
UNIVERSITY OF TECHNOLOGY SYDNEY

Faculty of Engineering and Information Technology

Context-aware Image Semantic Segmentation

by

Ye Huang

A Thesis Submitted

in Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

Sydney, Australia

2022



ii

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Ye Huang, declare that this thesis, is submitted in fulfilment of the requirements

for the award of Doctor of Philosophy, in the School of Electrical and Data Engi-

neering, Faculty of Engineering and Information Technology at the University of

Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In

addition, I certify that all information sources and literature used are indicated in

the thesis.

This document has not been submitted for qualifications at any other academic

institution.

This research is supported by the Australian Government Research Training Pro-

gram.

Signature:

Date: May-06-2022

Production Note:

Signature removed prior to publication.



ABSTRACT

Context-aware Image Semantic Segmentation

by

Ye Huang

Semantic segmentation is a fundamental task for computer vision applications.

However, the existing solutions have many issues when handling difficult cases. This

thesis develops three novel approaches which have improved the generalization abil-

ity of the existing solutions at significantly reduced computation costs. Extensive

experiments conducted on multiple benchmark datasets have demonstrated the su-

perior performance of the proposed approaches.

Scale-invariant: The state-of-the-art semantic segmentation solutions usually

leverage different receptive fields via multiple parallel branches to handle objects of

different sizes. However, employing separate kernels for individual branches degrades

the generalization of the network to objects with different scales, and the compu-

tational cost increases with the increase of the number of branches. In this thesis,

a novel network structure, namely Kernel-Sharing Atrous Convolution (KSAC), is

proposed, where branches with different receptive fields share the same kernel, i.e.,

letting a single kernel “see” the input feature maps more than once with different

receptive fields.

Seamless dual attention: Spatial and channel attentions, modelling the se-

mantic inter-dependencies in spatial and channel dimensions respectively, have re-

cently been widely used for semantic segmentation. However, computing spatial

attention and channel attention separately sometimes causes errors, especially in

those difficult cases. In this research, a Channelized Axial Attention (CAA) is de-

veloped to seamlessly integrate channel attention and spatial attention into a single

operation with negligible computation overhead. Furthermore, a novel grouped vec-



torization approach is developed to allow the proposed model to run with very little

memory consumption without slowing down the computation.

Class-aware regularization: Recent segmentation methods utilizing class-

level information in addition to pixel features have achieved notable success in

boosting the accuracy of existing network models. However, the extracted class-

level information was simply concatenated to pixel features, without being explicitly

exploited to learn better pixel representation. Moreover, these approaches learn soft

class centers based on coarse mask prediction, which is prone to error accumula-

tion. Motivated by the fact that humans can recognize an object by itself no matter

which other objects it appears with and aiming to use class-level information more

effectively, a universal Class-Aware Regularization (CAR) approach is proposed to

optimize the intra-class variance and inter-class distance during feature learning.

Furthermore, the class center in the proposed approach is directly generated from

ground truth instead of from the error-prone coarse prediction. The proposed CAR

can be easily applied to most existing segmentation models and can largely improve

their accuracy at no additional inference overhead.

Dissertation directed by Prof. Xiangjian He and Dr Wenjing Jia

School of Electrical and Data Engineering
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• OS - Output stride [3]

• FCN - Fully Convolutional Networks [37]

• ASPP - Atrous Spatial Pyramid Pooling [4]

• PPM - Pyramid Pooling module [69]

• FPN - Feature Pyramid Networks [32]

• SA - Self-attention [53]

• ACFNet - Attentional Class Feature Network [64]

• OCR - Object-Contextual Representations [61]

• CPNet - Context Prior Network [60]
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