UNIVERSITY OF TECHNOLOGY SYDNEY Faculty of Engineering and Information Technology

Context-aware Image Semantic Segmentation

by

Ye Huang

A THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

Sydney, Australia

2022

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Ye Huang, declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Electrical and Data Engineering, Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Date: May-06-2022

ABSTRACT

Context-aware Image Semantic Segmentation

by

Ye Huang

Semantic segmentation is a fundamental task for computer vision applications. However, the existing solutions have many issues when handling difficult cases. This thesis develops three novel approaches which have improved the generalization ability of the existing solutions at significantly reduced computation costs. Extensive experiments conducted on multiple benchmark datasets have demonstrated the superior performance of the proposed approaches.

Scale-invariant: The state-of-the-art semantic segmentation solutions usually leverage different receptive fields via multiple parallel branches to handle objects of different sizes. However, employing separate kernels for individual branches degrades the generalization of the network to objects with different scales, and the computational cost increases with the increase of the number of branches. In this thesis, a novel network structure, namely *Kernel-Sharing Atrous Convolution (KSAC)*, is proposed, where branches with different receptive fields share the same kernel, i.e., letting a single kernel "see" the input feature maps more than once with different receptive fields.

Seamless dual attention: Spatial and channel attentions, modelling the semantic inter-dependencies in spatial and channel dimensions respectively, have recently been widely used for semantic segmentation. However, computing spatial attention and channel attention separately sometimes causes errors, especially in those difficult cases. In this research, a Channelized Axial Attention (CAA) is developed to seamlessly *integrate* channel attention and spatial attention into a single operation with negligible computation overhead. Furthermore, a novel grouped vectorization approach is developed to allow the proposed model to run with very little memory consumption without slowing down the computation.

Class-aware regularization: Recent segmentation methods utilizing classlevel information in addition to pixel features have achieved notable success in boosting the accuracy of existing network models. However, the extracted classlevel information was simply concatenated to pixel features, without being explicitly exploited to learn better pixel representation. Moreover, these approaches learn soft class centers based on coarse mask prediction, which is prone to error accumulation. Motivated by the fact that humans can recognize an object by itself no matter which other objects it appears with and aiming to use class-level information more effectively, a universal Class-Aware Regularization (CAR) approach is proposed to optimize the intra-class variance and inter-class distance during feature learning. Furthermore, the class center in the proposed approach is directly generated from ground truth instead of from the error-prone coarse prediction. The proposed CAR can be easily applied to most existing segmentation models and can largely improve their accuracy at no additional inference overhead.

Dissertation directed by Prof. Xiangjian He and Dr Wenjing Jia School of Electrical and Data Engineering

Dedication

Dedicated to my family. Dedicated to the world peace.

Acknowledgements

First and foremost, I would like to acknowledge my supervisors Prof. Xiangjian He and Dr. Wenjing Jia for their continuous and endless supervisions and encouragements.

I would like to thank my lab mates, as well as the Dr. Qingqing Wang, Dr. Yue Xi, Dr. Lei Liu, Dr. Saeed Amirgholipour, Dr Mohammadhesam Hesamian, Zhanzhong Gu, Yuanfang Zhang and Chengpei Xu for their assistance or/and encouragements.

I also would like to appreciate the research funding supports from Byker Digital Biotechnology Co. Ltd

Finally, I am particularly grateful to all people who directly or indirectly provided the supports on my research and technical issues, including the netizens in GitHub, and the authors of the papers that I cited.

> Ye Huang Sydney, Australia, 2022.

List of Publications

Journal Papers

- Ye Huang, Qingqing Wang, Wenjing Jia and Xiangjian He, See More Than Once–Kernel-Sharing Atrous Convolution for Semantic Segmentation, in Neurocomputing, Volume 443, 5 July 2021, Pages 26-34.
- Qingqing Wang, Ye Huang, Wenjing Jia, Xiangjian He, Michael Blumenstein, Shujing Lyu and Yue Lu, FACLSTM: ConvLSTM with focused attention for scene text recognition, Science China Information Sciences 2020

Conference Papers

- Ye Huang, Di Kang, Liang Chen, Xuefei Zhe, Wenjing Jia, Xiangjian He, Linchao Bao, CAR: Class-aware Regularizations for Semantic Segmentation, accepted by ECCV 2022.
- Ye Huang, Di Kang, Wenjing Jia, Xiangjian He and Liu Liu, Channelized Axial Attention – Considering Channel Relation within Spatial Attention for Semantic Segmentation, Proceedings of the AAAI Conference on Artificial Intelligence, 36(1), 1016-1025.
- 3. Qingqing Wang, Wenjing Jia, Xiangjian He, Yue Lu, Michael Blumenstein, Ye Huang and Shujing Lyu, DeepText: Detecting text from the wild with multi-ASPP-assembled deeplab, Proceedings of 2019 International Conference on Document Analysis and Recognition

Contents

	Abstract	iii
	Dedication	v
	Acknowledgments	vi
	List of Publications	vii
	List of Figures	xii
	List of Tables	xvii
	Abbreviation	xxi
1	Introduction	1
	1.1 Research Topics in Semantic Segmentation	2
	1.1.1 Context Aggregation	2
	1.1.2 High Resolution and Details	3
	1.2 Early Context Aggregation based Approaches (prior to 2016) \ldots	4
	1.3 Fixed Range Multi-scale Context Aggregation (2017-2018)	4
	1.4 Context Aggregation with Attention Mechanism (since 2018) \ldots	7
	1.5 Class-aware Context Aggregation (since 2020)	9
	1.6 Latest Research Status (2022)	10
	1.7 Research Problems and Contributions	11
2	Kernel-Sharing Atrous Convolution	14
	2.1 Related Work and Issues	16

		2.1.1	Fully Convolutional Network	16
		2.1.2	DeepLab Family	17
		2.1.3	Other Semantic Segmentation Models	19
	2.2	Propos	ed Solution	20
		2.2.1	Atrous Spatial Pyramid Pooling	20
		2.2.2	Atrous Convolution with Shared Kernel	21
	2.3	Experi	ment Setting	24
		2.3.1	Datasets and Data Augmentation	24
		2.3.2	Implementation Details	26
	2.4	Experi	ment Results	29
		2.4.1	Improved mIOU	29
		2.4.2	Reduced Computational Cost	30
		2.4.3	Capability of Handling Wider Range of Context	30
		2.4.4	Improved Speed with Less GPU Memory Usage	32
		2.4.5	Experiment Results on ADE20K	32
	2.5	Summa	ary	33
3	Ch	annel	ized Axial Attention	35
	3.1	Related	Work and issues	38
	3.2	Explori	ing Conflicting Features	40
		3.2.1	Visualizing Conflicts	41
		3.2.2	Examples of Conflicting Features	42
	3.3	Method	ls	44
		3.3.1	Preliminaries	44
		3.3.2	Channelized Axial Attention	45

•••	48
•••	48
•••	49
	55
	56
	56
	57
	57
	58
	58
•••	59
	60
6	60 3 5
· · · · · · · · · · · · · · · · · · ·	60 35 65
· · · · · · · · · · · · · · · · · · ·	60 3 5 65 68
· · · · · · · · · · · · · · · · · · ·	60 35 65 68 68
	60 35 65 68 68 69
	60 35 65 68 68 69 69
	60 65 68 68 69 69 71
	 60 35 65 68 69 69 71 71
	60 35 65 68 69 69 71 71 71
	 60 35 65 68 69 69 71 71 71 73
	60 35 65 68 69 69 71 71 71 73 76
	· · · · · · · · · · · · · · · · · · ·

	4.4.1	Implementation	77
	4.4.2	Experiments on Pascal Context	77
	4.4.3	Experiments on COCOStuff-10K	84
4.5	Extra '	Visualizations	86
	4.5.1	Visualization of OCRNet on Pascal Context	86
	4.5.2	Visualization of DeepLab on Pascal Context	87
4.6	Extra '	Technical Details	. 88
	4.6.1	Deterministic	. 88
4.7	Limita	tion	. 89
4.8	Summa	ary and Future Work	90
\mathbf{Su}	mmar	y and Discussion	93
5.1	Conclu	sion	93
5.2	Future	Work	95
	5.2.1	Mining Inter-class Relations with Inter-class Dependent	
		Encodings	95
	5.2.2	Decouple Upsampling Encoding	96
Bi	bliogr	aphy	97
	 4.5 4.6 4.7 4.8 Su 5.1 5.2 Bi 	4.4.1 4.4.2 4.4.3 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.6 5.1 4.6 5.1 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	4.4.1 Implementation 4.4.2 Experiments on Pascal Context 4.4.3 Experiments on COCOStuff-10K 4.4.3 Experiments on COCOStuff-10K 4.5 Extra Visualizations 4.5.1 Visualization of OCRNet on Pascal Context 4.5.2 Visualization of DeepLab on Pascal Context 4.6 Extra Technical Details 4.6.1 Deterministic 4.7 Limitation 4.8 Summary and Future Work 5.1 Conclusion 5.2 Future Work 5.2.1 Mining Inter-class Relations with Inter-class Dependent Encodings 5.2.2 Decouple Upsampling Encoding 5.2.2 Decouple Upsampling Encoding

xi

List of Figures

1.1	Examples of Semantic Segmentation results on COCOStuff [1] dataset	1
1.2	FCN [37] based on VGG outputs pixel level predictions $\ldots \ldots \ldots$	5
1.3	The design of PSPNet [69], which uses PPM that contains multiple pooling operations with different size rates to aggregate the multi-scale context.	5
1.4	The design of DeepLab V3 [4], which uses ASPP containing multiple dilated (atrous) convolution of different dilation rates to aggregate multi-scale context.	6
1.5	The designs of Self-Attention [53]. It compares the dot-product similarities between each of 2 pixels on the feature map, and then uses it as the weights to aggregate context from all pixels on the feature map. Images come from [72]	8
2.1	The multi-branch-like solutions used in PSPNet and DeepLab for improving models' robustness to objects' scale variability	16
2.2	Illustration of our proposed Kernel-Sharing Atrous Convolution structure. The single 3×3 kernel is shared by three parallel branches with different atrous rates	17
2.3	The detailed architecture of our proposed Kernel-Sharing Atrous Convolution with $rate = (6, 12, 18)$	21

- 2.4 Visualization of the feature maps extracted by kernels of KSAC and ASPP. Here, 25 feature maps are presented for each rate, and we enlarge the ones indicated by red bounding boxes on the top of the figure. Apparently, edges and contours extracted by the shared kernel of our KSAC are much clearer than those extracted by separate kernels of ASPP, for both large atrous rate and small atrous rate. Readers are suggested to zoom in to see more details. . . 23

3.1	Different dual attention designs: (a) Parallel dual attention sums	
	the results from spatial and channel attentions directly, which may	
	cause conflicts because spatial and channel attentions are focusing	
	on different aspects. (b) Sequential dual attention performs	
	spatial attention after channel attention, where the spatial attention	
	may override correct features extracted by the channel attention.	
	(c) Our channelized attention seamlessly merges the spatial and	
	channel attentions into a single operation (see Sect. $3.3.2$), removing	
	the potential conflicting issue caused by ${\bf a}$ or ${\bf b}.$	36
3.2	Our designs for visualizing the effects of dual attentions in parallel	
	and sequential.	40
3.3	Conflicting features in parallel dual attention designs. Top: The	
	bad spatial attention representation negatively influences the good	
	channel attention representation. Bottom: The bad channel	
	attention representation negatively influences the good spatial	
	attention representation. See the boxed areas. \ldots \ldots \ldots \ldots \ldots	41
3.4	In sequential dual attention designs, the spatial attention	
	representation (the 4th column) ignores the correct channel	
	attention representation (the 3rd column).	41

3.5	The detailed architecture of the proposed CAA. We present the way	
	to apply channel attention seamlessly in (\mathbf{b}) . We mark the	
	independent spatial dimension in the bold style. This allows	
	channel attention to also consider spatially unique information.	
	Note that, in our design, the "value" for Row attention is obtained	
	from the result of Column attention. See Eq. 3.11 for details. $\ . \ . \ .$	43
3.6	Examples of the segmentation results obtained on the PASCAL	
	Context dataset using FCN, DANet and CAA.	55
3.7	Examples of the results obtained on the COCO-Stuff 10K dataset	
	with our proposed CAA in comparison to the results obtained with	
	FCN, DANet and the ground truth	62
3.8	Examples of the results obtained on the PASCAL Context dataset	
	with our proposed CAA in comparison to the results obtained with	
	FCN, DANet and the ground truth	63
3.9	Extra examples of the segmentation results obtained on the	
	Cityscapes validation set [38] with our proposed CAA in comparison	
	to the results obtained with DAN et [14] and the ground truth	64

4.1	The concept of the proposed CAR. Our CAR optimizes existing
	models with three regularization targets: 1) reducing pixels'
	intra-class distance, 2) reducing inter-class center-to-center
	dependency, and 3) reducing pixels' inter-class dependency. As
	highlighted in this example (indicated with a red dot in the image),
	with our CAR, the grass class does not affect the classification of
	dog/sheep as much as before, and hence successfully avoids previous
	(w/o CAR) mis-classification

- 4.2 The difference between the proposed CAR and previous methods that use class-level information. Previous models focus on extracting class center while using simple concatenation of the original pixel feature and the class/context feature for later classification. In contrast, our CAR uses direct supervision related to class center as regularization during training, resulting in small intra-class variance and low inter-class dependency. See Fig. 4.1 and Sect. 4.3 for details. 70
- 4.4 Visualization of the feature similarity between a given pixel (marked with a red dot in the image) and all pixels, as well as the segmentation results on Pascal Context test set. A hotter color denotes larger similarity value. Apparently, our CAR reduces the inter-class dependency and exhibits better generalization ability, where energies are better restrained in the intra-class pixels. 85
- 4.6 Visualization of the feature similarity between a given pixel (marked with a red dot in the image) and all other pixels, as well as the segmentation results of HRNetW48 [52] + OCR [61] on Pascal Context test set. A hotter color denotes a greater similarity value.
 91

4.7 Visualization of the feature similarity between a given pixel (marked with a red dot in the image) and all pixels, as well as the segmentation results of **ResNet-50** [18] + DeepLab [4] on Pascal Context test set. A hotter color denotes a greater similarity value.
92

List of Tables

2.1	Experimental results obtained on PASCAL VOC 2012 validation set	
	with different inference strategies when using ASPP and our	
	proposed KSAC, and ResNet-50, ResNet-101, Xception65 or	
	MobileNetV2 as the backbone. KSAC: Using our proposed KSAC.	
	ASPP: Using the standard ASPP structure proposed in	
	DeepLabv3+ [4]. D: Concatenating the $OS = 4$ feature maps from	
	the backbone during the upsampling of the logits. \mathbf{MF} : Employing	
	multi-scale (MS) and left-right flipping on the inputs during the	
	evaluation. COCO: Model is pre-trained on COCO dataset [1].	
	The Performance is evaluated from the aspect of $mIOU$ (%) and	
	the number of FLOPS (Floating Point Operations per Second),	
	respectively	28
2.2	Experimental results of our proposed KSAC on PASCAL VOC 2012 $$	
	validation set with different settings of atrous rates.	31
2.3	Comparison results with other approaches on the PASCAL VOC	
	2012 validation and test sets.	31
2.4	Comparison results with other approaches on the ADE20K	
	validation set for multi-scale prediction	33
3.1	Results without using channelization (Row 1) and using	

channelization with different layer counts and channel numbers. Numbers in parentheses indicate standard deviations (see Sect. 3.4.2). 50

3.2	Result comparison between axial attention, axial attention + SE	
	and channelized axial attention.	51
3.3	Ablation study of applying our Channelized Attention on	
	self-attention with ResNet-101. Eval OS : Output strides $[5]$ during	
	evaluation	51
3.4	Comparing results with different testing strategies. OS: Output	
	stride in training and inference. \mathbf{MF} : Apply multi-scale and	
	left-right flipping during inference. Aux: Add auxiliary loss during	
	training. "+" refers to the extra FLOPS over the baseline FLOPS	
	of ResNet-101	52
3.5	Ablation study of CAA with the backbones other than ResNet-101.	
	All results are obtained in single scale without flipping. \mathbf{OS} : Output	
	strides during evaluation. ${\bf AA}:$ Axial Attention. ${\bf C}:$ Channelized	53
3.6	Comparisons with other state-of-the-art approaches on the PASCAL	
	Context test set. For a fair comparison, all compared methods use	
	ResNet-101 and naive upsampling	54
3.7	Result comparison with the state-of-the-art approaches on the	
	PASCAL Context test set for multi-scale prediction. Note that, the	
	listed methods were not trained under the same settings, or using	
	same backbone	56
3.8	Comparisons with other state-of-the-art approaches on the	
	COCO-Stuff 10K test set. For a fair comparison, all compared	
	methods use ResNet-101 and naive upsampling	57
3.9	Result comparison with the state-of-the-art approaches on the	
	COCO-Stuff-10K test set for multi-scale prediction. Note that, the	
	listed methods were not trained under the same settings, or using	
	same backbone.	58

3.10	Comparisons with other state-of-the-art approaches on the	
	Cityscapes test set. For a fair comparison, all compared methods	
	use ResNet-101 and naive upsampling	59
3.11	Result comparison with the state-of-the-art approaches on the	
	COCO-Stuff-164K test set for multi-scale prediction. Note that, the	
	listed methods were not trained under same settings, or using same	
	backbone. Methods other than CAA and Segformer are reproduced	
	in Segformer paper.	60
4.1	Ablation studies of adding CAR to different methods on Pascal	
	Context dataset. All results are obtained with single scale test	
	without flipping. "A" means replacing the 3×3 conv with 1×1	
	conv. CAR improves the performance of different types of backbones	
	(CNN & Transformer) and head blocks (SA & Uper), showing that	
	the proposed CAR generalizes well on different network architectures.	78
4.2	Ablation studies of adding moving average to CAR on Pascal	
	Context. The decay rate stands for the effect of old class center	80
4.3	Comparison of mIOUs $(\%)$ obtained when using the batch class	
	center vs using the image class center in CAR	80
4.4	The computational cost (in GFLOPs) of the proposed CAR on a	
	513×513 image with an output stride of 8	81

4.5	Ablation studies of adding CAR to different baselines on Pascal	
	Context [41] and COCOStuff-10K [1]. We deterministically	
	reproduced all the baselines with the same settings. All results are	
	obtained with single-scale testing without flipping. CAR works very	
	well in most existing methods. § means reducing the class-level	
	threshold ϵ_0 from 0.5 to 0.25. We found it is sensitive for some	
	model variants to handle a large number of class. Affinity loss [60]	
	and Auxiliary loss [69] are applied on CPNet and OCR, respectively,	
	since they highly rely on those losses.	83
4.6	Experiments on boosting the SOTA single-model performance on	
	Pascal Context by our CAR. See Sect. 4.4.2.9 for the details. $\S:$ We	
	report previous SOTA scores as reference. SS : Single scale without	
	flipping. MF : Multi-scale with flipping. JPU is used to get features	
	with output stride = 8. Aux : Apply auxiliary loss during	
	training (see [69]). <i>Iterations</i> : training iterations	87
4.7	Experiments on boosting SOTA on COCOStuff10k, levering the	
	previous single model SOTA and boosted by our CAR. See	
	Sect. 4.4.3.2 for details. \S : We report the original SOTA scores. SS :	
	Single scale without flipping. MF : Multi-scale with flipping. Aux	
	Apply auxiliary loss during training, see [69].	88
4.8	Ablation studies of our proposed CAR using different random seeds	
	on the Pascal Context dataset	89

Abbreviation

- H Height
- W Width
- Channels The size of last dimension of the 4D feature map.
- Encoding Nerual network encoded 3 channels image input to the facture map with multiple channels.
- mIOU Mean Intersection over Union
- KSAC Kernel Sharing Astrous Convolution
- CAA Channelized Axial Attention
- CAR Class-aware Regularization
- OS Output stride [3]
- FCN Fully Convolutional Networks [37]
- ASPP Atrous Spatial Pyramid Pooling [4]
- PPM Pyramid Pooling module [69]
- FPN Feature Pyramid Networks [32]
- SA Self-attention [53]
- ACFNet Attentional Class Feature Network [64]
- OCR Object-Contextual Representations [61]
- CPNet Context Prior Network [60]