cuneiform bones, five metatarsal bones, fourteen
phalange bones, two sesamoid bones, and accessory bone. The complicated structure
of the foot makes the automatic anatomical segmentation of foot CT a challenging
work. Besides, there are two challenges that need to be solved. The first one is the
foot scan variation. The scanning feet are in different positions and sizes, and either
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two feet, left foot or right foot, can be scanned for medical analysis. The foot number,
position, and size are different and lead to the challenge of scan variation. The second
challenge is the severe data imbalance among the different bone classes. The big bones
like the tibia are much larger than the small bones, such as the fifteen phalanges. In
our first work, we proposed a multi-stage deep learning-based method, FootSeg, for the
anatomical segmentation of foot CT. The FootSeg method consisted of three steps, foot
preprocessing, foot region segmentation, and foot bone classification. The multi-stage
framework solved the two challenges and achieved both qualitatively and quantitatively
remarkable results.

Fig. 1.2 Scanning procedure (left part) and scanning examples (right part) of weight-
bearing CBCT.

The Wrist CT performs an essential role in clinical practice and has shown high
potentials in various applications such as osteoporosis classification [6], rheumatoid
arthritis diagnoses [32], and bone fracture assessment [33]. Similar to foot CT processing,
an essential procedure among the above applications is the wrist instance segmentation,
i.e., distributing the right class label to each voxel in the wrist CT data. There were
some existing works of wrist segmentation in CT images [34–37]. However, most of
the existing works still focused on using shallow features, and these methods were
brittle to complicated occasions or required human interaction to achieve satisfied
segmentation results. What’s more, only wrist bones have been segmented while the
muscle part has been neglected in these methods. The muscle parts contained health
information such as muscle strength, muscle mass, and body mass index. Both muscle
and bone were essential in clinical analysis. Traditional methods designed for bone
segmentation could not satisfy the need for muscle segmentation. A comprehensive
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wrist instance segmentation method that could identify all components, including
bones, muscle, and background, in the wrist CT in one go was highly demanded. In
our second work, we proposed an edge-enhanced U-net model for the segmentation of
wrist CT. For the model training, instead of using manual annotation, we developed a
semi-automatic method to annotate the wrist CT via the traditional OTSU method
and the U-net-based self-training semi-supervised learning model. The semi-automatic
method greatly reduced the annotation workload, and the proposed wrist segmentation
model achieved high accuracy.

Sufficient annotation data is essential for training a successful deep learning system.
The lack of annotation data often results in the problem of overfitting and underper-
forming. Several deep learning-based medical segmentation methods [16, 38, 39] have
achieved the state of the art performance via massive annotation data. However, the
per-pixel manual labeling procedure for bone segmentation tasks is time-consuming
and expensive. Using fewer annotation data for bone CT segmentation is in demand.
The Hounsfield scale of bone in CT is within a specific range compared with the other
parts, such as muscle and air, as shown in Fig. 1.3. This particular imaging feature
can be used as prior information for bone segmentation. Besides, the semi-supervised
methods, which employed both the labeled and the unlabeled data, have alleviated
the workload of data annotation in several tasks [40–42]. In our third work, we ex-
plored the semi-supervised learning methods and introduced the prior information of
the Hounsfield scale for bone CT segmentation. We proposed a patch-shuffle-based
semi-supervised method for bone CT segmentation with a consistent learning strategy
and demonstrated the potential for using the semi-supervised method for bone CT
annotation.

Bone osteoporosis is a major public health concern, especially for the elderly group.
Bone osteoporosis is mainly caused by the decrease of bone mass and leads to bone
fragility fracture. The mortality rate is highly increased after the fragility fracture
in the first year for the elderly, and the fragility fracture has long-term effects on
health and death risk for up to ten years [43, 44]. Analyzing bone health by predicting
fractures in the coming years is an important way to improve quality of life. The
most common way to measure bone health is bone mineral density (BMD) estimation.
A BMD T-score of -2.5 standard deviation (SD) or lower indicated the presence of
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Hounsfield scale of different parts

Bone 300~1900

Muscle 35~55

Air -1000

Fig. 1.3 Illustration of the Hounsfield scale for bone, muscle, and air on CT of the
wrist.

osteoporosis and a high risk of bone fracture [45]. Another method is the fracture
risk assessment tool (FRAX) [46]. The FRAX tool integrates BMD at the femoral
neck (FN) and other clinical risk factors to calculate the fracture risk in the next 10
years. However, both methods are insufficient for bone health analysis and fracture
prediction. The BMD T-score would vary according to the patient’s position during
X-ray scanning, and most of the fractures occur at BMD T-score between -1.0 and -2.5
SD. The FRAX tool predicts the bone fracture in the next ten years, which is too long
for medical treatment, and the clinical risk factors are ethnically related and are not
the same among different countries. In our fourth work, we utilized the deep learning
method to develop a more efficient bone health analysis tool for fracture prediction in
the mid-term (five years). We collected data from three population-based cohorts to
train the deep learning model, and the results demonstrated the effectiveness of the
proposed method.

In summary, this thesis focused on developing deep learning methods to analyze
the CT data of the foot, wrist, and other bones in clinical treatment. Four tasks have
been conducted in this thesis, including:

• Anatomical segmentation of foot weight-bearing CBCT.

• Instance segmentation of wrist CT.

• Semi-supervised segmentation of bone CT.
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• Bone health analysis via bone fracture prediction using wrist CT.

The segmentation tasks were fundamental for the bone CT analysis, and predicting
bone fractures could identify patients at high risk of fractures and provide treatment
earlier.

1.2 Objectives and Contributions

The objectives and contributions are summarized as follows:

• In the first work, we developed a multi-stage method, FootSeg, for the anatomical
segmentation of foot CT. FootSeg contained three parts, foot preprocessing, foot
region segmentation, and foot bone classification. The multi-stage framework
greatly simplified the implementation of the anatomical segmentation model. We
introduced a foot standardization method to solve the scan variation problem and
an innovative patch-training method to solve the severe data imbalance problem.
The model achieved both qualitatively and quantitatively remarkable results,
the mean Intersection-Over-Union (mIOU) including the background was 80.3%,
and the mIOU on the bone parts was 90.3% on the testing set. To the best of
our knowledge, this was the first research of fully automatic foot anatomical
segmentation from weight-bearing CBCT via deep learning methods.

• The second work focused on the instance segmentation of wrist CT. A novel
semi-automatic method was designed to annotate 5K wrist CT slices. Compared
with the time-consuming and laborious manual annotation, the workload has
been highly alleviated, and the annotation time was also greatly reduced. An end-
to-end edge reinforced U-net segmentation model was developed for the instance
segmentation of wrist CT and demonstrated both qualitative and quantitative
satisfying results. To the best of our knowledge, this was the first work on wrist
CT instance segmentation. All the regions of the wrist CT, including the muscle,
radius bone, ulna bone, cast holder, and background, were identified, while the
previous methods only worked on the skeletal parts.
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• In the third work, we aimed to solve the bone segmentation problem with fewer
annotation data via semi-supervised learning. We defined the bone CT segmen-
tation as a local feature-guided task based on the particular Hounsfield scale of
different tissues and materials in CT data. A patch-shuffled data transformation
method was developed that enabled the segmentation model to segment both
original and patch-shuffled CT slices. Then, a patch-shuffle-based semi-supervised
segmentation method was proposed for bone CT segmentation while two super-
vised losses and a consistent unsupervised loss were employed to use both the
labeled and unlabeled data. The proposed method was evaluated on a wrist CT
dataset, a foot CT dataset, and a bone CT dataset, and the results demonstrated
the superior performance of the model.

• The fourth work was about the bone health analysis via bone fracture prediction.
We collected data from three population-based cohorts, which were followed for
6.16 years on average. The real unstructured clinical raw data, including the
patient clinical information and CT Dicom data, was processed to construct a
structured database for model training and evaluation. We developed a deep
learning-based fracture prediction model to predict the bone fragility fracture
in the next five years. Extensive experiments were conducted on different data
selection groups considering the fracture type and patient age. Compared with
the clinical index of BMD T-score and FRAX, the proposed model could identify
the bones with fragility fracture within five years with higher AUC values. This
was the first research using the deep learning models to identify the individuals
with upcoming fragility fractures using wrist CT.

1.3 Thesis Organization

This dissertation aimed to design deep learning approaches to assist bone CT analysis
in real clinical practice and conducted four related research. The structure of the thesis
is as follows:

• Chapter 1. Introduction
This chapter demonstrated the motivation and scope of this dissertation, discussed
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the problems of the bone CT analysis in real clinical practice, and listed the
conducted research and the structure of this dissertation.

• Chapter 2. Literature review
This chapter reviewed the recent deep learning-based bone CT analysis methods,
including the classification, segmentation, regression, and generative tasks.

• Chapter 3. Anatomical segmentation of human foot CT
This chapter presented the FootSeg method for the anatomical segmentation of
the foot CT scan and described the three steps, including foot preprocessing,
foot bone segmentation, and foot bone classification, to solve the scan variation
and data imbalance challenge in the FootSeg method.

• Chapter 4. Instance segmentation of human wrist CT
This chapter worked on the instance segmentation of the wrist CT scan. The
semi-automatic method for building the annotation database of wrist CT via
the traditional OTSU method and the U-net-based self-training semi-supervised
learning model, and the edge-enhanced U-net model for the instance segmentation
of wrist CT using the annotation database were described in this chapter.

• Chapter 5. Semi-supervised segmentation of bone CT
This chapter introduced the patch-shuffle-based semi-supervised method for bone
CT segmentation by leveraging the unique bone Hounsfield scale in CT data and
the consistent learning strategy.

• Chapter 6. Bone health analysis via bone fracture prediction using
wrist CT
This chapter depicted the prospective study of the deep learning-based bone health
analysis model via predicting the bone fracture in the next five years from wrist
CT data. We described the procedure to process the real unstructured clinical
data from three cohorts, where more than two thousand patients participated, as
structured clinical data and the deep learning model for bone fracture prediction
based on the structured dataset in this chapter.
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• Chapter 7. Conclusion and future work
This chapter summarized the works of this dissertation and discussed the future
research directions for deep learning-based bone CT analysis.





Chapter 2

Literature Review

In this chapter, an overview of the recent deep learning applications in bone CT was
presented. According to the characteristics of the research, the deep learning-based
bone CT analysis methods could be divided into classification, segmentation, regression,
and generative task. The details of different applications, including model designing,
data processing, and evaluation, were described in the following sections.

2.1 Classification Tasks for Bone CT Analysis

The classification task aims to assign a class label to the bone CT data according
to the property of bone CT applications. Various classification tasks have been
explored, like bone class recognition [47], bone fracture classification [48–54], disease
classification [22–27] and gender classification [55]. The typical networks structures,
such as AlexNet [47, 56, 57], VGGNet [24, 25, 27, 58], GoogLeNet [23, 25, 52, 55, 59],
ResNet [26, 27, 53, 60], DenseNet [22, 27, 61], were usually used as the network
backbone.

Miki et al. [47] investigated the AlexNet [56] for tooth type classification on dental
CBCT scans. The regions of interest (ROIs) of each tooth were firstly manually
extracted from the CT slices, and then, the ROIs were classified into seven-tooth types
by the AlexNet. 42 CT volumes were used for training, while the remaining 10 CT
volumes were used for testing. Since the number of training samples of each tooth
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type was unbalanced, a random sampling method was performed on each tooth type
to balance the training samples. The data augmentation methods, including random
rotation and intensity transformation, were performed on the grayscale ROI regions,
and the average classification was 88.8% with the data augmentation methods. Bewes
et al. [55] explored the deep learning method for determining gender through skull CT
scans. They collected 900 skull CT scans for training (450 male and 450 female) and
100 skull CT scans for testing (50 male and 50 female) from different ancestries, and
the skulls were rotated to the left lateral plane to generate 2D color images. GoogLeNet
[59] was adapted for gender determination, and the data augmentation techniques like
random rotation, translation, flipping were used to prevent over-fitting. The male
classification rate was 96%, and the female classification rate was 94%, which indicated
the potential of deep learning for gender estimation.

Bone fracture is a major public health problem, and the mortality rates are highly
increased in the first year after bone fracture for the elderly population. The deep
learning methods [49–54] have revealed its great potential on identifying the bone
fracture. Pranata et al. [49] developed a calcaneus fracture classification model by
fine-tuning the VGGNet [58] and ResNet [60]. Performances of the two models were
tested using 1931 CT images. Both VGGNet and ResNet achieved high accuracy of
98% on the test dataset, and ResNet was chosen as the final model due to its deeper
architecture. Meng et al. [48] proposed a rib fracture detection system to classify the
four kinds of bone fractures. A cascaded feature pyramid network was used to detect
the bone fracture region, and a 3D neural network was used to classify the fracture
type. The developed system achieved a classification accuracy of 86.3%, which was
higher than two radiologists (81/2% and 85.0%). With the assistance of the deep
learning model, the radiologists achieved a higher F1-score of 96.0%, and the reading
time was decreased by more than 100 seconds. Li et al. [53] explored the performance
of the ResNet-50 model on identifying benign and malignant vertebral fracture. A
dataset of 433 spinal CT images was used to train and test the model via a 10-fold
cross-validation strategy. The overall accuracy of the ResNet-50 model was 85% on
the per-slice diagnosis and 88% on the per-patient diagnosis.

The disease diagnosis [23–25, 27] was another important classification application.
Kim et al. [24] used the 3D CBCT craniofacial scan to detect the malocclusion via
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VGGNet and Inception-V3 [62]. The 3D CBCT scans were projected as three 2D
images from three different views. They explored two different fusion methods to
feed the three images into the deep learning model, ensemble and synchronized multi-
channel method. The Inception-V3 model has achieved the best accuracy of 93.83%
with the synchronized multi-channel method, and a class-selective relevance mapping
method [63] was employed to highlight the malocclusion area predicted by the model.
Papandrianos et al. [25] proposed a CNN model with three convolutional-pooling layers,
a dense layer, and an output layer for the classification of bone metastasis. The other
common CNN models, such as VGGNet, ResNet-50, MobileNet [64], Inception-V3,
Xception [65] model have also been explored. The proposed model outperformed the
popular CNN models and achieved a testing accuracy of 97.38%. You et al. [23]
developed a sagittal craniosynostosis classification model via Inception-V3 model and
transfer learning. Fifty sagittal scans were used to finetune the model, and the 3D skull
scans were projected as 2D binary images by hemispherical projection as input. The
prediction accuracy was great than 90% which outperformed their previous hand-crafted
features-based method (72%).

The details of the aforementioned classification research and the other researches
were listed in Table 2.1 and Table 2.2. Table 2.1 listed the details of head-related
classification tasks, and Table 2.2 included other parts, such as the whole body, spine,
chest, and foot. Most methods were based on popular models like GooLeNet, ResNet,
and VGGNet, while finetuning and data augmentation were usually used during training.
The results showed that the deep learning methods achieved high performance on
various tasks and could assist the doctor during the medical diagnosis.

2.2 Segmentation Tasks for Bone CT Analysis

The segmentation task aims to distribute the class label to each pixel at the bone CT
images according to a specific segmentation protocol. The segmentation usually acted
as a fundamental part for the bone CT analysis. The deep learning models have been
applied on the two-class or multi-class segmentation of different human bone parts,
such as whole body bone segmentation [66, 67], skull segmentation [68–74], temporal
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Table 2.1 Classification task details on head-related CT.

Reference Application Method;remarks
Miki et al.
(2017) [47]

Tooth type classification
(head CT, 7-class)

AlexNet as backbone; manually extract the
tooth bounding box; data augmentation

Bewes et
al. (2019)
[55]

Gender classification
(head CT, 2-class)

GoogLeNet as backbone; 3D skull
projected as a 2D image from lateral view;
data augmentation

Zakirov et
al. (2019)
[22]

Tooth condition
classification (head CT,
6-class)

DenseNet as backbone; weighted binary
cross entropy loss; multi-label classification

Kim et al.
(2020) [24]

Tooth malocclusion
classification (head CT,
3-class)

VGGNet and Inception-V3 as backbone;
generate the 2D image from 3-view of CT
and use prediction ensemble or feature
fusion; Class-selective Relevance Mapping
to visualize region of interest

You et al.
(2020) [23]

Sagittal craniosynostosis
classification (head CT,
2-class)

Inception-V3 with transfer learning;
segment using Hounsfield Unit threshold;
project 3D scan as 2D image

bone segmentation [75–80], tooth segmentation [22, 81–85], shoulder segmentation
[86], clavicle bone segmentation [87], vertebra segmentation [17, 18, 20, 21, 88–95], rib
segmentation [48], metacarpal bone segmentation [96], pelvic segmentation [40, 97–100],
femur segmentation [101], bone metastasis segmentation [102–105], mineralized tissue
segmentation [106], and other segmentation tasks[107]. The U-net [108], fully convolu-
tional networks (FCN) [109], Mask-RCNN [110] were the most popular segmentation
models among these segmentation tasks.

Identifying the bone region from the CT scans is a crucial task for the clinical
diagnosis, and this was tackled as a two-classes bone segmentation task [66–68, 81,
100, 104, 106, 111].

Klein et al. [66] presented a bone segmentation model in whole-body CT scans
by the U-net model. The U-Net model was trained using three different methods: 1)
training from 2D axial slices, 2) training from axial, sagittal, and coronal slices and
average the outputs, 3) training from 2D axial slices from an unsupervised pretraining
model. A private dataset (53 CT scans) and a public dataset (27 CT scans) were used
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Table 2.2 Classification task details on whole-body, spine, chest, lower body, foot and
bone CT.

Reference Application Method;remarks
Pranata
et al.
(2019) [49]

Calcaneus fractures
classification (foot CT,
2-class

Finetunine pretrained VGG16 and
ResNet50; single slice as input

Farda et
al. (2021)
[54]

Calcaneus fractures
classification (foot CT,
4-class)

PCANet as backbone; performance
comparison on different numbers of
augmented images

Chettrit
et al.
(2020) [50]

Vertebrae fractures
classification (Spine CT,
2-class)

Multi-stage framework; 3D patch as input;
sequence items classification and
aggregation

Husseini
et al.
(2020) [51]

Vertebrae fractures
classification (Spine CT,
3-class)

Grading loss to encourage learning the
fracture severeness; TSNE visualisation of
feature representation

Li et al.
(2021) [53]

Vertebral fracture
benign/malignant
classification (spinal CT,
2-class)

Three consecutive slices as inputs;
ResNet50 as backbone; Two evaluations,
per-slice classification and per-patient
diagnosis

Lee et al.
(2020) [52]

Fracture classification
(lower body CT, 28-class)

Multi-label classification; integrating the
Google inception module; 2D segmentation
projection as input

Meng et
al. (2021)
[48]

Rib fracture classification
(chest CT, 4-class)

Multi-stage system; 3D input by
resampling; self-designed 3D CNN with
four conv layers

Papandrianos
et al.
(2020) [25]

Bone metastasis
classification (whole body
CT, 2-class)

Compare performance of VGG16,
ResNet50, GoogLeNet, mobile Net with
the proposed CNN model (best
performance).

Lin et al.
(2021) [27]

Bone metastasis
classification (whole body
CT, 2-class)

Data preprocessing to crop thoracic region;
comparing performance of VGG, ResNet
and DenseNet

Wu et al.
(2020) [26]

Traumatic osteomyelitis
classification (bone CT,
2-class)

ResNet as backbone; retrospective study
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for the model training and evaluation. The segmentation model training from 2D axial
slices directly achieved the best performance, which was 91.0% of intersection-of-union
(IOU) in the private dataset and 85.0% in the public dataset. Noguchi et al. [67] also
employed the U-Net segmentation model for bone segmentation on the same public
dataset as [66]. Three data augmentation methods were used: conventional rotation,
zooming, flipping, and shear transformation; mixup; and random image cropping and
patching (RICAP). The combination of the conventional method and RICAP method
data augmentation achieved the best result, an IOU of 92.6% on the public dataset.

Although U-net has demonstrated high performance, the other segmentation models
have also been investigated for bone segmentation. Egger et al. [68] used the FCN
to develop a lower jawbone (mandible) segmentation model using ten skull CT for
training and ten skull CT for testing. VGG16 was utilized as the backbone, and
three different networks, FCN-32s, FCN-16s, and FCN-8s, were used to segment the
mandible region. The FCN-8s outperformed the other two models and achieved the
best Dice coefficients of 92.03% on the training set and 89.64% on the testing set. Lin
et al. [104] built several deep learning models, including U-net, U-net with a residual
module (U-Net-Res), Mask R-CNN, Mask R-CNN with spatial attention module (Mask
R-CNN-Att), for the hotspots segmentation of bone metastasis in SPECT scans. 112
CT samples were selected, and with the data augmentation methods of image mirror,
translation, rotation, 2280 samples were generated. 1830 samples and 450 samples were
used as training and testing groups, respectively. The U-Net-Res model outperformed
the other three models with an IOU of 61.03%, and the U-net model (IOU of 59.41%)
was better than the Mask R-CNN model (IOU of 55.44%) and Mask R-CNN-Att model
(IOU of 54.27%).

Except for the single slice-based approaches, some works explored the multiple slices
as input for bone segmentation. Li et al. [81] combined the Attention U-net (AttU-Net)
and bi-directional convolutional long short-term memory (BDC-LSTM) model for the
tooth roots segmentation from CBCT scans. The AttU-Net gave large weight to the
tooth region via attention gates between the downsample feature and upsample feature,
and the LSTM was used to extract the intra-slice and inter-slice contexts between the
tooth root sequence. Twenty-four scans were used to validate the proposed method,
and the model achieved an average IOU of 91.4% on five testing scans. Léger et al.
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[106] used the 3D U-net for the segmentation of mineralized cartilage in high-resolution
micro-CT images. Due to the high resolution of the CT images, two strategies, the
downsampling method or the 3D-patch method, were applied to avoid the GPU memory
limitations. The 3D U-Net with downsampling strategy outperformed the 3D-patch
strategy on six testing CT scans and showed better 3D consistency than 2D U-net.

Dreizin et al. [100, 111] developed a recurrent saliency transformation network
for the pelvic hematoma segmentation with the coarse-to-fine strategy. Two identical
fully convolutional neural networks (FCNs) were used in the coarse and fine stages,
respectively. A coarse segmentation map was generated in the coarse stage to localize
the region of interest using a saliency transformation module. The cropped region was
fed into the fine-segmentation FCN model to generate the more accurate segmentation
results of pelvic hematoma. Both the coarse-FCN and fine-scale-FCN were optimized
by the Dice loss function. 253 trauma CT scans were used to train and test the model,
and the proposed method achieved a Dice score of 0.71 compared to 0.49 of the 3D
U-Net model.

Identifying regions of different bones or disease lesions from the CT scan is an
essential step for the medical diagnosis, and this requires the multi-class segmentation
methods [40, 75, 76, 84, 92, 98, 107].

Liu et al. [98] implemented a multi-class segmentation model of pelvic CT scans
based on the U-Net. The target organs included the left femoral head, right femoral
head, spinal cord, bladder, bone marrow, rectum, and small intestine. A weighted
cross-entropy loss was used to train the model to overcome the class imbalance problem.
The weight was set according to the sizes of different segmented parts. 105 patients
CT scans (77 for training, 14 for validation, and 14 for testing) were collected. The
Dice similarity coefficient was 90.6%, 90.0%, and 82.7% for the left femoral head,
right femoral head, and spinal cord, respectively, which outperformed the standard
U-Net training method on the test set. Liu et al. [40] trained a multi-class network
for pelvic bones segmentation more scans (1184 CT scans). A cascaded 3D U-Net
was utilized. The first U-Net generated the low-resolution 3D segmentation results
by training from the down-sampling data. The second U-Net model was trained on
full-size CT data and the up-sampling segmentation results from the first U-Net data
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model. A postprocessing step based on signed distance function [112] was employed to
create a robust result for clinical usage. The average segmentation Dice score is 98.7%
on the metal-free CT scans, and the SDF post-processor gained a decrease of 15.1%
in Hausdorff distance compared with the maximum connected region post-processor.
Uemura et al. [107] applied the Bayesian U-Net model [113] for the segmentation
of intensity calibration phantom of Pelvic CT. Forty scans from two CT machines
were selected to train the Bayesian U-Net model and data augmentation methods like
intensity normalization, translation, rotation, scaling, and shear transformation were
used during training. The Dice coefficient was 97.7% on 1000 testing CT scans which
demonstrated the excellent and robust performance of the proposed segmentation
method.

The multi-stage methods also delivered satisfying results in other multi-class seg-
mentation tasks. Belal et al. [92] proposed a three-step CNN-based approach for the
segmentation of 49 bones in the upper body CT scans. The first step used a CNN to
detect the 29 landmarks of rib joints and vertebral, employed the active shape model
to determine the landmarks identity, and utilized another network to detect the rib
centerlines. The second step fed the original CT slices and the identified landmarks
into another CNN model to generate a raw voxel-wise segmentation. The last step
used several postprocessing methods such as connect component analysis and binary
hole filling to modify the spurious voxels. The proposed method achieved satisfying
qualitative results, and the Dice coefficient on five selected bones (Th7, L3, sacrum,
right 7th rib, and sternum) was between 83.0% ∼ 88.0% on five testing cases.

The temporal bone is a complicated structure. Fauser et al. [75] proposed a 2D
U-Net-based method for the structure segmentation of temporal bone CT instead of the
3D U-Net approach considering the scarcity of available annotation data. Three U-Net
models were trained using the axial-view, sagittal-view, and coronal-view slices of
temporal bone CT data, respectively. An initial 3D segmentation of the temporal bone
structure was generated by majority voting, and a probabilistic active shape model
was employed to refine the segmentation results. The proposed method achieved better
organ shapes on 24 testing CT data of real patients than the existing semi-supervised
methods. Li et al. [76] designed a 3D Deep Supervised Densely Network (3D-DSD
Net) by extending the 3D-U-Net for the small organs segmentation of temporal bone
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CT. Three densely connected blocks were used to extract the low-level features in the
encoder part, and these features were transferred to the decoder via a multi-pooling
feature fusion strategy. The decoder generated the segmentation feature maps on both
the last layer and the two hidden layers. A joint loss between each layer in the decoder
was designed to train the 3D-DSD net with 56 CT scans. Eight scans were used for
testing, and the average Dice coefficient over the nine organs of the temporal bone was
77.18%.

Another challenging task in head-related CT is tooth segmentation. Cui et al. [84]
proposed ToothNet, a two-staged network for tooth instance segmentation from CBCT
scans. In stage one, an edge map extraction network with a deep supervised scheme
was designed to detect the tooth edges. The second stage fed both the edge maps and
original CBCT slices into a 3D region proposal network and employed a similarity
matrix to discard redundant proposals. The region proposals were used for four tasks,
tooth segmentation, classification, 3D box regression, and identification, and the whole
model was trained using the joint loss of the four tasks. Twelve scans were used to train
the proposed model, and the average Dice coefficient was 92.37% over eight testing
scans.

The deep learning-based bone CT segmentation tasks have achieved high perfor-
mance with enough annotation data. However, manually annotating is laborious and
time-consuming. Using both the labeled and unlabelled data for bone segmentation is
a potential solution. Malinda et al. [21] constructed a hybrid deep segmentation gener-
ative adversarial network (Hybrid-SegGan) for the lumbar vertebrae CT segmentation
to utilize both labeled and unlabeled data. The proposed Hybrid-SegGan was based
on CycleGAN [114] while a two-cycle consistency strategy was used instead of the one
cycle consistency in CycleGAN. The adversarial loss, consistency loss, constraint loss,
and identity loss that derived from four discriminators and two generators were used
to optimize the model to determine if the CT data and segmentation data were paired
or not. The proposed model achieved an IOU of 99.1% compared to 98.7% of U-Net in
120 CT scans.

Overall, the segmentation tasks acted as a fundamental task for the bone CT
analysis. Table 2.3, Table 2.4, Table 2.5, and Table 2.6 listed the details of the
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segmentation tasks on head, spine, pelvic, and other CT, respectively. The U-net
model was the most commonly used model for two-classes segmentation tasks due to
the unique skip connection structure of U-net and the special Hounsfield scale of bones
in CT. The multi-stage framework usually outperformed the single-stage methods for
the multi-classes segmentation tasks.

Table 2.3 Segmentation task details on head-related CT.

Reference Application Method;remarks
Zhang et
al. et al.
(2017) [71]

Craniomaxillofacial
segmentation (head CT,
2-class)

Two cascaded FCN; first FCN generates
the displacement map; second FCN
generates both segmentation map and
landmark heatmaps

Egger et
al. (2018)
[68]

Mandible segmentation
(head CT, 2-class)

VGG16 for feature extraction; FCN-32s,
FCN-16s and FCN-8s for segmentation

Torosdagli
et al.
(2019) [74]

Mandible segmentation
(head CT, 2-class)

Fully convolutional DenseNET with 103
conv layers for segmentation

Cui et al.
(2019) [84]

Tooth segmentation
(head CT, 40-class)

Two-stage framework; edge map extraction
CNN; using edge maps and slices to
generate to generate region proposals for
segmentation and classification

Ezhov et
al. (2019)
[85]

Tooth segmentation
(head CT, 33-class)

Multi-stage framework; coarse weakly
supervised segmentation; fine-tuning on
downsampled masks; V-Net as backbone

Zakirov et
al. (2019)
[22]

Tooth segmentation
(head CT, 33-class)

V-Net for tooth segmentation; instance
normalization before each convolution
instead of batch normalization

Jaskari et
al. (2020)
[82]

Tooth segmentation
(head CT, 2-class)

3D fully convolutional network with the
U-Net structure; training patches extracted
from coarsely-annotated CTs
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Li et al.
(2020) [81]

Tooth segmentation
(head CT, 2-class)

Attention Unet (AttU-Net) for large weight
on tooth region; bi-directional LSTM to
extract intra-slice and inter-slice contexts

Setzer et
al. (2020)
[83]

Tooth periapical lesion
segmentation (head CT,
5-class)

U-Net model as backbone; five slices as
input; 3D convolution layer to predict the
segmentation of center slice

Fauser et
al. (2019)
[75]

Temporal bone
segmentation (head CT,
11-class)

2D U-Net for data scarcity; three U-Net
models from three views of the scan;
majority voting and probabilistic active
shape model as postprocessing

Li et al.
(2020) [76]

Temporal bone
segmentation (head CT,
10-class)

3D Deep Supervised Densely Network;
3D-U-Net as backbone; multi-pooling
feature fusion

Neves et
al. (2021)
[77]

Temporal bone
segmentation (head CT,
5-class)

Compare Anisotropic Hybrid Network
(AH-Net) [115], U-Net and ResNet;
evaluation considering testing time

Nikan et
al. (2020)
[80]

Temporal bone
segmentation (head CT,
9-class)

3D fully connection neural network;
subsampling strategy for class imbalance;

Nikan et
al. (2020)
[78]

Temporal bone
segmentation (head CT,
9-class)

Patch-wise densely connected
three-dimensional network; B-spline
upsampling for decoder; balanced-weighted
patch sampling

Wang et
al. (2021)
[79]

Temporal bone
segmentation (head CT,
4-class)

W-net with two analysis paths and two
synthesis paths; weighted cross entropy loss

Lee et al.
(2019) [73]

Orbital bone
segmentation (Head CT,
2-class)

Derived from U-Net model; orbital region
cropping; thin bone segmentation branch;
cortical bone segmentation branch
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Huang et
al. (2020)
[69]

Skull bone segmentation
(head CT, 2-class)

Multiphase CT as input; 3D U-Net model
and multi-channel atrous CNN for
segmentation

Matzkin
et al.
(2020) [70]

Skull retracting
segmentation (Head CT,
2-class)

Three methods proposed; autoencoder or
U-net model for first reconstruct then
subtract; U-Net directly estimated bone
flap (best)

Lian et al.
(2020) [72]

Jaw segmentation (head
CT, 2-class)

A U-Net shaped structure using adaptive
transformer module for feature extraction

Table 2.6 Segmentation task details on whole body, shoulder, chest, upper body, hand,
femur and bone CT.

Reference Application Method;remarks
Chen et
al. et al.
(2017)
[101]

Femur segmentation
(femur CT, 2-class)

3D-U-Net as backbone; edge detection task
embedded into the feature extraction;
multi-task loss function

Klein et
al. (2018)
[66]

Whole body bone
segmentation (whole
body CT, 2-class)

U-Net model using three training methods;
training from 2D axial slices; from axial,
sagittal, and coronal slices; from 2D axial
slices via an unsupervised pretraining
model

Noguchi
et al.
(2020) [67]

Whole body bone
segmentation (whole
body CT, 2-class)

U-Net as backbone; Three data
augmentation methods; conventional
method; mixup; random image cropping
and patching

Belal et al.
(2019) [92]

Upper body bone
segmentation (chest CT,
50-class)

Multi-step approach; CNN for landmarks
detection; active shape model for labeling
landmarks; patch-CNN model for
segmentation; postprocessing
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Song et al.
(2019)
[103]

Bone metastasis
segmentation (bone CT,
2-class)

VGG16 as backbone; two side connections
to extract contour and global feature;

Lin et al.
(2020)
[104]

Bone metastasis
segmentation
(whole-body CT, 2-class)

Compare several models, U-Net, U-Net
with residual module (U-Net-Res), Mask
R-CNN, Mask R-CNN with spatial
attention module (Mask R-CNN-Att)

Moreau et
al. (2020)
[105]

Bone metastasis
segmentation
(upper-body CT, 3-class)

3D U-Net as backbone; combine cross
entropy loss and multi-class Dice loss as
loss function

Léger et
al. (2019)
[106]

Mineralized tissue
segmentation (cartilage
and bone CT, 2-class)

3D-U-Net as backbone; downsampling or
3D patch as input to save GPU memory

Chen et
al. et al.
(2021)
[102]

Bone segmentation (bone
CT, 3-class)

Recurrent CNN with eight conv layers;
unsupervised and semi-supervised loss
based on fuzzy C-means

Folle et al.
(2021) [96]

Metacarpal bone
segmentation (hand CT,
2-class)

Compared 2D U-Net with pretraining
(best), 2D U-Net without pretraining, 3D
U-Net without pretraining

Meng et
al. (2021)
[48]

Rib segmentation (Chest
CT, 2-class)

V-Net for bone segmentation; dynamic
programming algorithm for labelling

Zhang et
al. (2021)
[117]

Rib segmentation (Chest
CT, 2-class)

Two cascaded CNN framework, Foveal
network for segmentation, Faster R-CNN
for detection; three types of evaluation,
human only, deep learning only, human
with deep learning assistance;

Sanghani
et al.
(2021) [87]

Clavicle bone
segmentation (clavicle
CT, 2-class)

U-Net model as backbone; 2D slice as
input
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Taghizadeh
et al.
(2021) [86]

Shoulder segmentation
(shoulder CT, 2-class)

U-Net for segmentation; data
augmentation; five-fold validation

Uemura et
al. (2021)
[107]

Phantom segmentation
(Femur CT, 5-class)

Bayesian U-Net model for segmentation;
data augmentation of translation, rotation,
scaling and shear transformation

2.3 Regression Tasks for Bone CT Analysis

The purpose of the regression tasks is to map the input CT slices into one or several
continuous outputs according to the definition of task. The regression tasks like age
estimation [118], bone mineral density estimation [94, 95, 119, 120], skeleton landmarks
detection [19, 71, 72, 74, 121–128], bone fracture detection [48, 117], and slice position
detection [57] have been explored using the deep learning methods recently. Different
models such as the self-designed neural network [119], VGGNet [129], DenseNet [74, 94],
LSTM [74, 124], FCN [71, 74, 123, 124] have been used for the regression tasks.

Directly fed the scan into a CNN model to yield the results was used in some
regression tasks. González et al. [119] designed a one-stage regression neural network
for bone mineral density (BMD) estimation. The model consisted of three convolutions
layers, one fully connected layer, and one output layer. The 3D upper body CT scans
were projected as 2D slices as the model input. 9925 CT scans were used to train,
validate and test the proposed model and the root mean squared error was applied to
optimize the model. The correlation coefficient between the predicted BMD and the
real BMD was 94.0% on the 1000 testing scans. Nguyen et al. [118] developed an age
assessment system using the whole body bone CT scans. The whole body CT scan
was reduced to a 2D front view image and was fed into a modified VGGNet, where
the features from different layers were concatenated to incorporate both the high-level
and low-level features for age assessment. 569 CT scans with the age range from eight
months to 87 years were used to train the model. The mean square error (MAE) on 244
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Table 2.4 Segmentation task details on spinal CT.

Reference Application Method;remarks
Novikov
et al.
(2017) [17]

Vertebrae segmentation
(spinal CT, 2-class)

Integrate bidirectional convolutional LSTM
into U-Net-like architecture

Fan et al.
(2019) [18]

Vertebrae and nerve
segmentation (spinal CT,
3-class)

3D-U-Net as backbone; resampling,
cropping, and intensity normalization as
preprocessing

Krishnaraj
et al.
(2019) [95]

Vertebrae bone
segmentation (Spinal CT,
4-class)

Two cascaded U-Net models to identify L1
∼ L4 vertebrae bones; first U-Net on
sagittal view; second U-Net on sagittal and
coronal view

Bae et al.
(2020) [90]

Vertebrae segmentation
(spinal CT, 2-class)

U-Net model; two-stage post-processing;
mislabelling error correction for first stage;
separate each vertebra part by identifying
the separation points at second stage

Fan et al.
(2020) [20]

Vertebrae segmentation
(spinal CT, 4-class)

3D-U-Net for segmentation of nerve, bone,
disc and background; resampling, cropping,
and intensity normalization as
preprocessing

Malinda
et al.
(2020) [21]

Vertebrae segmentation
(spinal CT, 2-class)

hybrid deep segmentation based on
CycleGan; two-cycle consistency strategy

Pan et al.
(2020) [91]

Vertebrae segmentation
(Spinal CT, 4-class)

3D-Unet for segmentation; Treat T1 ∼ T6,
T7 ∼ T12, L1 ∼ L2 as three categories for
segmentation

Rehman
et al.
(2020) [93]

Vertebrae segmentation
(spinal CT, 2-class)

Combine region-based level set and U-Net
model for the segmentation; fracture CT
scans for segmentation

Fang et al.
(2021) [94]

Vertebrae segmentation
and BMD estimation
(spinal CT, 5-class)

U-Net model for four lumbar vertebral
segmentation

Löffler et
al. (2021)
[88]

Vertebrae segmentation
(spinal CT, 4-class)

Multi-stage framework; fully CNN to
detect spine;, a butterfly-shaped CNN
[116] for labelling; U-Net based model to
segment the vertebrae patches

Suri et al.
(2021) [89]

Vertebrae segmentation
(spinal CT, 2-class)

Multi-stage approach; Feature generation
network for feature extraction; Region
recognition network for bounding box
proposal; segmentation network to refine
results
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Table 2.5 Segmentation task details on pelvic CT.

Reference Application Method;remarks
Dreizin et
al. (2020)
[111, 100]

Pelvic hematoma
measurement (pelvic CT,
2-class)

Recurrent saliency transformation network;
coarse-to-fine segmentation; FCN as
backbone

Hemke et
al. (2020)
[99]

Pelvic segmentation
(pelvic CT, 6-class)

U-Net as backbone; data augmentation to
enlarge training set

Liu et al.
(2021) [40]

Pelvic segmentation
(pelvic CT, 5-class)

Cascaded 3D U-Net; first U-Net on
low-resolution CT; second U-Net on
full-size CT; postprocessing as signed
distance function

Liu et al.
(2020) [98]

Organs at risk
segmentation (pelvic CT,
8-class)

U-Net as backbone; weighted cross-entropy
loss to overcome class imbalance

Sánchez
et al.
(2020) [97]

Bone segmentation
(Abdomen and pelvic CT,
2-class)

3D-Unet for segmentation; 5-fold
validation; low- and high-energy CT as
input

testing scans of the proposed model was 4.856 years which outperformed the VGGNet
(9.741 years), GoogLeNet (5.522 years), and ResNet (5.738 years).

The multi-stage or multi-task frameworks were also explored for the regression tasks
on complicated body structures, such as the spine and head. Fang et al. [94] proposed
a two-stage regression framework for the BMD estimation from spine CT. A U-Net
model was used to identify the four lumbar vertebral bones from the sagittal view of
the spinal CT. The extracted vertebral bones were then fed into the DenseNet-121
model for BMD estimation. The proposed framework was trained on 586 CT cases
and tested on three cohorts with 463 scans, 200 scans, and 200 scans, respectively.
The Dice coefficients of the lumbar vertebral bones for the three cohorts were 82.3%,
78.6%, and 78.2%, respectively. The average BMD estimation results were highly
correlated (r>0.98) with the ground truth. Liao et al. [124] combined the 3D FCN and
bi-directional Recurrent neural network (Bi-RNN) for localization and identification of
the vertebrae CT scans. A multi-task 3D FCN was trained to extract the features of
vertebral samples and encode the short-range contextual information. The Bi-RNN
then learned the long-range contextual information of the vertebral anatomic structure
from the feature maps of the 3D FCN and outputted the identification and localization
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results of the CT scan. The overall identification performance of the proposed model
was 88.3%, and the average localization error was 6.47mm.

Zhang et al. [71] also used the multi-stage strategy and developed a context-guided
multi-task fully convolutional networks for craniomaxillofacial landmarks detection and
bone segmentation simultaneously. The proposed network consisted of two FCNs, and
both adopted the U-Net structure. The first FCN generated the displacement maps
of each voxel to the 15 landmarks as a guidance of the spatial context information.
The second FCN combined the displacement maps and original CT data as input and
generated the bone segmentation map, and estimated the position of the landmarks.
107 CT scans from two medical centers were used to train and evaluate the proposed
method with a 5-fold cross-validation strategy, and the landmark digitization error
was around 1.10 mm, which was superior to the compared methods. Torosdagli et al.
[74] proposed a three-step framework to detect the mandible landmarks with three
neural networks. The first step employed the fully convolutional DenseNet [130] to
generate the linear time distance transform (LTDT) of the mandible bone, and the
LTDTs were transformed as a combined geodesic map of five mandibular landmarks
via a U-Net model. To detect the remaining four landmarks, a LSTM network was
applied according to the detection position of the menton landmark from the U-Net
model. A CBCT dataset with 250 patient CBCT was used to evaluate the proposed
method qualitatively. Two experts gave scores of the segmentation results while only
5% of the segmentation results were scored as unacceptable by both two experts.

Table 2.7, Table 2.8 and Table 2.9 listed the details of the recent regression tasks,
including the applications, methods details, and remarks of head, spine and other CT,
respectively. The results demonstrated the effectiveness of the deep learning methods in
bio-marker estimation and landmarks detection. During the regression system design,
the segmentation model was often utilized within a multi-stage or multi-task framework
to deliver better performance.
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Table 2.7 Regression task details on head CT.

Reference Application Method;remarks
Zhang et
al. et al.
(2017) [71]

Craniomaxillofacial
landmarks detection
(skull CT, 15 landmarks)

Two cascaded FCN; first FCN generates
the displacement map; second FCN
generates both segmentation map and
landmark heatmaps

Torosdagli
et al.
(2019) [74]

Mandible landmarks
detection (head CT,
2-class, 9 landmarks)

Multi-stage framework; fully convolutional
DenseNet for segmentation; U-Net to
detect five landmarks; LSTM to detect
another five landmarks

Lian et al.
(2020) [72]

Mandible landmarks
detection (head CT, 64
landmarks)

Multi-stage framework; global context
feature from down-sampled CT;
fine-grained features from patch; adaptive
transformer module for feature extraction

Yun et al.
(2020)
[122]

Skull landmarks detection
(head CT, 93-landmark)

Multi-stage framework; global and local
slice for coarse and fine detection;
VAE-based latent representation of
landmarks

Xiao et al.
(2021)
[128]

Skull reference bony
shape estimation (head
CT)

Encoder-decoder model derived from
PointNet++; synthesis data from normal
bones; displacement vectors estimation



2.3 Regression Tasks for Bone CT Analysis 29

Table 2.8 Regression task details on spine CT.

Reference Application Method;remarks
Suzani et
al. (2015)
[127]

Vertebrae landmark
detection (spine CT, 26
landmarks)

Multi-stage approach; six-conv-layer CNN;
centroid estimated and refinement by
kernel density estimation method

Netherton
et al.
(2020) [19]

Vertebrae landmark
detection (spine CT, 26
landmarks)

X-Net for landmark detection; sagittal and
coronal intensity projection as two inputs
and output corresponding detection map

Pisov et
al. (2020)
[121]

Vertebrae landmark
detection (spine CT,
6-landmarks)

Multi-stage approach; spine straightening
via 3D U-Net architecture; YOLOv3 based
vertebrae-level prediction

Cai et al.
(2016)
[126]

Vertebrae bounding box
detection (spine CT)

Multi-stage approach; MRI and CT as
input; feature extraction by CRBM; SVM
for bone labelling

Belharbi
et al.
(2017) [57]

Vertebrae slice detection
(lumbar spinel CT)

Transfer learning based on VGG16; project
the scan through sagittal view as a 2D
maximum intensity projection

Liao et al.
(2018)
[124]

Vertebrae identification
and localization (spinal
CT, 27-landmark)

Multi-stage framework; 3D CNN for
vertebrae sample; FCN for centroid
detection or coarse segmentation;
bidirectional RNN for fine centroid
detection and labelling

Krishnaraj
et al.
(2019) [95]

Vertebrae labelling and
BMD estimation (Spine
CT)

Multi-stage approach; two U-Net model for
vertebrae labelling, linear regression for
BMD estimation

Fang et al.
(2021) [94]

Vertebrae segmentation
and BMD estimation
(spine CT, 5-class)

Multi-stage framework; U-Net model for
four lumbar vertebral segmentation;
DenseNet-121 for regression

Jakubicek
et al.
(2020)
[125]

Spine centerline detection
(spine CT)

Two-stage method;, spine-ends detection
by AlexNet; Faster R-CNN for spine
centerline detection

Meng et
al. (2021)
[48]

Rib fracture region
detection (spine CT)

Modified V-Net with two ResNet module
and a bottleneck module

Yasaka et
al. (2020)
[120]

Lumbar BMD estimation
(Spine CT)

Self-designed CNN with four conv layers
and three fully connection layer; manually
cropped lumbar region; data augmentation
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Table 2.9 Regression task details on whole body, upper body, and chest CT.

Reference Application Method;remarks
González
et al.
(2018)
[119]

BMD estimation (upper
body CT)

Self-designed CNN with three convolution
layers; 3D scans projected as 2D images

Nguyen et
al. (2019)
[118]

Age estimation (Whole
body CT)

VGGNet as backbone; whole body CT for
age estimation; 3D scans projected as 2D
images from front view

Thies et
al. (2020)
[129]

CBCT Source trajectories
adjustment (chest CT)

VGGNet as regressor; data augmentation
with rotation; experiments on both
simulation and real dataset

Zhang et
al. (2021)
[117]

Rib fracture detection
(Chest CT)

Two cascaded CNN framework, Foveal
network for segmentation, Faster R-CNN
for detection; three types of evaluation,
human only, deep learning only, human
with deep learning assistance

2.4 Generative Tasks for Bone CT Analysis

Different from the discriminative tasks like classification, segmentation, and regression,
the generative tasks in bone CT analysis aim to generate new data instance from the
input CT data. Tasks such as noise reduction [131], cross-modality image synthesis
[132–137], CT super resolution reconstruction [138–140], scatter correction [141], metal
artifact reduction [142–145] have been studied. U-net [133, 134, 136, 138, 141], GAN
and its variations [132, 135, 139, 140, 144], and self-designed CNN [131, 142, 143, 145],
were used in the generative tasks.

The U-net model has demonstrated its performance in other tasks, and some
researchers investigated the U-net structure for generative tasks. Park et al. [138]
applied the U-net to learn the mapping criteria between the low and high-resolution
CT head scans. The low-resolution CT slice was generated by averaging the existing
high-resolution CT slices, and the ground truth was set as the middle slice of the
corresponding high-resolution slices. With 52 head scans as the training set, the
predicted high-resolution slices were not only virtually equivalent to the ground truth
but also achieved low noise with 10% higher peak signal-to-noise ratio and more clear
boundaries of the bone structures. Liu et al. [133] developed a deepAC model for the
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generation of pseudo-CT scan from the non-attenuation-corrected (NAC) PET images.
A convolutional encoder-decoder architecture with short connection was employed to
generate the corresponding pseudo-CT from the NAC PET data. A set of 100 PET
head scans was used for training, and the model yielded a mean error of 111 HU
between the pseudo-CTs and the real CT on 28 evaluation scans.

The GAN-based models were also used for the generative tasks. Hiasa et al.
[132] employed the CycleGAN to generate CT images from MRI data by adding a
gradient consistency loss to improve the accuracy at boundaries. A CT generator,
MRI generator, CT discriminator, MRI discriminator were designed, and four losses,
including the adversarial loss between CT data, adversarial loss between MRI data,
the cycle consistency loss between MRI and CT data, and the gradient consistency
loss, were used to train the whole model. The mean absolute error (MAE) and
peak-signal-to-noise ratio (PSNR) between real CT and synthesized CT and mutual
information (MI) between synthesized CT and real MRI were used for quantitative
evaluation. The U-net segmentation results using the synthesis CT were treated as
quantitative evaluation. Both results demonstrated the efficiency of the proposed
CycleGAN-based CT synthesis model. You et al. [139] presented a semi-supervised
method for the super-resolution reconstruction of Tibia micro-CT and abdominal CT.
They adopted the CycleGAN framework with two generators, two discriminators, and
a residual CNN-based network to reserve the CT details. The CycleGAN model was
jointly trained with the adversarial loss, cycle consistency loss, identity loss, and a
joint sparsifying transform loss. The results on the tibia micro-CT and the abdominal
CT reflected both qualitative and quantitative superior results compared to the other
models.

Some works designed unique CNN models according to the specific characteristics of
the generative task and usually achieved good performance. Chen et al. [131] developed
three layers convolutional neural network for noise reduction in low-dose CT. The three
layers acted as patch coding, non-linear filtering, and reconstruction, respectively. 200
normal-dose as input and corresponding low-dose CT slices as ground truth were used
to train the model. The low-dose images were generated by imposing Poisson noise on
the normal-dose images. The PSNR, root mean square error (RMSE), and structural
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similarity index (SSIM) on 100 testing slices were better than the non-deep learning
methods, such as K-SVD [146], and BM3D [147].

Zhang et al. [143] developed a CNN-MAR for metal artifact removal on the tooth
CT and abdominal CT. They established a pseudo metal artifact database by simulating
the metal artifacts of metal using the sinogram. In the first stage, the pseudo-metal-
inserted, metal-free, and pre-corrected CT images from linear interpolation (LI) and
beam hardening correction (BHC) [148] were used to train a CNN model with five
convolutional layers. Then, the water and equivalent tissues in the output of the CNN
model were further assigned with a uniform value to obtain a CNN prior image. At
last, the forward projections of the CNN prior image, the original CT, and the metal-
only image were jointly used to remove the metal artifact. The model demonstrated
both remarkable performances of RMSE and SSIM index on the simulated data
and qualitatively satisfying results on 16 real CT data. Lin et al. [142] proposed a
Dual Domain Network (DuDoNet) with a sinogram enhancement module, an image
enhancement module, and a radon inversion layer for metal artifact removal on the
abdominal CT. The sinogram enhancement module restored the sinogram of metal-free
CT from the linear interpolation results via a mask pyramid U-Net. To further reduce
the second artifact in the metal-free CT, a radon inversion layer with radon consistency
loss was designed between the generated metal-free CT from sinogram and ground
truth. The image enhancement module further refined the metal-free image by applying
a U-net architecture. The average PSNR of the DuDoNet on the large metal parts,
small metal parts, and all metal parts of 2000 simulated abdominal metal CT was
29.02, 36.72, and 33.51, respectively.

The generative tasks were widely used for CT data generation and preprocessing on
bone CT analysis. Table. 2.10 and Table. 2.11 listed the details of recent generative
tasks in head and other CT, respectively. Both supervised and unsupervised methods
were used for the generative tasks, and the synthesized data were often applied for
model training due to the lack of ground truth. The results showed that the deep
learning methods were effective on the generative tasks for bone CT analysis.
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Table 2.10 Generative task details on head CT.

Reference Application Method;remarks
Liu et al.
(2018)
[133]

PET to CT (head CT) Encoder-decoder architecture with short
connections that similar to U-Net model

Koike et
al. (2020)
[137]

Virtual non-contrast CT
generation (Head CT)

CNN with densely connection; virtual
non-contrast CT training data generated
from contrast-enhanced CT

Yong et al.
(2021)
[136]

QCBCT generation
(Head CT)

Cycle-Gan model to generate QCT from
CBCT; multi-channel U-Net for QCBCT
generation

2.5 Discussion and Conclusion

An extensive analysis of the recent research progress of deep learning-based bone CT
analysis was performed in this chapter. Various kinds of tasks, such as segmentation,
classification, regression, and generative tasks, have been discussed. We summarized
the bone CT applications (Fig. 2.1a), the research trends until 2021 (Fig. 2.1b), the
proportion of different tasks (Fig. 2.1c) and the proportion of different scanning parts
(Fig. 2.1d) in Fig. 2.1. Nearly all body parts have related deep learning applications
(Fig. 2.1a) while head and spine contributed more than half of the research (Fig.
2.1d). Half of the recent researches were segmentation tasks (Fig. 2.1c) on account of
segmentation being the foundation of bone CT analysis.

The results revealed that deep learning methods have demonstrated excellent
performance in various bone CT analysis tasks and have shown great potential to
assist clinical practice. Both single-stage deep learning methods and multi-stage deep
learning methods have reported good performance on specific tasks. However, for
complicated tasks like vertebra labeling and segmentation, temporal bone segmentation,
skull landmark detection, fracture classification, and BMD estimation, a multi-stage
hybrid deep learning framework could achieve better results. The preprocessing, data
augmentation, and postprocessing could also improve the performance and robustness
of the deep learning approach.

Enough annotation data is required to train, validate and evaluate the deep learning-
based bone CT analysis system. The data annotation is usually a laborious and
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Table 2.11 Generative task details on chest, spinal, abdominal, pelvic, hip, lower body,
femur and bone CT.

Reference Application Method;remarks
Chen et
al. (2017)
[131]

Noise reduction (Chest
and abdominal CT)

Self-designed CNN with three conv layers;
low-dose images generated by Poisson noise
and ray-driven algorithm

Park et al.
(2018)
[138]

Super resolution
reconstruction (chest and
abdominal CT)

U-Net model as backbone; training data
generated by average the high resolution
slices

You et al.
(2019)
[139]

Super resolution
reconstruction (tibia and
abdominal CT)

CycleGAN model as backbone; joint
constraints in loss functions;
cycle-consistency in Wasserstein distance

Guha et
al. (2020)
[140]

Super resolution
reconstruction (ankle CT)

CycleGAN model as backbone; real
low-resolution and corresponding
high-resolution data for model training and
testing from two different CT scanners

Hiasa et
al. (2018)
[132]

MRI to CT (femur CT) CycleGAN model as backbone; gradient
consistency loss to improve the accuracy at
boundaries; U-Net segmentation results for
quantitative evaluation

Leynes et
al. (2018)
[134]

MRI to CT (spinal and
pelvic CT)

U-Net as backbone; model trained with
gradient difference loss; combining
difference loss and L1 loss

Nomura
et al.
(2019)
[141]

Scatter correction (bone
phantom CBCT)

U-Net based 25-layer CNN; Monte Carlo
simulation of dataset; mean absolute error
and mean squared error as loss function

Zhang et
al. (2018)
[143]

Metal artifact reduction
(abdominal CT)

Multi-stage approach; integrate the LI and
BHC result for metal artifact reduction;
simulated data; self-designed CNN with
five conv layers

Liao et al.
(2019)
[144]

Metal artifact reduction
(abdominal CT)

Unsupervised learning; disentangle the
metal artifact in latent space; testing on
both simulated dataset and clinical dataset

Lin et al.
(2019)
[142]

Metal artifact reduction
(abdominal CT)

Metal artifact in both sinogram image and
CT image; radon inversion layer; simulated
data for model training

Qi et al.
(2020)
[145]

Metal artifact reduction
(hip CT)

CNN with six conv layers to remove metal
artifact from sinogram space; simulated
data using real hip image with and without
metal

Kawahara
et al.
(2021)
[135]

Dual-energy CT to
kilovoltage CT (pelvic
CT)

Conditional GAN model; L1 norm loss and
discriminator loss
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time-consuming process, especially for the segmentation tasks, where the pixel-wise
annotation is needed. The semi-supervised method could be a potential way to
accelerate the annotation procedure. The semi-supervised methods in [40–42] have
reduced the complexity for data labeling of wrist, spine, and pelvic CT. More research
could be conducted on the multi-classes segmentation tasks of other bone CT scans
to facilitate the annotation procedure. Besides, since collecting the medical data is
usually more difficult than nature images due to privacy, the public medical datasets
containing bone CT, such as [149–151], could be a potential source to establish the
bone database and raise new research tasks. Since the current public datasets mainly
focused on segmentation and detection-related tasks, the public CT dataset about
disease detection and classification was still unseen. This could be a potential direction
for the construction of future public datasets.

Most of the existing studies utilized the existing deep learning models like VGGNet,
ResNet, DenseNet, U-Net, and FCN, as the backbone. Recently, other effective models
have emerged, such as the transformer [152, 153]. Introducing transformers for the bone
CT analysis could be a direction to extract more discriminative features and improve
the performance. Besides, in the classification, segmentation, or regression tasks, an
issue that cannot be ignored during the model training is the data imbalance. For
example, the bone sizes are different in segmentation tasks, the majority of cases in the
collected cohorts are healthy cases for the classification tasks, and the BMD values are
usually clustered in a range for regression tasks. Resampling and data augmentation
were common methods to tackle this issue. However, more effective methods could
be explored for future research, such as loss design [154] or the global-local model
framework [40].

Another existing ’elephant in the room’ problem for the bone CT analysis is that
the habits, such as eating and exercising, or medical condition of the patient such as
age, cancer, or other diseases, also have an impact on the bone diagnosis. These parts
do not reflect on the bone CT but are essential for clinical diagnosis. The recently
electronic health records [155, 156] presented a potential for bone CT diagnosis. A
future direction could be to explore the multi-modality fusion methods using both
bone CT data and patient medical records for the medical analysis.
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Fig. 2.2 Several parts to be considered for deep-learning based bone CT analysis.

Besides, understanding the decision-making mechanism of the deep learning-based
bone CT analysis system is another crucial issue in clinical practice. Two ways can be
employed for the model explanation, uncertainty estimation map [157, 158] and model
decision heatmap [159]. The uncertainty measures the confidence level of the model’s
prediction, and the heatmap indicates the most useful part of the bone CT for the
model to generate the output. Exploring more advanced uncertainty estimation and
heatmap generation methods could be an interesting future work to help the doctors
understand the model results and work as a diagnostic assistant for a mature deep
learning system.

A successful deep learning solution of bone analysis task should consider several
parts that illustrated in Fig. 2.2. In order to train and evaluate the deep learning
approach, data collection and annotation is an essential part. Data preprocessing could
aim to transfer the raw data into a usable format and simplify the complexity of the
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task. The data augmentation improves the robustness and generalization ability of
the designed model. Either choosing a validated model such as U-Net, FCN, ResNet,
and DenseNet, or designing a new model could be a solution for the model selection.
Considering the nature of the task should be an important part during the model
designing, and splitting the task as several sub-tasks would improve the performance.
The postprocessing part aims to eliminate noise and deliver better results. Both
quantitative evaluation and qualitative evaluation could be considered to test the
model’s performance. The interpretation of the model like heatmap is also suggested
to explain the decision strategy of the model. After the model is deployed, it should
be continuously evaluated and updated with the newly collected data.



Chapter 3

Anatomical Segmentation of Human
Foot CT

3.1 Introduction

The weight-bearing CBCT, which allows the patient to stand in the natural weight-
bearing position during scanning, is a novel imaging technique for the medical treatment
of foot and ankle. The high-resolution scanning from weight-bearing CBCT has
tremendously aided the treatment and diagnosis of human foot, such as foot alignment
and surgery [2, 29–31]. In these clinical procedures, the anatomical segmentation of
foot bones, which offers an overall understanding of the patient’s condition, is an
important step in analyzing the CBCT foot scan.

The anatomical segmentation of the human foot is illustrated in Fig. 3.1. In
total, there are thirty-one human foot bones, including tibia, fibula, talus, navicular,
calcaneus, cuboid, three cuneiform bones, five metatarsal bones, fourteen phalange
bones, two sesamoid bones, and accessory bone. Manual annotation of foot CT is a
tedious and time-consuming process due to the complicated structure of the foot, and
specialist knowledge is necessary during annotation. A fully automatic and accurate
foot anatomical segmentation approach will greatly increase doctors’ efficiency and is
urgently needed.
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Fig. 3.1 Illustration of the anatomical segmentation of human foot bones.

Automatic anatomical segmentation of the 3D human foot CT scan requires as-
signing each pixel to the correct class based on the foot structure. Brehler et al. [160]
developed a coupled active shape model to segment foot bones from CBCT scan. How-
ever, only the calcaneus, talus, navicular and cuboid bones have been segmented, and
the segmentation results highly relied on the model initialization status. We considered
dividing the human foot weight-bearing CBCT scans into thirty-one anatomical regions
based on the foot structure to assist the clinical diagnosis [161, 162], which was more
complicated than the previous works.

The automated anatomical segmentation of foot CT faces two challenges. The foot
scan variation is the first challenge. Several examples of the average image through
the axial-view of the foot CT scan are depicted in Fig. 3.2. There are two-feet scans,
left-foot scans, and right-foot scans, with the feet in different positions and sizes in Fig.
3.2, raising the scan variation problem. The severe data imbalance between different
bone classes is the second challenge. The respective average bone point numbers of
the thirty-one foot bones over 38 feet scans are listed in Fig. 3.3. The tiny bones like
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sesamoid and phalange are significantly smaller than the big bones of tibia and fibula.
The two challenges severely affect the development of the foot CT segmentation model.

Two-feet scan Left-foot scan Right-foot scan

Fig. 3.2 Illustration of different foot scans.

We proposed the FootSeg method, which employed the deep neural network for
the automatically anatomical segmentation of the human foot weight-bearing CBCT
scan. The FootSeg is based on a three-stage framework, i.e., preprocessing, bone region
segmentation, and bone pixel classification, to deal with the two challenges mentioned
above. The model framework was depicted in Fig. 3.4. In the preprocessing stage, a
foot standardization method was proposed to solve the scan variation problem. The
bone region segmentation part aimed to identify the bone pixels while the classification
model distributed the correct label to each bone pixel. The bone pixel classification
model solved the data imbalance problem via a data sampling strategy. To the best of
our knowledge, this was the first research of anatomical segmentation of all foot bones
from weight-bearing CBCT using deep learning methods.

The innovation features of this work were:

• Framework for foot anatomical segmentation: The FootSeg method proposed
a foot anatomical segmentation framework which consisted of three parts, foot
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Fig. 3.4 Framework of the FootSeg anatomical segmentation method. The upper pink
part was the preprocessing part, which used a foot standardization module to solve the
foot scan variation problem; the lower-left blue part was the bone region segmentation
module, which employed a Unet-based single foot segmentation model to extract the
bone pixels; the lower-right yellow part was the bone pixel classification part, which
first employed a CNN model to distribute the label of each bone pixel and then used a
postprocessing module to generate the segmentation mask of each CT slice.
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preprocessing, foot region segmentation, and foot bone classification. The three-
step approach greatly reduced the complexity of the anatomical segmentation
task.

• Innovative patch-training method: The serious data imbalance problem consti-
tuted a great challenge in the stage of foot bone classification. A data up-sampling
and down-sampling training strategy and a patch-based CNN model have been
proposed to solve this problem.

• Remarkable performance: The FootSeg method achieved remarkable qualitative
and quantitative results in foot anatomical segmentation. The mean Intersection-
over-Union (mIoU) including the background part was 80.3%, and the mIoU on
the bone parts was 90.3% on the testing set containing eight feet.

• To the best of our knowledge, this was the first research of anatomical seg-
mentation of all foot bones from weight-bearing CBCT using deep learning
methods.

3.2 The Multi-Stage FootSeg Method for Foot Anatom-

ical Segmentation

The FootSeg method for anatomical foot segmentation was divided into three stages,
preprocessing, bone region segmentation, and bone pixel classification. Fig. 3.4
illustrated the FootSeg framework. The input of the FootSeg model was the Dicom
data from the weight-bearing CBCT machine. In the preprocessing step, the Dicom
data were firstly processed as tiff images, and a foot standardization step converted the
different kinds of foot CT data (two-feet scan, right-foot scan, and left-foot scan) as the
right-foot-like scan to simplify the model designing. The foot bone region segmentation
step utilized a U-net model to extract the bone pixels from the CT data. The foot
classification stage developed a patch-based CNN model to extract bone image feature,
and utilized both bone image feature and bone pixel position feature to identify the
label of the bone pixels. A postprocessing module was designed to generate the final
results according to the foot type.
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3.2.1 Foot Standardization

The FootSeg method aimed to handle different kinds of foot scans. However, the
different foot scan types, e.g., left-foot scan, right-foot scan, or two-feet scan, introduced
more variations to the anatomical segmentation of foot bones. A foot standardization
method was proposed to deal with this problem.

The foot Dicom data contained the type of the foot scan, and the Dicom data
extraction module generated the tiff image and extracted the foot type information.
In the foot standardization step, for the two-feet scan, the Otsu segmentation method
[163] was used to calculate the threshold between the foot data and the background,
and generate the foot muscle and bone mask on each foot slice. The foot masks were
then processed by morphological operations like the opening and closing to remove
the noise in the foot masks. After that, only the masks with two regions were used to
calculate the foot bounding box coordinates, and the coordinates over all the selected
masks were merged to generate the two foot bounding boxes of the two-feet scan. The
left-foot and right-foot were separated from the two-feet scan according to the two foot
bounding boxes. For the single foot scans, the bounding box was calculated using the
same method, while only one bounding box was generated. Then, in the two-feet scan
or the left-foot scan, the left foot and left foot bounding box were flipped as a right
foot and right foot bounding box. All foot scans were treated as right foot scans in the
following steps. The foot standardization step dramatically reduced the complexity
of the following model designing, and the bounding box position was used as a bone
position normalization parameter in the following step.

3.2.2 Foot Bone Region Segmentation

Directly processing the foot data was difficult since the thirty-one foot bones were of
different shapes and sizes. To simplify the problem, we proposed a foot bone region
segmentation stage before the foot bone classification. The goal of this step was to
extract the region of interest (ROI) from the CT scan. The foot scan consisted of
background, muscle, and foot bones. The first two introduced more difficulty to directly
classify the foot bones from the CT data. The foot bone region extraction stage aimed
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to assign each pixel in the CT slice as a bone pixel or a non-bone pixel. A U-net model
was used for the foot bone region segmentation. The input was the single foot slice
data from the foot standardization step, and the segmentation map of the foot bone
region was utilized as the input to the next foot bone classification stage.

3.2.3 Foot Bone Classification

The goal in this stage was to distribute each bone pixel with its corresponding anatomical
bone label. The input features, required to capture enough information for classification,
were crucial to the classification results. A patch-based CNN model was designed to
extract the bone image features and an auxiliary bone position feature was generated
using the foot bounding box. Both the bone image features and the auxiliary bone
position feature were employed to classify the label of each bone pixel.

1×228
CNN model for image
feature extraction

Patch with size of 64×64

Patch with size of 128×128

1×31

Bone
label

(𝑥!, 𝑦!, 𝑧!)
Bone pixel normalized position

Patch with size of 256×256

Fig. 3.5 The classification model framework. Three different sizes of patches (as
illustrated in Fig. 3.6) were used to extract the bone image features via the CNN model
(as illustrated in Fig. 3.7), and they were concatenated with the auxiliary feature for
the bone pixel label classification.
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Fig. 3.5 demonstrated the proposed classification model framework. Three different
sizes of patches (as illustrated in Fig. 3.6) were used to extract the bone image features
via the CNN model (as illustrated in Fig. 3.7), and they were concatenated with the
auxiliary feature for the bone pixel label classification.

Input Features

As mentioned above, we employed two types of inputs, the bone patches and the bone
pixel position, to extract the image features and auxiliary bone position feature for
classification. For each bone pixel, three 2D patches of size 64× 64, 128× 128, and
256×256, which were centered on the bone pixel, were cropped to capture the local and
global information of the bone pixel. The three patches were all resized as 64× 64 for
the computational trade-off. The smaller patch as 64×64 encoded the local information
with a high level of bone details, and the medium patch as 128 × 128 focused on a
broader local view around each pixel. The 256× 256 patch contained global spatial
information of each bone pixel. Fig. 3.6 was the illustration of the different sizes of
patch images. The first row was the patches with the size of 64× 64, the second row
listed the 128× 128 patches, and the third row demonstrated the patches with the size
of 256× 256. The three patches contained the necessary local and global information
for the bone label classification.

Besides the image features, the position of each bone pixel on the foot CT scan
was also considered to assist classification. Instead of utilizing the absolute coordinate
of each bone pixel, a normalized coordinate of each pixel has been employed. For a
pixel with position of (xi, yi) and slice number zi, the total number of CT scan N , and
the coordinates of upper-left corner of the foot bounding box (x0, y0), the coordinates
of the lower-right corner of the foot bounding box (x1, y1) were used to define the
normalized position (xr, yr, zr) of each pixel.


xr = (xi − x0)/(x1 − x0)
yr = (yi − y0)/(y1 − y0)

zr = zi/N

(3.1)
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Patch size 64×64

Patch size 128×128

Patch size 256×256

Fig. 3.6 Examples of different size of the bone patch images.

Unlike the absolute coordinates, the normalized coordinates represented the relative
position of the bone pixels in the foot bone structure.

Model Design and Training

The proposed classification model architecture was depicted in Fig. 3.5. The classi-
fication model had four inputs, including three different size image patches and one
auxiliary position information. For each bone pixel, the three types of patches around
the bone pixel were fed into a CNN model to extract image features. The architecture
of the proposed CNN model was shown in Fig. 3.7. The CNN model consisted of
two cascade convolutional blocks followed by two fully connected layers. Each block
contained two convolutional layers and one max-pooling layer. The convolutional
kernel size of each layer was 3× 3. The first max-pooling layer used 4× 4 filters with a
stride of four, while the second max-pooling layer applied 2× 2 filters with a stride of
two. The two fully connected layers contained nodes of 500 and 75, respectively. The
dimension of the image feature of each bone patch was 75, as well.

The CNN features of the three image patches and the auxiliary position information
were concatenated together as a 228-dimension feature and passed through a fully
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connected layer with thirty-one nodes followed by a soft-max classifier. All convolutional
layers were equipped with rectification (ReLU) non-linearity.

During training, the severe data imbalance problem where larger bones were more
than a hundred times bigger than small bones would lead to an unsatisfied model.
Since some of the bone patches were similar inside the same bone class, putting all the
bone points into training was not necessary. A data resampling method was proposed
to solve the data imbalance problem. We randomly resampled N patches (N=20000
in training) from each foot data in the training set for each bone. For the bones whose
total bone points were less than N , up-sampling was performed, while for the others,
down-sampling was operated. The cross-entropy loss and the ADAM optimization
method were used to train the model.

Fig. 3.7 The CNN model for the feature extraction of patch image.

3.3 Experimental Results

3.3.1 Data Collection, Annotation and Database Construction

We collected foot CT data using CurveBeam weight-bearing CBCT machine. Eleven
scans of the left foot, eleven scans of the right foot, and eight scans of two feet
were collected. All scans were made anonymized by removing all the patient-sensitive
information. We manually annotated the thirty-one bones of the foot CT scan data, and
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each scan required nearly five ∼ eight hours to finish the annotation. The annotation
quality were checked by a professional.

In total, we have collected thirty-eight single foot scan data with corresponding
bone annotation to develop and evaluate the proposed method. The foot scans were in
different shapes, positions and sizes. Each scan contained 533 slices with a resolution
of 950 × 950, and the voxel size was 0.37mm. Thirty foot scan data (nine left foot
scans, nine right foot scans, and six two-feet scans) have been used for training, and
the remaining eight foot scan data, including two left-foot scans, two right-foot scans,
and two two-feet scans, have been utilized to evaluate the model performance in both
the bone region segmentation stage and the bone classification stage.

During the model training of the classification model, for each bone in each scan,
we extracted 20000 image patches for the model training using down-sampling or
up-sampling methods in section 3.2.3. In total, for each bone, although we only have
used thirty scans in the training set, 600000 image patches have been extracted for
the model training which were sufficient for the classification model. For the model
evaluation, we have used two left-foot scans, two right-foot scans, and two two-feet
scans for model testing. These scans covered different foot sizes, shapes and positions
in the real situation, which were sufficient to evaluate the model performance.

3.3.2 Implementation Details and Evaluation Matrix

The U-net model for the bone region segmentation and the foot bone classification
model were trained on NVIDIA GeForce GTX 1080Ti GPU with a learning rate of
0.001 and 0.0001, respectively. The bone region segmentation model was trained for
twenty epochs using Dice loss, and the foot bone classification was trained for ten
epochs with cross-entropy loss. The models were implemented using PyTorch.

The bone region segmentation and bone classification performances were assessed
by the mIoU index. The IoU was defined as follows:

IoU = A ∩ B

A ∪ B
(3.2)
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A and B were the predicted segmentation and the ground truth, respectively. The
IoU ranged from 0 ∼ 1, and a higher IoU value indicated a better segmentation result.

3.3.3 Bone Region Segmentation Results

The bone region segmentation model was developed using U-net, and the results using
scans after foot standardization and without foot standardization have been compared.
The IoU result of the U-net trained from the foot scans without foot standardization
was 96.2%, while the U-net trained from the foot data after foot standardization
achieved an IoU of 96.7%. The bone region segmentation model provided an accurate
bone region mask for bone classification. The foot standardization step gained an
improvement of 0.5% of the IoU result, which indicated that the foot standardization
step not only simplified the model designing, but also improved the segmentation
performance.

3.3.4 Bone Classification Results

The bone classification model was designed based on the patch images and the pixel
position information. We compared the performance of the proposed model with the
model using different patches. In clinical treatment, the results of the bones were more
important than the background. We conducted two evaluations on the mIoU index,
mIoU including background and bones, and mIoU value only considering bones. Table
3.1 listed the results of different methods.

The U-net and its variants, such as patch-based U-net, 3D U-net, and hybrid U-net,
have also been tried for foot anatomical segmentation. The dice loss, cross-entropy loss,
and focal loss have been used for the U-net based model training. However, because of
the severe data imbalance of different bones and the large number of the total classes,
the U-net based methods could not be well-trained and all pixels were classified as
background. Therefore, we didn’t list the results of the U-net based methods in Table
3.1 for simplicity.

3PatchPNModel indicated the proposed model. 3PatchWithoutPNModel indicated
the model using the three patches of size 64, 128, and 256 as input without the pixel po-



3.3 Experimental Results 51

Table 3.1 The performance comparison of different models.

Model
mIoU
(only,
bones %)

mIoU
(bones and
background, %)

3PatchPNModel 90.34 80.30
3PatchWithoutPNModel 90.21 80.21
Patch64Model 85.27 76.31
Patch128Model 89.38 79.57
Patch256Model 88.16 78.65

Left-footRight-foot

Two-feet

Fig. 3.8 The anatomical segmentation results on the test dataset.
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sition normalization feature. The Patch64Model, Patch128Model, and Patch256Model
indicated the model using the images with the patch size of 64, 128, and 256, respec-
tively. The proposed model achieved the highest performance compared with the other
models. The mIoU of the proposed model was 90.34% when only bone parts have been
considered, and the mIoU was 80.3% when both bones and background were included
for evaluation. The decrease between the two mIoU numbers was due to the errors in
the bone region segmentation step. The qualitative results of the test dataset were
depicted in Fig. 3.8 and showed visually satisfied segmentation results on both the
single foot scans and the two-feet scans. Both the quantitative and qualitative results
on the test dataset demonstrated the effectiveness of the proposed method.

3.4 Conclusion

We developed FootSeg, a deep learning-based method for automatically foot anatomical
segmentation from weight-bearing CBCT scans. The proposed method was imple-
mented based on a three-stage procedure, preprocessing, foot bone region segmentation,
and foot bone classification. The three steps simplified the model design, and the
experimental results demonstrated that the proposed method produced accurate and
visually satisfying results for foot anatomical segmentation. To the best of our knowl-
edge, this was the first work in automatically foot anatomical structure segmentation
from weight-bearing CBCT scan.



Chapter 4

Instance Segmentation of Human
Wrist CT

4.1 Introduction

In recent years, wrist Computed Tomography (CT) has performed an essential role in
clinical practice. Due to the advantage of high image quality and low radiation of CT,
the wrist CT has shown high potential in various applications such as osteoporosis
classification [6], rheumatoid arthritis diagnoses [32], and bone fracture assessment [33].
A vital procedure among the above applications is the wrist instance segmentation,
i.e., distributing the right class label to each voxel in the CT data. An illustration of
wrist instance segmentation is shown in Fig. 4.1.

There were some existing works of wrist segmentation in CT images [34–37, 164,
165]. These methods leveraged the intensity difference between the bone boundary
and the other parts and utilized the shallow features (e.g., edge and line, intensity,
region growing, and active contours) for the wrist bone segmentation. Sebastian et
al. [164] proposed a skeletally coupled deformable model (SCDM) for wrist bone
segmentation by combining the advantage of active contour, seeded region growing, and
region competition. The manually initialized region seeds would grow under a curve
evolution approach, and the growth was modulated by skeletally-mediated competition
between neighboring regions in the SCDM method. Chen et al. [165] employed a rigid
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Background

Radius

Muscle

Ulna

Cast

Fig. 4.1 Illustration of wrist instance segmentation (The wrist CT contains radius bone,
ulna bone, muscle, cast, and background. Cast is the carbon fiber holder in the CT
machine. The pixel values are similar between cast and muscle in wrist CT).

image registration method to boost the grow cut segmentation model for the sake of
propagating the segmentation of bones to new poses or new individuals. However,
both [164] and [165] required manually seed selection before segmentation. Anas et al.
[166] designed an automatic wrist bone segmentation technique by using a group-wise
registration framework based on a Gaussian Mixture Model. The segmentation results
highly relied on the initial coarse segmentation masks from the OTSU’s thresholding
technique [163]. However, these methods were brittle to complicated occasions or
needed human interaction to achieve satisfied segmentation results.

Some works explored the deep learning methods for wrist segmentation. Xue et al.
[167] used the U-net model for the segmentation of capitate bone from CT images and
showed the potential of the U-net model in wrist segmentation. However, only one
bone has been identified in their model because of the lack of annotation data.

Moreover, only wrist bones have been segmented while the muscle part has been
neglected in these methods. The muscle part contains health information such as
muscle strength, muscle mass, and body mass index. They are essential in clinical
analysis. Traditional bone segmentation methods can not satisfy the need for muscle
segmentation. A comprehensive wrist instance segmentation method that can segment
all components, including bones, muscle, cast, and background, in the wrist CT in one
go is highly demanded.

Usually, a massive number of annotated images are essential to train a reasonable
deep learning model. However, manually annotating numerous wrist CT slices is a
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tedious and time-consuming task. Lacking annotation of wrist CT slices heavily limits
the application of deep learning-based methods in wrist CT segmentation.

Some works explored the self-training semi-supervised methods to develop an image
segmentation model to alleviate the annotation work load. The self-training semi-
supervised segmentation methods [168, 169] trained an initial model from the labeled
data and generated the pseudo segmentation maps on unlabeled data using the initial
model. The initial model was retrained with the pseudo segmentation maps. Bai et al.
[168] proposed a semi-supervised approach for cardiac MR image segmentation. Their
approach alternately updated the segmentation model and the pseudo model. The
segmentation network predicted the pseudo label of the unlabeled data by using the
softmax probability prediction map. The labeled and unlabeled data with the pseudo
label were used to update the segmentation network. Sedai et al. [169] adopted a
student-teacher method to segment the retinal layers in OCT images. The teacher
model generated the soft labels and uncertainty map for the unlabeled set using Monte
Carlo (MC) dropout. The student was updated by the estimated soft label and the
corresponding label confidence. Zhao et al. [170] adopted the self-training method for
finger bone segmentation of hand X-ray. They used a U-net model with a CRF module
to generate the pseudo label of unlabeled X-ray images. The U-net model was trained
using the labeled data in the first step, and the pseudo labels of the unlabeled data
were predicted by the U-net model and the CRF module. The model parameters were
iteratively updated using the two steps.

Traditional shallow segmentation methods avoid the data annotation procedure
with limited successful results. Deep learning methods achieve high performance
but need laborious data annotation. Employing the limited successful results from
the traditional segmentation methods or self-training semi-supervised segmentation
methods could be a possible way to train the deep learning model. This chapter
proposed a semi-automatic method to construct a wrist annotation database via the
shallow OTSU-based [163] model and the U-net [108] based deep learning model.
The different regions on wrist CT were annotated as radius, ulna, muscle, cast, and
background as depicted in Fig. 4.1. The proposed method highly alleviated the manual
annotation workload.
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To further design an efficient wrist instance segmentation model, this chapter
proposed an end-to-end edge reinforced U-net segmentation model. In most cases,
edge information can provide strong hints for segmentation [171–173]. Therefore,
introducing edge restriction would highly stabilize the procedure of model training and
improve the segmentation results.

The contributions of this work were summarized as follows:

• We proposed a novel semi-automatic method to annotate 5k wrist CT slices. The
proposed method highly alleviated the workload and reduced the annotation
time compared with the laborious and time-consuming manual annotation.

• We designed an end-to-end edge enhanced U-net segmentation model for wrist
CT instance segmentation. The edge-enhanced segmentation model achieved
both qualitative and quantitative results.

• The proposed model could segment all components in the wrist CT while the
existing methods segment bone parts only. To the best of our knowledge, this
was the first work for the instance segmentation of wrist CT.

4.2 Overview of the Proposed Methods

We first described the overview of the proposed methods. Given a CT slices collection
of the wrist, two goals should be achieved to develop a wrist instance segmentation
model. The first goal was to construct a wrist annotation database. The second
goal aimed to develop a deep neural network that used a single slice as input and
generated the instance segmentation result, including the radius, ulna, muscle, cast,
and background. A segmentation example was illustrated in Fig. 4.1. The overview
of the wrist annotation database construction method and wrist segmentation model
designing were described below.
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4.2.1 Overview of the Semi-Automatic Construction Method
of the Wrist Instance Segmentation Database

The overall framework of the semi-automatic construction method of the annotated
database was depicted in Fig. 4.2. The semi-automatic construction method of
the annotated database consisted of an OTSU-based radius, ulna, muscle&cast, and
background annotation part and a U-net based cast annotation part.

Fig. 4.2 The framework of semi-automatic construction of the wrist instance segmenta-
tion database.

The detailed framework of the proposed semi-automatic construction method was
depicted in Fig. 4.3. The middle green part was the main procedure of the semi-
automatic annotation method. The upper yellow part was the framework of the
OTSU-based annotation, and the lower blue part was the framework of the U-net-based
cast annotation.

From the unlabeled CT slice database, an OTSU-based segmentation method was
designed to generate the segmentation mask of the radius bone, ulna bone, muscle-cast,
and background. The cast was made of carbon fiber, and the pixel value was similar
to the pixel value of muscle in wrist CT. The shallow features from the OTSU method
have failed for the segmentation of muscle and cast because of their similar data
distribution.

We employed the self-training idea from the semi-supervised segmentation method
to extract the cast part from the CT slices. Two U-net models have been trained in

Original CT

OTSU-based Radius, 
Ulna, Muscle & Cast, 
Background Annotation

Segmentation 
Database

Unet-based Cast 
Annotation
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this step. The first U-net was trained using 100 cast-annotated slices, and the second
U-net was trained based on the pseudo segmentation results of the first U-net model.

We selected the fine segmentation masks from the OTSU segmentation results and
the U-net cast segmentation results. The OTSU segmentation results and the cast
segmentation results were then merged as the wrist instance segmentation database.
Two examples of the annotated slices were shown at the right of the middle part at
Fig. 4.3.

Fig. 4.3 The detailed framework of semi-automatic construction of the wrist instance
segmentation database (The upper yellow part was the framework of the OTSU-based
radius, ulna, muscle and cast, and background annotation, the middle green part was
the framework of the semi-automatic annotation method, and the lower blue part was
the framework of the U-net based cast annotation).
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4.2.2 Overview of the Edge-Enhanced Wrist Instance Segmen-
tation Model

Edge information provided essential information for segmentation. We proposed an
edge loss module to reinforce the U-net model for wrist instance segmentation. The
model framework was illustrated in Fig. 4.4. The U-net segmentation module used an
encoder-decoder with skip connections to generate the feature maps of the wrist slice.
The feature maps were fed into a 1× 1 convolution layer to generate the segmentation
prediction. Then, we used another 1× 1 convolution layer to force the segmentation
result to produce an accurate edge prediction of the original wrist slice. The whole
model was jointly optimized by the segmentation loss Lseg and the edge prediction loss
Ledge.

Fig. 4.4 Edge-enhanced wrist segmentation framework.

4.3 Semi-Automatic Construction Method of the

Wrist Annotation Database

Given M unlabeled wrist CT slices, {xu0 , xu1 , . . . , xuM
}, where xui

was the ith unlabeled
slice data, the proposed wrist annotation method would successfully generate N

annotated masks (N ≤ M) from the M slices as {yl0 , yl1 , . . . , ylN} where ylj was the
jth annotated mask data. As the depicted framework in Fig. 4.3, the annotated data
was generated by combining the result from the OTSU-based radius, ulna, muscle-
cast, and background segmentation method and the result from the U-net based cast
segmentation method. The OTSU-based segmentation method and U-net based cast
segmentation method were described below.
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4.3.1 OTSU-Based Radius, Ulna, Muscle-Cast, and Back-
ground Segmentation Method

The pixel values of muscle and cast, background, and bones were within different
ranges. We leverage this feature for the segmentation of the wrist CT. An OTSU-based
segmentation model was designed. The framework of the OTSU-based segmentation
model was depicted in the upper yellow part of Fig. 4.3.

The basic theory of the single-OTSU method [163] and the multi-OTSU method
[174] were summarized below. Given a slice x with resolution of W ×H, where W was
the width, H was the height, the single-OTSU method used all pixel values pmn, 0 ≤
m ≤ W, 0 ≤ n ≤ H to calculate a threshold th. The threshold th minimized the
intra-class intensity variance. The multi-OTSU method generated multiple thresholds
and still satisfied the requirement of minimizing the intra-class intensity variance.

In the proposed semi-automatic annotation method, the input slice generated two
thresholds thlow and thhigh using the multi-OTSU method [174] firstly. The lower
threshold thlow was used to divide the background and the muscle-cast-bones part. The
higher threshold thhigh was used to extract the bone region [wl − 20 : wh + 20, hl − 20 :
hh + 20] where wl, wh, hl, hh were the lowest and highest coordinates value along
the width-axis and height-axis of the pixels whose values were larger than thhigh,
respectively. The region was expanded by 20 pixels along each direction to reduce
the segmentation errors. The image two and image three of Fig. 4.5 were examples
after the multi-OTSU threshold processing where image two was the segmentation
illustration of background and the muscle-cast-bones using the lower threshold, image
three was the bone region extraction illustration using the higher threshold.

The next step was to generate the radius and ulna bone mask from the bone region.
A single-OTSU model was applied to the extracted region to generate the threshold
thbone to divide bone and muscle. The regions of radius bone and ulna bone were
roughly segmented as where the pixel value was larger than thbone. However, the pixel
values on the cortical bone part were often larger than the thbone, and the pixel values
of parts of the trabecular bone part were smaller than the thbone. This caused the bone
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Fig. 4.5 Examples illustration of OTSU-based radius, ulna, muscle-cast, and background
segmentation. Image one was the input slice, image two was the lower threshold
segmentation map, image three was the bone region extraction patch using the higher
threshold, image four was the segmentation map from OTSU, image five was the
segmentation map after morphology processing, image six was the radius and ulna
segmentation map on the bone region patch, image seven was the radius and ulna
segmentation map in the original image, image eight was the merged segmentation
result.
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holes in the segmentation mask. The next step was to fill the holes in the bone region
segmentation mask and identify the two bones.

A morphology-based method has been proposed to fill the holes. The bone regions
were dilated for k times until two bone regions were connected or the k had reached the
maximum dilation number K. K = 4 in experiment settings. After each dilation step,
the bone holes were filled in the bone masks. Then, the two kth dilated bone masks
were eroded back for k times if the two kth dilated bone masks were not connected.
If the two kth dilated bone masks were connected, then the (k − 1)th dilated masks
were eroded back for (k − 1)th times. Image four and image five of Fig. 4.5 were the
segmentation examples of the extracted bone region after the OTSU thresholding and
morphology processing, respectively.

We leveraged the fact that radius bone was larger than ulna bone in the CT slices
for the segmentation of the two bones. The larger bone mask was identified as the
radius bone, and the smaller bone mask was identified as the ulna bone. Image six and
image seven of Fig. 4.5 depicted the examples of the radius and ulna segmentation
map.

The radius mask, ulna mask, muscle-cast mask, and background mask were merged
as the generated segmentation mask. After the mask generation of the total dataset,
a fine segmentation mask selection was performed to pick up well-annotated masks.
Image eight of Fig. 4.5 was the example of the fine segmentation mask.

4.3.2 U-net-Based Cast Segmentation Method

The cast was a carbon fiber holder inside the CT machine, and the pixel value
distribution was similar to the muscle. It was difficult to segment the cast and muscle
using shallow features. We employed the self-training idea from the semi-supervised
segmentation method to extract the cast part from the CT slices. The framework was
depicted in the lower blue part of Fig. 4.3.

We firstly manually annotated the cast part of 100 wrist CT slices, and a U-net
model Unetinitial was trained to segment the cast. The pseudo cast label of the dataset
was generated using the trained Unetinitial model. Similar to the fine mask selection in
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the OTSU-based segmentation stage, we selected fine cast segmentation slices for the
parameter update of the U-net model. The U-net model was retrained from the selected
slices. The retrained U-net model Unetretrain was used to regenerate the pseudo cast
mask of the dataset. Then, we reselected the fine cast mask after the pseudo cast label
generation. Both the U-net models were trained for 100 epochs.

The cast segmentation result and the OTSU-based segmentation results were
merged to construct the final wrist instance segmentation database. Two examples
were depicted at the right of the middle part of Fig. 4.3.

4.3.3 Results of the Semi-Automatic Construction Method of
the Wrist Instance Annotation Database

We constructed a wrist CT database using the Scanco XTremeCT-I machine. 15390
slices have been collected, and the image resolution of each slice was 1536× 1536.

OTSU-based Radius, Ulna, Muscle-Cast, and Background Segmentation
Results

We used the OTSU-based methods to segment the radius, ulna, muscle-cast, and
background from the 15390 slices. Since the OTSU-based methods highly relied on
threshold selection, the segmentation results faced the problem of over-segmentation
and under-segmentation sometimes. Fig. 4.6 showed examples of successful and
unsuccessful segmentation results from the OTSU-based method.

After the processing of the OTSU-based method, we manually selected the fine
segmentation masks. As shown in Table 4.1, 5158 slices have been selected from the
15390 slices, which was 33.52% of the whole candidate slices.

U-net-based Cast Segmentation Results

The 5158 slices selected from the OTSU-based method were used for cast segmentation.
The U-net model was trained on NVIDIA GeForce GTX 1080Ti GPU using the ADAM
optimization method and learning rate of 0.0001, respectively. Two U-net models have
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Fig. 4.6 Example of successful (first row) and unsuccessful (second row) segmentation
results from the OTSU-based method.

been trained using the same experiment settings. The performance of segmentation
was assessed by the IOU index.

The first Unetinitial model was trained using 100 manually annotated slices. Ninety
slices were used for training, and ten slices were used for validation. The input slice
was resized to 480× 480, and batch size was set as five. The model has been trained
for 100 epochs, and the best IOU on the ten validation slices was 99.08%.

Then, the Unetinitial model generated the pseudo cast masks of the 5158 slices
picked from the OTSU methods, and 4381 slices have been selected for the retrain of the
second U-net model Unetretrain. The segmentation acceptance rate of the Unetinitial

model was 84.94%.

Based on the 4381 slices picked from the Unetinitial model, the Unetretrain model
used 3943 slices for training, 219 slices for validation, and 219 slices for testing. The
model has been trained for 100 epochs. The experimental settings were the same as
the first Unetinitial model. The best IOU was 99.55% on the validation set, and the
IOU on the test set was 99.54%.
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Table 4.1 Segmentation results and acceptance rate of OTSU-based segmentation model
and U-net-based cast segmentation model.

Model Processed slices
number

Selected slices
number

Acceptance
rate (%)

OTSU-based
segmentation

15390 5158 33.52

Unetinitial model for
cast segmentation

5158 4381 84.94

Unetretrain model for
cast segmentation

5158 5043 97.77

The pseudo cast masks of the 5158 selected slices from the OTSU-based method
were generated by the Unetretrain model. 5043 slices were selected to construct the
wrist annotation database. The acceptance rate of the Unetretrain model was 97.77%,
an improvement of 12.83% from the Unetinitial model.

Finally, 5043 slices with different shapes, positions and sizes of the wrist part were
selected to construct the wrist segmentation database by merging the segmentation
mask of the OTSU-based method and the cast mask of the Unetretrain model.

4.3.4 Data Annotation Time Analysis

We compared the database annotation time of the proposed method with the manual
annotation method. In the proposed method, the time of manual annotation of the
cast of 100 CT slices was two hours, around 1.2 minutes per slice on cast annotation.
The time of the fine segmentation result selection from the OTSU-based method was
around six hours. The time of the fine segmentation result selection from the Unetinitial

model and the time of the fine segmentation result selection from the Unetretrain model
were both around two hours. The total time of manual work of annotating the 5043
wrist slices was around ten hours.

If we manually annotated the 5043 slices, the manual instance annotation time
of one wrist slice was around four minutes. The total estimated manual annotation
time of the same wrist database was roughly around 336 hours. The proposed data
annotation method saved more time with much less manual work. What’s more, since
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the annotator only required to click yes or no in the selection of fine segmentation
results, the workload was highly alleviated than manually annotation.

4.4 Edge-Enhanced Wrist Instance Segmentation

Model

4.4.1 Method of the Edge-Enhanced Wrist Instance Segmen-
tation Model

Given an wrist CT database containing N annotated slices ({xj, yj, ej}N
j=1), where

xj ∈ RH×W (H and W were the height and width) is the slice data, and yj ∈
{0, 1, 2, 3, 4}H×W was the ground truth annotated mask, ({0, 1, 2, 3, 4} was the class
label of radius, ulna, muscle, cast and background) and ye

j ∈ {0, 1}H×W was the edge
ground truth of the annotation mask ({0, 1} is the label of edge and non-edge), we
proposed a U-net model reinforced by an edge prediction module for the wrist instance
segmentation since the edge of the muscle, cast, radius bone, and ulna bone provided
strong hints for the segmentation task and the edge prediction module could be used
as a regularization item for the segmentation model training. The model framework
was illustrated in Fig. 4.4. The model parameters were denoted as θseg.

The U-net feature extractor generated the feature maps of the input wrist slice.
The feature maps were fed into a 1 × 1 convolution layer to generate the segmentation
prediction possibility map ps. A dice loss [175] was employed using the prediction
possibility map ps and the segmentation ground truth y.

Lseg(y, ps, θseg) = 1− yps + 1
y + ps + 1 (4.1)

Then, a 1× 1 convolution layer was designed to force the segmentation possibility
map ps to produce accurate edge prediction map pe of the ground truth segmentation
mask y. An edge loss was designed using the edge prediction map pe and the edge
ground truth ye. The edge prediction loss Ledge was a weighted binary cross entropy
loss with a weight factor w on edge pixels. w was 120 in the experimental setting.
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Ledge(ye, pe, θseg) = −yelogpe − w(1− ye)log(1− pe) (4.2)

The whole model was jointly optimized by the segmentation loss Lseg and the edge
prediction loss Ledge as below.

L(y, ye, ps, pe, θseg) = Lseg(y, ps, θseg) + λLedge(ye, pe, θseg) (4.3)

λ was a balancing factor between the segmentation loss Lseg and the edge loss Ledge

and λ was five in the experimental setting.

4.4.2 Wrist Instance Segmentation Results

The experiments were conducted on the constructed wrist annotation database. We
used 4287 slices to train the proposed wrist segmentation model, 252 slices for validation,
and 504 for testing model performance. The input slices were resized to 480× 480, and
batch size was set as five. The model has been trained for 100 epochs and optimized
using the ADAM algorithm. The initial learning rate was set as 0.0005 and was
decreased by half after every fifteen epochs. We compared the proposed model with
the U-net [108] model with the dice loss. The U-net training settings were the same as
the proposed method.

The performance of segmentation was assessed by the mean Intersection-Over-Union
(mIOU) index. The mIOU ranges from 0 ∼ 1 and a higher mIOU value indicated a
better segmentation result.

Table 4.2 Result comparison of IOU on wrist segmentation of U-net and the proposed
model.

IOU (%) Whole
Part

Radius Ulna Muscle Cast

U-net[108] 98.13% 98.91% 97.92% 99.58% 98.88%
Proposed model 98.68% 99.17% 98.24% 99.77% 99.48%

Table 4.2 reported the wrist segmentation performance on the test set of our model
and the U-net model. The baseline U-net model achieved a high mIOU of 98.13%
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based on the large annotation database. However, the proposed model achieved a
higher mIOU of 98.68% and got an improvement of 0.55% compared to the baseline
model. We also reported the IOU on each wrist component, including radius, ulna,
muscle, and cast. The performance of the proposed method was 99.17% (radius),
98.24% (ulna), 99.77% (muscle) and 99.48% (cast), respectively. Compared with the
performance of the U-net model (98.91% (radius), 97.92% (ulna), 99.58% (muscle), and
98.88% (cast)), the proposed model also achieved improvement on the segmentation of
each component of wrist CT.

Since the baseline U-net model has achieved an IOU of more than 98%, the
improvement of 0.55% was very remarkable of our proposed model (98.68%). Besides,
since the cast and muscle were connected in some slices, the proposed edge loss could
be helpful for these cases by preserving the edge shape of the muscle and the cast part,
and achieved an IOU of 99.48% on the cast part and 99.77% on the muscle part, which
were nearly 100% correct and better than the U-net baseline.

Moreover, the proposed model was more stable than the U-net model during training.
The segmentation performance comparison on the validation set at each epoch of the
proposed model and the U-net model was depicted in Fig 4.7. The results revealed
that the proposed model was not vulnerable to the over-fitting problem compared with
the U-net model since the edge loss performed as a regularization item.

Fig. 4.8 demonstrated the comparison of the qualitative results between the
proposed model and the U-net model. We enlarged the comparison region for better
visualization. Compared with the proposed model, the U-net model suffered the over-
segmentation problem in case one and case 3, and suffered under-segmentation in case
2. In case 4, the segmentation results of radius and ulna bone from the U-net model
were connected while the results of the proposed model were not. The comparison of
the qualitative results also proved that the introduction of the edge loss improved the
segmentation results.
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Fig. 4.7 Comparison of mIOU on validation set of U-net and the proposed model at
each epoch during training. The proposed model (red line) was not vulnerable to the
over-fitting compared with the U-net model (blue line).

4.5 Conclusion

We developed a semi-automatic method to annotate 5k wrist CT slices by employing
the OTSU-based method and the U-net-based method. Our method only required
fewer manual annotations, saved much time, and alleviated the annotation workload
greatly. We also proposed an edge-enhanced segmentation model for the instance
segmentation of wrist CT slice. The proposed model achieved better performance
compared with the U-net model. The training procedure was more stable and was not
vulnerable to over-fitting.

Proposed Model U-net
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Fig. 4.8 Qualitative results comparison between U-net model and the proposed model
(Row one and row three were the results of the proposed model, row two and row
four were the results of the U-net model. The yellow bounding boxes denoted the
comparison area of the proposed model and the U-net model. The comparison areas
were enlarged in column two and column four, respectively).

(1) (2)

(3) (4)



Chapter 5

Semi-Supervised Segmentation of
Bone CT

5.1 Introduction

We first described the motivation for this study of semi-supervised segmentation of
bone CT, and then introduced the particular Hounsfield unit (HU) scale for bone CT
segmentation in this section.

5.1.1 Motivation for the Semi-Supervised Segmentation of
Bone CT

The bone segmentation is the fundamental procedure to assist the doctor’s diagnosis
for various bone CT medical applications, like osteoporosis analysis[6], orthopedic
surgery [176], and bone fracture detection [177]. A recent trend is to utilize deep neural
networks for bone segmentation [40, 66, 67, 97, 127, 178, 179]. Liu et al. [40] developed
a two-stage pelvic bone segmentation model via a pelvic dataset of 1184 CT scans (over
320,000 CT slices), and the proposed method achieved a mean Dice coefficient of 98.7%.
Noguchi et al. [67] also trained a U-net model for bone segmentation of whole-body
scan from 16218 slices and achieved a mean Dice coefficient of 98.3%. Relying on
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massive well-annotated data, deep learning models have achieved the state of the art
performance in various bone segmentation tasks.

We have designed a deep learning based anatomical foot segmentation model in
chapter 3 and a deep-learning based wrist segmentation model in chapter 4. Both
of the two models achieved satisfied performance based on large training database.
However, the pixel-level manual labeling, which was laborious and expensive, was
performed in the two tasks. We have manually annotated 38 feet scans in the foot
anatomical segmentation task. The annotation of one foot scan usually cost five ∼ eight
hours which was a very time-consuming procedure. We have improved the annotation
procedure in the wrist segmentation by utilizing the wrist structure and semi-supervised
learning. Only the cast holder part of 100 wrist slices have been annotated and we
have constructed a wrist annotation database with more than 5000 annotated slices
within a short time. The semi-supervised learning strategy has significantly alleviated
the workload for wrist segmentation model design.

Consistency regularization and self-training were the two main stream for the semi-
supervised segmentation of various kinds of medical images, such as bone [180, 170, 181–
183], cardiac segmentation [168, 184], liver segmentation [185] and vessel segmentation
[169].

Consistency regularization methods [184, 186–188] were based on the smoothness
assumption that data samples with the same label were close in the feature space. Li et
al. [187, 188] introduced a transformation-consistent strategy for the semi-supervised
medical image segmentation. Their method forced the model to generate consistent
features for different transformations (rotation, noise, and scaling) of the input data.
A regularization loss to encourage the consistency of pixel-level features was used for
both labeled and unlabeled data. Yu et al. [184] proposed an uncertainty-aware mean-
teacher framework for semi-supervised segmentation of left atrium MRI. The teacher
model generated the estimation of the uncertainty value of each target prediction.
The reliable ones were preserved, and unreliable predictions were filtered out. The
student model was guided to produce consistent predictions according to the estimated
uncertainty of the teacher model.
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The self-training semi-supervised segmentation methods [168, 169] trained an
initial model from the labeled data and generated the pseudo segmentation maps on
unlabeled data using the initial model. We have used the self-training semi-supervised
segmentation method in Chapter 4 to segment the cast part from the wrist slices and
the annotation workload has been greatly reduced.

In spired by performance of the semi-supervised learning methods in our wrist
segmentation database construction and other medical segmentation methods, we
assume the semi-supervised learning methods, which leverage the particular attributes
of bone CT, could be a potential way to reduce the annotation workload for bone CT
segmentation model designing.

5.1.2 The Particular CT Attribute for Semi-Supervised Seg-
mentation of Bone CT

We have used the pixel value to coarsely segment the radius and ulna in the chapter 4.
In fact, the particular pixel value range of radius and ulna is due to the HU value of
CT. The HU scale is used to express CT numbers in a standardized form. HU values of
different objects are calculated from a linear transformation compared with attenuation
coefficients of air and pure water. Different human body tissues and materials have
different HU scale ranges. Table 5.1 lists the HU values of several typical body tissues
and materials. The denser the tissue, the higher HU values in the CT scan. Higher
HU values are displayed as brighter in the CT scan.

Though the bones of the human body exhibit a variety of sizes and shapes, their
structure is the same. Bone is a rigid tissue that consists of the cortical bone and
trabecular bone, as depicted in Fig. 5.1. The cortical bone is the hard outer layer of
bones. The trabecular bone is the internal tissue of bones and is an open cell porous
network formed by trabecular bone tissues and bone marrow. In the CT scan, the
cortical part and trabecular part of the bone are displayed much brighter than the
surrounding tissues (fat and muscle) due to the high attenuation of the high dense
material in the bone tissues.
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Table 5.1 HU values of different body tissues and materials.

Body tissues and other materials HU value
Bone - Cancellous 300∼400
Bone - Cortical 500∼1900
Air -1000
Water 0
Muscle 35∼55
Fat -120∼-90
Lung -700∼-600
Kidney 20∼45
Thymus 20∼120

Cortical bone

Trabecular bone

Fig. 5.1 Illustration of the cortical bone and trabecular bone. Cortical bone is the
dense outer surface of bone, while trabecular bone is inside bone.
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The bright cortex and trabecular bone tissues in the CT scan provide a strong local
feature that distinguishes the bone from the other tissues. As illustrated in Fig. 5.2, we
randomly extracted several patches from a CT scan of a wrist. Each patch contained
only part of the bones. However, the bone structures could be easily identified even
from the patches of CT scan due to distinguishing local features of bone, regardless of
the bone size and shape. We further assumed that the local features of bone tissues
were crucial to bone segmentation in CT scans, and proposed a semi-supervised learning
method to leverage the local features.

Fig. 5.2 Example of a wrist CT slice and the random extracted patches. The left image
is the wrist slice, and the right five patches are the random extracted patches. It is
easy to identify the bone region in the random extracted patches.

The model framework was depicted in Fig. 5.3. The CT image was divided into
small patches, and the patches constituted a new patch-shuffled slice with a random
patch order. Fig. 5.4 depicted examples of the original and patch-shuffled slices. Due
to the strong local features of bone structures, the segmentation model should have the
ability to distribute correct labels to both the original slice and patch-shuffled slice. We
employed supervised losses to encourage the model to produce correct segmentation
maps from both the original slice and the patch-shuffled slice on the labeled data. To
utilize the unlabeled data, an unsupervised consistent loss was designed to force the
output feature of the corresponding pixels in the patch-shuffled slice and the original
slice to be the same. The proposed model was optimized jointly by the supervised
losses and the unsupervised loss.
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Fig. 5.3 The framework of the proposed semi-supervised learning method. xi and xps
i

were the original slice and patch-shuffled slice from the patch-shuffle transformation
PS, respectively. zi and zps

i were the model outputs of the xi and xps
i , respectively.

zps
i was the patch-shuffled feature map of zi. yi and yps

i were the ground truth and
the corresponding patch-shuffled ground truth, respectively. The supervised loss Lseg

between zi and yi, Lps
seg between zps

i and yps
i and an unsupervised loss Lcls between zps

i

and zps
′

i were used to optimize the segmentation model.

Original slices Patch-shuffled slices

Fig. 5.4 Examples of original slices (left) and patch-shuffled slices (right) of wrist CT.
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The contributions of our work were summarized as follows:

• Based on bone structures and CT imaging characteristics, we defined the bone
CT segmentation as a local-feature-guided task. We proposed a patch-shuffled
data transformation method to enable the segmentation model to segment both
original and patch-shuffled CT slices.

• We developed a patch-shuffle-based semi-supervised segmentation method for
bone CT segmentation. The proposed method could employ the unlabeled data
and largely alleviate the workload of annotation. Two supervised segmentation
losses and an unsupervised consistent loss were employed to optimize the seg-
mentation model. The unsupervised consistent loss performed as a regularization
item and enabled the model to utilize both the labeled and unlabeled data.

• We evaluated the proposed model on three CT scan datasets of different image
qualities and different anatomies (wrist, foot, chest, head, abdomen, and limb).
The results demonstrated the outperformance of the proposed model in bone CT
segmentation.

5.2 Method of Patch-Shuffle-Based Semi-Supervised

Segmentation of Bone CT

5.2.1 Overview of the Proposed Method

Fig. 5.3 overviewed the framework of the proposed patch-shuffle-based bone CT semi-
supervised segmentation method. The framework consisted of two streams, an original
slice training stream, and a patch-shuffled slice training stream.

The training dataset consisted of N bone CT slices, including M labeled slices
{x1, x2, . . . , xM} with M segmentation groundtruth {y1, y2, . . . , yM} and N −M un-
labeled slices {xM+1, xM+2, . . . , xN}. The patch shuffle transformation divided each
training slice xi into nine patches and generated a new slice xps

i by randomly recon-
stituting these patches. The segmentation model f(·) with parameter θ was trained
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jointly by three losses, two supervised constraint losses Lseg, Lps
seg and a unsupervised

constraint loss Lcls.

min
θ

Lseg + Lps
seg + λLcls (5.1)

The supervised loss Lseg was used for the original slice training stream, which
enabled the model to segment the original slice. The supervised loss Lps

seg for the
patch-shuffled slice training stream was inferred from the patch-shuffled slice xps

i and
the corresponding ground truth yps

i . It endowed the model with the segmentation
ability of the reconstituting slice. The unsupervised consistent loss Lcls was used for
both labeled and unlabeled data to force the model to generate the same outputs for
the corresponding pixels in xi and xps

i , and λ was the weight parameter between the
supervised losses and the unsupervised loss.

5.2.2 Patch-Shuffle-Based Semi-Supervised Segmentation

A well-trained segmentation model from the original slice could not directly be used
for the patch-shuffled slices. Fig. 5.5 depicted the segmentation results of the original
slice and patch-shuffled slice of a segmentation model trained from the original slice.
Image one and image two were the original slice and corresponding segmentation
result. Image three and image four were the segmentation results of the patch-shuffled
slice and the corresponding segmentation result. Image five was the patch-reversed
segmentation result of image four. As shown, image five was not the same as image
two, which denoted that the segmentation model trained from the original slice was not
robust for the patch-shuffled image. The inherent reason was that the neural network
segmentation model using the original slice was not patch invariant.

The convolution operation of the segmentation model usually generated different
features of the corresponding pixel in the original slice and the patch shuffled slice. Fig.
5.6 depicted the difference of the feature map of the original slice and patch-shuffled
slice. Image two and image four were the feature maps of an original slice and the
corresponding patch-shuffled slice. After the patch-reverse transformation of image
four, it was obvious to observe the difference between the two feature maps. The
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non-consistent feature of the corresponding pixel in the two kinds of slices has led to
inconsistent segmentation results of Fig. 5.5.

(1)

(3)

(1)

(4) (5)

(2)

==

Fig. 5.5 Segmentation result illustration of original slice and patch-shuffled slice. Image
one and image three were the original slice and patch-shuffled slice, respectively. Image
two and image four were the corresponding segmentation result. Image five was the
inverse patch-shuffled image of image four. Image five was not equal with image two.

To endow the model with the ability to learn the local features of bone structures
that differentiated it from other tissues, we designed a two-stream training framework.
The model made full use of both labeled and unlabeled data by an unsupervised
consistency learning method. The framework of the proposed model was depicted in
Fig. 5.3 and the pseudocode was shown in Algorithm 1.

For each input xi, a patch-shuffled input xps
i was generated by the patch-shuffle

operation. Both the slice xi and the patch-shuffled slice xps
i were fed into the segmen-

tation model and generated two outputs zi and zps
i , respectively. For the labeled data,

the segmentation ground truth map yi was also required to generate a patch-shuffled
ground truth map yps

i under the same patch-shuffle criteria. A supervised dice loss Lseg

between the output zi and the ground truth yi was used to handle the standard segmen-
tation process. A supervised loss Lps

seg between the zps
i and the patch-shuffled ground

truth map yps
i was used to strengthen the generalization ability of the segmentation
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Algorithm 1 Pseudo code of the patch-shuffle-based semi-supervised segmentation
method of bone CT.

1: Input:
2: Labeled data: xi ∈ DL, yi ∈ DL

3: Unlabeled data: xj ∈ DU

4: Model weights: θ
5: Weight parameter: λ
6: Function:
7: f(x, θ): neural network forward function
8: update(.): backpropagation for model weights update
9: PS(.): patch-shuffle transformation

10: Lseg, Lps
seg: supervised dice loss calculation with prediction and groundtruth of the

original slice and patch-shuffled slice, respectively
11: Lcls: unsupervised consistent loss calculation between the features of original and

patch-shuffled slice
12: Procedure:
13: for t ∈ [1, numepochs] do
14: for each minibatch B do
15: random update PS(.)
16: xps

i ← PS(xi); yps
i ← PS(yi), xps

j ← PS(xj)
17: zi ← f(xi, θ); zps

i ← f(xps
i , θ)

18: zj ← f(xj, θ); zps
j ← f(xps

j , θ);
19: zps

′

i ← PS(zi); zps
′

j ← PS(zj)
20: loss← Lseg(yi, zi) + Lps

seg(yps
i , zps

i ) + λ(Lcls(zps
i , zps

′

i ) + Lcls(zps
j , zps

′

j ))
21: θ ← update(loss)
22: end for
23: end for
24: return θ
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Fig. 5.6 Feature map illustration of original slice and patch-shuffled slice. Image one
and image three were the original slice and patch-shuffled slice, respectively. Image
two and image four were the corresponding segmentation feature map. Image five was
the inverse patch-shuffled feature map of image four. Image five was not equal with
image two.

model. The two losses forced the model to explore the exact feature that represented
the bone structure. The dice loss acted as the supervised loss for the labeled data.

Lseg(yi, zi, θ) = 1− yizi + 1
yi + zi + 1 (5.2)

Lps
seg(yps

i , zps
i , θ) = 1− yps

i zps
i + 1

yps
i + zps

i + 1 (5.3)

For both unlabeled data and labeled data, the output zi was transformed into a
patch-shuffled output feature of zps

′

i by the same patch-shuffle criteria. The feature
zps

i was the output feature of the patch-shuffled slice xps
i . zps

′

i was the patch-shuffled
output feature of the original input xi. Based on the assumption that the model should
have the ability to learn the local features of bone structures regardless of the different
sizes and shapes, the two features zps

i and zps
′

i should be the same. An unsupervised
consistent loss Lcls between zps

i and zps
′

i was used to maximize the similarity of the
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two features. The mean square error loss was used as the unsupervised consistent loss
on both the unlabeled and labeled input.

Lcls(zps
i , zps

′

i , θ) = ∥zps
i − zps

′

i ∥2 (5.4)

A weighting factor λ was used to adjust the impact of the supervised loss and the
unsupervised loss. We set the weighting factor λ as five in the experiment settings.
The model was optimized by the loss as Eq. 5.5.

L(x, θ) =
M∑

i=1
(Lseg(yi, zi, θ) + Lps

seg(yps
i , zps

i , θ))

+λ
N∑

i=1
Lcls(zps

i , zps
′

i , θ)
(5.5)

5.3 Experiments and Analysis

5.3.1 Datasets for Model Evaluation

Three datasets have been used to evaluate the proposed method. The first dataset
was a wrist CT scan dataset, the second dataset was a foot bone CT dataset, and
the third dataset was a multi-organ bone dataset (USEvillaBone) [189]. The three
datasets were selected to cover a broad range of imaging modalities, image quality, and
anatomies to demonstrate the robustness and performance of the proposed method.
The details of the datasets, including the data amount, scanning device, scan area, and
slice resolution, were described below.

Wrist CT Scan Dataset

The wrist CT scan dataset consisted of 5043 slices, including a training set with
4287 slices, a validation set with 252 slices, and a testing set with 504 slices. The
scanning area was the radius and ulna part of the wrist. The CT slices were acquired
by the ScancoXtreme machine (SCANCO Medical, Brüttisellen, Switzerland), and the
slice resolution was 1536× 1536. The 5043 slices were selected randomly from 1539
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wrist scans, and the wrist parts were in different shapes, positions and sizes in these
slices. Therefore, there were no temporal relationships among them. Fig. 5.7 was the
illustration of the scanning slice and the segmentation ground truth. The radius bone,
ulna bone, muscle, background, and cast holder were annotated in this dataset. We
resized the slice resolution as 480× 480 in experiments.

Fig. 5.7 Examples of the wrist CT scan dataset (The left parts were the CT slice data
and the right parts were the overlap image of the segmentation mask on the CT slice.
The green part was radius bone, the cyan part was ulna bone, the blue part was muscle,
the red part was cast holder and the black part was background).
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Foot CT Scan Dataset

The foot CT scan dataset included 1500 slices of foot CT images from thirty scans.
Eleven scans were the left foot CT scan, eleven scans were the right foot CT scan, and
eight scans were the two-feet scan. The foot CT scan dataset contained a train set with
1050 slices, a validation set with 150 slices, and a testing set with 300 slices. The CT
slices were acquired by the CurveBeam weight-bearing machine (Curvebeam, Hatfield,
United States). The slice resolution was 950 × 950 and was resized as 480 × 480 in
experiments. The bone part has been annotated in this dataset. Fig. 5.8 illustrated
the examples of the slices and the segmentation maps.

The USEvillaBone dataset

The USEvillaBone dataset [189] contained 270 slices of CT images. The scanning
parts were the head, chest, abdomen, and limbs. The helical CT scanner (Philips,
Amsterdam, The Netherlands) was used as the scanning device, and the slice resolution
was 512× 512. 170 slices, 50 slices, 50 slices were used as the training set, validation
set, and testing set, respectively. The slices were resized as 480× 480 for consistency
with the other two datasets. Fig. 5.9 listed several examples of the slice and the
corresponding ground truth of this dataset.

5.3.2 Experiment Settings and Evaluation Metrics

The U-net model was used as the network backbone. The input layer was a 1-channel
convolutional layer, and the output layer was a 1 × 1 convolutional layer with an
output channel number of five for the instance segmentation of the wrist database,
an output channel number of two for bone segmentation of the foot database and the
USEvillaBone database. The Adam optimizer was used to optimize the model. The
learning rate was set as 0.00002. The experiments were implemented using PyTorch.
Random flipping was used as the base data augmentation method before the patch
shuffle transformation for all experiments. In the inference stage, only the original slice
was used as the input. A softmax layer was used to generate the probability map of
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Fig. 5.8 Examples of the foot CT scan dataset (The left parts were the CT slice data
and the right parts were the overlap image of the segmentation mask on the CT slice.
The bones were illustrated as the blue color in the overlap images. First row was right
foot example, second row was left foot example and third row was two-feet example).
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Fig. 5.9 Examples of the USEvillaBone dataset (The left parts were the CT slice data,
and the right parts depicted the overlap image of the segmentation mask on the CT
slice. The bones were illustrated as the blue color in the overlap images. The first row
was an abdomen example, the second row was a brain example, the third row was a
chest example, and the fourth row was a limb example).
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each class, and the class with the maximum probability of each pixel was selected as
the prediction result.

As the illustration in Fig. 5.7, the wrist bone CT slices were annotated into five
classes: radius bone (the green part in the overlap image), ulna bone (the cyan-blue
part in the overlap image), muscle (the blue part in the overlap image), cast holder
(the red part in the overlap image) and background (the black part in the overlap
image). The radius bone was larger than the ulna bone in the CT slice. We designed a
five-class instance segmentation task for the wrist bone CT dataset.

We designed a foot bone segmentation task in the Foot bone CT dataset. As
illustrated in Fig. 5.8, there were different kinds of bone at the foot scan, such
as tibia, fibula, cuneiforms, metatarsals, and phalanges. Since these bones were in
different shapes, the foot bone segmentation task was more complicated than the wrist
segmentation. However, these bones were still within a similar bone structure, making
the semi-supervised method a potential solution for foot bone segmentation.

The USEvillaBone dataset consisted of four kinds of organs, brain, abdomen, chest,
and limb. This dataset was more complicated than the wrist and foot dataset since
the bones were in different shapes and organs. A bone segmentation task was designed
on the USEvillaBone dataset to prove the outperformance of the proposed model.

We compared our method with the recent semi-supervised segmentation methods:
mean-teacher (MT) [190] and the Transformation-consistent Self-ensembling Model
(TCSM) [187] on the three datasets. All models were trained with the same model
architecture and data splitting for fairness. The mean Intersection-Over-Union (mIOU)
index was used to evaluate the performance of the segmentation model. The higher
the mIOU value, the better the segmentation model.

We also conducted more experiments on the wrist dataset to verify the effectiveness
of the proposed method, including experiments with only two labeled training data,
which was extremely low annotated data amount, and experiments with different
number of labeled training data to prove that our semi-supervised method with less
labeled data could be compatible with the supervised method with more labeled data.
The results were reported in the following sections.
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Table 5.2 Comparison of mIOU of different semi-supervised methods under different
number of training data. (Unit: %)

Method Two labeled /
100 unlabeled data

Seven labeled /
100 unlabeled data

All labeled
(4287) data

Supervised-only 39.37 44.75 98.13
MT 85.24 94.10 —
TCSM 84.95 93.97 —
Ours 93.44 95.95 —

5.3.3 Results on the Wrist CT Scan Dataset

Comparison with Other Semi-Supervised Methods

Table 5.2 showed the performance comparison of our method and the other semi-
supervised methods under two labeled data/100 unlabeled data and seven labeled
data/100 unlabeled data. From table 5.2, we could observe that our method out-
performed the other methods. Especially when only two labeled data were used,
the proposed method gained a more remarkable improvement, obtaining a mIOU of
93.44%. The results demonstrated the efficiency of the proposed method compared
with the other semi-supervised method.

Results with Two Labeled Training Data

According to the position of the wrist, the wrist data could be divided into two
categories. The first type was where the wrist was on the cast holder, which was
depicted at the first row in Fig. 5.7, and the second type was where the wrist was
above the cast holder as depicted at the second row in Fig. 5.7. Therefore, we tested
the model performance with only two labeled data (one for each kind) in the training
set, which was an extremely low data amount.

Table 5.3 demonstrated the performance of the supervised method, supervised
method with patch-shuffle augmentation, supervised method with patch-shuffle and
consistent loss, the proposed method with 100 unlabeled data, the proposed method
with all unlabeled data (4285 slices) on the test set with 504 slices. All the experiments
used the same training settings for a fair comparison.
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Table 5.3 Performance of mIOU on the test set (504 slices) of the supervised and the
proposed semi-supervised methods using two labeled training data. (Unit: %)

Method Two labeled data Improvement
Supervised-only 39.37
Supervised-patch shuffle 47.92 8.55
Supervised-patch shuffle
and consistent loss 74.31 34.94

Our method with
100 unlabeled data 93.44 54.07

Our method with
all unlabeled data (4285 slices) 94.21 54.84

While only two labeled data were used for training the model, our method with only
100 unlabeled data has achieved a mIOU of 93.44%. Compared with the supervised
method, the proposed semi-supervised method has achieved a prominent improvement
of 54.07% with 100 unlabeled data and improvements of 54.84% with all 4285 unlabeled
data. Besides, compared with the supervised-only model, the supervised method with
patch shuffle augmentation gained an improvement of 8.55%, and the supervised method
with patch shuffle and consistent loss regularization gained a further improvement
of 26.39%. The introduction of the patch-shuffle transformation and the consistent
loss improved the performance of the supervised model. The results comparison
demonstrated that our proposed method could achieve high segmentation accuracy and
proved the efficiency of the proposed method compared with the supervised method.

Results under Different Number of Labeled Training Data

Table 5.4 was the results of the proposed method and the supervised-only method
under the different number of labeled training data. Compared with the supervised
method, the proposed semi-supervised method achieved much better performance.
When only two labeled slices were used for training, our method achieved the mIOU

of 93.44% with 100 unlabeled data, which was an improvement of 54.07% compared
with the supervised-only method. When seven labeled slices were used for training, our
method also achieved an improvement of 51.20% and 52.41% with 100 unlabeled data
and all unlabeled data compared with the supervised-only method, respectively. The
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Table 5.4 Results of mIOU of the proposed method under different number of labeled
training data. (Unit: %)

Method Two labeled
data

Seven labeled
data

All labeled
(4287) data

Supervised-only 39.37 44.75 98.13
Our method with
100 unlabeled data 93.44 95.95 —

Our method with
all unlabeled data 94.21 97.16 —

improvements demonstrated the efficiency of our proposed semi-supervised method.
With only a few labeled data, the patch-shuffled transformation and the consistent loss
regularization improved the performance of the segmentation model.

With more labeled training data, both the supervised method and the semi-
supervised method could achieve better performance. The performance of the supervised
model trained from all labeled data was 98.13%. The proposed semi-supervised method
gained a result of 97.16% from only seven labeled training data. The proposed method
only has a decrease of 0.97% compared to the supervised model. This indicated the
potential of the proposed method in real clinical practice where only a few data were
labeled, and a large number of data were unlabeled.

5.3.4 Results on the Foot Bone CT Dataset

We reported the results of using only twenty labeled slices as training data, fifty
labeled slices as training data, and all labeled slices as training data on the foot bone
CT dataset. The results were summarized in Table 5.5. With only twenty labeled
slices, our semi-supervised method could achieve an improvement of 23.19% compared
with the supervised method. Compared with the segmentation model using all 1050
labeled data, the proposed semi-supervised model still achieved a high result of 93.63%
with only 2% of the labeled data (twenty labeled data) and 96.49% with only 5% of
the labeled data (fifty labeled data). We also compared our method with the other
semi-supervised methods. The proposed method achieved the best result compared
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Table 5.5 Results of mIOU of different semi-supervised methods on the foot bone CT
dataset. (Unit: %)

Method Twenty labeled /
1030 unlabeled

Fifty labeled /
1000 unlabeled

All (1050)
labeled data

Supervised-only 70.44 93.14 98.40
MT 90.69 93.86 —
TCSM 91.14 94.39 —
Ours 93.63 96.49 —

Table 5.6 Results of mIOU of different semi-supervised methods on the USEvillaBone
dataset. (Unit: %)

Method Twenty labeled /
150 unlabeled

Fifty labeled /
120 unlabeled

All (170)
labeled data

Supervised-only 78.84 88.94 92.91
MT 76.33 83.89 —
TCSM 81.46 85.90 —
Ours 82.35 91.64 —

with the others. The result revealed the potential of our approach for reducing the
manual annotation workload in foot bone segmentation.

5.3.5 Results on the USEvillaBone Dataset

We conducted the bone segmentation task with different semi-supervised methods of
using twenty labeled training data, and fifty labeled training data on the USEvill-
aBone dataset. We also compared the result of using all training data for supervised
segmentation.

Table 5.6 reported the results of different semi-supervised methods on the public
bone dataset. From the result, we could observe that the proposed method has
outperformed the other semi-supervised methods. With only fifty labeled data (29.41%
of all labeled data), the proposed method achieved a similar result with the supervised
model of using all labeled data. The proposed method has achieved an improvement
of 2.7% and 3.51% compared with the supervised method of using fifty labeled data
and twenty labeled data, respectively.
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5.3.6 Qualitative Analysis on the Segmentation Results and
Feature Maps

Fig. 5.10 compared the results of the proposed method, MT method, TCSM method,
and the supervised method with the same labeled slices. The first column depicted the
wrist CT segmentation results via the proposed method, MT method, TCSM method,
the supervised method using 2 labeled slices, and the ground truth, respectively.
The second and third columns illustrated the segmentation results of foot CT and
the USEvillaBone CT from the proposed method, MT method, TCSM method, the
supervised method using 20 labeled slices, and the ground truth, respectively. Compared
with the CT ground truth, the proposed method delivered more accurate and usable
results than the supervised method and other semi-supervised methods with extremely
low data amount.

We also compared the segmentation results and feature maps of the proposed
method on the patch-shuffled slice and the original slice in Fig. 5.11. Compared with
Fig. 5.5 and Fig. 5.6, the proposed method could generate correct segmentation results
for both patch-shuffled slice and the original slice, and also generate consistent feature
maps between them, due to the introduction of the supervised losses in Eq. 5.2 and
Eq. 5.3, and the unsupervised consistent loss in Eq. 5.4.

5.4 Conclusion

We presented a patch-shuffle-based semi-supervised method for the bone CT segmen-
tation in this chapter. Based on the bone structures and CT imaging characteristics,
we defined the patch-shuffle transformation as a strong data augmentation technique
for bone CT segmentation. The supervised losses which acted on the original data
and the patch-shuffled data enhanced the generalization ability of the segmentation
model. Further, we employed an unsupervised consistent loss on the output feature
of the corresponding pixel in the original slice and the patch-shuffled slice. The pro-
posed method has been evaluated on three different datasets. The experiment results
demonstrated the high effectiveness of the proposed method on bone CT segmentation.



5.4 Conclusion 93

Results of the proposed method

Results of the supervised method using same labeled data

CT segmentation groundtruth

Results of the MT semi-supervised method using same labeled data

Results of the TCSM semi-supervised method using same labeled data

Fig. 5.10 Results comparison of the proposed method (first row), MT method (second
row), TCSM method (third row), the supervised method with the same labeled slices
(fourth row), and the segmentation groundtruth (last row). First column: models via 2
labeled wrist CT slices; Second column: models via 20 labeled foot CT slices; Third
column: models via 20 labeled USEvillaBone CT slices.
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Fig. 5.11 Illustration of segmentation result and feature map of original slice and
patch-shuffled slice using the proposed method. Image 1a and 3a, 1b and 3b were the
original slice and patch-shuffled slice, respectively. Image 2a and 4a, 2b and 4b were
the corresponding segmentation results and feature maps. Image 5a and 5b were the
inverse patch-shuffled image and feature map of image 4a and 4b. Image 5a and 5b
were consistent with image 2a and 2b.



Chapter 6

Bone Health Analysis via Bone
Fracture Prediction using Wrist CT

6.1 Introduction

Fragility fracture, caused by the decrease of bone mass, is a major public bone health
problem as lifespan increases. The bone fracture will highly increase the mortality
rates in the first year and has an impact on the risk of death for up to ten years [43, 44].
Treatment based on the bone health assessment is an important way to prevent fracture,
and two methods are used to determine bone health in clinical currently. The most
common way is to measure bone mineral density (BMD). A BMD T-score of -2.5
standard deviation (SD) or lower indicates the presence of osteoporosis and a high risk
of bone fracture [45]. The second method is to evaluate the fracture risks of patients by
measuring the fracture risk assessment (FRAX) score [46]. The FRAX score integrates
BMD at the femoral neck (FN) and several clinical risk factors to calculate the fracture
risk in the next ten years.

The BMD assessment is based on the Dual-energy X-ray absorptiometry scanning
in current medical practice. However, the operator needs to receive training and
experience to analyze the X-ray images, and inappropriate diagnosis would be made
due to the poor-quality X-ray images [191]. Some works investigated using bone CT
scans to estimate the BMD value. Yasaka et al. [120] designed a CNN structure with
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four consecutive convolutional and max-pooling layers and three fully connected layers
to measure the BMD value from lumbar vertebrae CT. The input lumbar vertebrae CT
images were manually cropped from the original CT images, and data augmentation
methods like parallel shifting, rotation, and noise-adding were used to generate 60
different variations for each CT image. 1665 CT images of 183 patients from a medical
institution were used to train the proposed method. The estimated BMD values of 45
CT scans of the same institution and 50 scans from another institution demonstrated a
significant correlation with the real DXA BMD (correlation value of 85.2% and 84.0%
for the two test sets, respectively) and the AUC of osteoporosis diagnosis on the two
test set was 96.5% and 97.0%, respectively. Krishnaraj et al. [95] reported a deep
learning method to simulate lumbar DEXA BMD scores from chest and abdomen CT
with a two key module. The first module aimed to segment the four vertebrae bones
(L1 ∼ L4) based on a cascade of two U-Net models. The first U-Net, performed in the
sagittal view of CT, generated the binary segmentation map of vertebral bones. The
second U-Net fused data, from the sagittal and coronal view and the first segmentation
map of the first Unet, for the multiclass segmentation of the L1 ∼ L4 vertebra bones.
The second module was the BMD calculation part based on linear regression and the
vertebra segmentation results. The accuracy, sensitivity, and specificity for osteoporosis
or osteopenia detection on 1389 patients were 82.0%, 84.4%, and 72.7%, respectively.
These studies revealed the promising performance of employing CT data for BMD
estimation.

However, only a small portion of the population suffers from osteoporosis (BMD
T-score lower than -2.5 SD), while a large number of fractures occur within the stage
of osteopenia where BMD T-score is between -2.5 and -1.0 SD or the stage of normal
BMD where BMD T-score is above -1.0 SD [192]. A large population would be excluded
when providing treatment to prevent bone fracture if the BMD T-score is employed to
assess bone health. The FRAX score, considering the BMD and other clinical factors,
only provided the fracture risk in the next ten years, which is too long for medical
intervention. A more accurate bone health assessment, that considers both the large
population with osteopenia or normal BMD and the small group of osteoporosis, is
needed to avoid the fragility fracture.
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Recent studies have attempted to apply the DL methods to classify the bone
fracture, including humerus fracture [3], hip fracture [4], and wrist fracture [193].
These retrospective studies aimed to classify the fractured and non-fracture bone and
can not determine bone health before the bone fractures happen. A prospective deep
learning study that could predict bone fracture using CT data has not been explored
so far.

The wrist CT has been used for bone health assessment in recent years [5, 6, 194].
Compared with the BMD T-score assessment from the spine or hip part, the wrist
CT is more convenient during scanning. Johnson et al. [5] demonstrated that the HU
value on capitate of wrist CT was highly correlated with the BMD T-score at pelvic,
vertebra, and femoral neck. Chapurlat et al. [6] assessed bone health by measuring
the deterioration of the bone microstructures on the wrist part and identified more
patients with bone fracture risk than BMD T-score and FRAX in the osteopenia/normal
population. These works revealed the high potential for using wrist CT in bone health
assessment.

This chapter developed a deep learning-based method to determine bone health
by predicting the future fragility fracture from wrist CT. We collected data from
three population-based cohorts, which were followed for 6.16 years on average. The
unstructured data from the three cohorts were processed to construct a structured
wrist database for model designing. The proposed method could identify the bones at
high risk of fracture before the fracture happens, and extensive evaluations have been
performed. We tested whether the proposed method could recognize the participants
at intermediate risk (five-years) of fragility fracture or major fragility fracture. We
also compared the performance with the BMD T-score and FRAX score, considering
different age groups. To the best of our knowledge, this was the first research of using
the DL methods to identify the bones with the upcoming fragility fracture using the
wrist CT scan.

The contributions of this work were summarized as follows:

• A deep learning-based fracture prediction model was proposed, and the real
unstructured clinical raw data, including the patient clinical information and CT
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Dicom data, was processed to construct a structured database for model training
and evaluation.

• Extensive model evaluation experiments were conducted on different data selection
groups considering the fracture type and participant’s age. Compared with the
clinical index of BMD T-score and FRAX, the proposed model could identify
the bones with fragility fracture or major fragility fracture within five years with
high AUC values.

• This was the first research using the deep learning models to identify the individ-
uals with upcoming fragility fracture using wrist CT.

6.2 Structured Clinical Database Construction

6.2.1 Clinical and Wrist CT Raw Data Collection

We aimed to conduct a prospective study on bone fracture prediction. This required
collecting CT and clinical data in the population and observing the fracture situation
in the participants over a period of time. The data collection should consider the
following criteria.

• The participants’ age, gender, medical treatment condition, and possible duration
of the follow-up period should be considered when recruiting candidates.

• Details of the fracture of the participants, such as when the fracture occurred,
whether the fracture type was a fragility fracture, and whether it was a major or
non-major fragility fracture, should also be recorded.

• The BMD T-score and the FRAX value of the participants should be collected
for comparison with the developed model.

Following the criteria, we have collected three population-based cohorts, the OFELY
cohort [195], the QUALYOR cohort [196], and the GERICO cohort [197].
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OFELY Cohort

The OFELY cohort was collected by a large-population-based project that started in
February 1992 in France [195]. 1039 women joined this project, and the wrist CT of
589 women (average age of 68.16, age range from 42 to 94) were scanned during 2006
∼ 2008. The participants in the OFELY cohort were followed for 8.75 years on average
(follow-up range from 0 ∼ 10.65 years). Participants in the OFELY cohort underwent
only one scan at enrollment throughout the entire participation period.

QUALYOR Cohort

The QUALYOR cohort recruited 1539 women for bone health assessment [196]. The
participants were from two cities in France, including 1042 women from Lyon and 497
from Orléans. The average age of the QUALYOR participants was 65.9, ranging from
50 to 87. The average follow-up duration was 5.67 years, ranging from 0.83 to 7.84
years. Each participant had one CT scan at enrollment, and some participants went
through another CT scan during the follow-up period.

GERICO Cohort

The GERICO cohort was composed of 758 women, and 196 men, average aged at
65.1 (range from 62.9 to 68.1), in the Geneva retirees group of Switzerland [197]. The
participants were followed from 2.0 to 7.9 years, with an average follow-up period of
5.0 years. The participants in GERICO went through several wrist CT scanning like
the QUALYOR cohort.

The wrist part of the participants at OFELY, QUALYOR, and GERICO were
scanned by the Scanco HRpQCT (Xtreme CT, Scanco Medical AG, Brüttisellen,
Switzerland). Experts measured the Femoral neck BMD T-score and FRAX index
at the enrollment of the participants at the three cohorts. The Femoral neck BMD
T-score was also measured during the follow-up period for most participants in the
QUALYOR cohort. The bone fracture time, fracture type, major fracture type during
the follow-up period were recorded by experts in the three cohorts.
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6.2.2 Clinical Raw Data Processing

The clinical data, such as ID, age, medical treatment, follow-up time, fracture informa-
tion, etc., were recorded as unstructured data in different formats in the three cohorts.
After we collected the clinical data, the first step was to process the unstructured raw
data as structured data in the same format across the three cohorts.

Clinical Raw Data of OFELY

The collected raw data of the OFELY cohort included the participant’s health informa-
tion, bone measurement, and fracture history. Table 6.1 depicted the raw clinical data
in OFELY. The participant’s ID in OFELY cohort (ID), cohort name (Cohort), age
(Age), medical treatment information (IsTreated), pre-fracture history before enroll-
ment (HasPrevFx), fracture time in the follow-up period (FxWithinTime), Fragility
fracture type (IsFragilityFx), major fracture type (IsMoF), follow-up duration (Fol-
lowupTime), wrist scan name (ScanName), femoral neck BMD T-score (TscoreFN),
spine BMD (TscoreSpine), hip BMD (TscoreHip), FRAX score based on femoral neck
BMD T-score (FraxMajorBMD), FRAX score based on hip (FraxHipBMD) and other
bone measurements (TBS ∼ StraxSFS) were collected.

Table 6.1 Clinical raw data recorded at OFELY cohort.

ID Cohort Age IsTreated
HasPrevFx FxWithinTime IsFragilityFx IsMoF
FollowupTime ScanName TscoreFN TscoreSpine
TscoreHip FraxMajorBMD FraxHipBMD TBS
ScancoD100 ScancoDcomp ScancoDtrab ScancoBVTV
ScancoCtPo StraxSPS StraxSTS StraxSFS

Clinical Raw Data of QUALYOR

The QUALYOR cohorts continuously collected the participant’s clinical data during the
whole follow-up period. In total, there were three clinical raw data table of QUALYOR
cohort, which were depicted at Table 6.2, Table 6.3, Table 6.4.
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For the first four years of the follow-up period, the QUALYOR cohort collected the
baseline clinical data such as the participant’s ID, age, gender, weight, height, BMI,
medical treatment history, fracture history, fracture situation like the fracture type and
major fracture type within four years follow-up period, BMD T-score at the femoral
neck, FraxMajorBMD, the scan name at enrollment and other bone measurements.
Table 6.2 depicted these recorded clinical information.

Table 6.2 Clinical raw data including the participant’s information and fracture situation
for the first four years of follow-up period recorded at QUALYOR cohort.

ID Cohort Age Gender
Weight Height BMI IsTreated
HasPrevFx FxWithinTime IsFragilityFx IsMoF
FollowupTime ScanName TscoreFN TscoreSpine
TscoreHip FraxMajorBMD FraxHipBMD TBS
ScancoD100 ScancoDcomp ScancoDtrab ScancoBVTV
ScancoCtPo StraxSPS StraxSTS StraxSFS

Then, after six years of the enrollment of each participant, the participant’s bone
fracture situation between four years to six years of the following up period was
collected, as demonstrated in Table 6.3. The description of bone fracture (bone frx V6),
bone fracture side of the human body (side of frx V6), fragility fracture information
(fragility frx V6), vertebrae fracture information (Vert frx grade), fracture date (date
frx V6), major fracture information (trauma degree V6), fracture site (code frx V6)
were recorded. For participants with another fracture after the fourth year, a re-frx
column was recorded.

Table 6.3 Clinical raw data of the participant’s fracture information during the follow-up
period from the fourth year that recorded at QUALYOR cohort.

ID V6 V6 Date V6 falls nb
since V5
(48m)

Frx
Yes/No

bone frx
V6

side of frx
V6

fragility
frx V6

Vert frx
grade V6

date frx
V6

trauma
degree V6

code frx
V6

bone
re-frx
V6

Side of
re-frx V6

fragility
re-frx V6

Vert re-frx
grade V6

date
re-frx V6

trauma
degree
re-frx V6

code
re-frx V6
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Besides, during the first four years of the follow-up period, the participant’s spine,
neck, and hip BMD T-score were recorded at twelve-month intervals, as listed in
Table 6.4. The measurement date (date_V2 ∼ date_V5), and spine BMD T-score
(SPINE_BMD_V2∼ SPINE_BMD_V5), femoral neck BMD T-score (NECK_BMD_V2
∼ NECK_BMD_V5), hip BMD T-score (HIP_BMD_V2 ∼ HIP_BMD_V5) were
recorded.

Table 6.4 Clinical raw data of the participant’s BMD T-score at spine, femoral neck,
and hip during the follow-up period recorded at QUALYOR cohort.

ID date_V2 SPINE_BMD_V2 NECK_BMD_V2 HIP_BMD_V2
date_V3 SPINE_BMD_V3 NECK_BMD_V3 HIP_BMD_V3
date_V4 SPINE_BMD_V4 NECK_BMD_V4 HIP_BMD_V4
date_V5 SPINE_BMD_V5 NECK_BMD_V5 HIP_BMD_V5

Clinical Raw Data Processing of GERICO

The clinical information of participants of the GERICO cohort was investigated twice
during the whole follow-up period, one at the enrollment and one at the ending of the
follow-up. The patient health information and the bone measurements were collected at
the enrollment, and the fracture information was collected at the end of the follow-up
period. Table 6.5 depicted the collected items of the clinical raw data. The partici-
pant’s ID, date of birth (DOB), gender (Gender), age at enrollment (Baseline_age),
BMI at enrollment (Baseline_BMI), medical treatment (Opdrug_duringfollowup)
including the detailed drug type (Opdrug_duringfollowup_class), and the use of
tibolone (MHTorTibolon_duringfollowup), follow-up duration (Followupduration),
follow-up visit date (Followupvisit), femoral neck BMD T-score of at enrollment
(Baseline_FemNeck_Tscore), Frax at enrollment (FRAX_MOF), and other bone
measurements at enrollment (Baseline_Spine_BMD ∼ FRAX_BMDTBS_HIP) were
recorded. The previous fracture information before enrollment (Priorlowtraumafrac-
tureadult), previous major fracture information before enrollment (PriorMOF45years),
fracture information during follow-up period including the fragility fracture type (In-
cidentFracture), fracture site (Fr_site_1 ∼ Fr_site_5), fracture date (Fr_date_1 ∼
Fr_date_5), major fragility fracture type (Fr_trauma_1 ∼ Fr_date_5) were recorded.
During follow-up, the maximum number of fractures in GERICO participants was five.
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Table 6.5 Clinical raw data of the participant’s health and fracture information recorded
at GERICO cohort.

ID DOB Gender Baselinevisit
Baseline_age Baseline_BMI Opdrug_

duringfollowup
Opdrug_during
followup_class

MHTorTibolon_
duringfollowup

Followupvisit Followupduration Baseline_
FemNeck_ Tscore

FRAX_MOF Baseline_
Spine_BMD

Baseline_
TotHip_BMD

Baseline_Rad_
13d_BMD

Baseline_Rad_
ultradistal_BMD

Baseline_
Spine_Tscore

Baseline_
TotHip_Tscore

FRAX_HIP

FRAX_BMD_
MOF

FRAX_BMD_
HIP

TBS FRAX_BMDTBS_
MOF

FRAX_BMDTBS_
HIP

Priorlowtrauma
fractureadult

PriorMOF45years IncidentFracture

Fr_site_1 Fr_date_1 Fr_trauma_1 Fr_site_2
Fr_date_2 Fr_trauma_2 Fr_site_3 Fr_date_3
Fr_trauma_3 Fr_site_4 Fr_date_4 Fr_trauma_4
Fr_site_5 Fr_date_5 Fr_trauma_5

Integration of Clinical Data from OFELY, QUALYOR, and GERICO

The clinical raw data were collected in different formats in OFELY, QUALYOR, and
GERICO cohorts. The unstructured data impeded the usage of the three cohorts, and
we designed a procedure to integrate the clinical raw data of the three cohorts into
structured clinical data. We designed several tables to record the structured clinical
data, including a participant information table to record the participant’s information
of age, gender, enrollment date, follow-up duration, and medical treatment, a fracture
information table to record the fracture information, a BMD information table to
record the BMD values, a FRAX information table to record the FRAX values, and a
miscellaneous information table to record the other information in the three cohorts.
The details of these tables were depicted below.

1. Participant information table

The participant information table (as depicted in Table 6.6) recorded the informa-
tion about participants in the three cohorts, including the cohort name (CohortName),
participant ID (CohortID_PatientID), date of birth (DOB), gender (Gender), enroll-
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ment date (EnrollmentDate), enrollment age (EnrollmentAge), follow-up duration
(FollowupDuration), medical treatment (TreatmentBeforeEnrollment), and drug usage
(TreatmentDuringFollowup).

Table 6.6 Clinical data in participant information table.

CohortName CohortID_PatientID DOB Gender
EnrollmentDate EnrollmentAge FollowupDuration
TreatmentBeforeEnrollment TreatmentDuringFollowup

2. Fracture information table

The fracture information of the three cohorts was recorded in different formats, and
we formatted them as depicted in Table 6.7. The participant and cohort ID (Cohor-
tID_PatientID) was used to correlate with the other clinical tables. For each fracture
of the participant during the follow-up period, we recorded the site of fracture (FxSite),
date of fracture (FxDate), fracture time since enrollment (FxWithinTimeFromBaseline),
fragility fracture or not (IsFragility), major fragility fracture or not (IsMoF), previous
fracture information before enrollment (IsPrevalent), and previous fracture information
before the recorded fracture during the follow-up period (HasPreFx).

Table 6.7 Clinical data in the fracture information table.

CohortID_PatientID FxSite FxDate FxWithinTimeFromBaseline
IsFragility IsMoF IsPrevalent HasPreFx

3. BMD information table

The BMD scores of each participant were organized at the BMD information table
(Table 6.8). We used the CohortID_PatientID as the keyword to connect with the
other tables. The VisitTag indicated whether the BMD was measured at enrollment
(recorded as "baseline") or during the follow-up period (recorded as "follow-up"), and
the MeasurementDate indicated the measurement time. The femoral neck BMD T-
score(TscoreFN), spine BMD T-score (TscoreSpine), hip BMD T-score (TscoreHip),
and other BMD scores (TBS ∼ RadUltradistalBMD) were recorded at the BMD
information table. The femoral neck BMD T-score(TscoreFN) was the main clinical
factor for bone health analysis and was used for comparison with the proposed model
in the following section.
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Table 6.8 Clinical data in the BMD information table.

CohortID_PatientID VisitTag MeasurementDate TscoreFN
TscoreSpine TscoreHip TBS SpineBMD
FemNeckBMD TotHipBMD Rad13dBMD RadUltradistalBMD

4. FRAX information table

The FRAX scores of each participant were collected at the FRAX information table
(Table 6.9). The CohortID_PatientID, VisitTag, and MeasurementDate had a similar
meaning with the BMD information table. The FRAX scores, such as FraxMajorBMD,
FraxHipBMD, and the other FRAX scores, were listed in the FRAX information table.
FraxMajorBMD was compared with the proposed model in the following sections due
to its wide usage in the clinical environment.

Table 6.9 Clinical data in the FRAX information table.

CohortID_PatientID VisitTag MeasurementDate FraxMajorBMD
FraxHipBMD FraxMOF FraxHip FraxBMDTBSMof
FraxBMDTBSHip

5. Miscellaneous information table

Some clinical items were not recorded in all cohorts, such as the BMI, medical
treatment details, and other unused bone measurements like ScancoD100. We listed
them in the miscellaneous information table, as depicted in Table 6.10.

Table 6.10 Clinical data in the miscellaneous information table.

CohortID_PatientID VisitTag BMI MHTorTibolonTreated
TreatedClass ScancoD100 ScancoDcomp ScancoCtPo
ScancoDtrab ScancoBVTV StraxSPS StraxSTS
StraxSFS

Finally, the clinical raw data were formatted as structured data in the above six
tables. The structured data in the participant information table, fracture information
table, BMD information table, and Fracture information table were used for the data
selection, development and training of the deep learning model, and results evaluation
in the following sections.
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6.2.3 Wrist CT Raw Data Processing

Except for the clinical data, the wrist CT data was another type of raw data collected
in the three cohorts. The wrist CT was scanned at each participant’s enrollment
in the OFELY cohort and the participant’s enrollment and follow-up period in the
QUALYOR and GERICO cohort. In the following sections, we used the baseline CT
to indicate the CT scan at enrollment and the follow-up CT to indicate the CT scan
at the follow-up duration.

Both the baseline CT and follow-up CT were in the Dicom data format, which con-
tained the CT header and CT image data. The CT header contained the participant’s
information, scanning information, and the scanning machine parameter. The CT
image data was stored as a data block, and the slice images could be extracted from it.
Since the CT scans of the three cohorts were scanned on different machines, a phantom
calibration procedure was performed to place the CT data of the three cohorts in the
same distribution, and the phantom calibration file was stored in a calibration table.

We first extracted the CT header from the CT data and extracted the calibration
parameter from the calibration file. The extracted information was used to create a
scan information table to connect with the structured clinical data in the previous
section. For the CT image data, we extracted the slice images of each CT scan and
generated the instance segmentation map of each slice image.

Scan Info Table Generation from the CT Header and Calibration File

The CT header stored the raw data of participant’s information, the scanning informa-
tion, and the scanner information as depicted in Table 6.11. The pat_id indicated the
participant’s ID. The scan_id was the unique scan ID of each wrist CT, and scan_date
was the scanning time. The slice number of each wrist CT, voxel size, and slice size
were stored at total_slice_count, voxel_size, dimension_x, and dimension_y.

The calibration table included wrist CT file name, calibration slope, and calibration
intercept. We used the CT file name as a keyword to link the calibration slope and
intercept with the CT header table. The useful information from the CT header and
the calibration table made up a scan info table, as depicted in Table 6.12.



6.2 Structured Clinical Database Construction 107

Table 6.11 Data stored in the CT header.

scan_name scan_type scan_id scan_site_id
total_slice_count slice_index dimension_x scan_date
voxel_size manufacturer pat_no meas_no
is_discarded dimension_y pat_id workflow_type

Table 6.12 Scan data stored at the scan information table.

CohortID_PatientID ScanName ScanSite ScanDate
VisitTag ScannerManufacture ScannerSite ScannerMachineID
Slope Intercept

CohortID_PatientID was used to link with the other clinical tables. The VisitTag
indicated whether the scan was a baseline scan or a follow-up scan, calculated according
to the ScanDate value in this scan info table (Table 6.12) and the EnrollmentDate in
the participant information table (Table 6.6). The ScanSite was the scanning part,
and the ScannerSite was the scanner location. The Slope and Intercept were used to
calibrate the data scanned by different machines using the Eq. 6.1.

Calibrated_pixel_value = Pixel_value− Intercept

Slope
(6.1)

Anatomical Segmentation of CT Data

Each wrist CT contained 110 slices with the slice resolution of 1536× 1536. The slices
of each wrist CT were extracted from the Dicom data block first. The examples from
the OFELY, QUALYOR, and GERICO cohorts were listed in Fig. 6.1.

We used the U-net model trained in Chapter 4 for the instance segmentation of
the wrist CT. The segmentation mask containing the radius, ulna, muscle, cast holder,
and background were generated on all wrist CT scans. Fig. 6.2 depicted several
segmentation results. To check the segmentation results, we generated the stack image
of the segmentation mask and the stack image of CT slices over the axial view by
preserving the maximum pixel value. An overlap image was generated by putting
the stack segmentation mask over the stack slice image. All the segmentation results
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GERICOQUALYOROFELY

Fig. 6.1 Examples of the OFELY, QUALYOR and GERICO cohorts.

were manually checked by verifying the overlap images. The segmentation results
demonstrated high accuracy and could be used for deep learning model development.

6.2.4 The Structured Wrist Database

After processing the clinical raw data and the CT data, we have established a wrist
database with structured clinical information to develop the bone fracture prediction
model to assess bone health. As depicted in Fig. 6.3, the established wrist database
consisted of five clinical information tables, one scan information table, and one wrist
CT scan database. The five clinical information tables and the scan information table
were linked with the CohortID_PatientID and the VisitTag. The CT scans in the CT
database were linked with the scan information table via the ScanName.

Since the women population was more vulnerable to bone fragility fracture, we
focused on the women participants in the three cohorts. In total, there were 2666
women participants and 4768 wrist CT scans in the three cohorts. The five clinical
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information tables of the women participants and the scan information table of the
corresponding wrist CT scans were used to create a new table for the convenience of
the later study. The items in the new table were depicted at Table 6.13.

Fig. 6.2 Examples of the segmentation results.

Table 6.13 contained all the required clinical information and scan information for
the development of the bone fracture prediction model. The other required data can
be calculated from items in Table 6.13. For example, the participant’s age at scanning
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Fig. 6.3 The wrist database structure illustration. The five clinical information tables
and the scan information table can be linked via the CohortID_PatientID and the
VisitTag item. The scan information table use the ScanName to link with the CT scan
database.
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Table 6.13 The clinical information and scan information table of the women partici-
pants.

CohortID_PatientID ScanName ScanSite ScanDate
VisitTag ScanTimeSinceEnroll DOB Gender
EnrollmentDate EnrollmentAge FollowupDuration IsTreated
HasPreFx FxWithinTime IsFragilityFx IsMoF
ScanPath NextFxWithinTime BMD T-score Frax
Slope Intercept

time could be calculated from EnrollmentAge and ScanTimeSinceEnroll. The BMD
T-score indicated the BMD T-score value at the femoral neck, and the Frax denoted
the FRAXMajorBMD value in the clinical usage.

6.3 Data Selection and Method of Bone Fracture

Prediction in Next Five Years

6.3.1 Data Statistics of Age, BMD T-score, FRAX Score,
Fracture and Non-Fracture Number in Different Years

We performed statistics on the data of the three cohorts to better understand the data
distribution for data selection and model development. The total number (indicated
as n under the cohort name), age (average and standard deviation (SD)), femoral neck
BMD T-score (average and SD), FRAX score (average and SD), follow-up duration
of participants (average and SD) in all cohorts and each cohort were listed at Table
6.14. The age of participants was around 66.11 years old. The femoral neck BMD
T-score and FRAX score demonstrated that the three cohorts covered a wide range of
the population in different bone health conditions. The average duration of follow-up
was around 6.16 years, which was enough for the bone health assessment.

To develop the deep learning model for the bone fracture prediction, we also
calculate the number of participants with bone fracture in different follow-up years.
Table 6.15, Table 6.16, and Table 6.17 listed the number of participants with fracture
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Table 6.14 Statistics of Age, BMD T-score, FRAX, and duration of follow-up of the
cohorts.

All cohorts
(n= 2666)

OFELY,
France
(n = 568)

QUALYOR,
France
(n= 1427)

GERICO,
Switzerland
(n = 671)

Age (years)
(average/SD)

66.1090
(6.4423)

67.9824
(8.5322)

65.8698
(6.7530)

65.0319
(1.4297)

BMD T-score
(average/SD)

-1.5228
(0.7481)

-1.3598
(0.8198)

-1.6999
(0.5293)

-1.2704
(0.9639)

FRAX score
(%) (average/SD)

8.0660
(5.6772)

7.9881
(6.8071)

6.3476
(3.8200)

11.9851
(6.1094)

Duration of follow-up
(years) (average/SD)

6.1628
(2.1146)

8.8210
(1.8288)

5.6735
(1.2853)

4.9532
(1.8622)

from one ∼ ten years, and the number of participants without fracture from one ∼ ten
years.

Table 6.15 listed the total number of participants with bone fracture in different
years. There were 87 fracture cases in the first year of the follow-up period, 93 in the
second year, 73 in the third year, 52 in the fourth year, and 42 in the fifth year. 31, 41,
17, 11, and 12 fracture cases occurred at the sixth, seventh, eighth, ninth, and tenth
year, respectively. Only one fracture case occurred after the tenth year.

Table 6.16 depicted the fracture case number within different follow-up years. There
were 347 fracture cases within the first five years of the follow-up period, and only
113 fractures happened after the first five years. Most of the fractures (75.43% of the
fractures) happened in the first five years.

Table 6.17 listed the number of cases without fracture within different follow-up
years after the scanning. 3694, 3552, 2444, 2058 cases did not fracture until the first,
second, third, and fourth year ended after scanning. There were 1753 cases that were
fracture free until the fifth year after scanning. With the follow-up period growing,
the cases without fracture decreased quickly due to the ending of follow-up or bone
fracture. 1664, 452, 391, 301, and 70 cases had no fracture until the sixth, seventh,
eighth, ninth, and tenth year ended after scanning.
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Table 6.15 Statistics of fracture number in different follow-up years.

Fragility fracture
within

OFELY QUALYOR GERICO Total

0∼1 year 16 53 18 87
1∼2 years 15 60 18 93
2∼3 years 11 47 15 73
3∼4 years 15 24 13 52
4∼5 years 7 22 13 42
5∼6 years 9 19 3 31
6∼7 years 20 13 8 41
7∼8 years 14 1 2 17
8∼9 years 11 0 0 11
9∼10 years 12 0 0 12
10 years∼
follow-up ends

1 0 0 1

Table 6.16 Statistics of fracture number within different follow-up years.

Fragility fracture
within

OFELY QUALYOR GERICO Total

0∼1 year 16 53 18 87
0∼2 years 31 113 36 180
0∼3 years 42 160 51 253
0∼4 years 57 184 64 305
0∼5 years 64 206 77 347
0∼6 years 73 225 80 378
0∼7 years 93 238 88 419
0∼8 years 107 239 90 436
0∼9 years 118 239 90 447
0∼10 years 130 239 90 459
0∼ follow-up
ends

131 239 90 460



114 Bone Health Analysis via Bone Fracture Prediction using Wrist CT

Table 6.17 Statistics of no-fracture number within different follow-up years.

No-fracture
within

OFELY QUALYOR GERICO Total

1 year 548 2286 860 3694
2 years 531 2182 839 3552
3 years 515 1278 651 2444
4 years 491 1189 378 2058
5 years 462 981 310 1753
6 years 450 956 258 1664
7 years 420 4 28 452
8 years 391 0 0 391
9 years 301 0 0 301
10 years 70 0 0 70

6.3.2 Data Selection According to Five Year Selection Criteria

The data selection was crucial to the model training. Enough positive cases (fracture
cases) and negative cases (cases without fracture until the target follow-up period
ends) should be selected for the model training according to the data selection criteria.
Table 6.16, and Table 6.17 indicated that with the follow-up period extended, the
fracture cases increased and no-fracture cases decreased. In order to get enough positive
and negative data, we selected the scans which had fractures within five years after
scanning as the positive cases and the scans which had no fracture for at least five
years after scanning as the negative cases. In this way, we have selected 347 positive
cases and 1753 negative cases. The statistics of the case number in different cohorts in
the selected data were depicted in Table 6.18.

In total, 2100 cases were selected. For the positive cases, 64 scans were from the
OFELY cohort, 206 scans were from the QUALYOR cohort, and 77 wrist scans were
from the GERICO cohort. Among the 347 positive cases, there were 174 cases with
major fragility fractures. For the negative scans, 462 scans were from the OFELY
cohort, 981 scans were from the QUALYOR cohort, and 360 wrist scans were from the
GERICO cohort.

Table 6.19 investigated the data distribution of the selected data in the three
cohorts, including the age, BMD T-score, and FRAX. The average value and the
standard deviation (SD) of age, BMD T-score, and FRAX were calculated. Since the
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Table 6.18 Statistics of case number in different cohorts in the selected data with five
year as data select criteria.

All
cohorts

OFELY,
France

QUALYOR,
France

GERICO,
Switzerland

Total case number 2100 526 1187 387
Negative case number (no
fracture for at least five years
after scanning)

1753 462 981 310

Positive case number
(fragility fractures within five
years after scanning)

347 64 206 77

Positive case number (major
fragility fractures within five
years after scanning)

174 42 121 11

BMD T-score or FRAX value of some cases was missing during data collection, the
total number of cases with recorded BMD T-score or FRAX were also calculated. Table
6.19 revealed that the age, BMD T-score, and FRAX values were different among the
different cohorts, which indicated that the data distributions of the three cohorts were
not identical. Therefore, we could not use one or two cohorts as training and test the
model on the others. Instead, we mixed the three cohorts for the model development
and evaluation in the following sections.

6.3.3 Method of Multi-Task Based Bone Fracture Prediction
in Next Five Years

The multi-task learning strategy could extract more discriminative features and both
the age and the maximum non-fracture year were highly correlated with the occurrence
of bone fracture. With the age growing, the bone would lose gradually and if the
non-fracture year was short, the bone loss would be more severe. Inspired by the
multi-task learning, we modified the Densenet model [61] for the fragility fracture
prediction and proposed a multi-task based bone fracture prediction framework as
depicted in Fig. 6.4.

As shown in Fig. 6.4, the structure of the fracture prediction model was based on
the DenseNet121 [61] model. The input was 110 CT scan slices after preprocessing to
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Table 6.19 Statistics on age, BMD T-score and FRAX of the selected data according
to the five-year criteria.

Age
(average/
SD/
case number)

BMD T-score
(average/
SD/
case number)

FRAX
(average/
SD/
case number)

All participants Fracture
68.65170
(7.3828)
347

-1.7556
(0.6881)
320

9.8327
(7.3489)
260

Non-
fracture

65.6169
(6.3426)
1753

-1.5119
(0.7231)
1749

7.4476
(5.2817)
1745

OFELY Fracture
72.1719
(8.6015)
64

-1.7373
(0.7899)
64

11.6625
(7.8863)
64

Non-
fracture

66.7316
(7.9811)
462

-1.2821
(0.8076)
458

7.0387
(5.7530)
457

QUALYOR Fracture
68.4135
(7.8024)
206

-1.8260
(0.5109)
206

7.1685
(4.5261)
146

Non-
fracture

65.2743
(6.3613)
981

-1.6997
(0.5167)
981

6.1216
(3.6034)
978

GERICO Fracture
66.3632
(2.3618)
77

-1.4887
(1.0314)
50

15.2700
(9.3182)
50

Non-
fracture

65.0394
(1.3937)
310

-1.2572
(0.9415)
310

12.2339
(6.2108)
310
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remove the cast holder, and the DenseNet121 model was used as the backbone for scan
feature extraction. A multi-task learning strategy, which employed the scan feature
to predict the fracture situation of the patient within five years after CT scanning,
predict the age of the patient at scanning date, and the longest bone health year
(non-fracture year, i.e., how many years would the patient stay healthy without fracture
during the following up period) was applied to train the fracture prediction model.
The preprocessing of input CT slice data, the data augmentation for model training,
and transfer learning for model training were described in the following sections.

CT Slice Preprocessing

Fig. 6.4 Model structure of the fracture prediction model. The 110 scan slices were
the input and only the wrist parts including the muscle, radius, and ulna have been
used as input while the cast holder was removed. The DenseNet121 was used as the
backbone and the output feature after the global average pool was a 256-dimension
feature. A multi-task learning model used the 256-dimension feature for age prediction,
fracture prediction and longest bone health year (non-fracture year) prediction.

The wrist CT consisted of muscle, radius bone, ulna bone, cast, and background.
The cast was made of carbon fiber which was used to hold the wrist during scanning.

1 x 1 Convolution 2 x 2 Average Pool, stride 2 Fully Connected

Dense Block with [6, 12, 24, 16] layers in the four dense bloacks respectively, each layer consists of 1 x 1 convolution 
and 3 x 3 convolution.

Softmax3 x 3 Max Pool, stride 27 x 7 Convolution, stride 2 Global Average Pool

Dense Block 1 Dense Block 2 Dense Block 3 Dense Block 4 
scan slices

Age

Fracture 

Non-
fracture
year
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The pixel value of the cast part was within the same range as the muscle part in the
CT slice. We have used the U-net model to generate the segmentation mask of the
wrist slice during the database construction. The cast parts were removed in the 110
input slices using the segmentation map from the U-Net model. The size of the original
CT slice was 1536 × 1536, while the wrist part only occupied part of the slice. We
cropped a patch of size 840 around the wrist part to increase the wrist part ratio in
the input slices. Since the parameter of CT value was not the same in different CT
machines, the intercept and slope value of the CT scan was used to calibrate the pixel
value as Eq. 6.1.

Data Augmentation

Data augmentation was widely used to avoid overfitting and train a more robust
neural network model. The CNN model could be more invariant to rotation, scaling,
and translation after the data augmentation. For the proposed fracture prediction
model, the bone shape should be preserved to keep the bone microstructure after
the data augmentation. Only the random rotation, random horizontal flipping, and
random brightness augmentation have been performed on the input slices. The rotation
(rotation degree change between -30 and 30 degrees) and brightness augmentation
(pixel value change between -50 and 50) were within a limited range to keep the wrist
CT structure. The 110 slices in the same wrist CT scan were augmented via the same
parameter. The wrist part was put in the central area of the CT slices after data
augmentation. During the testing, the scan without data augmentation was used.

Transfer Learning and Model Training

The pre-trained models from large image datasets have learned a good representation
of the images and could extract discriminative image features than the randomly
initialized models. Transfer learning has been proven as an efficient way to train a
deep neural network model by finetuning the pre-trained models. The model could
converge quickly in a new image dataset by transfer learning, which was suitable for
the medical image tasks.
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We employed the DenseNet121 as the backbone for the fracture prediction task.
The DenseNet used the dense connection between layers and achieved better feature use
efficiency with fewer parameters. The first layer has a 110-dimension input instead of
three in the original DenseNet model. We add a transition layer using 1×1 convolution
after the last dense block of DenseNet to reduce the feature dimension from 1024 to 256
to extract a compact feature. A multi-task learning strategy was used to achieve more
robust features. The extracted feature was utilized to predict the fracture situation
of the scan within five years during the follow-up period, the age of the participant
at the time of the CT scanning, and the longest healthy time of the patient without
any bone fracture from the scanning time. The cross-entropy loss was used as the
fracture situation prediction loss; the mean squared error (MSE) loss was used as the
loss for both age prediction and non-fracture year prediction. L1 regularization was
performed on the weights of the classification layer to reduce overfitting. The model
was optimized by ADAM optimizer using the four losses with weight one on the first
three losses and 0.01 on the L1 regularization loss. The learning rate was set as 5e-6
for the DenseNet backbone and 5e-5 for the other layers, including the transition layer
and the three multi-learning branches. Pytorch was utilized to implement the model.

During training, the model weights were initialized based on the model trained on
the ImageNet dataset [198]. The selected wrist data as shown in Fig. 6.18 was divided
into training, validation, and testing with a split ratio of 6:2:2. To reduce the data
noise and achieve more stable results, we trained four models based on the different
selections of the training and validation set. During the testing, the output of the bone
health score was calculated based on the average output of the four models. The model
was trained on the NVIDIA GeForce GTX 1080Ti GPU using the ADAM optimization
method [199].
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6.4 Results

6.4.1 Evaluation of the Proposed Model

The fragility fracture prediction DL model was evaluated on the testing dataset with
422 scans. We compared the result with the BMD T-score and FRAX. Since the BMD
T-score and FRAX on some scans were missing, we only calculated the results of our
model with the data with BMD T-score or FRAX during the comparison with BMD
T-score or FRAX. Major fragility fracture was a more severe fragility fracture and
would increase the death risk significantly. The major fragility fracture prediction
result was also assessed. We also calculated the results of our model on population
above 70 years old and above 65 years old. The population over 70 or 65 years old had
more fracture risk than other groups. Both the fragility fracture and major fragility
fracture were calculated.

The area under the receiver operator characteristic (ROC) curve (AUC) was used
to measure the performance of the proposed model. The AUC number indicated the
ability of fragility fracture prediction, and the higher the AUC, the better the model
was at disguising the bone with a high chance of the occurrence of fragility fracture.
The 95% confidence interval (CI) of the AUC was used to better describe the model
performance. The Youden index was derived from the AUC analysis, and the sensitivity
and specificity were also calculated at the Youden index. The Youden index, sensitivity,
and specificity were calculated using a Python script, and the CI values were derived
from the formula in [200].

6.4.2 Our Model Performance on Fragility Fracture Prediction

We have established four datasets with different compositions of selected training and
validation data. The training data, validation number, and the testing number in the
four datasets were as Table 6.20.

Table 6.21 showed the results on the fragility fracture prediction on all ages
population. The AUC, confusion matrix, specificity and sensitivity on threshold 0.5,
Youden index, and specificity and sensitivity on Youden index were calculated. The
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Table 6.20 Data number in the four datasets.

Data
selection set

Train set
number, Total,
neg : pos

Validation set
number

Test set number,
Total, neg : pos

1 1259, 1051 : 208 419, 350 : 69

422, 352 : 702 1256, 1050 : 206 422, 351 : 71
3 1259, 1051 : 208 419, 350 : 69
4 1260, 1051 : 209 418, 350 : 68

proposed model achieved high AUC value of 77.48% (95% CI: 70.74% ∼ 84.22%). The
specificity and sensitivity on the threshold of 0.5 were 76.14% and 62.86%. The Youden
index was calculated from the ROC curve and was usually used for medical analysis.
The Youden index on the proposed ensemble model, which used the average outputs
of the model from dataset one ∼ four, was 0.4867, and specificity and sensitivity on
the threshold of Youden index were 71.31% and 75.71%. However, the Youden indices
were different among the models from dataset one ∼ four. Therefore, it was not an
optimal choice to select the Youden index for the clinical analysis. Instead, we chose
the fixed threshold of 0.5 as the clinical index for the bone health analysis in the
following sections.

Table 6.22 showed the result comparison with BMD T-score. There were 352
negative cases, 70 positive cases in the test set. However, the BMD T-score of some
participants was not recorded during data collection. Therefore, we only compared the
model performance with participants with BMD T-score recorded. In total, there were
350 negative cases and 64 positive cases in comparison with BMD T-score. The AUC
of the proposed model was 76.77%, while the AUC of BMD T-score was 53.70%. The
proposed model gained an improvement of 23.07% compared with BMD T-score.

Similar to the comparison with the BMD T-score, the FRAX scores of some
participants were not recorded. In total, there were 350 negative cases, 54 positive
cases with FRAX score recorded in the test set. Table 6.23 showed the result comparison
with FRAX. Only the data with FRAX were considered in the experiment, and the
proposed model (AUC: 73.32%) outperformed the FRAX index (AUC: 60.00%) by
13.32%. Since the FRAX index used the clinical information, such as height, weight,
fracture history, and medical treatment during analysis, while the proposed model only
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Table 6.21 Fragility fracture prediction results on data of all ages.

Results AUC (%)
(95% CI)

Confusion
matrix on
clinical
index 0.5

Specificity
(TNR)/
Sensitiv-
ity(TPR) on
clinical index
of 0.5 (%)

Youden
index

Specificity
(TNR)/
Sensitiv-
ity(TPR) on
Youden
index (%)

dataset 1 72.17
(65.02
∼79.31)

[191 161]
[ 16 54]

54.26 /
77.14

0.519 64.49 /
72.86

dataset 2 75.24
(68.31
∼82.17)

[296 56]
[ 36 34]

84.09 /
48.57

0.4521 62.50 /
80.00

dataset 3 72.21
(65.07
∼79.36)

[237 115]
[ 23 47]

67.33 /
67.14

0.5254 71.31 /
65.71

dataset 4 71.75
(64.58
∼78.93)

[279 73]
[ 37 33]

79.26 /
47.14

0.4545 63.35 /
70.00

Ensemble
model

77.48
(70.74
∼84.22)

[268 84]
[ 26 44]

76.14 /
62.86

0.4867 71.31 /
75.71

Table 6.22 Fragility fracture prediction results on data of all ages with BMD T-score
recorded.

Testing
number
with
BMD
T-score
recorded,
total, neg
: pos

Proposed
model
AUC (%)
(95% CI)

Confusion
matrix on
clinical
index 0.5

Specificity
(TNR)/
Sensitiv-
ity(TPR)
on clinical
index of
0.5 (%)

BMD
T-score
AUC (%)
(95% CI)

Confusion
matrix on
BMD
T-score of
-2.5

Specificity
(TNR)/
Sensitiv-
ity(TPR)
on BMD
T-score of
-2.5 (%)

414, 350 :
64

76.77
(69.68
∼83.86)

[266 84]
[ 24 40]

76.00 /
62.50

53.70
(45.89
∼61.50)

[331 19]
[ 58 6]

94.57 /
9.38
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used the wrist CT scan only, the results revealed that the proposed model was better
than the FRAX index even without the consideration of the clinical information.

Table 6.23 Fragility fracture prediction results on data of all ages with FRAX index
recorded.

Testing
number
with
FRAX
recorded,
total, neg
: pos

Proposed
model
AUC (%)
(95% CI)

Confusion
matrix on
clinical
index 0.5

Specificity
(TNR)/
Sensitiv-
ity(TPR)
on clinical
index of
0.5 (%)

FRAX
AUC (%)
(95% CI)

Confusion
matrix on
FRAX of
20

Specificity
(TNR)/
Sensitiv-
ity(TPR)
on FRAX
of 20 (%)

404, 350 :
54

73.32
(65.35
∼81.29)

[266 84]
[ 23 31]

76.00 /
57.41

60.00
(51.53
∼68.47)

[336 14]
[ 49 5]

96.00 /
9.26

6.4.3 Results of Major Fragility Fracture Prediction on All
Ages

Table 6.24 showed the result on the major fracture prediction on all ages population.
The AUC of the proposed model was 74.62% on major fracture prediction of all ages.
We also compared the result with the BMD (Table 6.25) or FRAX (Table 6.26) with
the scans have BMD T-score or FRAX. When only the data with BMD T-score were
considered, the proposed model (AUC: 74.66%) gained an improvement of 15.19%
compared with BMD T-score (AUC: 59.47%). When only the data with FRAX score
were considered, the proposed model (AUC: 69.08%) gained an improvement of 11.88%
compared with FRAX score (AUC: 57.20%).

Table 6.24 Major fragility fracture prediction results on data of all ages.

Testing number,
total, neg : pos

Proposed model
AUC (%) (95%
CI)

Confusion matrix
on clinical index
0.5

Specificity (TNR)/
Sensitivity(TPR) on
clinical index of 0.5
(%)

383, 352 : 31 74.62
(64.39 ∼84.86)

[268 84]
[ 13 18]

76.14 /
58.06
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Table 6.25 Major Fragility fracture prediction results on data of all ages with BMD
T-score recorded.

Testing
number
with
BMD
recorded,
total, neg
: pos

Proposed
model
AUC (%)
(95% CI)

Confusion
matrix on
clinical
index 0.5

Specificity
(TNR)/
Sensitiv-
ity(TPR)
on clinical
index of
0.5 (%)

BMD
T-score
AUC (%)
(95% CI)

Confusion
matrix on
BMD
T-score of
-2.5

Specificity
(TNR)/
Sensitiv-
ity(TPR)
on BMD
T-score of
-2.5 (%)

381, 350 :
31

74.66
(64.43
∼84.89)

[266 84]
[ 13 18]

76.00 /
58.06

59.47
(48.55
∼70.39)

[331 19]
[ 27 4]

94.57 /
12.90

Table 6.26 Major fragility fracture prediction results on data of all ages with FRAX
index recorded.

Testing
number
with
FRAX
recorded,
total, neg
: pos

Proposed
model
AUC (%)
(95% CI)

Confusion
matrix on
clinical
index 0.5

Specificity
(TNR)/
Sensitiv-
ity(TPR)
on clinical
index of
0.5 (%)

FRAX
AUC (%)
(95% CI)

Confusion
matrix on
FRAX of
20

Specificity
(TNR)/
Sensitiv-
ity(TPR)
on FRAX
of 20 (%)

374 350 :
24

69.08
(57.02
∼81.15)

[266 84]
[ 12 12]

76.00 /
50.00

57.20
(44.91
∼69.49)

[336 14]
[ 22 2]

96.00 /
8.33
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6.4.4 Results of Fragility Fracture Prediction on Ages > 65

Table 6.27 showed the result on the fragility fracture prediction on ages > 65 population.
The proposed model achieved an AUC of 76.65% on fragility fracture prediction on the
population > 65 years old. We also compared the results with the BMD T-score (Table
6.28) or FRAX (Table 6.29) with the scans have BMD T-score / FRAX. The proposed
model outperformed the BMD T-score by 22.99% and outperformed the FRAX index
by 11.99%.

Table 6.27 Fragility fracture prediction results on data of ages > 65.

Testing number,
total, neg : pos

Proposed model
AUC (%) (95%
CI)

Confusion matrix
on clinical index
0.5

Specificity (TNR)/
Sensitivity(TPR) on
clinical index of 0.5
(%)

236, 186 : 50 76.65
(68.46 ∼ 84.83)

[130 56]
[ 15 35]

69.89 /
70.00

Table 6.28 Fragility fracture prediction results on data of ages > 65 with BMD T-score
recorded.

Testing
number
with
BMD
recorded,
total, neg
: pos

Proposed
model
AUC (%)
(95% CI)

Confusion
matrix on
clinical
index 0.5

Specificity
(TNR)/
Sensitiv-
ity(TPR)
on clinical
index of
0.5 (%)

BMD
T-score
AUC (%)
(95% CI)

Confusion
matrix on
BMD
T-score of
-2.5

Specificity
(TNR)/
Sensitiv-
ity(TPR)
on BMD
T-score of
-2.5 (%)

228, 184 :
44

76.11
(67.38
∼84.84)

[128 56]
[ 13 31]

69.57 /
70.45

53.12
(43.51
∼62.73)

[174 10]
[ 39 5]

94.57 /
11.36

6.4.5 Results of Major Fragility Fracture Prediction on Ages
> 65

Table 6.30 demonstrated the result on the major fracture prediction on ages > 65
population. The AUC of the proposed value was 75.05%. We also compared the
result with the BMD T-score (Table 6.31) or FRAX (Table 6.32) with the scans had
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Table 6.29 Fragility fracture prediction results on data of ages > 65 with FRAX index
recorded.

Testing
number
with
FRAX
recorded,
total, neg
: pos

Proposed
model
AUC (%)
(95% CI)

Confusion
matrix on
clinical
index 0.5

Specificity
(TNR)/
Sensitiv-
ity(TPR)
on clinical
index of
0.5 (%)

FRAX
AUC (%)
(95% CI)

Confusion
matrix on
FRAX of
20

Specificity
(TNR)/
Sensitiv-
ity(TPR)
on FRAX
of 20 (%)

218,
184:34

71.10
(60.78
∼81.42)

[128 56]
[ 12 22]

69.57 /
64.71

59.11
(48.31
∼69.91)

[172 12]
[ 29 5]

93.48 /
14.71

BMD T-score or FRAX. Compared with BMD T-score, the proposed model gained
an improvement of 17.46%, and compared with the FRAX index, the proposed model
achieved an improvement of 8.93%.

Table 6.30 Major fragility fracture prediction results on data of ages > 65.

Testing number,
total, neg : pos

Proposed model
AUC (%) (95%
CI)

Confusion matrix
on clinical index
0.5

Specificity (TNR)/
Sensitivity(TPR) on
clinical index of 0.5
(%)

208, 186 : 22 75.05
(62.86 ∼87.24)

[130 56]
[ 7 15]

69.89 /
68.18

6.4.6 Results of Fragility Fracture Prediction on Ages > 70

Table 6.33 showed the result on the fracture prediction on ages > 70 population. The
proposed model’s AUC performance was 77.46% on fragility fracture prediction on
population > 70 years old. We also compared the result with the BMD (Table 6.34)or
FRAX (Table 6.35) with the scans contained BMD T-score / FRAX. The proposed
model outperformed the BMD T-score by 20.69% and outperformed the FRAX index
by 5.92%.
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Table 6.31 Major fragility fracture prediction results on data of ages > 65 with BMD
T-score recorded.

Testing
number
with
BMD
recorded,
total, neg
: pos

Proposed
model
AUC (%)
(95% CI)

Confusion
matrix on
clinical
index 0.5

Specificity
(TNR)/
Sensitiv-
ity(TPR)
on clinical
index of
0.5 (%)

BMD
T-score
AUC (%)
(95% CI)

confusion
matrix on
BMD
T-score of
-2.5

Specificity
(TNR)/
Sensitiv-
ity(TPR)
on BMD
T-score of
-2.5 (%)

206, 184 :
22

75.02
(62.83
∼87.22)

[128 56]
[ 7 15]

69.57 /
68.18

57.56
(44.45
∼70.67)

[174 10]
[ 18 4]

94.57 /
18.18

Table 6.32 Major fragility fracture prediction results on data of ages > 65 with FRAX
index recorded.

Testing
number
with
FRAX
recorded,
total, neg
: pos

Proposed
model
AUC (%)
(95% CI)

Confusion
matrix on
clinical
index 0.5

Specificity
(TNR)/
Sensitiv-
ity(TPR)
on clinical
index of
0.5 (%)

FRAX
AUC (%)
(95% CI)

Confusion
matrix on
FRAX of
20

Specificity
(TNR)/
Sensitiv-
ity(TPR)
on FRAX
of 20 (%)

199,
184:15

67.64
(52.20
∼83.09)

[128 56]
[ 6 9]

69.57 /
60.00

58.71
(43.04
∼74.38)

[172 12]
[ 13 2]

93.48 /
13.33

Table 6.33 Fragility fracture prediction results on data of ages > 70.

Testing number,
total, neg : pos

Proposed model
AUC (%) (95%
CI)

Confusion matrix
on clinical index
0.5

Specificity (TNR)/
Sensitivity(TPR) on
clinical index of 0.5
(%)

96, 71 : 25 77.46
(65.81 ∼89.12)

[46 25]
[ 7 18]

64.79 /
72.00
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Table 6.34 Fragility fracture prediction results on data of ages > 70 with BMD T-score
recorded.

Testing
number
with
BMD
recorded,
total, neg
: pos

Proposed
model
AUC (%)
(95% CI)

Confusion
matrix on
clinical
index 0.5

Specificity
(TNR)/
Sensitiv-
ity(TPR)
on clinical
index of
0.5 (%)

BMD
T-score
AUC (%)
(95% CI)

Confusion
matrix on
BMD
T-score of
-2.5

Specificity
(TNR)/
Sensitiv-
ity(TPR)
on BMD
T-score of
-2.5 (%)

93, 70 :
23

77.83
(65.79
∼89.86)

[45 25]
[ 6 17]

64.29 /
73.91

57.14
(43.32
∼70.96)

[66 4]
[19 4]

94.29 /
17.39

Table 6.35 Fragility fracture prediction results on data of ages > 70 with FRAX index
recorded.

Testing
number
with
FRAX
recorded,
total, neg
: pos

Proposed
model
AUC (%)
(95% CI)

Confusion
matrix on
clinical
index 0.5

Specificity
(TNR)/
Sensitiv-
ity(TPR)
on clinical
index of
0.5 (%)

FRAX
AUC (%)
(95% CI)

Confusion
matrix on
FRAX of
20

Specificity
(TNR)/
Sensitiv-
ity(TPR)
on FRAX
of 20 (%)

87, 70:17 73.36
(58.81
∼87.91)

[45 25]
[ 5 12]

64.29 /
70.59

67.44
(52.21
∼82.67)

[65 5]
[12 5]

92.86 /
29.41
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6.4.7 Results of Major Fragility Fracture Prediction on Ages
> 70

Table 6.36 showed the result on the major fracture prediction on ages > 70 population.
The AUC of the proposed method was 77.57%. We also compared the result with
the BMD T-score (Table 6.37) or FRAX (Table 6.38) with the scans had BMD T-
score or FRAX index. Compared with BMD T-score, the proposed model gained an
improvement of 19.56%, and compared with the FRAX index, the proposed model
achieved an improvement of 10.15%.

Table 6.36 Major fragility fracture prediction results on data of ages > 70.

Testing number,
total, neg : pos

Proposed model
AUC (%) (95%
CI)

Confusion matrix
on clinical index
0.5

Specificity (TNR)/
Sensitivity(TPR) on
clinical index of 0.5
(%)

84, 71 : 13 77.57 (61.93
∼93.21)

[46 25]
[ 4 9]

64.79 /
69.23

Table 6.37 Major fragility fracture prediction results on data of ages > 70 with BMD
T-score recorded.

Testing
number
with
BMD
recorded,
total, neg
: pos

Proposed
model
AUC (%)
(95% CI)

Confusion
matrix on
clinical
index 0.5

Specificity
(TNR)/
Sensitiv-
ity(TPR)
on clinical
index of
0.5 (%)

BMD
T-score
AUC (%)
(95% CI)

Confusion
matrix on
BMD
T-score of
-2.5

Specificity
(TNR)/
Sensitiv-
ity(TPR)
on BMD
T-score of
-2.5 (%)

83, 70:13 77.47
(61.80
∼93.14)

[45 25]
[ 4 9]

64.29 /
69.23

57.91
(40.38
∼75.44)

[66 4]
[10 3]

94.29 /
23.08
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Table 6.38 Major fragility fracture prediction results on data of ages > 70 with FRAX
index recorded.

Testing
number
with
FRAX
recorded,
total, neg
: pos

Proposed
model
AUC (%)
(95% CI)

Confusion
matrix on
clinical
index 0.5

Specificity
(TNR)/
Sensitiv-
ity(TPR)
on clinical
index of
0.5 (%)

FRAX
AUC (%)
(95% CI)

Confusion
matrix on
FRAX of
20

Specificity
(TNR)/
Sensitiv-
ity(TPR)
on FRAX
of 20 (%)

79, 70 : 9 73.17
(53.65
∼92.70)

[45 25]
[ 3 6]

64.29 /
66.67

63.02
(42.43
∼83.61)

[65 5]
[ 7 2]

92.86 /
22.22

6.4.8 Results Comparison of Models using Different Wrist
Parts as Input on Fragility Fracture Prediction on All
Ages

We also trained the fragility fracture prediction model using the radius part, ulna part,
and muscle part as input, respectively. The outputs of the model via radius, model via
ulna, and model via muscle were average as another ensemble model. We compared the
results on fragility fracture prediction of the model via radius, model via ulna, model
via muscle, model by averaging the output of the above three models, and the proposed
model. Table 6.39 listed the results, and the results revealed that the proposed model
achieved the best AUC compared with the other four models. This indicated that the
radius, ulna, and muscle were both important for predicting bone fracture.

6.4.9 Results of Prediction of Age and Longest Health Year
before the Bone Fragility Fracture and Results using
other Deep Learning Models

The proposed model was also used to predict age and the participant’s longest health
year before the bone fragility fracture. The mean absolute error of age prediction
was 4.71, and the mean absolute error of the predicted longest health year before the
bone fragility fracture was 4.22. The doctors could use these information during the
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Table 6.39 Comparison of models using different CT parts as input on fragility fracture
prediction on all ages.

Model AUC (%)
(95% CI)

Confusion matrix
on clinical index
0.5

Specificity
(TNR)/
Sensitivity(TPR)
on clinical index
of 0.5 (%)

Radius 72.60
(65.48 ∼79.72)

[215 137]
[ 19 51]

61.08
/ 72.86

Ulna 68.39
(61.04 ∼75.74)

[240 112]
[ 32 38]

68.18
/ 54.29

Muscle 69.28
(61.97 ∼76.58)

[247 105]
[ 30 40]

70.17
/ 57.14

Average of output of
Radius, Ulna, and Muscle
model

77.05
(70.28 ∼83.83)

[260 92]
[ 23 47]

73.86
/ 67.14

Proposed model 77.48
(70.74 ∼84.22)

[268 84]
[ 26 44]

76.14
/ 62.86

diagnosis. We also compared the performance between different deep learning models,
such as DenseNet, ResNet, VGGNet, and GoogLeNet, on fragility fracture prediction
task during the model backbone selection. Since each scan contained 110 slices and
the data size was more than 500 MB, reading data from disk consumed a lot of time
during training. We used the average axil-view value of the 110 slices as input to save
training time during model selection. Table 6.40 listed the results of the above models.
The results indicated that DenseNet could use the model parameters more efficiently
for bone fracture prediction. Besides, compared with the results of DenseNet, the
proposed model using multi-task training strategy achieved a better result.

6.4.10 Visualization of Region of Interest for Bone Fracture
Prediction using Heatmap

Understanding where was considered as the most important part for predicting the
bone fracture by the neural network was crucial for the model interpretation. The
Grad-CAM [159] was utilized to generate the heatmap of the model and illustrate the
learning behavior of the model. The CT scan data was fed into the proposed deep
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Table 6.40 Comparison of different deep learning models for fragility fracture prediction
task.

Model AUC (%)
(95% CI)

Model AUC (%)
(95% CI)

VGGNet 72.40
(65.27 ∼79.54)

DenseNet 75.53
(68.62 ∼82.44)

GoogLeNet 73.99
(66.96 ∼81.01)

Proposed model
using average slice

76.25
(69.41 ∼83.10)

ResNet 75.19
(68.26 ∼82.13)

Proposed model
using 110 slices

77.48
(70.74 ∼84.22)

learning model, and a prediction score was generated after the forward propagation.
The gradients of the specified convolutional layer of the predicted class were calculated
through the backpropagation and were then pooled channel-wise. The feature maps of
the targeted convolutional layer were weighted with the corresponding gradients to
yield the heatmap. The background of the CT data was removed, and the prediction
score was weighted to the heatmap to illustrate the decision more clearly. The heatmap
was then overlapped on the CT scan data to interpret the decision of the model. The
brighter the color in the generation map, the greater the possibility of bone fragility
fracture in the next five years. The results were shown in Fig. 6.5 and Fig. 6.6, and the
model put more weight on the radius part when predicting the bone fracture situation.

6.5 Conclusion

This study provided data supporting the hypothesis that the deep learning method had
the ability to predict the fragility fracture. We selected data from three population-
based cohorts and constructed a structured wrist database from the unstructured clinical
data. The wrist scans were used to train and test the proposed model performance.
The results demonstrated the high performance of the deep learning model in the
fragility fracture prediction and major fragility fracture prediction within five years in
different age groups. Moreover, the results showed superior performance in fragility
fracture and major fragility fracture prediction of the deep learning model, compared
with the BMD and FRAX scores that have been widely used in assessing bone health.
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Fig. 6.5 Examples of the heatmaps (part one).
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Fig. 6.6 Examples of the heatmaps (part two).



Chapter 7

Conclusion and Future Work

7.1 Conclusion

As a great medical invention during the past decades, CT has greatly facilitated the
clinical assessment in orthopedics. This thesis focused on the automatic analysis of
bone CT via deep learning methods to assist the medical diagnosis. Bone segmentation
is the fundamental stage to various medical applications, and bone health analysis is
an important part of clinical practice. We conducted several works in the two areas,
including the anatomical segmentation of human foot weight-bearing CBCT scan,
instance segmentation of wrist CT, semi-supervised bone CT segmentation, and bone
health analysis via predicting the fragility fracture at intermediate risk (5-years) using
wrist CT.

Firstly, we focused on the anatomical segmentation of human foot CT scan in
chapter 3. Thirty-one foot bones have been identified using a three-stage framework,
preprocessing, bone region segmentation, and bone pixel classification. The proposed
method could automatically segment the bones from the Dicom CT data, and the
proposed method generated accurate results on foot anatomical segmentation.

Afterward, we worked on another segmentation task, i.e., instance segmentation
of wrist CT in chapter 4. In order to reduce the manual annotation workload, a
semi-automatic method that annotated 5k wrist CT slices by employing the Otsu-
based method and the U-net-based method was proposed. Our method only required
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fewer manual annotations, saved much time, and alleviated the annotation workload
significantly. We also proposed an edge-enhanced segmentation model for the instance
segmentation of wrist CT slice. The proposed model achieved better performance
compared with the U-net model. The training procedure was more stable and was not
vulnerable to over-fitting.

During the studies on foot and wrist CT segmentation, we found manual annotation
was time-consuming and laborious. Therefore, we considered employing the semi-
supervised method to develop a bone segmentation model in chapter 5. We leveraged
the fact that bone had a specific Hounsfield unit compared with the other human parts
and proposed a novel patch-shuffle-based semi-supervised segmentation method for
bone CT segmentation. The proposed method has been evaluated on three different
datasets. The experiment results demonstrated the high effectiveness of the proposed
method on bone CT segmentation.

Finally, we developed a deep learning method to determine bone health by predicting
the fragility fracture at intermediate risk (five-years). We collected data from three
population-based cohorts, and the participants in the three cohorts have been followed
for 6.16 years on average. We constructed a structured wrist database from the
unstructured clinical raw data. The proposed model achieved high AUC values on
predicting the fragility fracture and major fragility fracture in different age groups.
What’s more, the proposed method demonstrated superior performance than the widely
used BMD T-score and FRAX index.

In conclusion, we have developed various deep learning-based methods for bone CT
analysis, including different segmentation and classification tasks. The multi-stage based
methods were widely used in the thesis and achieved remarkable results. For example,
we developed a three-stage based framework for the anatomical segmentation of foot CT
in chapter 3, and a two-branch based method for the annotation of wrist CT in chapter 4.
The multi-stage based framework have greatly reduced the difficulty of the deep learning
model design. The semi-supervised learning has greatly facilitated the deep learning
model development. Both the self-learning based semi-supervised segmentation method
in chapter 4 and the consistency-based semi-supervised segmentation method in chapter
5 have achieved ideal segmentation results and demonstrated the potential to reduce



7.2 Future Work 137

the annotation workload for segmentation tasks. Besides, the bone segmentation is the
fundamental stage to various medical applications. We have used the segmentation
results in chapter 4 as the input for the classification model in chapter 6, which could
help to extract more efficient features by removing irrelevant background areas.

7.2 Future Work

This thesis focused on developing deep learning approaches to analyze bone CT. The
conducted works have demonstrated that deep learning methods could greatly assist
bone CT analysis in clinical treatment. To further design more advanced methods in
this field, the interesting directions for future work are presented as follows.

• The current foot anatomical segmentation model is not an end-to-end framework,
and the time to process one scan would use fifteen minutes. The future work
will aim to propose an end-to-end framework to simplify the framework and
accelerate the processing speed. We will also consider to introduce the long-tail
distribution based classification or segmentation methods to replace the data
sampling methods in the classification model in future work.

• We only consider two bones in the wrist CT data. In the future, it is interesting
to consider more bones in the wrist data, use the semantic edge information
to improve the model performance further, and accelerate the annotation time
through semi-supervised learning methods.

• We used the consistency learning method for the semi-supervised task. In the
future, we could extend our approach to more segmentation tasks and investigate
introducing the pseudo labels to our work.

• The fracture prediction model could identify people at intermediate risk of bone
fracture. In the future, it is valuable to extend the work on imminent risks, such
as one-year or two-year, by exploring a larger population, collecting more data,
and designing 3D models for the fracture prediction on imminent risk.
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