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ABSTRACT

Context-aware Image Semantic Segmentation

by

Ye Huang

Semantic segmentation is a fundamental task for computer vision applications.

However, the existing solutions have many issues when handling difficult cases. This

thesis develops three novel approaches which have improved the generalization abil-

ity of the existing solutions at significantly reduced computation costs. Extensive

experiments conducted on multiple benchmark datasets have demonstrated the su-

perior performance of the proposed approaches.

Scale-invariant: The state-of-the-art semantic segmentation solutions usually

leverage different receptive fields via multiple parallel branches to handle objects of

different sizes. However, employing separate kernels for individual branches degrades

the generalization of the network to objects with different scales, and the compu-

tational cost increases with the increase of the number of branches. In this thesis,

a novel network structure, namely Kernel-Sharing Atrous Convolution (KSAC), is

proposed, where branches with different receptive fields share the same kernel, i.e.,

letting a single kernel “see” the input feature maps more than once with different

receptive fields.

Seamless dual attention: Spatial and channel attentions, modelling the se-

mantic inter-dependencies in spatial and channel dimensions respectively, have re-

cently been widely used for semantic segmentation. However, computing spatial

attention and channel attention separately sometimes causes errors, especially in

those difficult cases. In this research, a Channelized Axial Attention (CAA) is de-

veloped to seamlessly integrate channel attention and spatial attention into a single

operation with negligible computation overhead. Furthermore, a novel grouped vec-



torization approach is developed to allow the proposed model to run with very little

memory consumption without slowing down the computation.

Class-aware regularization: Recent segmentation methods utilizing class-

level information in addition to pixel features have achieved notable success in

boosting the accuracy of existing network models. However, the extracted class-

level information was simply concatenated to pixel features, without being explicitly

exploited to learn better pixel representation. Moreover, these approaches learn soft

class centers based on coarse mask prediction, which is prone to error accumula-

tion. Motivated by the fact that humans can recognize an object by itself no matter

which other objects it appears with and aiming to use class-level information more

effectively, a universal Class-Aware Regularization (CAR) approach is proposed to

optimize the intra-class variance and inter-class distance during feature learning.

Furthermore, the class center in the proposed approach is directly generated from

ground truth instead of from the error-prone coarse prediction. The proposed CAR

can be easily applied to most existing segmentation models and can largely improve

their accuracy at no additional inference overhead.

Dissertation directed by Prof. Xiangjian He and Dr Wenjing Jia

School of Electrical and Data Engineering



Dedication

Dedicated to my family. Dedicated to the world peace.



Acknowledgements

First and foremost, I would like to acknowledge my supervisors Prof. Xiangjian He

and Dr. Wenjing Jia for their continuous and endless supervisions and encourage-

ments.

I would like to thank my lab mates, as well as the Dr. Qingqing Wang, Dr.

Yue Xi, Dr. Lei Liu, Dr. Saeed Amirgholipour, Dr Mohammadhesam Hesamian,

Zhanzhong Gu, Yuanfang Zhang and Chengpei Xu for their assistance or/and en-

couragements.

I also would like to appreciate the research funding supports from Byker Digital

Biotechnology Co. Ltd

Finally, I am particularly grateful to all people who directly or indirectly provided

the supports on my research and technical issues, including the netizens in GitHub,

and the authors of the papers that I cited.

Ye Huang

Sydney, Australia, 2022.



List of Publications

Journal Papers

1. Ye Huang, Qingqing Wang, Wenjing Jia and Xiangjian He, See More Than

Once–Kernel-Sharing Atrous Convolution for Semantic Segmentation, in Neu-

rocomputing, Volume 443, 5 July 2021, Pages 26-34.

2. Qingqing Wang, Ye Huang, Wenjing Jia, Xiangjian He, Michael Blumenstein,

Shujing Lyu and Yue Lu, FACLSTM: ConvLSTM with focused attention for

scene text recognition, Science China Information Sciences 2020

Conference Papers

1. Ye Huang, Di Kang, Liang Chen, Xuefei Zhe, Wenjing Jia, Xiangjian He,

Linchao Bao, CAR: Class-aware Regularizations for Semantic Segmentation,

accepted by ECCV 2022.

2. Ye Huang, Di Kang, Wenjing Jia, Xiangjian He and Liu Liu, Channelized

Axial Attention – Considering Channel Relation within Spatial Attention for

Semantic Segmentation, Proceedings of the AAAI Conference on Artificial

Intelligence, 36(1), 1016-1025.

3. Qingqing Wang, Wenjing Jia, Xiangjian He, Yue Lu, Michael Blumenstein,

Ye Huang and Shujing Lyu, DeepText: Detecting text from the wild with

multi-ASPP-assembled deeplab, Proceedings of 2019 International Conference

on Document Analysis and Recognition



Contents

Abstract iii

Dedication v

Acknowledgments vi

List of Publications vii

List of Figures xii

List of Tables xvii

Abbreviation xxi

1 Introduction 1

1.1 Research Topics in Semantic Segmentation . . . . . . . . . . . . . . . 2

1.1.1 Context Aggregation . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 High Resolution and Details . . . . . . . . . . . . . . . . . . . 3

1.2 Early Context Aggregation based Approaches (prior to 2016) . . . . . 4

1.3 Fixed Range Multi-scale Context Aggregation (2017-2018) . . . . . . . 4

1.4 Context Aggregation with Attention Mechanism (since 2018) . . . . . 7

1.5 Class-aware Context Aggregation (since 2020) . . . . . . . . . . . . . . 9

1.6 Latest Research Status (2022) . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Research Problems and Contributions . . . . . . . . . . . . . . . . . . 11

2 Kernel-Sharing Atrous Convolution 14

2.1 Related Work and Issues . . . . . . . . . . . . . . . . . . . . . . . . . 16



ix

2.1.1 Fully Convolutional Network . . . . . . . . . . . . . . . . . . . 16

2.1.2 DeepLab Family . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.3 Other Semantic Segmentation Models . . . . . . . . . . . . . . 19

2.2 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Atrous Spatial Pyramid Pooling . . . . . . . . . . . . . . . . . 20

2.2.2 Atrous Convolution with Shared Kernel . . . . . . . . . . . . . 21

2.3 Experiment Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Datasets and Data Augmentation . . . . . . . . . . . . . . . . 24

2.3.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.1 Improved mIOU . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.2 Reduced Computational Cost . . . . . . . . . . . . . . . . . . 30

2.4.3 Capability of Handling Wider Range of Context . . . . . . . . 30

2.4.4 Improved Speed with Less GPU Memory Usage . . . . . . . . 32

2.4.5 Experiment Results on ADE20K . . . . . . . . . . . . . . . . 32

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Channelized Axial Attention 35

3.1 Related Work and issues . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Exploring Conflicting Features . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Visualizing Conflicts . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Examples of Conflicting Features . . . . . . . . . . . . . . . . 42

3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.2 Channelized Axial Attention . . . . . . . . . . . . . . . . . . . 45



x

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . 48

3.4.2 Results on PASCAL Context . . . . . . . . . . . . . . . . . . 49

3.4.3 Results on COCO-Stuff 10K . . . . . . . . . . . . . . . . . . . 55

3.4.4 Results on Cityscapes . . . . . . . . . . . . . . . . . . . . . . 56

3.4.5 Results on COCOStuff-164k . . . . . . . . . . . . . . . . . . . 56

3.5 Extra Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.1 COCOStuff-10k . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.2 PASCAL Context . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 Pseudo Code of Group Vectorization . . . . . . . . . . . . . . . . . . . 58

3.7 Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 CAR: Class-aware Regularization 65

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 Self-Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.2 Class Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.3 Inter-Class Reasoning . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.1 Extracting Class Centers from Ground Truth . . . . . . . . . 71

4.3.2 Reducing Intra-Class Feature Variance . . . . . . . . . . . . . 71

4.3.3 Maximizing Inter-class Separation . . . . . . . . . . . . . . . . 73

4.3.4 Differences with OCR, ACFNet and CPNet . . . . . . . . . . 76

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



xi

4.4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.2 Experiments on Pascal Context . . . . . . . . . . . . . . . . . 77

4.4.3 Experiments on COCOStuff-10K . . . . . . . . . . . . . . . . 84

4.5 Extra Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5.1 Visualization of OCRNet on Pascal Context . . . . . . . . . . 86

4.5.2 Visualization of DeepLab on Pascal Context . . . . . . . . . . 87

4.6 Extra Technical Details . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6.1 Deterministic . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.7 Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.8 Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Summary and Discussion 93

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.1 Mining Inter-class Relations with Inter-class Dependent

Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.2 Decouple Upsampling Encoding . . . . . . . . . . . . . . . . . 96

Bibliography 97



List of Figures

1.1 Examples of Semantic Segmentation results on COCOStuff [1] dataset 1

1.2 FCN [37] based on VGG outputs pixel level predictions . . . . . . . 5

1.3 The design of PSPNet [69], which uses PPM that contains multiple

pooling operations with different size rates to aggregate the

multi-scale context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 The design of DeepLab V3 [4], which uses ASPP containing multiple

dilated (atrous) convolution of different dilation rates to aggregate

multi-scale context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 The designs of Self-Attention [53]. It compares the dot-product

similarities between each of 2 pixels on the feature map, and then

uses it as the weights to aggregate context from all pixels on the

feature map. Images come from [72] . . . . . . . . . . . . . . . . . . . 8

2.1 The multi-branch-like solutions used in PSPNet and DeepLab for

improving models’ robustness to objects’ scale variability. . . . . . . . 16

2.2 Illustration of our proposed Kernel-Sharing Atrous Convolution

structure. The single 3× 3 kernel is shared by three parallel

branches with different atrous rates. . . . . . . . . . . . . . . . . . . . 17

2.3 The detailed architecture of our proposed Kernel-Sharing Atrous

Convolution with rate = (6, 12, 18) . . . . . . . . . . . . . . . . . . . 21



xiii

2.4 Visualization of the feature maps extracted by kernels of KSAC and

ASPP. Here, 25 feature maps are presented for each rate, and we

enlarge the ones indicated by red bounding boxes on the top of the

figure. Apparently, edges and contours extracted by the shared

kernel of our KSAC are much clearer than those extracted by

separate kernels of ASPP, for both large atrous rate and small

atrous rate. Readers are suggested to zoom in to see more details. . . 23

2.5 Comparison of the segmentation results obtained by FCN, ASPP

and our KSAC on the Pascal VOC 2012 validation set. . . . . . . . . 27

3.1 Different dual attention designs: (a) Parallel dual attention sums

the results from spatial and channel attentions directly, which may

cause conflicts because spatial and channel attentions are focusing

on different aspects. (b) Sequential dual attention performs

spatial attention after channel attention, where the spatial attention

may override correct features extracted by the channel attention.

(c) Our channelized attention seamlessly merges the spatial and

channel attentions into a single operation (see Sect. 3.3.2), removing

the potential conflicting issue caused by a or b. . . . . . . . . . . . . 36

3.2 Our designs for visualizing the effects of dual attentions in parallel

and sequential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Conflicting features in parallel dual attention designs. Top: The

bad spatial attention representation negatively influences the good

channel attention representation. Bottom: The bad channel

attention representation negatively influences the good spatial

attention representation. See the boxed areas. . . . . . . . . . . . . . 41

3.4 In sequential dual attention designs, the spatial attention

representation (the 4th column) ignores the correct channel

attention representation (the 3rd column). . . . . . . . . . . . . . . . 41



xiv

3.5 The detailed architecture of the proposed CAA. We present the way

to apply channel attention seamlessly in (b). We mark the

independent spatial dimension in the bold style. This allows

channel attention to also consider spatially unique information.

Note that, in our design, the “value” for Row attention is obtained

from the result of Column attention. See Eq. 3.11 for details. . . . . 43

3.6 Examples of the segmentation results obtained on the PASCAL

Context dataset using FCN, DANet and CAA. . . . . . . . . . . . . 55

3.7 Examples of the results obtained on the COCO-Stuff 10K dataset

with our proposed CAA in comparison to the results obtained with

FCN, DANet and the ground truth. . . . . . . . . . . . . . . . . . . . 62

3.8 Examples of the results obtained on the PASCAL Context dataset

with our proposed CAA in comparison to the results obtained with

FCN, DANet and the ground truth. . . . . . . . . . . . . . . . . . . . 63

3.9 Extra examples of the segmentation results obtained on the

Cityscapes validation set [38] with our proposed CAA in comparison

to the results obtained with DANet [14] and the ground truth. . . . . 64

4.1 The concept of the proposed CAR. Our CAR optimizes existing

models with three regularization targets: 1) reducing pixels’

intra-class distance, 2) reducing inter-class center-to-center

dependency, and 3) reducing pixels’ inter-class dependency. As

highlighted in this example (indicated with a red dot in the image),

with our CAR, the grass class does not affect the classification of

dog/sheep as much as before, and hence successfully avoids previous

(w/o CAR) mis-classification. . . . . . . . . . . . . . . . . . . . . . . 67



xv

4.2 The difference between the proposed CAR and previous methods

that use class-level information. Previous models focus on extracting

class center while using simple concatenation of the original pixel

feature and the class/context feature for later classification. In

contrast, our CAR uses direct supervision related to class center as

regularization during training, resulting in small intra-class variance

and low inter-class dependency. See Fig. 4.1 and Sect. 4.3 for details. 70

4.3 The proposed CAR approach. CAR can be inserted into various

segmentation models, right before the logit prediction module

(A1-A4). CAR contains three regularization terms, including (C)

intra-class center-to-center loss Lintra-c2p (Sect. 4.3.2.2), (D)

inter-class center-to-center loss Linter-c2c (Sect. 4.3.3.2), and (E)

inter-class center-to-pixel loss Linter-c2p (Sect. 4.3.3.3). . . . . . . . . 72

4.4 Visualization of the feature similarity between a given pixel (marked

with a red dot in the image) and all pixels, as well as the

segmentation results on Pascal Context test set. A hotter color

denotes larger similarity value. Apparently, our CAR reduces the

inter-class dependency and exhibits better generalization ability,

where energies are better restrained in the intra-class pixels. . . . . . 85

4.5 Class dependency maps generated on Pascal Context test set. One

may zoom in to see class names. A hotter color means that the class

has higher dependency to the corresponding class, and vice versa. It

is obvious that our CAR reduces the inter-class dependency, thus

providing better generalizability (see Figs. 4.1 and 4.4). . . . . . . . 86

4.6 Visualization of the feature similarity between a given pixel (marked

with a red dot in the image) and all other pixels, as well as the

segmentation results of HRNetW48 [52] + OCR [61] on Pascal

Context test set. A hotter color denotes a greater similarity value. . 91



xvi

4.7 Visualization of the feature similarity between a given pixel (marked

with a red dot in the image) and all pixels, as well as the

segmentation results of ResNet-50 [18] + DeepLab [4] on

Pascal Context test set. A hotter color denotes a greater similarity

value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



List of Tables

2.1 Experimental results obtained on PASCAL VOC 2012 validation set

with different inference strategies when using ASPP and our

proposed KSAC, and ResNet-50, ResNet-101, Xception65 or

MobileNetV2 as the backbone. KSAC: Using our proposed KSAC.

ASPP: Using the standard ASPP structure proposed in

DeepLabv3+ [4]. D: Concatenating the OS = 4 feature maps from

the backbone during the upsampling of the logits. MF: Employing

multi-scale (MS) and left-right flipping on the inputs during the

evaluation. COCO: Model is pre-trained on COCO dataset [1].

The Performance is evaluated from the aspect of mIOU (%) and

the number of FLOPS (Floating Point Operations per Second),

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Experimental results of our proposed KSAC on PASCAL VOC 2012

validation set with different settings of atrous rates. . . . . . . . . . 31

2.3 Comparison results with other approaches on the PASCAL VOC

2012 validation and test sets. . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Comparison results with other approaches on the ADE20K

validation set for multi-scale prediction. . . . . . . . . . . . . . . . . . 33

3.1 Results without using channelization (Row 1) and using

channelization with different layer counts and channel numbers.

Numbers in parentheses indicate standard deviations (see Sect. 3.4.2). 50



xviii

3.2 Result comparison between axial attention, axial attention + SE

and channelized axial attention. . . . . . . . . . . . . . . . . . . . . 51

3.3 Ablation study of applying our Channelized Attention on

self-attention with ResNet-101. Eval OS: Output strides [5] during

evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Comparing results with different testing strategies. OS: Output

stride in training and inference. MF: Apply multi-scale and

left-right flipping during inference. Aux: Add auxiliary loss during

training. “+” refers to the extra FLOPS over the baseline FLOPS

of ResNet-101. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Ablation study of CAA with the backbones other than ResNet-101.

All results are obtained in single scale without flipping. OS: Output

strides during evaluation. AA: Axial Attention. C: Channelized. . . . 53

3.6 Comparisons with other state-of-the-art approaches on the PASCAL

Context test set. For a fair comparison, all compared methods use

ResNet-101 and naive upsampling. . . . . . . . . . . . . . . . . . . . 54

3.7 Result comparison with the state-of-the-art approaches on the

PASCAL Context test set for multi-scale prediction. Note that, the

listed methods were not trained under the same settings, or using

same backbone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.8 Comparisons with other state-of-the-art approaches on the

COCO-Stuff 10K test set. For a fair comparison, all compared

methods use ResNet-101 and naive upsampling. . . . . . . . . . . . . 57

3.9 Result comparison with the state-of-the-art approaches on the

COCO-Stuff-10K test set for multi-scale prediction. Note that, the

listed methods were not trained under the same settings, or using

same backbone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



xix

3.10 Comparisons with other state-of-the-art approaches on the

Cityscapes test set. For a fair comparison, all compared methods

use ResNet-101 and naive upsampling. . . . . . . . . . . . . . . . . . 59

3.11 Result comparison with the state-of-the-art approaches on the

COCO-Stuff-164K test set for multi-scale prediction. Note that, the

listed methods were not trained under same settings, or using same

backbone. Methods other than CAA and Segformer are reproduced

in Segformer paper. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 Ablation studies of adding CAR to different methods on Pascal

Context dataset. All results are obtained with single scale test

without flipping. “A” means replacing the 3× 3 conv with 1× 1

conv. CAR improves the performance of different types of backbones

(CNN & Transformer) and head blocks (SA & Uper), showing that

the proposed CAR generalizes well on different network architectures. 78

4.2 Ablation studies of adding moving average to CAR on Pascal

Context. The decay rate stands for the effect of old class center. . . . 80

4.3 Comparison of mIOUs (%) obtained when using the batch class

center vs using the image class center in CAR. . . . . . . . . . . . . . 80

4.4 The computational cost (in GFLOPs) of the proposed CAR on a

513×513 image with an output stride of 8. . . . . . . . . . . . . . . . 81



xx

4.5 Ablation studies of adding CAR to different baselines on Pascal

Context [41] and COCOStuff-10K [1]. We deterministically

reproduced all the baselines with the same settings. All results are

obtained with single-scale testing without flipping. CAR works very

well in most existing methods. § means reducing the class-level

threshold ϵ0 from 0.5 to 0.25. We found it is sensitive for some

model variants to handle a large number of class. Affinity loss [60]

and Auxiliary loss [69] are applied on CPNet and OCR, respectively,

since they highly rely on those losses. . . . . . . . . . . . . . . . . . 83

4.6 Experiments on boosting the SOTA single-model performance on

Pascal Context by our CAR. See Sect. 4.4.2.9 for the details. §: We

report previous SOTA scores as reference. SS : Single scale without

flipping. MF : Multi-scale with flipping. JPU is used to get features

with output stride = 8. Aux : Apply auxiliary loss during

training (see [69]). Iterations : training iterations. . . . . . . . . . . . 87

4.7 Experiments on boosting SOTA on COCOStuff10k, levering the

previous single model SOTA and boosted by our CAR. See

Sect. 4.4.3.2 for details. §: We report the original SOTA scores. SS :

Single scale without flipping. MF : Multi-scale with flipping. Aux

Apply auxiliary loss during training, see [69]. . . . . . . . . . . . . . 88

4.8 Ablation studies of our proposed CAR using different random seeds

on the Pascal Context dataset. . . . . . . . . . . . . . . . . . . . . . . 89



Abbreviation

• H - Height

• W - Width

• Channels - The size of last dimension of the 4D feature map.

• Encoding - Nerual network encoded 3 channels image input to the faeture map

with multiple channels.

• mIOU - Mean Intersection over Union

• KSAC - Kernel Sharing Astrous Convolution

• CAA - Channelized Axial Attention

• CAR - Class-aware Regularization

• OS - Output stride [3]

• FCN - Fully Convolutional Networks [37]

• ASPP - Atrous Spatial Pyramid Pooling [4]

• PPM - Pyramid Pooling module [69]

• FPN - Feature Pyramid Networks [32]

• SA - Self-attention [53]

• ACFNet - Attentional Class Feature Network [64]

• OCR - Object-Contextual Representations [61]

• CPNet - Context Prior Network [60]
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Chapter 1

Introduction

Recent advances in computer vision techniques have been largely fueled by the

advances in deep learning techniques. As a classical and foundation computer vision

application, semantic segmentation, also referred to as ‘dense prediction‘ or ‘pixels

classification‘, assigns pixels belonging to the same object class with the same label.

It is more precise compared to the similar task image classification, which usually

Figure 1.1 : Examples of Semantic Segmentation results on COCOStuff [1] dataset

only predicts the center of the foreground object (e.g., an image that has a dog

on the ground with grass will only be classified as ”dog” in image classification).

On the other hand, semantic segmentation is much more challenging than image

classification, because semantic segmentation requires all the pixels in the image to

be accurately classified.

Semantic segmentation has a wide range of applications, including but not lim-

ited to scene understanding, medical image processing and remote sensing analysis.
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It also benefits many downstream applications, e.g., object detection/instance seg-

mentation [59, 24, 6], and depth estimation.

During the segmentation procedure, deep neural networks are required to handle

both local detailed and global semantic information, so as to handle objects of

arbitrary sizes. To achieve such robustness, numerous efforts have been made by

the research community.

1.1 Research Topics in Semantic Segmentation

1.1.1 Context Aggregation

Given a pixel from an input image with RGB channels, regardless of human or

machine, it is impossible to predict its class with pixel independent transformation.

For humans, we need to see more pixels and collect more information to know which

object a pixel belongs to. For machines, they also need to collect more information

from the spatial domain (e.g., from other pixels) to enhance the cognition of that

pixel, where the information collection process is called “context aggregation”. Spa-

tial context aggregation uses the encoding ( i.e., features) of other pixels to enhance

the encoding of the pixel itself. After more information is aggregated, the encoding

of that pixel now includes the context information, and the neural network is able

to classify which object (class) the pixel belongs.

The problem is how to efficiently and correctly aggregate information to allow the

machines to recognise the objects correctly. It is obviously meaningless to directly

merge all pixel encoding together. Performing a visual perception of this world

from local textures to intermediate objects/shapes and then to the entire scene is a

common pattern, and it should also be the pattern of visual perception required for

computer vision. Moreover, it is computationally expensive to directly aggregate

the encoding of all pixels. Many methods have been proposed to tackle the context
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aggregation problem, from the simplest 3 × 3 convolutions, to the widely adopted

self-attention nowadays. In this thesis, we will mainly discuss and research the

context aggregation problem.

1.1.2 High Resolution and Details

To reduce computational overhead during context aggregation, the most com-

mon way is to downsample feature maps during the process of context aggregation

and encoding enhancement, which is typically achieved by striding or pooling oper-

ations. The downsampled feature maps require much smaller computation resources

than using the original channel number. For example, downsampling a feature map

with striding = 2 produces feature maps four times smaller, since both height and

width are reduced. Thus, downsampled feature maps can now contain four times

wider encoding (channels) with the same capability of hardware. On the other hand,

the distance between a pixel and its neighbouring pixels in a 2× downsampled fea-

tures map was shorter than before downsampling. Therefore, it is easier to conduct

context aggregation and capture global context than before.

However, for image semantic segmentation, the same size as that of the input

image is required for outputs/predictions. This brings a significant challenge to the

downsampled feature map, since the downsampling rate achieving the best trade-off

between performance and computational cost is 1/8 by using the dilation opera-

tion [3]. It means that the final feature map is required to upsample to eight times

to perform the final prediction, and therefore many details will be lost, easily result-

ing in inaccurate object boundaries.

Recent works [45, 32, 56, 5] leverage low-level high-resolution features from the

backbone to refine the details and boundary information of the downsampled high-

level features during their upsampling. HRNet [52] always keeps a high-resolution

branch (only 1/4 of the original size) to maintain the discrimibility of the feature
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of details and the accuracy of the boundaries. Boundary supervision [63, 28, 49] is

another important solution, where DecoupleSegNet [28] decoupled edge and body

features for the original features and gave hard supervision (e.g., hard pixel mining)

to the edges to enhance the robustness of edge prediction.

1.2 Early Context Aggregation based Approaches (prior to

2016)

Since the introduction of the convolution layer, the earliest spatial context ag-

gregation operation that has been proposed 20 years ago, a huge number of works

have emerged focusing on improving the context aggregation operation.

Here, the receptive field is an important concept in context aggregation, where

3 × 3 convolution layers encode the eight pixels around the center pixel and itself,

and then use the aggregated feature from those nine pixels to augment the value of

the center pixel. This means the context aggregation only considers a 3×3 receptive

field.

AlexNet [25] and VGG [47] were two proposed deep networks and they proved

that the sequential deep spatial CNN layers could increase the size of the receptive

field and largely improved the accuracy of image classification. In Fully Convolu-

tional Networks (FCNs) [37], VGG was used as the backbone to perform the pixels’

dense prediction.

1.3 Fixed Range Multi-scale Context Aggregation (2017-2018)

Besides the increment of the receptive field in deep convolution layers, parallel

designs have also been considered, and they use fixed-range multi-scale features to

perform context aggregation in a large receptive field. The Pyramid pooling module

(PPM) [69] and atrous spatial pyramid pooling (ASPP) [3] are two well-known
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Figure 1.2 : FCN [37] based on VGG outputs pixel level predictions

implementations and have been widely used.

PPM was proposed in PSPNet [69], which expanded the receptive fields using

multiple average pooling modules with different sizes, where the information from

both short-range pooling and long-range pooling was aggregated. Fig 1.3 illustrates

the design of PSPNet [69].

Figure 1.3 : The design of PSPNet [69], which uses PPM that contains multiple

pooling operations with different size rates to aggregate the multi-scale context.

ASPP was proposed in DeepLab [3]. As shown on Fig. 1.4, instead of using

pooling to merge information, it uses multiple dilated convolutions with different



6

dilation rates to capture multi-range information. Both approaches performed very

well in some early datasets with simple context, e.g., Pascal VOC 2012 [13] and

Cityscapes [38].

Figure 1.4 : The design of DeepLab V3 [4], which uses ASPP containing multiple

dilated (atrous) convolution of different dilation rates to aggregate multi-scale con-

text.

However, those fixed-range multi-scale context aggregation approaches have many

issues, resulting in insufficient accuracy in some datasets with complex context (e.g.,

Pascal Context [41] and COCOStuff [1]). Using ASPP as an example, with its de-

fault settings, i.e., output stride = 16, and a dilation rate = (6, 12, 18) to capture

short-range, mid-range and long-range information, it is obvious that most of the

information outside the dilation rate = (6, 12, 18) has been ignored during the

context aggregation for the center pixel. Moreover, capturing multi-range context

separately with different kernels can result in scale-sensitive representations of the

intra-class pixels. The intra-class pixels can end up with having different encodings

only because the object it belongs to appears in different scales (e.g., a large mo-

torbike vs a small motorbike), so that the accuracy of the final pixel classification

is affected.

DenseASPP [58] refined the structure of ASPP to allow more dilation rates to be

performed to cover more pixels ignored by regular ASPP, but there were still many

pixels missing, and the computational cost was increased greatly. In fact, pixel miss
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consideration issue has basically been solved with the introduction of self-attention

(Non-Local) [53, 50], which has been applied in computer vision models, with all

pixels being considered during context aggregation. The details of self-attention will

be discussed in the next section.

For another issue, scale-variant representation can be caused by multi-scale con-

text. In this thesis, Kernel-Sharing Atrous Convolution is proposed as an effective

solution, which brings multi-scale feature invariant during context aggregation. See

Chapter 2 for details.

1.4 Context Aggregation with Attention Mechanism (since

2018)

Regular self-attention, proposed in [50, 53], aggregates context information from

all pixels and directly brings the full receptive field in spatial domain. In other words,

unlike the fixed-range multi-scale context aggregation that misses many pixels out-

side the fixed ranges, all pixels are independently considered with self-attention.

Specifically, for any pixel in the feature map that needs to aggregate information

from other pixels to augment itself, self-attention firstly computes the dot-product

similarity of features between all pixels and itself, where the similarity is called

“attention map”, and then uses the feature sum of all pixels, weighted by “atten-

tion map” to augment that pixel. The global consideration of pixels significantly

improves the accuracy of neural networks on datasets with complex contexts and

yields more smooth results.

There have been many works that provide improving variants of self-attention.

Since self-attention in the spatial domain aggregates information from all pixels

for each of the pixels in the feature map, its computation complexity is H ×W ×

H ×W , which may not be hardware friendly for low-end devices or large images.
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Figure 1.5 : The designs of Self-Attention [53]. It compares the dot-product simi-

larities between each of 2 pixels on the feature map, and then uses it as the weights

to aggregate context from all pixels on the feature map. Images come from [72]

Works like [72, 19, 23, 62] use sparse self-attention to reduce computational cost,

for example, in CCNet [23], instead of considering all pixels at once that generates

H ×W ×H ×W computational overhead, criss-cross attention decomposed it into

two sparse attentions. Each attention only aggregates information in “criss-cross”

regions (same column or same row) for each pixel, where all pixels are considered

indirectly at the second round aggregation, resulting in similar effects of regular self-

attention but with much less computational complexity (2 × (H + W )×H ×W ).

Extending self-attention to other domains, such as channels, is another variant

improving self-attention. DANet [14] performed channel attention and spatial atten-

tion separately and added them together to augment the final pixel feature. Thus,
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not only all pixels but also the dimensions are considered, so that the comprehensive

coverage of context information collection is further expanded.

However, considering each dimension separately and then merging them together

may cause issues (e.g., feature conflicts), where the spatial attention or channel

attention may focus on different aspects, so it can affect the final feature. To address

this issue, we propose a “Channelized Axial-Attention” that seamlessly integrates

channel and spatial attention together. See Chapter 3 for details.

1.5 Class-aware Context Aggregation (since 2020)

To further improve the accuracy and efficiency during context aggregation. The

concept of class representation has been explored in many works in recent years.

In fact, many works [54] have already considered the class representation in other

areas of computer vision. In semantic segmentation, it started with ACFNet [64].

ACFNet aggregates the class center from the dot products between context(feature

map) and coarse prediction, uses it to generate the intra-class map (distribute class-

center to the corresponding pixels by dot-product with coarse prediction), and then

concatenates it with the original pixel features to perform the final classification.

A similar concept also exists in OCRNet [61], where the generation from class-

center to intra-class map is slightly different from ACFNet. OCRNet uses the cross-

attention between the class center and the feature map to distribute the class center

to the corresponding pixel.

Furthermore, CPNet [60] used a prior map (a large convolution that has a fil-

ter size equal to the height × width of the feature map) to directly generate the

intra-class map, where the prior map is supervised by the ground truth with an

affinity loss. It also generates an inter-class map, based on the class center of inter-

class features. After that, similar to ACFNet and OCRNet, both ‘class centers’ are
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concatenated with the original pixel features to perform the final classification.

Obviously, the generation of class center maps is a major contribution of ACFNet,

OCR and CPNet. However, their usage of the class center is simple, and it is directly

combined with the original pixel feature. It is unclear how much effect the class

center map brings to final classification results. For example, the final classifier may

focus more on the original features of pixels, and reduce the effectiveness of the

aggregated class center information. Moreover, during the context aggregation of

class-center, ACFNet and OCRNet rely on coarse prediction, and CPNet relies on

a prior map (which is another form of coarse prediction), so they can be affected by

incorrect information.

To address the above issues, This thesis proposed a “Class-aware Regularization”

module (CAR), which uses a class center to supervise the context aggregations of

the existing networks. In short, our CAR uses the real ground truth to compute the

class center during training to avoid aggregating incorrect information, and uses it

to supervise any existing networks with three goals: 1) reducing pixels’ intra-class

distance, 2) reducing inter-class center-to-center dependency, and 3) reducing pixels’

inter-class dependency. With those three targets, the context aggregation process

in existing networks is implicitly class-aware, with highly optimized inter-class and

intra-class features. Please refer to Chapter 4 for the details.

1.6 Latest Research Status (2022)

Up until now, the attention mechanism and class-aware context aggregation are

still the most pupular research topics combined with the Transformer [12] architec-

ture. Different from the traditional FCN [37] based pipelines that use Transformer

as the backbone for semantic segmentation [48], many works [44] have also extended

OCR following the decoder design in DETR [2] that has improved the class repre-

sentations (class center) by multiple iterations.
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Furthermore, by using the decoder concept in DETR [2] and the mask concept

in MaX-DeepLab [51], MaskFormer [8] used the mask classification concept to re-

place the traditional pixel classification and has achieved notable improvement on

semantic segmentation.

However, the issues of DETR [2] also appeared in its derived methods, such

as the slow convergence issue in MaskFormer [8]. Although the masked attention

in Mask2Former [7] has greatly improved its convergence speed, considering the

training iteration and computational cost required, it is still much more inefficient

compared with the previous FCN and CNN based methods.

While concluding this thesis, we noticed that our proposed CAA [22](in Chapter

3 3) and CAR [21](in Chapter 4 4) can contribute a more efficient Transformer

architecture with similar computational cost and converge speed as the prior FCN

and CNN based methods. We will leave this as a future work.

1.7 Research Problems and Contributions

• Scale-invariant: As described in Subsection 1.3, solutions addressing issues

with fixed-range multi-scale context, such as ASPP, used different dilated con-

volution operatoins to aggregation multi-range context, which affects to the

performance due to the variant features of intra-class pixels. To address this,

the thesis proposes “Kernel sharing Atrous Convolution(KSAC)” (see Chap-

ter 2 for details). The detailed contributions are as follows.

– We propose a sharing strategy to aggregate multi-ranges context with

multiple branches but retain scale-invariant characteristic.

– Based on the sharing strategy, the computational cost of multiple branches

is significantly reduced compared to ASPP.

– The proposed KSAC has achieved top 10 accuracies and appeared in the
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top 10 algorithms in Pascal VOC 2012 testing set.

• Seamless dual attention: As described in Subsection 1.4, dual-attention [14]

preformed channel attention and spatial attention separately to model the

inter-dependence in the channel and spatial domains, so it has caused feature

conflicts because two separated attentions focusing on different aspects in dif-

ferent domains are simply added together. To tackle this, this thesis proposes

“Channelized Axial-Attention” (See Chapter 3 for details) to perform the at-

tention in spatial and channel domains seamlessly. Our detailed contributions

are as follows.

– We are the first to explicitly identify the potential conflicts between spa-

tial and channel attention in existing dual attention designs by visualizing

the effects of each attention on the final result.

– We propose a novel Channelized Axial Attention, which breaks down

the axial attention into more basic parts and inserts channel attention

in between, integrating spatial attention and channel attention together

seamlessly and efficiently, with only a minor computation overhead com-

pared to the original axial attention.

– To balance the computation speed and GPU memory usage, a grouped

vectorization approach for computing the channelized attentions is pro-

posed. This is particularly advantageous when processing large images.

– Experiments on three challenging benchmark datasets, including PAS-

CAL Context [13], COCO-Stuff [1] and Cityscapes [38], demonstrate the

superiority of our approach over the state-of-the-art approaches.

• Class-aware Regularization: As described in Subsection 1.5, existing class-

center based approaches extracted class centers in various different ways but

the centres were simply concatenated with the original features so they lack
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efficiency. Moreover, the extracted class centers rely on the coarse prediction

outcome, which may contain errors. We propose “Class-aware regularization”

(See Chapter 4 for details) to explicitly improve the robustness of existing

networks, where the class center is computed by the real ground truth during

training. Our detailed contributions in this chapter are as follows.

– We propose a universal class-aware regularization module that can be

integrated into various segmentation models to largely improve the accu-

racy.

– We devise three novel regularization terms to achieve more separable and

less class-dependent feature representations by minimizing the intra-class

variance and maximizing the inter-class distance.

– We calculate the class centers directly from ground truth during training,

thus avoiding the error accumulation issue of the existing methods and

introducing no computational overhead during inference.

– We provide image-level feature-similarity heatmaps to visualize the learned

inter-class features with our CAR are indeed less related to each other.
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Chapter 2

Kernel-Sharing Atrous Convolution

As a classical computer vision application, semantic segmentation assigns pixels be-

longing to the same object class with the same label. During the segmentation

procedure, deep networks are required to handle both local detailed and global se-

mantic information, so as to handle objects of arbitrary sizes. To achieve such

robustness, numerous efforts have been made by the research community. For ex-

ample, the Fully Convolutional Network (FCN) [37] and U-Net [45] combined the

low-resolution feature maps with the high-resolution ones via concatenation or an

element-wise addition operation to extract both detailed and contextual features,

and the PSPNet [69], on the other hand, utilized multiple pooling layers in par-

allel to extract richer information. In particular, in the DeepLab family [3, 4, 5],

a more powerful and successful Atrous Spatial Pyramid Pooling (ASPP) structure

was proposed to exploit different receptive fields via multiple parallel convolutional

branches of different atrous rates (i.e., the dilation size of the convolution kernel;

see [3] for details) to extract features for both small and large objects. The ASPP

structure improves the networks’ generalizability significantly. Thanking the superi-

ority of this parallel concatenation strategy, ASPP has been widely used and further

improved by other works, such as DenseASPP net [58].

However, though ASPP and other similar parallel strategies have improved, to

some extent, the robustness of their models to objects’ scale variability, they still

suffer from other limitations. First, the lack of communication among branches

compromises the generalizability of individual kernels, as illustrated in Fig. 2.1.
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Specifically, kernels in the convolutional branches with small atrous rates or high-

resolution feature maps are able to learn detailed information and handle small

semantic classes well. However, for large semantic classes, these kernels are inca-

pable of learning features that concern a broader range of context. In contrast,

kernels in branches with big atrous rates or low-resolution feature maps are able to

extract features with large receptive fields, but may miss much detailed information.

Therefore, the generalizability of kernels is limited. On the other hand, the number

of samples contributing to training individual branches are reduced since small (or

big) objects are only effective for the training of branches with small (or big) atrous

rates. Therefore, the representations of similar pixels at different ranges will have

different effect on the center pixel’s representations. Secondly, it is intuitive that by

using parallel branches with separate kernels, the computational cost increases with

the increase of the number of parallel branches.

To tackle the above mentioned problems, in this chapter, we propose a novel

network structure, namely Kernel-Sharing Atrous Convolution (KSAC), as shown

in Fig. 2.2, where multiple branches with different atrous rates can share a single

kernel effectively. With this sharing strategy, the shared kernel is able to scan the

input feature maps more than once with both small and large receptive fields, and

thus be able to see both local detailed and global contextual information extracted

from objects of small or big sizes. In other words, the information learned with

different atrous rates is also shared. Moreover, since objects of various sizes can

all contribute to the training of the shared kernel, the number of effective training

samples increases, resulting in the improved representation ability of the shared

kernel. On the other hand, the computational cost is significantly reduced with the

sharing mechanism, and the implementation of the our KSAC is very simple.
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Figure 2.1 : The multi-branch-like solutions used in PSPNet and

DeepLab for improving models’ robustness to objects’ scale variabil-

ity.

2.1 Related Work and Issues

2.1.1 Fully Convolutional Network

The Fully Convolutional Network (FCN) proposed in [37] was a watershed in

the development of semantic segmentation techniques. It was the first publication

that successfully applied deep neural networks to spatially dense prediction tasks.

The fully-connected layers in deep networks require fixed-size inputs, which con-

flict with the arbitrary-size inputs of semantic segmentation tasks. FCN solves this

problem by transforming the fully connected layers into convolutional layers, allow-

ing networks to produce arbitrary sized heatmaps. In addition, FCN uses the skip

connections to fuse global semantic information with local appearance information

so that more accurate predictions can be produced. Based on the reported results

on the benchmark dataset VOC 2012, FCN has made a major breakthrough for
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Figure 2.2 : Illustration of our proposed Kernel-Sharing Atrous Con-

volution structure. The single 3 × 3 kernel is shared by three parallel

branches with different atrous rates.

the problem of semantic segmentation, and outperformed state-of-the-art methods

dramatically.

Thus, since the introduction of FCN, all of the subsequent deep networks de-

signed for semantic segmentation have followed the fully convolutional approach. An

example is the most widely used medical image segmentation network U-Net [45],

where concatenation is used to combine low-level features with high-level features

in the skip operation, instead of element-wise addition used in FCN.

2.1.2 DeepLab Family

Models from the DeepLab family [3, 4, 5] have championed the semantic seg-

mentation solutions, thanking the advanced network architecture as well as the

huge training datasets used.
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In the early version of DeepLab [3], atrous convolution (aka, ‘dilated convo-

lution’) was proposed to expand network’s receptive fields without shrinking the

feature maps’ resolutions, and this was achieved by inserting zeros into the kernels.

Additionally, they also employed the fully connected Conditional Random Fields

(CRFs) to obtain more accurate boundary predictions and designed a key tech-

nique, ASPP (Atrous Spatial Pyramid Pooling), which exploited multiple parallel

branches with different atrous rates to generate multi-scale feature maps to handle

scale variability. This technique has been retained in all of the subsequent DeepLab

versions due to its extraordinary performance. In particular, DeepLabv3 [4] aug-

mented ASPP with image-level features by encoding global context to further boost

the segmentation performance. Moreover, DeepLabv3+ [5] embedded the ASPP to

a more efficient encoder-decoder architecture, i.e., Xception, and achieved the best

performance in the semantic segmentation task. Besides, the authors of DeepLab

explored more efficient convolution operators like depthwise separable convolution

in MobileNet [46] and more effective network structures via the Neural Architecture

Search (NAS) techniques in [33]

However, though ASPP has achieved remarkable performance boost, it still has

the limitation because it cannot capture well the representations of similar pixels at

different ranges from the center pixels, as explained earlier. Therefore, in this work,

we propose a novel Kernel-Sharing Atrous Convolution to handle the scale variability

problem more effectively. According to the comprehensive experiments conducted

on three benchmark datasets, including PASCAL VOC 2012 [13], ADE20K [71] and

Cityscapes [38], our proposed KSAC achieves much better performance than ASPP

with also reduced computational cost (see the detailed figures in the FLOPs column

of Table 1 for details).
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2.1.3 Other Semantic Segmentation Models

In addition to the aforementioned models, there are many other outstanding deep

networks designed for semantic segmentation. For instance, the PSPNet proposed

in [69] aggregated the global context information via a pyramid pooling module,

together with their proposed pyramid scene parsing network. DenseASPP [58] ar-

gued that the scale-axis of ASPP was not dense enough for the autonomous driving

scenario, so they designed a more powerful DenseASPP structure, where a group of

atrous convolutional layers were connected in a densely connected way. Considering

the importance of global contextual information, a Context Encoding Module was

proposed in [65] to capture the semantic context of scenes and enhance the class-

dependent feature maps. This method improved the segmentation results with only

a slightly increased computational cost when compared with the FCN structure [37].

In recent years, self-attention [53] and its variants [67] and [14] have been widely

reported in various semantic segmentation works. With the self-attention mech-

anism, the similarities between each pair of pixels are used to optimize the rep-

resentations of each pixel based on the entire feature map, breaking the locally

finite receptive fields in the conventional convolution operation. The works reported

in [23, 72, 19, 61, 15] show that performing attention on partial feature maps for

each pixel can achieve comparable performance of the full attention but at a much

reduced computational cost. The computation of self-attention breaks the limitation

of 2D feature maps, but also brings some information loss, such as pixel locations,

which may be one of the reasons that skip connections and auxiliary loss are widely

used in self-attention based models [67, 27].

Clearly, improving the correctness of the representations for pixels belonging to

objects of arbitrary sizes has been an intrinsic goal for recent semantic segmenta-

tion techniques. Existing attempts have explored various possibilities to take into
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consideration both global context and local appearance information. In this work,

we propose an effective sharing strategy, i.e., Kernel-Sharing Atrous Convolution

(KSAC). Our experimental results demonstrate the superiority of this idea in terms

of improving the segmentation quality, reducing the network complexity and consid-

ering a wider range of context. Next, the technical details of our proposed KSAC,

together with our motivations and justification, are presented.

2.2 Proposed Solution

As introduced above, thanking the development of techniques including atrous

convolution, depthwise separable convolution, ASPP and Xception, etc, the DeepLab [5]

has achieved the highest performance for the task of semantic segmentation and be-

come the most significant and successful multi-branch structures. In our work, for

fair comparison with the well-known ASPP structure, we base our proposed KSAC

on the DeepLab framework and replace the ASPP module with our KSAC. More

details are presented below.

2.2.1 Atrous Spatial Pyramid Pooling

The receptive field of a filter represents the range of context that can be viewed

when calculating features as input for the subsequent layers. A large receptive field

enables the network to consider wider range context and more semantic informa-

tion, which is vital to handling large sized objects. In contrast, a small receptive

field is good for capturing local detailed information, which can help to generate

more refined boundaries and more accurate predictions, especially for small objects.

However, the receptive fields are fixed in traditional convolution operators (e.g., a

3 × 3 kernel has a fixed receptive field of 3 × 3). Atrous convolution allows us to

expand the receptive fields of filters flexibly by setting various atrous rates for the

traditional convolutional layer and inserting zeros into the filters accordingly.
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Figure 2.3 : The detailed architecture of our proposed Kernel-Sharing Atrous Con-

volution with rate = (6, 12, 18)

Furthermore, in the ASPP structure [3], to handle objects with arbitrary sizes,

multiple atrous convolution layers with different atrous rates were used in parallel,

and their outputs were combined to integrate information extracted with various

receptive fields. However, as analyzed above, this design does harm to the gen-

eralizability of kernels in individual branches and also increases the computation

burden. To address this issue, we propose a novel sharing mechanism (i.e., KSAC)

to improve the semantic segmentation performance of the existing models.

2.2.2 Atrous Convolution with Shared Kernel

As shown in Fig. 2.3, our proposed KSAC is composed of three components, i.e.,

a 1× 1 convolutional layer, a global average pooling layer followed by a 1× 1 convo-

lutional layer to obtain the image-level features, and a pyramid atrous convolutional

module with a shared 3× 3 kernel and atrous rates (6, 12, 18). Note that the batch
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Algorithm 1 Kernel-Sharing Atrous Convolution

Require: I: Input channels, T : Input feature maps, C: Output channels, R:

Atrous rates

1: shape← [3, 3, I, C]

2: K ← Kernel(shape) ▷ generate shared kernel

3: for r ∈ R do

4: T ′
r ←Conv2D(T, r,K)

5: Br ← BatchNorm(T ′
r)

6: end for

Ensure:
∑

r∈R ReLU(Br)

normalization layers are used after each convolutional layer. Algorithm 1 shows the

implementation details of our KSAC.

As demonstrated in our experiments, our proposed sharing strategy not only

helps reduce computational cost but also improves the segmentation performance.

This improvement can be explained from two aspects. Firstly, the generalization

ability of the shared kernels are enhanced by learning both local detailed features for

small objects and global semantically rich features for large objects, which is realized

via varying the atrous rates. Secondly, the number of effective training samples

is increased by sharing information, which improves the representation ability of

the shared kernels. As described in Fig. 2.1, kernels with small atrous rates in

ASPP cannot extract features comprehensively enough for large objects, while those

with large atrous rates are ineffective on extracting local and fine details for small

objects. Therefore, kernels in individual branches can only be trained effectively

by some objects in the training images. In contrast, in our proposed KSAC, all of

the objects in the training images are contributive samples for the training of the

shared kernel. Note that, essentially, this kernel-sharing’s purpose is to conduct
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ASPP with separate kernels

Shared Kernel Kernel 0 Kernel 1 Kernel 2

Rate=6 Rate=12 Rate=18 Rate=6 Rate=12 Rate=18

Our KSAC with shared kernel

Figure 2.4 : Visualization of the feature maps extracted by kernels of KSAC and

ASPP. Here, 25 feature maps are presented for each rate, and we enlarge the ones

indicated by red bounding boxes on the top of the figure. Apparently, edges and

contours extracted by the shared kernel of our KSAC are much clearer than those

extracted by separate kernels of ASPP, for both large atrous rate and small atrous

rate. Readers are suggested to zoom in to see more details.

‘feature’ augmentation inside the network by sharing kernels among branches. Like

data augmentation performed in the pre-processing stage, feature augmentation

performed inside the network can help to enhance the representation ability of the

shared kernels.

To better understand the enhanced generalization and representation abilities of

our KSAC, we visualize the feature maps learned by its shared kernel, and compare

these feature maps with those generated by ASPP’s separate kernels, as shown

in Fig. 2.4. Obviously, no matter whether it is for branches with small atrous

rates (or small receptive fields) or for large atrous rates (large receptive fields), the

feature maps produced by our KSAC are much more comprehensive, expressive and

discriminative than those generated by ASPP. Specifically, as illustrated in Fig. 2.4,

the edges (local detailed information) and contours (global semantic) detected by

our KSAC are much clearer than those detected by ASPP.

Moreover, as pointed out in [5], the DeepLab model has achieved the best per-
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formance under the setting rate = (6, 12, 18) in ASPP. However, when an additional

parallel branch with rate = 24 was added, the performance actually dropped slightly

by 0.12%. That is to say, ASPP is not able to produce better performance through

capturing a longer range of context. In contrast, according to our experimental re-

sults, the performance obtained with our proposed KSAC can be further improved

with the setting rate = (1, 6, 12, 18, 24). This demonstrates that, compared with

ASPP, our proposed KSAC is more effective in terms of capturing longer ranges of

context with larger atrous rates and wider parallel atrous convolutional branches.

2.3 Experiment Setting

To demonstrate the effectiveness of our proposed KSAC sharing mechanism,

we evaluated its performance on three benchmark datasets, i.e., PASCAL VOC

2012 [13], ADE20K [71] and Cityscapes [38], and compared its performance with

those of the state-of-the-art approaches, in terms segmentation accuracy, model size,

robustness as well as efficiency and GPU memory usage. In this section, details of

involved datasets, model implementation and training protocol are presented.

2.3.1 Datasets and Data Augmentation

In this work, the same as in [4, 27], we use the benchmark datasets Seman-

tic Boundaries Dataset (SBD) and COCO for pre-training, and PASCAL VOC

2012 for fine-tuning and evaluation. We also conduct experiments on ADE20K

and Cityscapes, where no segmentation dataset is used for pre-training.

2.3.1.1 PASCAL VOC 2012

Pascal VOC 2012 is created for multiple purposes, including detection, recogni-

tion and segmentation, etc. There are a large number of images provided in this

dataset, but only about 4,500 of them are labeled with high quality for segmenta-

tion. In particular, the PASCAL VOC 2012 segmentation dataset consists of about
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1,500 annotated training images, 1,500 annotated validation images and 1,500 unan-

notated test images.

2.3.1.2 SBD

SBD [17] is a third party extension of the PASCAL VOC 2012 dataset and

composed of about 8,500 annotated training images and 2,800 annotated validation

images. Among the released images, more than 1,000 of them are picked directly

from the official PASCAL VOC 2012 validation set. Therefore, in order to use the

SBD dataset for the training and accurately evaluate the performance of related

models with the PASCAL VOC 2012 validation set, we remove these images from

the SBD and merge the rest of the training and validation images to create the SBD

‘trainaug’ dataset.

2.3.1.3 COCO

COCO [1] is a huge dataset created for multiple tasks. As mentioned in the

literature, additional improvement can be made if the model is pre-trained with

the COCO dataset. Therefore, following the practice in [5], we select about 60K

training images from the COCO dataset to include images containing classes defined

in PASCAL VOC 2012 and with an annotation region greater than 1,000. Moreover,

any classes that are not defined in PASCAL VOC 2012 are treated as background.

2.3.1.4 ADE20K

ADE20K [71] is a large-scale scene parsing dataset containing 150 stuff, i.e., ob-

ject category labels. This dataset is split into 20k, 2k and 3k for training, validation

and testing, respectively.



26

2.3.1.5 Cityscapes

Cityscapes [38] has 19 classes. Its fine set contains high quality pixel-level anno-

tations of 5,000 images, where there are 2,975, 500 and 1525 images in the Training,

Validation, and Test sets, respectively. The same as in other works [26, 14], we crop

the training images to 769×769 during training, and keep full-resolution 1025×2049

during inference. We report our results on the Test set.

To fairly compare our proposed model with other existing works, we also apply

some widely adopted data augmentation strategies in training, including horizontally

flipping with 50% probability, randomly scaling the images with a scaling factor

between 0.5 and 2.0 and at a step size of 0.25, padding and randomly cropping the

scaled images to a size of 513× 513.

2.3.2 Implementation Details

In our experiments, the batch size is set to 32 and 16 for the MobileNetV2-

based models and Xception-based models, respectively. Additionally, our networks

are optimized with the SGD optimizer, and in the first pre-training stage, they are

trained on the mixed dataset of COCO, SBD and VOC for 300K iterations with

a learning rate of 1e-3. Then, the learning rate is adjusted to 4e-4 and related

networks are continually trained on the SBD and VOC mixed datasets for another

40K iterations. Finally, our models are fine-tuned on the VOC training set with

a learning rate of 2e-4. For the evaluation on ADE20K, backbones pre-trained

on ImageNet are loaded and no semantic segmentation dataset is used for pre-

training. In particular, our networks are trained only on the ADE20K training set

with an initial learning rate of 2e-3 and a momentum of 0.9. Then, according to the

segmentation loss, the learning rate is manually reduced in half about every 30K

iterations.
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Image ASPPGround Truth Our KSACFCNImage ASPPGround Truth Our KSACFCN

Figure 2.5 : Comparison of the segmentation results obtained by FCN, ASPP and

our KSAC on the Pascal VOC 2012 validation set.
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Head
Backbone D OS COCO MF mIOU (%) FLOPs

ASPP Ours

ResNet-50 [18] 16 70.99 39.94G

✓ ResNet-50 [18] 16 74.91 57.37G

✓ ResNet-50 [18] 16 76.23 54.63G

✓ ResNet-101 [18] 16 77.20 76.61G

✓ ResNet-101 [18] 8 78.51 257.74G

✓ ResNet-101 [18] 8 ✓ 79.77 -

✓ ResNet-101 [18] ✓ 8 79.35 277.99G

✓ ResNet-101 [18] 16 77.77 73.87G

✓ ResNet-101 [18] 16 ✓ 79.63 -

✓ ResNet-101 [18] 8 78.78 245.09G

✓ ResNet-101 [18] 8 ✓ 80.10 -

✓ ResNet-101 [18] ✓ 8 79.70 265.34G

✓ Xception65 [10] ✓ 16 79.79 83.50G

✓ Xception65 [10] ✓ 16 ✓ 82.20 83.50G

✓ Xception65 [10] ✓ 16 ✓ ✓ 83.34 -

✓ Xception65 [10] ✓ 8 ✓ 82.45 244.54G

✓ Xception65 [10] ✓ 8 ✓ ✓ 83.58 -

✓ Xception65 [10] ✓ 16 80.22 80.77G

✓ Xception65 [10] ✓ 16 ✓ 83.92 80.77G

✓ Xception65 [10] ✓ 16 ✓ ✓ 85.96 -

✓ Xception65 [10] ✓ 8 ✓ 84.13 231.89G

✓ Xception65 [10] ✓ 8 ✓ ✓ 86.09 -

✓ MobileNetV2 [46] 16 ✓ 75.70 -

✓ MobileNetV2 [46] 16 ✓ 76.30 -

Table 2.1 : Experimental results obtained on PASCAL VOC 2012 validation set

with different inference strategies when using ASPP and our proposed KSAC, and

ResNet-50, ResNet-101, Xception65 or MobileNetV2 as the backbone. KSAC:

Using our proposed KSAC. ASPP: Using the standard ASPP structure proposed

in DeepLabv3+ [4]. D: Concatenating the OS = 4 feature maps from the backbone

during the upsampling of the logits. MF: Employing multi-scale (MS) and left-

right flipping on the inputs during the evaluation. COCO: Model is pre-trained on

COCO dataset [1]. The Performance is evaluated from the aspect of mIOU (%)

and the number of FLOPS (Floating Point Operations per Second), respectively.



29

2.4 Experiment Results

2.4.1 Improved mIOU

To demonstrate the effectiveness of our proposed KSAC, we first compare it

with ASPP, the most successful multi-scale structure that has played a key role in

the DeepLab family. The comparison results are shown in Table 2.1. Moreover,

additional comparative visualizations are presented in Fig. 2.5, showing our results

and the failure segmentation predictions generated by the baseline models. Note that

the combination of ASPP, Xception and Decoder has exactly the same architecture

as that DeepLabv3+ [5]. In addition, the ASPP module and our KSAC module

used in Table 2.1 are with the same atrous rate setting, i.e., (6, 12, 18), which is

the standard setting of DeepLabv3+ [5].

As we can see from Table 2.1, under the same configuration, by replacing ASPP

with our proposed KSAC, the mIOU figures have been improved for all the mod-

els with ResNets, Xception and MobileNetV2 backbones. In particular, when the

Xception backbone is used, our proposed KSAC has achieved the highest mIOU

(85.96% for OS=16 and 86.09% for OS=8), which are 2.62% and 2.51% higher than

DeepLabv3+ (83.34% when OS=16 and 83.58% when OS = 8).

To further illustrate the superiority of our proposed KSAC, we also compare its

performance with those of other state-of-the-art approaches. As listed in Table 2.3,

our KSAC outperforms all of the listed methods on both the validation set and

test set of PASCAL VOC 2012. Note that, for a fair comparison, we only compare

our KSAC with methods using ResNet-101, ResNerXt-131 or Xception-65 as their

backbones.

From the above comparison results, we can conclude that our proposed KSAC

structure is more robust and effective than the ASPP structure, and by seeing

the input feature maps multiple times with different receptive fields, the networks’
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generalization and representation abilities have been significantly improved.

2.4.2 Reduced Computational Cost

Reducing computational cost is another advantage of our KSAC. Specifically,

the typical ASPP with dilation rates = (6, 12, 18) requires three 3× 3 convolutions,

so that all pixels perform 3× 3× 3 dot product operations. In KSAC, thanking the

weight sharing, only 1× 3× 3 dot product operations are needed.

Table 2.1 presents the computational cost for each segmentation head. As it can

be seen, with our proposed sharing mechanism, the FLOPs count of our KSAC is

significantly smaller than that of the ASPP. In particular, when inferencing with

an output stride = 16, about 2.73G FLOPs is saved, and when inferencing with

an output stride = 8, about 12.65G FLOPs is saved. Note that, if we leave out

the major FLOPs contributed by the computations independent to ASPP or KSAC

module such as the backbone, the advantages of our KSAC over ASPP is more

significant, with a 15% save on computational cost.

2.4.3 Capability of Handling Wider Range of Context

As claimed in [4], the DeepLabv3 model achieved the best performance when

three parallel branches with atrous rates of of 6, 12, and 18 being used in the ASPP

module, while an additional parallel branch with rate = 24 resulted in a slight drop

(0.12%) of the performance. In contrast, our proposed KSAC is able to take the

benefit of a wider range of context to further improve the segmentation performance.

As shown in Table 2.2, when added with two atrous convolution branches with rates

1 and 24 in our KSAC structure, the mIOU is further improved from 85.96% to

87.01%. Specifically, since the newly added branches share the same kernel with the

original three branches, no additional parameters are added.
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Atrous Rates Testing Strategy

(6, 12, 18) (1, 6, 12, 18, 24) Multi-Scale Flip mIOU (%)

✓ 83.92

✓ ✓ ✓ 85.96

✓ 84.50

✓ ✓ ✓ 87.01

Table 2.2 : Experimental results of our proposed KSAC on PASCAL VOC 2012

validation set with different settings of atrous rates.

mIOU (%)

Methods Validation Test

PSPNet [69] - 85.4

EMA (ResNet-101) [27] - 87.7

ExFuse [68] 85.8 87.9

SANet [70] - 86.1

SDN [16] 84.8 86.6

CFNet [67] - 87.2

DeepLabv3 [4] 82.7 85.7

DeepLabv3+ [5] 83.6 87.8

Our KSAC 87.0 88.1

Table 2.3 : Comparison results with other approaches on the PASCAL VOC 2012

validation and test sets.
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2.4.4 Improved Speed with Less GPU Memory Usage

The existing approaches, such as [14, 67], have trained their models and obtained

their final results on Pascal VOC 2012 by setting the output stride (OS) to 8.

Technically, OS = 8 means the output size of the encoder is 1/8 of the original

image size, in order to yield more detailed feature maps compared to OS = 16, as

described in [4]. However, this also means a significant drop on speed and more

GPU memory consumption. According to our experiments and the data provided

in [5], a setting of OS = 8 will result in the speed dropped by about three times

and the GPU memory usage increased by nearly four times, compared to OS = 16.

By contrast, in our KSAC, the sharing kernel mechanism gives rise to stronger

generalizability and representation ability, so, with OS = 16, we are able to achieve

the segmentation results similar to those of ASPP when OS = 8.

In Table 2.1, we conducted experiments with OS = 16, as well as OS = 8 for

ResNet-101 and Xception65. The results show that OS = 8 can further improve

the performance without adding the decoder. It is also worth of noting that, after

adding the decoder, the improvement of OS = 8 over OS = 16 becomes very small

(86.09% vs 85.96%).

Therefore, we can say that our KSAC has achieved high performance without

dramatic speed loss and extra GPU memory cost.

2.4.5 Experiment Results on ADE20K

To further demonstrate the effectiveness and robustness of our proposed KSAC,

we also evaluate its performance on the ADE20K dataset. Finally, our KSAC

achieves mIOUs of 43.20% and 45.47% for single scale test and multi-scale test,

respectively, outperforming all of the listed approaches as shown in Table 2.4. Note

that, because of the hardware limitation, we resize our training images to a size of

513× 513, instead of 1000× 1000 used in other works, and a smaller size is usually
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harmful to the segmentation performance.

Methods mIOU (%)

RefineNet [31] 40.7

UperNet [56] 42.66

PSPNet [69] 43.29

DSSPN [30] 43.68

EncNet [65] 44.65

CFNet [67] 44.89

Our KSAC 45.47

Table 2.4 : Comparison results with other approaches on the ADE20K validation

set for multi-scale prediction.

2.5 Summary

In this chapter, aiming to address the scale variability problem in semantic seg-

mentation, we have proposed a novel and effective network structure namely Kernel-

Sharing Atrous Convolution (KSAC), where different branches share one single ker-

nel with different atrous rates, i.e., let a single kernel see the input feature maps

more than once with different receptive fields. Experimental results conducted on

the benchmark PASCAL VOC 2012, ADE20K and Cityscapes have demonstrated

the superiority of our proposed KSAC. KSAC has not only effectively improved

the segmentation performance but also significantly reduced the computational cost

with less GPU memory usage. Additionally, compared with the well-known ASPP

structure, our KSAC can also capture a wider range of context without downgrading

performance. However, our KSAC has a limitation that cannot be ignored. In this
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work, we have empirically set the dilation rates to capture the multi-scale contex-

tual information based on experiments. However, such fixed rates cannot handle

scenarios where the data are significantly different from the training dataset. In this

case, setting dynamic dilation rates (e.g., generating dilation rates during run-time

based on axial pixel representations) may be helpful. We leave this exploration as

a future work.
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Chapter 3

Channelized Axial Attention

Most of the existing semantic segmentation approaches [61, 58, 14, 27] have adopted

a pipeline similar to the one that is defined by Fully Convolutional Networks (FCNs) [37]

using fully convolutional layers to output the pixel-level segmentation results of in-

put images. These approaches have achieved state-of-the-art performance. After

the FCNs, there have been many approaches dedicated to extracting enhanced pixel

representations from the backbone. Earlier approaches, including PSPNet [69] and

DeepLab [5], used a Pyramid Pooling Module or an Atrous Spatial Pyramid Pool-

ing module to expand the receptive field to enhance the representation capabilities.

Recently, many works focus on using the attention mechanisms to enhance pixel rep-

resentations. The first set of attempts in this direction included Squeeze and Excita-

tion Networks (SENets) [20] that introduced a simple yet effective channel attention

module to explicitly model the interdependencies between channels. Meanwhile,

spatial attention relied on self-attention proposed in [53, 50] to model long-range

dependencies in spatial domain, so as to produce more correct pixel representations.

For each pixel in the feature maps, spatial attention “corrects” its representation

with the representations of other pixels depending on their similarity. In contrast,

channel attention identifies important channels based on all spatial locations and

reweights the extracted features.

Parallel dual attention (e.g., [14]) was proposed to gain the advantages of both

spatial attention and channel attention. This approach directly fused their results

with an element-wise addition (see Fig. 3.1(a)). Although they have achieved im-
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Figure 3.1 : Different dual attention designs: (a) Parallel dual attention sums

the results from spatial and channel attentions directly, which may cause conflicts

because spatial and channel attentions are focusing on different aspects. (b) Se-

quential dual attention performs spatial attention after channel attention, where

the spatial attention may override correct features extracted by the channel atten-

tion. (c) Our channelized attention seamlessly merges the spatial and channel

attentions into a single operation (see Sect. 3.3.2), removing the potential conflicting

issue caused by a or b.
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proved performance, the relationship between the contributions of spatial and chan-

nel attentions to the final results is unclear. Moreover, calculating the two attentions

separately not only increases the computational complexity, but may also result in

conflicting importance of feature representations. For example, some channels may

appear to be important in spatial attention for a pixel that belongs to a partial re-

gion in the feature maps. However, channel attention may have its own perspective,

which is calculated by summing up the similarities over the entire feature maps, and

weakens the impact of spatial attention.

Sequential dual attention, which combines channel attention and spatial atten-

tion in a sequential manner (Fig. 3.1(a)) has similar issues. For example, channel

attention can ignore the partial region representation obtained from the overall per-

spective. However, this partial region representation may be required by spatial

attention. Thus, directly fusing the spatial and channel attention results may yield

incorrect importance weights for pixel representations. In Sect. 3.4, we develop an

approach to visualize the impact of the conflicting feature representation on the final

segmentation results.

In order to overcome the aforementioned issues, we propose Channelized Axial

Attention (CAA), which breaks down the axial attention into more basic parts

and inserts channel attention into them, combining spatial attention and channel

attention together seamlessly and efficiently. Specifically, when applying the axial

attention maps to the input signal [53], we capture the intermediate results of the

dot product before they are summed up along the corresponding axes. Capturing

these intermediate results allows channel attention to be integrated for each column

and each row, instead of computing on the mean or sum of the features in the entire

feature maps. We also develop a novel grouped vectorization approach to maximize

the computation speed in limited GPU memory.
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In summary, our contributions in this chapter are as follows.

• We are the first to explicitly identify the potential conflicts between spatial

and channel attention in existing dual attention designs by visualizing the

effects of each attention on the final result.

• We propose a novel Channelized Axial Attention, which breaks down the ax-

ial attention into more basic parts and inserts channel attention in between,

integrating spatial attention and channel attention together seamlessly and

efficiently, with only a minor computation overhead compared to the original

axial attention.

• To balance the computation speed and GPU memory usage, a grouped vector-

ization approach for computing the channelized attentions is proposed. This

is particularly advantageous when processing large images.

• Experiments on three challenging benchmark datasets, including PASCAL

Context [13], COCO-Stuff [1] and Cityscapes [38], demonstrate the superiority

of our approach over the state-of-the-art approaches.

3.1 Related Work and issues

Spatial attention. Non-local networks [53] and Transformer [50] introduced the

self-attention mechanism to examine the pixel relationship in the spatial domain. It

usually calculates dot-product similarity or cosine similarity to obtain the similarity

measurement between every two pixels in feature maps, and recalculates the feature

representation of each pixel according to its similarity with others. Self-attention

has successfully addressed the feature map coverage issue of multiple fixed-range

approaches [3, 69], but it has also introduced huge computation costs for computing

the complete feature map. This means that, for each pixel in the feature maps, its
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attention similarity affects all other pixels. Recently, many approaches [23, 72] have

been developed to optimize the GPU memory costs of spatial self-attention.

Channel Attention. Channel attention [20] examined the relationships be-

tween channels, and enhanced the important channels so as to improve performance.

SENets [20] conducted a global average pooling to get mean feature representations,

and then went through two fully connected layers, where the first one reduced chan-

nels and the second one recovered the original channels, resulting in channel-wise

weights according to the importance of channels.

In DANet [14], channel-wise relationships were modelled by a 2D attention ma-

trix, similar to the self-attention used in the spatial domain, except that it computed

the attention with a dimension of C ×C rather than (H ×W )× (H ×W ) (here, C

represents the number of channels, and H and W represent the height and width of

the feature maps, respectively).

Spatial Attention + Channel Attention. Combining spatial attention and

channel attention can provide fully optimized pixel representations in a feature map.

However, it is not easy to enjoy both advantages seamlessly. In DANet [14], the

results of the channel attention and spatial attention are directly added together.

Supposing that there is a pixel belonging to a semantic class that has a tiny region

in the feature maps, spatial-attention can find its similar pixels.

However, channel representation of the semantic class with a partial region of

the feature maps may not be important in the perspective of entire feature maps,

so it may be ignored when conducting channel attention computations. Computing

self-attention and channel attention separately (as illustrated in Fig. 3.1(a)) can

cause conflicting results, and thus weaken their performance when both results are



40

summarized together. Similarly, in the cascaded model (see Fig. 3.1(b)), the spatial

attention module after the channel attention module may pick up an incorrect pixel

representation enhanced by channel attention, because channel attention computes

channel importance according to the entire feature maps.

Spatial 
Attention

Channel 
Attention

Main logits

Aux logits

Aux logits

... Main loss

Aux loss

Aux loss

... Channel 
Attention

Spatial 
Attention

Main logits

Aux logits

Main loss

Aux loss
Stop gradient

Visualization

(a) Visualize Parallel dual Attention

(b) Visualize Sequential dual Attention

Figure 3.2 : Our designs for visualizing the effects of dual attentions in parallel and

sequential.

3.2 Exploring Conflicting Features

As we have analyzed earlier in Sect. 3.1, computing spatial and channel atten-

tions separately can cause conflicting features. In our experiments, to illustrate this

feature conflicting issue faced by existing dual attention approaches, we designed

a simple way to visualize the effects of spatial attention and channel attentions on

pixel representation.
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Image Ground Truth Spatial Attention Channel Attention Prediction

Figure 3.3 : Conflicting features in parallel dual attention designs. Top: The bad

spatial attention representation negatively influences the good channel attention

representation. Bottom: The bad channel attention representation negatively in-

fluences the good spatial attention representation. See the boxed areas.

Image Ground Truth Channel Attention 
Spatial Attention 

&Prediction

Figure 3.4 : In sequential dual attention designs, the spatial attention representa-

tion (the 4th column) ignores the correct channel attention representation (the 3rd

column).

3.2.1 Visualizing Conflicts

For a parallel dual attention design such as DANet [14], since it has two auxiliary

losses for each of spatial attention and channel attention, we directly use their logits
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during inference to generate corresponding segmentation results and compare them

with the result generated by the main logits. For a sequential dual attention design,

we add an extra branch that directly uses the pixel representation obtained from

channel attention to perform the segmentation logits. Note that, since the original

sequential design does not have independent logits after the channel attention mod-

ule, we stop the gradient from back-propagating to the main branch, to ensure that

our newly added branch has no effect on the main branch.

3.2.2 Examples of Conflicting Features

To visualize the impact of the feature conflicting issue in the existing dual atten-

tion designs (see Sect. 3.1), we present examples of the segmentation results obtained

with the conflicting features in the parallel dual attention design (see Fig. 3.3) and

the sequential dual attention design (see Fig. 3.4). As observed from Fig. 3.3, the

parallel design of dual attention directly sums up the pixel representations obtained

from spatial attention and channel attention. With this approach, the advantages

of the pixel representations obtained from one can be weakened by the other.

The sequential way of combining the dual attentions avoids taking their average

but still has its own problem. As shown in Fig. 3.4, the pixel representation ob-

tained from the spatial attention ignores the correct representation obtained from

the channel attention, and worsens the prediction.
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(a) Dot product in pure Axial Attention (b) Dot product in Our CAA
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Figure 3.5 : The detailed architecture of the proposed CAA. We present the way

to apply channel attention seamlessly in (b). We mark the independent spatial

dimension in the bold style. This allows channel attention to also consider spatially

unique information. Note that, in our design, the “value” for Row attention is

obtained from the result of Column attention. See Eq. 3.11 for details.
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3.3 Methods

3.3.1 Preliminaries

3.3.1.1 Formulation of the Spatial Self-attention

Following Non Local [53] and Stand Alone Self Attention [42], a 2D self-attention

operation in spatial domain can be defined by:

yi,j =
∑
∀m,n

f(xi,j,xm,n)g(xm,n). (3.1)

Here, a pairwise function f computes the similarity between the pixel representation

xi,j (query) at position (i, j) and the pixel representation xm,n (key) at all other

possible positions (m,n). The unary function g maps the original representation

at position (m,n) to a new domain (value). In our work, we use the similarity

function [53] as f , i.e.,

f(xi,j,xm,n) = softmaxm,n(θ(xi,j)
T θ(xm,n)), (3.2)

where θ is a 1 × 1 convolution layer transforming the feature maps x to a new

domain to calculate dot-product similarity [53] between every two pixels. Note

that, following a common practice [26], we use the same 1 × 1 convolution weights

for both query and key. Then, these similarities are used as the weights (Eq. (3.1))

to aggregate features of all pixels, producing an enhanced pixel representation yi,j

at position (i, j).

3.3.1.2 Formulation of the Axial Attention

From the above equations, we can see the computational complexity of the self-

attention module is O(H2W 2), which requires large computation resources and pre-

vents real-time applications, such as autopilot. Several subsequent works [23, 19]

focused on reducing the computational complexity while maintaining high accuracy.
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In this work, we adopt axial-attention to perform spatial attention. In axial atten-

tion, the attention map is calculated for the column and row that cover the current

pixel, reducing the computational complexity to O(HW 2 + H2W ).

For convenience, we call the attention values calculated along the Y axis “column

attention”, and the attention values calculated along the X axis “row attention”.

Similar to Eq. 3.2, we define axial similarity functions by:

Acol(xi,j,xm,j) = softmaxm

(
θ(xi,j)

T θ(xm,j)
)
, m ∈ [H]∗, (3.3)

and

Arow(xi,j,xi,n) = softmaxn

(
ϕ(xi,j)

Tϕ(xi,n)
)
, n ∈ [W ]. (3.4)

Note that we use different feature transformations (θ, ϕ) for the row and column

attention calculations.

With the column and row attention maps Acol and Arow, the final value weighted

by the column and row attention maps can be represented by:

yi,j =
∑
∀n

(
Arow(xi,j,xi,n)(

∑
∀m

Acol(xi,j,xm,j)g(xm,n))

)
. (3.5)

3.3.2 Channelized Axial Attention

In order to address the feature conflicting issue of the existing dual attention

designs, we propose a novel Channelized Axial Attention (CAA), which seamlessly

combines the advantages of spatial attention and channel attention.

As mentioned in the above sections, feature conflicts may be caused by the

different interests of spatial and channel attentions. Ideally, channel attention should

not ignore the regional features that are interesting to spatial attention. Conversely,

spatial attention should consider channel relation as well.

∗We use i ∈ [n] to denote that i is generated from [n] = {1, 2, ..., n}.
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Thus, we propose to compute channel attention within spatial attention. Specif-

ically, we firstly break down spatial attention into more basic parts (Sect. 3.3.2.1).

Then, spatially varying channel attention is generated with αi,j,m,n and βi,j,n. In this

way, channel attention is incorporated into spatial attention and spatial attention

will not be ignored when small objects exist, seamlessly and effectively combining

spatial and channel attention together.

3.3.2.1 Breaking Down Axial Attention.

For convenience, we firstly define two variables αi,j,m,n and βi,j,n to represent the

intermediate weighted features as follows.

αi,j,m,n = Acol(xi,j,xm,j)g(xm,n) (3.6)

and

βi,j,n = Arow(xi,j,xi,n)
∑
∀m

αi,j,m,n. (3.7)

Thus, Eq. (3.5) can be rewritten as:

yi,j =
∑
∀n

βi,j,n =
∑
∀n

Arow(xi,j,xi,n)

(∑
∀m

αi,j,m,n

)
. (3.8)

Eqs. (3.6), (3.7) and (3.8) show that the computation of the dot product is com-

posed of two steps: 1) Reweighting : re-weighting features on selected locations by

column attention as in Eq. (3.6) and row attention as in Eq. (3.7), and 2) Summa-

tion: summing the elements along row and column axes in Eq. (3.8). Note that,

this breakdown is also applicable to regular self-attention.

3.3.2.2 Spatially Varying Channel Attention.

With the intermediate results αi,j,m,n and βi,j,n in Eqs. (3.6) and (3.7), channel

relation can be applied inside spatial attention, seamlessly combining them into one

operation. In addition, channel attention is now independently conducted on each



47

column or row (on each pixel in regular self-attention) and provides spatial per-

spective for the channel relation modeling, resulting in our spatially varying channel

attention. Enhanced with spatially varying channel attentions, now Ccol and Crow

are written as:

Ccol(αi,j,m,n) = Sigmod

(
ReLU(

∑
∀m,j(αi,j,m,n)

H ×W
ωc1)ωc2

)
αi,j,m,n, (3.9)

and

Crow(βi,j,n) = Sigmod

(
ReLU(

∑
∀i,n(βi,j,n)

H ×W
ωr1)ωr2

)
βi,j,n, (3.10)

where Sigmod(·) is the learned channel attention, and ωc1, ωc2, ωr1 and ωr2 are the

learned relationships between different channels according to αi,j,m,n and βi,j,n.

Thus, instead of directly using αi,j,m,n and βi,j,n as in Eq. (3.8), for each column

and row, we obtain the channelized axial attention features, where the intermediate

results αi,j,m,n and βi,j,n are weighted by the spatially varying channel attention

defined in Eqs. (3.9) and (3.10) as:

yi,j =
∑
∀n

Crow

(
Arow(xi,j,xi,n)(

∑
∀m

Ccol(αi,j,m,n))

)
. (3.11)

Note that the spatially varying channel attention keeps a W dimension after

averaging H×W during the channel attention (Fig. 3.5). Now each row has its own

channel attention thanking the breaking down of spatial axial attention.

3.3.2.3 Going Deeper in Channel Attention.

Similar to the work in [20], we use two fully connected layers, followed by ReLU

and sigmoid activations respectively, to first reduce the channel number and then

increase it to the original channel number.

To further boost performance, we explore the design of more powerful channel

attention modules for our channelization since our attention module keeps the spatial

dimension, and thus contains more information than a regular SE module (1 × 1×

C ×WorH vs 1× 1× C, see Fig. 3.5).
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We experimented with increased depth and/or width of hidden layers to enhance

the capacity of spatial varying channel attention. We find that deeper hidden layers

allow channel attention to find a better relationship between channels for our spa-

tially varying channel attention. Moreover, increasing layer width is not as effective

as adding layer depth (see Table 3.1).

Furthermore, in spatial domain, each channel of a pixel contains unique infor-

mation that can lead to a unique semantic representation. We find that using Leaky

ReLU [39] is more effective than ReLU in preventing the loss of information along

deeper activations [46]. Apparently, this replacement only works in spatially varying

channel attention.

3.4 Experiments

To demonstrate the effectiveness for accuracy of the proposed CAA, comprehen-

sive experimental results are compared with the state-of-the-art methods on three

benchmark datasets, i.e., PASCAL Context [13], COCO-Stuff [1] and Cityscapes [38].

Using similar settings as in other existing works, we measure the segmentation

accuracy using mean intersection over union (mIOU). Moreover, to demonstrate

the efficiency of our CAA, we also compare the floating point operations per sec-

ond (FLOPS) of different approaches. Experimental results show that our CAA

outperforms the state-of-the-art methods on all tested datasets.

3.4.1 Implementation Details

3.4.1.1 Backbone

Our network is built on ResNet-101 [18] pre-trained on ImageNet. The original

ResNet results in a feature map of 1/32 of the input size. Following other works [5,

27], we apply dilated convolution at the output stride = 16 for ablation experiments

if not specified. We conduct experiments with the output stride = 8 to compare
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with the state-of-the-art methods.

3.4.1.2 Naive Upsampling

Unless otherwise specified, we directly bi-linearly upsampled the logits to the

input size without refining using any low-level and high resolution features.

3.4.1.3 Training Settings

We employ stochastic gradient descent (SGD) for optimization, where the poly-

nomial decay learning rate policy (1 − iter
maxiter

)0.9 is applied with an initial learning

rate = 0.01. We use synchronized batch normalization with batch size = 16 (8 for

Cityscapes) during training. For data augmentation, following the practice of sim-

ilar works [3], we only apply the most basic data augmentation strategies as in [5],

including random flip, random scale and random crop.

3.4.2 Results on PASCAL Context

The PASCAL Context [41] dataset has 59 classes with 4,998 images for training

and 5,105 images for testing. We train our CAA on the training set for 40k itera-

tions. In the following, we first present a series of ablative experiments to show the

effectiveness of our method. Then, quantitative and qualitative comparisons with

other state-of-the-art methods are presented.

Note that, in ablation studies below, we report mean result with standard devi-

ation (numbers in parentheses) calculated with 5 repeated experiments.

3.4.2.1 Effectiveness of the Proposed Channelization

We first report the impact of adding channelized axial attention and with dif-

ferent depth and width in Table 3.1, where ‘-’ for the baseline result indicates no

channelization is performed.
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Layer Counts # of Channels mIOU (%) FLOPs

- - 50.27(±0.2) 68.7G

1 128 50.75(±0.2) +0.00024G

3 128 50.85(±0.2) +0.00027G

5 128 51.06(±0.2) +0.00030G

7 128 50.40(±0.3) +0.00043G

5 64 50.12(±0.2) +0.00015G

5 256 50.35(±0.4) +0.00098G

Table 3.1 : Results without using channelization (Row 1) and using channelization

with different layer counts and channel numbers. Numbers in parentheses indicate

standard deviations (see Sect. 3.4.2).

As can be seen from this table, our proposed channelization improves the mIOU

over the baseline regardless of the layer counts and the number of channels used.

In particular, the results shown in the table indicate that the best performance is

achieved when the Layer Counts = 5 and the number of Channels = 128 (see the

3rd row in Table 3.1.

We also compare our model with the sequential design of “Axial Attention +

SE”, as shown in Table 3.2. We find the sequential design brings only marginal

contributions to performance, showing that our proposed channelization method

can combine the advantages of both spatial attention and channel attention more

effectively. In Table 3.5, results obtained with other backbones are provided to

demonstrate the effectiveness and robustness of CAA.
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Axial Attention + SE + Our Channelization

50.27(±0.2) 50.37(±0.2) 51.06(±0.2)

Table 3.2 : Result comparison between axial attention, axial attention + SE and

channelized axial attention.

Attention Base Eval OS Channelized mIOU (%)

Axial Attention
16 50.27

16 ✓ 51.06

Self Attention
16 50.42

16 ✓ 51.09

Table 3.3 : Ablation study of applying our Channelized Attention on self-attention

with ResNet-101. Eval OS: Output strides [5] during evaluation.

3.4.2.2 Channelized Self-Attention

In this section, we conduct experiments on the PASCAL Context by applying

channelization to the original self-attention. We report its single-scale performance

in Table 3.3 with ResNet-101. Our channelized method can also further improve

the performance of self-attention by 0.67% (51.09% vs 50.42%).

3.4.2.3 Impact of the Testing Strategies

We compare the performance and computation cost of our proposed model

against the baseline and DANet [14] with different testing strategies in Table 3.4.

Using the same settings as those in other works [14], we add multi-scale, left-right

flip and auxiliary loss during inference. The accuracies of CAA are further boosted
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with output stride = 8 since the channel attention can learn and optimize three

times more pixels.

Methods OS MF Aux mIOU (%) FLOPs

ResNet 16 - - 59.85G

-101 8 - - 190.70G

DANet 8 +101.25G

8 ✓ ✓ 52.60 -

Axial 16 50.27(±0.2) +8.85G

Attention 16 ✓ 52.01(±0.2) -

8 51.24(±0.2) +34.33G

8 ✓ 52.51(±0.2) -

Our 16 51.06(±0.2) +8.85G

CAA 16 ✓ 53.09(±0.3) -

8 52.73(±0.1) +34.33G

8 ✓ 54.05(±0.1) -

Our 16 ✓ 51.80(±0.2) +8.85G

CAA 16 ✓ ✓ 53.52(±0.2) -

+ 8 ✓ 53.48(±0.3) +34.33G

Aux loss 8 ✓ ✓ 54.65(±0.4) -

Table 3.4 : Comparing results with different testing strategies. OS: Output stride

in training and inference. MF: Apply multi-scale and left-right flipping during

inference. Aux: Add auxiliary loss during training. “+” refers to the extra FLOPS

over the baseline FLOPS of ResNet-101.
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Backbone OS AA C mIOU (%)

ResNet-50 16 ✓ 49.73

[18] 16 ✓ ✓ 50.23

Xception65 16 ✓ 52.42

[10] 16 ✓ ✓ 52.65

EfficientNetB7 16 ✓ 57.24

[40] 16 ✓ ✓ 57.93

8 ✓ ✓ 58.40

Table 3.5 : Ablation study of CAA with the backbones other than ResNet-101.

All results are obtained in single scale without flipping. OS: Output strides during

evaluation. AA: Axial Attention. C: Channelized.

3.4.2.4 Comparison with the State-of-the-art

Finally, in Table 3.6, we compare our approach with the state-of-the-art ap-

proaches. Like other similar works, we apply multi-scale and left-right flip during

inference. For a fair comparison, we only compare with the methods that use ResNet-

101 and naive upsampling in Table 3.6. More results using alternative backbones

are included in Table 3.5.

As shown in this table, our proposed CAA outperforms all listed state-of-the-art

models that are trained with an output stride = 8. Our CAA also performs better

than EMANet and SPYGR that are trained with output stride = 16. Note that, in

this and the following tables, we report the best results of our approach obtained in

experiments.

In Fig. 3.6, we show some results obtained by our CAA model, FCN and Dual



54

Methods Backbone mIOU (%)

ENCNet [65] ResNet-101 51.7

ANNet [72] ResNet-101 52.8

EMANet [27] ResNet-101 53.1

SPYGR [26] ResNet-101 52.8

CPN [60] ResNet-101 53.9

CFNet [67] ResNet-101 54.0

DANet [14] ResNet-101 52.6

Our CAA (OS = 16) ResNet-101 53.7

Our CAA (OS = 8) ResNet-101 55.0

Table 3.6 : Comparisons with other state-of-the-art approaches on the PASCAL

Context test set. For a fair comparison, all compared methods use ResNet-101 and

naive upsampling.

attention. Our model is able to handle previous failure cases better, especially when

a class A covering a smaller region is surrounded by another class B covering a much

larger region (see the boxed regions).

3.4.2.5 Stronger Backbone in PASCAL Context

As mentioned in above, our CAA outperforms the SOTA methods [67, 27] with

the same settings (ResNet-101 + naive upsampling). Furthermore, we show that

our proposed CAA is suitable for different backbones.

In this section, we report our CAA’s performance with EfficientNet [40] in Ta-

ble 3.7. Note that, this is not a fair comparison, since the listed methods were not

trained under the same settings, or using the same backbone. The results show

that our method can outperform the state-of-the-art Transformer [12] based hybrid
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Image Ground Truth FCN Dual Attention Ours

Figure 3.6 : Examples of the segmentation results obtained on the PASCAL Context

dataset using FCN, DANet and CAA.

models such as SETR [48] and DPT [43] with the CNN backbone EfficientNet-B7.

The simple decoder merges the low level features from output stride = 4, during the

final upsampling (see [5] for details).

3.4.3 Results on COCO-Stuff 10K

Following the other works [14], we evaluate our CAA on COCO-Stuff 10K

dataset [1], which contains 9,000 training images and 1,000 testing images with

172 classes. Our model is trained for 40k iterations. As shown in Table 3.8, our

proposed CAA outperforms all other state-of-the-art approaches by a large margin

of 1.3%, demonstrating that our model can better handle complex images with a

large number of classes.

3.4.3.1 Stronger Backbone in COCOStuff-10K

We also report our CAA’s results using Efficientnet-b7 [40] as the backbone in

Table 3.9.
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Methods mIOU (%)

CTNet [29] + JPU 55.5

SETR-MLA [48] 55.83

HRNetV2 + OCR [11] 56.2

ResNeSt-269 [66] + DeepLab V3+ 58.9

HRNetV2 + OCR + RMI 59.6

DPT-Hybrid [43] 60.46

Our CAA (EfficientNet-B7, w/o decoder) 60.12

Our CAA (EfficientNet-B7 + simple decoder) 60.50

Table 3.7 : Result comparison with the state-of-the-art approaches on the PASCAL

Context test set for multi-scale prediction. Note that, the listed methods were not

trained under the same settings, or using same backbone.

3.4.4 Results on Cityscapes

Following previous works [14], we use only the fine set with a crop size of 769×769

during training, and our training iteration is set to 80k. We report our results on

the test set in Table 3.10. The results show our CAA is also working well on high-

resolution images.

3.4.5 Results on COCOStuff-164k

The recent method Segformer [57] used COCOStuff-164k (164,000 images), i.e.,

the full set of COCOStuff-10k to validate its performance for the first time. Since

Segformer is a strong backbone, in this section, we also use EfficientNet-B5 + CAA

to verify the robustness of our CAA on COCOStuff-164k. Table 3.11 shows that

our method outperforms the recent strong baselines Segformer and SETR [48] by a
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Methods Backbone mIOU (%)

DSSPN [30] ResNet-101 38.9

SVCNet [11] ResNet-101 39.6

EMANet [27] ResNet-101 39.9

SPYGR [26] ResNet-101 39.9

OCR [61] ResNet-101 39.5

DANet [14] ResNet-101 39.7

Our CAA ResNet-101 41.2

Table 3.8 : Comparisons with other state-of-the-art approaches on the COCO-Stuff

10K test set. For a fair comparison, all compared methods use ResNet-101 and naive

upsampling.

large margin, indicating our CAA keeps the superior performance with large training

data.

3.5 Extra Visualizations

3.5.1 COCOStuff-10k

Fig. 3.7 shows some examples of the segmentation results obtained on the COCO-

Stuff 10K with our proposed CAA in comparison to the results of FCNs [37],

DANet [14], and the ground truth (output stride = 8, ResNet-101). As it can

be seen, our CAA can segment common objects such as building, human, or sea

very well.
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Methods mIOU (%)

HRNetV2 + OCR [11] 40.5

DRAN 41.2

HRNetV2 + OCR + RMI 45.2

Our CAA (EfficientNet-B7) 45.4

Table 3.9 : Result comparison with the state-of-the-art approaches on the COCO-

Stuff-10K test set for multi-scale prediction. Note that, the listed methods were not

trained under the same settings, or using same backbone.

3.5.2 PASCAL Context

In this section, we show more examples of the segmentation results obtained on

the PASCAL Context in Fig. 3.8. The results show that the failure cases in FCN

and DANet are segmented much better by our CAA, especially hard cases (see the

2nd row).

3.5.2.1 Cityscapes

In Fig. 3.9, we compare the segmentation results obtained on Cityscapes vali-

dation set with DANet and our CAA. Key areas of difference are highlighted with

white boxes. The results show that many errors produced by DANet no longer exist

in our CAA results.

3.6 Pseudo Code of Group Vectorization

Algorithm 2 presents the pseudo code of implementing the proposed grouped

vectorization.

As shown in the Algorithm, the attention map A is splitted into G groups along
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Methods Backbone mIOU (%)

CFNet [67] ResNet-101 79.6

ANNet [72] ResNet-101 81.3

CCNet [23] ResNet-101 81.4

CPN [60] ResNet-101 81.3

SPYGR [26] ResNet-101 81.6

OCR [61] ResNet-101 81.8

DANet [14] ResNet-101 81.5

Our CAA ResNet-101 82.6

Table 3.10 : Comparisons with other state-of-the-art approaches on the Cityscapes

test set. For a fair comparison, all compared methods use ResNet-101 and naive

upsampling.

the second dimension. Padding is applied to ensure the equal size between groups.

After the channelization is applied on each groups, the output feature map is recov-

ered by the concatenation of all the groups.

3.7 Limitation

Since CAA breaks the regular dot-product operation of self-attention, and inserts

channel attention inside it, though it has a very small computational overhead as

shown in Tab 3.1, its actual speed may be much slower than the standard self-

attention, because the standard self-attention has been well optimized by CUDNN,

etc.
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Methods mIOU (%)

ResNet-50 + DeepLabV3+ [5] 38.4

HRNetV2 + OCR 42.3

SETR [48] 45.8

Segformer-B5 [57] 46.7

Our CAA (EfficientNet-B5) 47.30

Table 3.11 : Result comparison with the state-of-the-art approaches on the COCO-

Stuff-164K test set for multi-scale prediction. Note that, the listed methods were

not trained under same settings, or using same backbone. Methods other than CAA

and Segformer are reproduced in Segformer paper.

3.8 Summary

In this chapter, a novel and effective Channelized Axial Attention has been

proposed, and it has effectively combined the advantages of the popular spatial-

attention and channel attention. Specifically, we have first broken down the spatial

attention into two steps and inserted channel attention in between, enabling different

spatial positions to have their own channel attentions. Experiments on the three

popular benchmark datasets have demonstrated the effectiveness of our proposed

channelized axial attention.
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Algorithm 2 Our proposed grouped vectorization algorithm

Require: G: Group Number, A: Attention Map [N,H,H,W ], X: Feature Map

[N,C,H,W ]

1: padding ← H % G

2: A← Transpose A into [H,N,H,W ]

3: H+ ← H + padding

4: A← padding zero to A into [H+, N,H,W ]

5: A← Reshape A into [G,H+ // G,N,H,W ]

6: for g ∈ G do

7: Yg ← Channelization (X,Ag), Yg ∈ [H+ // G,N,C,W ]

8: end for

9: Y ← Concat(Y0,1,...G), Y ∈ [G,H+ // G,N,C,W ]

10: Y ← Reshape Y into [H+, N, C,W ]

11: Y ← Remove padding from Y into [H,N,C,W ]

12: Y ← Transpose Y into [N,C,H,W ]

return Y
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Image Ground truth FCN Dual Attention Ours

Figure 3.7 : Examples of the results obtained on the COCO-Stuff 10K dataset with

our proposed CAA in comparison to the results obtained with FCN, DANet and the

ground truth.
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Image Ground truth FCN Dual Attention Ours

Figure 3.8 : Examples of the results obtained on the PASCAL Context dataset with

our proposed CAA in comparison to the results obtained with FCN, DANet and the

ground truth.



64

Image Ground truth Dual Attention Ours

Figure 3.9 : Extra examples of the segmentation results obtained on the Cityscapes

validation set [38] with our proposed CAA in comparison to the results obtained

with DANet [14] and the ground truth.
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Chapter 4

CAR: Class-aware Regularization

4.1 Introduction

After the early work FCNs [37], which used fully convolutional networks to make

the dense per-pixel segmentation task more efficient, many works [69, 3] have been

proposed which have greatly advanced the segmentation accuracy on various bench-

mark datasets. Among these methods, many of them have focused on better fusing

spatial domain context information to obtain more powerful feature representations

(termed pixel features in this work) for the final per-pixel classification. For exam-

ple, VGG [47] utilized large square context information by successfully training a

very deep network, and DeepLab [3] and PSPNet [69] utilized multi-scale features

with the ASPP and PPM modules.

Recently, methods based on dot-product self-attention (SA) [53, 14, 62, 67, 27,

72, 12, 43, 48] have become very popular since they can easily capture the long-range

relationship between pixels. SA aggregates information dynamically (by different

attention maps for different inputs) and selectively (using weighted averaging spatial

features according to their similarity scores). Using multi-scale and self-attention

techniques during spatial information aggregation has worked very well (e.g., 80%

mIOU on Cityscapes [38] (single-scale w/o flipping)).

As complements to the above methods, many recent works have proposed various

modules to utilize class-level contextual information. The class-level information is

often represented by the class center/context prior, which contains the mean features

of each class in the images. OCR [61] and ACFNet [64] extract “soft” class centers
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according to the predicted coarse segmentation mask by using the weighted sum.

CPNet [60] proposed a context prior map/affinity map, which indicates if two spatial

locations belong to the same class, and used this predicted context prior map for

feature aggregation. However, they [61, 64, 60] simply concatenated these class-level

features with the original pixel features for the final classification.

In this chapter, we also focus on utilizing class level information. Instead of

focusing on how to better extract class-level features like the existing methods [61,

64, 60], we use the simple, but accurate, average feature according to the GT mask,

and focus on maximizing the inter-class distance during feature learning. This is

because it mirrors how humans can robustly recognize an object by itself no matter

what other objects it appears with.

Learning more separable features makes the features of a class less dependent

upon other classes, resulting in improved generalization ability, especially when the

training set contains only limited and biased class combinations (e.g., cows and

grass, boats and beach). Fig. 4.1 illustrates an example of such a problem, where

the classification of dog and sheep depends on the classification of grass class, and

has been mis-classified as cow. In comparison, networks trained with our proposed

CAR successfully generalize to these unseen class combinations.

To better achieve this goal, we propose CAR, a class-aware regularizations mod-

ule, that optimizes the class center (intra-class) and inter-class dependencies during

feature learning. Three loss functions are devised. The first loss encourages more

compact class representations within each class, and the other two directly maximize

the distance between different classes. Specifically, an intra-class center-to-pixel loss

(termed as “intra-c2p”, Eq. (4.3)) is first devised to produce more compact rep-

resentation within a class by minimizing the distance between all pixels and their

class center. In our work, a class center is calculated as the averaged feature of
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Figure 4.1 : The concept of the proposed CAR. Our CAR optimizes existing mod-

els with three regularization targets: 1) reducing pixels’ intra-class distance, 2)

reducing inter-class center-to-center dependency, and 3) reducing pixels’ inter-class

dependency. As highlighted in this example (indicated with a red dot in the image),

with our CAR, the grass class does not affect the classification of dog/sheep as much

as before, and hence successfully avoids previous (w/o CAR) mis-classification.

all pixels belonging to the same class according to the GT mask. More compact

intra-class representations leave a relatively large margin between classes, thus con-

tributing to more separable representations. Then, an inter-class center-to-center

loss (“inter-c2c”, Eq. (4.6)) is devised to maximize the distance between any two

different class centers. This inter-class center-to-center loss alone does not necessar-

ily produce separable representations for every individual pixels. Therefore, a third

inter-class center-to-pixel loss (“inter-c2p”, Eq. (4.13)) is proposed to enlarge the

distance between every class center and all pixels that do not belong to the class.

In summary, our contributions in this work are as follows.

1. We propose a universal class-aware regularization module that can be inte-
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grated into various segmentation models to largely improve the accuracy.

2. We devise three novel regularization terms to achieve more separable and less

class-dependent feature representations by minimizing the intra-class variance

and maximizing the inter-class distance.

3. We calculate the class centers directly from ground truth during training, thus

avoiding the error accumulation issue of the existing methods and introducing

no computational overhead during inference.

4. We provide image-level feature-similarity heatmaps to visualize the learned

inter-class features with our CAR are indeed less related to each other.

We conduct extensive experiments on many baselines and demonstrate that our

CAR can improve all SOTA methods substantially, including CNN and Transformer

based models.

4.2 Related Work

4.2.1 Self-Attention

Dot-product self-attention proposed in [53, 50] has been widely used in semantic

segmentation [14, 62, 67, 72]. Specifically, self-attention determines the similarity

between a pixel with every other pixel in the feature map by calculating their dot

product, followed by softmax normalization. With this attention map, the feature

representation of a given pixel is enhanced by aggregating features from the whole

feature map weighted by the aforementioned attention value, thus easily taking

long-range relationship into consideration and yielding boosted performance. In

self-attention, in order to achieve correct pixel classification, the representation of

pixels belonging to the same class should be similar to gain greater weights in the

final representation augmentation.
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4.2.2 Class Center

In 2019 [64, 61], the concept of class center was introduced to describe the

overall representation of each class from the categorical context perspective. In these

approaches, the center representation of each class was determined by calculating the

dot product of the feature map and the coarse prediction (i.e., weighted average)

from an auxiliary task branch, supervised by the ground truth [69]. After that,

those intra-class centers are assigned to the corresponding pixels on feature map.

Furthermore, in 2020 [60], a learnable kernel and one-hot ground truth were used to

separate the intra-class center from inter-class center, and then concatenated with

the original feature representation.

All of these works [61, 64, 60] have focused on extracting the intra (inter) class

centers, but they then simply concatenated the resultant class centers with the orig-

inal pixel representations to perform the final logits. We argue that the categorical

context information can be utilized in a more effective way so as to reduce the

inter-class dependency.

To this end, we propose a CAR approach, where the extracted class center is used

to directly regularize the feature extraction process so as to boost the differentiability

of the learned feature representations (see Fig. 4.1) and reduce their dependency on

other classes. Fig. 4.2 contrasts the two different designs. More details of the

proposed CAR are provided in Sect. 4.3.

4.2.3 Inter-Class Reasoning

Recently, [9, 34] studied the class dependency as a dataset prior and demon-

strated that inter-class reasoning could improve the classification performance. For

example, a car usually does not appear in the sky, and therefore the classification of

sky can help reduce the chance of mis-classifying an object in the sky as a car. How-

ever, due to the limited training data, such class-dependency prior may also contain
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Figure 4.2 : The difference between the proposed CAR and previous methods that

use class-level information. Previous models focus on extracting class center while

using simple concatenation of the original pixel feature and the class/context feature

for later classification. In contrast, our CAR uses direct supervision related to class

center as regularization during training, resulting in small intra-class variance and

low inter-class dependency. See Fig. 4.1 and Sect. 4.3 for details.

bias, especially when the desired class relation rarely appears in the training set.

Fig. 4.1 shows such an example. In the training set, cow and grass are dependent

on each other. However, as shown in this example, when there is a dog or sheep
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standing on the grass, the class dependency learned from the limited training data

may result in errors and predict the target into a class that appears more often

in the training data, i.e., cow in this case. In our CAR, we design inter-class and

intra-class loss functions to reduce such inter-class dependency and achieve more

robust segmentation results.

4.3 Methodology

4.3.1 Extracting Class Centers from Ground Truth

Denote a feature map and its corresponding resized one-hot encoded ground-

truth mask as X ∈ RH×W×C∗ and Y ∈ RH×W×Nclass , respectively. We first get the

spatially flattened class mask Yflat ∈ RHW×Nclass and flattened feature map Xflat ∈

RHW×C . Then, the class center†, which is the average features of all pixel features

of a class, can be calculated by:

µimage =
YT

flat ·Xflat

Nnon-zero

∈ RNclass×C , (4.1)

where Nnon-zero denotes the number of non-zero values in the corresponding map of

the ground-truth mask Y. In our experiments, to alleviate the negative impact of

noisy images, we calculate the class centers using all the training images in a batch,

and denote them as µbatch
‡

4.3.2 Reducing Intra-Class Feature Variance

4.3.2.1 Motivation.

More compact intra-class representation can lead to a relatively larger margin

between classes, and therefore result in more separable features. In order to reduce

∗H, W and C denote images’ height and width, and number of channels, respectively.

†It is termed as class center in [64] and object region representations in [61].

‡We use µ and omit the subscript batch for clarify.
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Figure 4.3 : The proposed CAR approach. CAR can be inserted into vari-

ous segmentation models, right before the logit prediction module (A1-A4). CAR

contains three regularization terms, including (C) intra-class center-to-center loss

Lintra-c2p (Sect. 4.3.2.2), (D) inter-class center-to-center loss Linter-c2c (Sect. 4.3.3.2),

and (E) inter-class center-to-pixel loss Linter-c2p (Sect. 4.3.3.3).
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the intra-class feature variance, existing works [53, 14, 72, 60, 27, 62] usually use

self-attention to calculate the dot-product similarity in spatial space to encourage

similar pixels to have a compact distance implicitly. For example, the self-attention

in [53] implicitly pushed the feature representation of pixels belonging to the same

class to be more similar to each other than those of pixels belonging to other classes.

In our work, we devise a simple intra-class center-to-pixel loss to guide the training,

which can achieve this goal very effectively and produce improved accuracy.

4.3.2.2 Intra-class Center-to-pixel Loss.

We define a simple but effective intra-class center-to-pixel loss to suppress the

intra-class feature variance by penalizing large distance between a pixel feature and

its class center. The Intra-class Center-to-pixel Loss Lintra-c2p is defined by:

Lintra-c2p = fmse(Dintra-c2p), (4.2)

where

Dintra-c2p = (1− σ)|Yflat · µ−Xflat|. (4.3)

In Eq. (4.3), σ is a spatial mask indicating pixels being ignored (i.e., ignore label),

Yflat · µ distributes the class centers µ to the corresponding positions in each im-

age. Thus, our intra-class loss Lintra-c2p will push the pixel representations to their

corresponding class center, using mean squared error (MSE) in Eq. (4.3).

4.3.3 Maximizing Inter-class Separation

4.3.3.1 Motivation

Humans can robustly recognize an object by itself regardless which other ob-

jects it appears with. Conversely, if a classifier heavily relies on the information

from other classes to determine the classification result, it will easily produce wrong

classification results when a rather rare class combination appears during inference.
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Maximizing inter-class separation, or in another words, reducing the inter-class de-

pendency, can therefore help the network generalize better, especially when the

training set is small or is biased.

As shown in Fig. 4.1, the dog and sheep are mis-classified as the cow because cow

and grass appear together more often in the training set. To improve the robustness

of the model, we propose to reduce this inter-class dependency. To this end, the

following two loss functions are defined.

4.3.3.2 Inter-class Center-to-center Loss

The first loss function is to maximize the distance between any two different

class centers. Inspired by the center loss used in face recognition [54], we propose

to reduce the similarity between class centers µ, which are the averaged features of

each class calculated according to the GT mask. The inter-class relation is defined

by the dot-product similarity [50] between any two classes as:

Ac2c = softmax(
µT · µ√

C
), Ac2c ∈ RNclass×Nclass . (4.4)

Moreover, since we only need to constrain the inter-class distance, only the non-

diagonal elements are retained for the later loss calculation as:

Dinter-c2c =
(

1− eye(Nclass)
)
Ac2c. (4.5)

We only penalize larger similarity values between any two different classes than

a pre-defined threshold ϵ0
Nclass−1

, i.e.,

Dinter-c2c = fsum

(
max(Dinter-c2c −

ϵ0
Nclass − 1

, 0)
)
. (4.6)

Thus, the Inter-class Center-to-center Loss Linter-c2c is defined by:

Linter-c2c = fmse(Dinter-c2c). (4.7)

Here, a small margin is used in consideration of the feature space size and the

mislabeled ground truth.
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4.3.3.3 Inter-class Center-to-pixel Loss.

Maximizing only the distances between class centers does not necessarily result

in separable representation for every individual pixels. We further maximize the

distance between a class center and any pixel that does not belong to this class.

More concretely, we first compute the center-to-pixel dot product as:

Λc2p = µT ·Xflat, Λc2p ∈ RHW×Nclass . (4.8)

Ideally, with the previous loss Linter-c2c, the features of all pixels belonging to

the same class should be equal to that of the class center. Therefore, we replace

the intra-class dot product with its ideal value, namely using the class center µ for

calculating the intra-class dot product as:

Λc = diag(µT · µ), (4.9)

and the replacement effect is achieved by using masks as:

Λ′ = Λc2p(1−Yflat) + Λc. (4.10)

This updated dot product Λ′ is then used to calculate similarity across class axis

with a softmax as:

Ac2p = softmax(Λ′), Ac2p ∈ RHW×Nclass . (4.11)

Similar to the calculation of Linter-c2c in the previous subsection, we have

Dinter-c2p = (1−Yflat)Ac2p, (4.12)

and

Dinter-c2p = fsum

(
max(Dinter-c2p −

ϵ1
Nclass − 1

, 0)
)
. (4.13)

Thus, the Inter-class Center-to-pixel Loss Linter-c2p is defined by:

Linter-c2p = fmse(Dinter-c2p). (4.14)
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4.3.4 Differences with OCR, ACFNet and CPNet

Methods that are most closely related to ours are OCR [61], ACFNet [64] and

CPNet [60], which all focus on better utilizing class-level features and differ on how

to extract the class centers and context features. However, they all use a simple

concatenation to fuse the original pixel feature and the complementary context

feature. For example, OCR and ACFNet first produce a coarse segmentation, which

is supervised by the GT mask with a categorical cross-entropy loss, and then use

this predicted coarse mask to generate the (soft) class centers by weighted summing

all the pixel features.

OCR then aggregates these class centers according to their similarity to the

original pixel feature termed as “pixel-region relation”, resulting in a “contextual

feature”. Slightly differently from OCR, ACFNet directly uses the probability (from

the predicted coarse mask) to aggregate class center, obtaining a similar context

feature§ termed as “attentional class feature”.

CPNet defines an affinity map, which is a binary map indicating if two spa-

tial locations belong to the same class. Then, they use a sub-network to predict

their ideal affinity map and use the soft version affinity map termed as “Context

Prior Map” for feature aggregation, obtaining a class feature (center) and a context

feature. Note that CPNet concatenates class feature, which is the updated pixel

feature, and the context feature.

We also propose to utilize class-level contextual features. Instead of extracting

and fusing pixel features with sub-networks, we propose three loss functions to di-

rectly regularize training and encourage the learned features to maintain certain

desired properties. The approach is simple but more effective, thanking the direct

supervision (validated in Tab. 4.5). Moreover, our class center estimate is more

§Some nonlinear transformation layers used to increase regression capability are omitted here.
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accurate because we use the GT mask. This strategy largely reduces the complexity

of the network and introduces no computational overhead during inference. Fur-

thermore, it is compatible with all existing methods, including OCR, ACFNet and

CPNet, demonstrating great generalization capability.

4.4 Experiments

4.4.1 Implementation

Training Settings. For both CAR and baselines, we apply the settings common

to most works [65, 67, 27, 23, 72], including SyncBatchNorm, batch size = 16,

weight decay (0.001), 0.01 initial LR, and poly learning decay with SGD during

training. In addition, for the CNN backbones (e.g., ResNet), we set output stride =

8 (see [4]). Training iteration is set to 30k iterations unless otherwise specified. For

the thresholds in Eq. 4.6 and Eq. 4.13, we set ϵ0 = 0.5 and ϵ1 = 0.25.

Determinism and Reproducibility. Our implementations are based on the

latest NVIDIA deterministic framework (2022), so that exactly the same results can

be always reproduced with the same hardware (e.g., same GPU types) and same

training settings (including random seed). To demonstrate the effectiveness of our

CAR with equal comparisons, we reproduced all the baselines that we compare, all

conducted with exactly the same settings unless otherwise specified.

4.4.2 Experiments on Pascal Context

The Pascal Context [41] dataset is split into 4,998/5,105 for training/test set. We

use its 59 semantic classes following the common practice [61, 67]. Unless otherwise

specified, both baselines and CAR are trained on the training set with 30k iterations.

The ablation studies are presented as below.
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Methods Lintra-c2p Linter-c2c Linter-c2p A mIOU (%)

R1 ResNet-50 + Self-Attention [53] - - 48.32

R2 ✓ 48.56

R3 + CAR ✓ 49.17

R4 ✓ ✓ 49.79

R5 ✓ ✓ ✓ 50.01

R6 ✓ ✓ 49.62

R7 ✓ ✓ ✓ 50.00

R8 ✓ ✓ ✓ ✓ 50.50

S1 Swin-Tiny + UperNet [56] - - 49.62

S2 ✓ 49.82

S3 + CAR ✓ 49.01

S4 ✓ ✓ 50.63

S5 ✓ ✓ ✓ 50.26

S6 ✓ ✓ 49.62

S7 ✓ ✓ ✓ 50.58

S8 ✓ ✓ ✓ ✓ 50.78

Table 4.1 : Ablation studies of adding CAR to different methods on Pascal Context

dataset. All results are obtained with single scale test without flipping. “A” means

replacing the 3×3 conv with 1×1 conv. CAR improves the performance of different

types of backbones (CNN & Transformer) and head blocks (SA & Uper), showing

that the proposed CAR generalizes well on different network architectures.

4.4.2.1 CAR on ResNet-50 + Self-Attention.

We firstly test the CAR with “ResNet-50 + Self-Attention” (w/o image-level

block in [67]) to verify the effectiveness of the proposed loss functions, i.e., Lintra-c2p,
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Linter-c2c, and Linter-c2p.

As shown in Tab. 4.1, using Lintra-c2p directly improves 1.30 mIOU (48.32 vs

49.62). Introducing Linter-c2c and Linter-c2p further improves 0.38 mIOU and 0.50

mIOU. Finally, with all three loss functions, the proposed CAR improves 2.18 mIOU

from the regular ResNet-50 + Self-attention (48.32 vs 50.50).

4.4.2.2 CAR on Swin-Tiny + Uper.

“Swin-Tiny + Uper” is a totally different architecture from “ResNet-50 + Self-

Attention [53]”. Swin [35] is a recent Transformer-based backbone network. Uper [56]

is based on the pyramid pooling modules (PPM) [69] and FPN [32], focusing on

extracting multi-scale context information. Similarly, as shown in Tab. 4.1, after

adding CAR, the performance of Swin-Tiny + Uper also increases by 1.16, showing

that our CAR can generalize to different architectures well.

4.4.2.3 The Devil is In the Architecture’s Detail.

We find it important to replace the leading 3 × 3 conv (in the original method)

with 1 × 1 conv (Fig. 4.3B). For example, Lintra-c2p and Linter-c2p did not improve

the performance in Swin-Tiny + Uper (Row S3 vs S1, and S5 vs S4 in Tab. 4.1). A

possible reason is that the network is trained to maximize the separation between

different classes. However, if the two pixels lie on different sides of the segmentation

boundary, a 3 × 3 conv will merge the pixel representations from different classes,

making the proposed losses harder to optimize.

To keep simplicity and maximize generalization, we use the same network con-

figurations for all the baseline methods. However, performance may be further im-

proved with some minor dedicated modifications for each baseline when deploying

our CAR. For example, decreasing the filter number to 256 for the last conv layer

of ResNet-50 + Self-Attention + CAR results in a further improvement to 51.00
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Methods CAR CAR (Moving Average)

0.8 0.9 0.99

ResNet-50 + Self-Attention 50.50 49.80(−0.70) 50.26(−0.24) 49.96(−0.54)

Swin-Tiny + UperNet 50.78 49.56(−1.22) 50.03(−0.75) 48.93(−1.85)

Table 4.2 : Ablation studies of adding moving average to CAR on Pascal Context.

The decay rate stands for the effect of old class center.

mIOU (from 50.50). Replacing the conv layer after PPM (inside the Uper block,

Fig. 4.3A3) from 3× 3 to 1× 1 in Swin-Tiny + UperNet boosts Swin (tiny & large)

+ UperNet + CAR by an extra 0.5-1.0 mIOU. We did not try to exhaustively search

these variants since they did not generalize.

CAR using Moving Average. We also implemented a moving average version

of CAR which tracks the class center µ with moving average similar to BatchNorm.

As shown in Tab. 4.2, we find this moving average version of CAR negatively impacts

both ResNet-50 + Self-Attention and Swin-Tiny + Uper.

Methods Baseline CAR

Image Class Center Batch Class Center

ResNet-50 + Self-Attention 48.32 49.78 50.50

Swin-Tiny + UperNet 49.62 49.45 50.78

Table 4.3 : Comparison of mIOUs (%) obtained when using the batch class center

vs using the image class center in CAR.
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4.4.2.4 Ablation studies on batch class center

In our experiments, we calculated the class centers using a batch to alleviate the

negative impact of noisy images. Here, we investigate the impact of using the class

center of each individual image for class-aware regularizations.

Lintra-c2p Linter-c2c Linter-c2p A Training Inference

R-50 - - 167.41 167.21

+ SA ✓ 159.16 158.96

+ CAR ✓ 167.65 167.21

✓ ✓ 167.66 167.21

✓ ✓ ✓ 167.78 167.21

✓ ✓ 159.40 158.96

✓ ✓ ✓ 159.41 158.96

✓ ✓ ✓ ✓ 159.53 158.96

Table 4.4 : The computational cost (in GFLOPs) of the proposed CAR on a 513×513

image with an output stride of 8.

4.4.2.5 CAR on Different Baselines (Pascal Context).

After we have verified the effectiveness of each part of the proposed CAR, we then

tested CAR on multiple well-known baselines. All of the baselines were reproduced

under similar conditions (see Sect. 4.4.1). Experimental results shown in Tab. 4.5

demonstrate the generalizability of our CAR on different backbones and methods.

4.4.2.6 Computational Cost of CAR

The proposed CAR only affects training since it is a set of regularizations (see

Fig. 4.3). Similar to other losses/regularizations, we do not need to calculate the
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CAR terms during inference. Table 4.4 compares the FLOPs calculated with the

TensorFlow analyzer using ResNet-50 as an example. It can be seen that our CAR

is very lightweight and introduces little extra training computations since we only

impose center-to-center and center-to-pixel regularizations.

4.4.2.7 Visualization of Class Dependency Maps.

In Fig. 4.5, we present the class dependency maps calculated on the complete

Pascal Context test set, where every pixel stores the dot-product similarities between

every two class centers. The maps indicate the inter-class dependency obtained with

the standard ResNet-50 + Self-Attention and Swin-Tiny + UperNet, and the effect

of applying our CAR. A hotter color means that the class has higher dependency

on the corresponding class, and vice versa. Usually, each class should has high

dependency on itself due to the properties of the dot-product similarity used in

Eq 4.11. However, without CAR, it may also dependent on inter-class as well.

According to Fig. 4.5 a1-a2, we can easily observe that the inter-class dependency

has been significantly reduced with CAR on ResNet50 + Self-Attention. Fig. 4.5 b1-

b2 show a similar trend when tested with different backbones and head blocks. This

partially explains the reason why baselines with CAR generalize better on rarely

seen class combinations (Figs. 4.1 and 4.4).

4.4.2.8 Visualization of Pixel-relation Maps.

In Fig. 4.4, we visualize the pixel-to-pixel relation energy map, based on the dot-

product similarity between a red-dot marked pixel and other pixels, as well as the

predicted results for different methods, for comparison. Examples are from Pascal

Context test set. As we can see, with CAR supervision, the existing models focus

better on objects themselves rather than other objects. Therefore, this reduces the

possibility of the classification errors because of the class-dependency bias.
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Methods Backbone mIOU(%)

Pascal Context COCO-Stuff10K

FCN [37] ResNet-50 [18] 47.72 34.10

FCN + CAR ResNet-50 [18] 48.40(+0.68) 34.91(+0.81)§

FCN [37] ResNet-101 [18] 50.93 35.93

FCN + CAR ResNet-101 [18] 51.39(+0.49) 36.88(+0.95)§

DeepLabV3 [4] ResNet-50 [18] 48.59 34.96

DeepLabV3 + CAR ResNet-50 [18] 49.53(+0.94) 35.13(+0.17)

DeepLabV3 [4] ResNet-101 [18] 51.69 36.92

DeepLabV3 + CAR ResNet-101 [18] 52.58(+0.89) 37.39(+0.47)

Self-Attention [53] ResNet-50 [18] 48.32 34.35

Self-Attention + CAR ResNet-50 [18] 50.50(+2.18) 36.58(+2.23)§

Self-Attention [53] ResNet-101 [18] 51.59 36.53

Self-Attention + CAR ResNet-101 [18] 52.49(+0.9) 38.15(+1.62)

CCNet [23] ResNet-50 [18] 49.15 35.10

CCNet + CAR ResNet-50 [18] 49.56(+0.41) 36.39(+1.29)

CCNet [23] ResNet-101 [18] 51.41 36.88

CCNet + CAR ResNet-101 [18] 51.97(+0.56) 37.56(+0.68)

DANet [14] ResNet-101 [18] 51.45 35.80

DANet + CAR ResNet-101 [18] 52.57(+1.12) 37.47(+1.67)

CPNet [60] ResNet-101 [18] 51.29 36.92

CPNet + CAR ResNet-101 [18] 51.98(+0.69) 37.12(+0.20)§

OCR [61] HRNet-W48 [52] 54.37 38.22

OCR + CAR HRNet-W48 [52] 54.99(+0.62) 39.53(+1.31)

UperNet [56] Swin-Tiny [35] 49.62 36.07

UperNet + CAR Swin-Tiny [35] 50.78(+1.16) 36.63(+0.56)§

UperNet [56] Swin-Large [35] 57.48 44.25

UperNet + CAR Swin-Large [35] 58.97(+1.49) 44.88(+0.63)

CAA [22] EfficientNet-B5 [40] 57.79 43.40

CAA + CAR EfficientNet-B5 [40] 58.96(+1.17) 43.93(+0.53)

Table 4.5 : Ablation studies of adding CAR to different baselines on Pascal Con-

text [41] and COCOStuff-10K [1]. We deterministically reproduced all the baselines

with the same settings. All results are obtained with single-scale testing without

flipping. CAR works very well in most existing methods. § means reducing the

class-level threshold ϵ0 from 0.5 to 0.25. We found it is sensitive for some model

variants to handle a large number of class. Affinity loss [60] and Auxiliary loss [69]

are applied on CPNet and OCR, respectively, since they highly rely on those losses.
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4.4.2.9 Exceeding state-of-the-art (SOTA) in Pascal Context

The main motivation of our CAR is to utilize class-level information as regular-

izations during training to boost the performance of all existing methods. However,

following the convention and also for readers who are interested, we compare with

state-of-the-art methods in Tab. 4.6 regardless their architectures are related to ours

or not. Since Swin [35] is not compatible with dilation, we use JPU [55] as the sub-

stitution to obtain features with output stride = 8. Uper contains an FPN [32]

module that can obtain features with output stride = 4.

Boosted by our CAR, the strong model ConvNext-Large [36] + CAA [22] achieved

the performance of 62.70% mIOU under single-scale testing, and 63.91% under multi-

scale testing. Furthermore, increasing the training iterations from the default 30K

to 40K when using Adam optimizer can further increase performance in Pascal Con-

text dataset. Thus, the SOTA single model performance has now been boosted to

62.97% under single-scale testing, and 64.12% under multi-scale testing. This has

outperformed the previous SOTA single model, i.e., EfficientNetB7 + CAA, by a

large margin.

4.4.3 Experiments on COCOStuff-10K

COCOStuff-10K dataset [1] is widely used for evaluating the robustness of seman-

tic segmentation models [27, 61]. The COCOStuff-10k dataset is a very challenging

dataset containing 171 labeled classes and 9000/1000 images for training/test.

4.4.3.1 CAR on Different Baselines (COCOStuff-10K).

As shown in Tab. 4.5, all of the tested baselines gain performance boost ranging

from 0.17% to 2.23% with our proposed CAR. This demonstrates the generalization

ability of our CAR when handling a large number of classes.
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(b) Swin-Tiny + UperNet

Figure 4.4 : Visualization of the feature similarity between a given pixel (marked

with a red dot in the image) and all pixels, as well as the segmentation results on

Pascal Context test set. A hotter color denotes larger similarity value. Apparently,

our CAR reduces the inter-class dependency and exhibits better generalization abil-

ity, where energies are better restrained in the intra-class pixels.
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Figure 4.5 : Class dependency maps generated on Pascal Context test set. One

may zoom in to see class names. A hotter color means that the class has higher

dependency to the corresponding class, and vice versa. It is obvious that our CAR re-

duces the inter-class dependency, thus providing better generalizability (see Figs. 4.1

and 4.4).

4.4.3.2 Exceeding SOTA performance in COCOStuff-10K

Similar to Sect. 4.4.2.9, in Tab. 4.7, boosted by our CAR, the strong model

ConvNext-Large [36] + CAA achieved the performance of 49.03% mIOU under

single-scale testing, and 50.01% under multi-scale testing. This has also outper-

formed the previous SOTA single model, i.e., EfficientNetB7 + CAA, by a large

margin.

4.5 Extra Visualizations

4.5.1 Visualization of OCRNet on Pascal Context

Similar to the Sect. 4.4.2.8, in Fig. 4.6, we visualize the pixel-to-pixel relation

energy maps obtained with HRNetW48 [61] + OCR [61]. This figure shows that our

CAR can further improve the robustness of class center based models by making

better use of the class center. Interestingly, as shown in C12 of Fig. 4.6 and Fig. 4.4

shown in Sect. 4.4.2.8 what is predicted by ResNet-50 + Self-Attention, we find that
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Table 4.6 : Experiments on boosting the SOTA single-model performance on Pascal

Context by our CAR. See Sect. 4.4.2.9 for the details. §: We report previous SOTA

scores as reference. SS : Single scale without flipping. MF : Multi-scale with flipping.

JPU is used to get features with output stride = 8. Aux : Apply auxiliary loss during

training (see [69]). Iterations : training iterations.

Methods Backbone Aux Optimizer Iterations SS mIOU(%) MF mIOU(%)

CAA§ EfficientNet-B7-D8 ✓ SGD 30K - 60.30

UperNet Swin-Large SGD 30K 57.48 59.45

UperNet + CAR Swin-Large SGD 30K 58.97 60.76

CAA Swin-Large + JPU SGD 30K 58.31 59.75

CAA + CAR Swin-Large + JPU SGD 30K 59.84 61.46

CAA + CAR Swin-Large + JPU Adam 30K 60.68 62.21

CAA ConvNeXt-Large + JPU SGD 30K 60.48 61.80

CAA + CAR ConvNeXt-Large + JPU SGD 30K 61.40 62.69

CAA + CAR ConvNeXt-Large + JPU Adam 30K 62.65 63.77

CAA + CAR ConvNeXt-Large + JPU ✓ Adam 30K 62.70 63.91

CAA + CAR ConvNeXt-Large + JPU ✓ Adam 40K 62.97 64.12

cow/sheep/dog misclassification is a common issue in many semantic segmentation

models, especially when i.e. grass and cow co-exist frequently during training. This

issue is better addressed by our CAR due to its reduced inter-class dependency.

4.5.2 Visualization of DeepLab on Pascal Context

We also visualize the pixel-to-pixel relation energy map of ResNet-50 [18] +

DeepLabV3 [4] in Fig. 4.7. These visualizations clearly show that the reduced inter-

class dependency helps to correct the classification.



88

Table 4.7 : Experiments on boosting SOTA on COCOStuff10k, levering the previous

single model SOTA and boosted by our CAR. See Sect. 4.4.3.2 for details. §: We

report the original SOTA scores. SS : Single scale without flipping. MF : Multi-scale

with flipping. Aux Apply auxiliary loss during training, see [69].

Methods Backbone Aux Optimizer SS mIOU(%) MF mIOU(%)

CAA§ EfficientNet-B7-D8 ✓ SGD - 45.40

UperNet Swin-Large SGD 44.25 46.10

UperNet + CAR Swin-Large SGD 44.88 46.64

CAA Swin-Large + JPU SGD 44.22 45.31

CAA + CAR Swin-Large + JPU SGD 45.48 46.99

CAA ConvNeXt-Large + JPU SGD 46.49 47.23

CAA + CAR ConvNeXt-Large + JPU SGD 46.70 47.77

CAA + CAR ConvNeXt-Large + JPU Adam 48.20 48.83

CAA + CAR ConvNeXt-Large + JPU ✓ Adam 49.03 50.01

4.6 Extra Technical Details

4.6.1 Deterministic

Control variables are very important for all scientific research. In computer

vision, we always use the same backbones and the same datasets when verifying the

difference between two methods.

Without using “deterministic” technology, all operations in neural networks con-

tain some randomness. Nowadays, with the latest deterministic technology and fixed

seeds, experiments can be conducted in a fully-controlled environment. This means

that the performance difference between different settings (i.e., w/ and w/o CAR)

is not affected by this randomness any more but faithfully reflects the effectiveness

of different methods.
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In Tab. 4.8, we report the performance of our proposed CAR (ResNet-50 +

Self-attention and Swin-Tiny + UperNet) with different seeds for readers who are

interested in how our CAR performs when trained with different random seeds. As it

is shown, our CAR consistently improves the mIOU over its baseline using different

random seeds, demonstrating the effectiveness of the proposed CAR.

Methods Seed (mIOU%)

0 (default) 1 2

ResNet-50 + Self-Attention 48.32 47.54 47.69

ResNet-50 + Self-Attention + CAR 50.50(+2.18) 50.20(+2.66) 50.59(+2.90)

Swin-Tiny + UperNet 49.62 49.24 49.54

Swin-Tiny + UperNet + CAR 50.78(+1.16) 50.57(+1.33) 50.75(+1.21)

Table 4.8 : Ablation studies of our proposed CAR using different random seeds on

the Pascal Context dataset.

4.7 Limitation

CAR requires real ground-truth of semantic segmentation during training. There-

fore, it cannot be directly applied on downstream tasks (e.g., object detection, depth

estimation), because those downstream tasks usually do not have real ground-truth

of semantic segmentation. There are two workarounds to address this limitation:

• Pre-train the model of the downstream task on a segmentation dataset first,

and then fine-tune the model on the downstream task.

• Predict a coarse prediction like OCR [61], and then use the coarse prediction

result as the ground-truth for CAR to regularize the subsequent modules (e.g.,

the downstream task).
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However, both workarounds may have some negative impact on the perfor-

mance. We leave this as one of future works to explore.

4.8 Summary and Future Work

In this chapter, we have aimed to make a better use of class level context infor-

mation. We have proposed a universal class-aware regularizations (CAR) approach

to regularize the training process and boost the differentiability of the learned pixel

representations. To this end, we have proposed to minimize the intra-class feature

variance and maximize the inter-class separation simultaneously. Experiments con-

ducted on benchmark datasets with extensive ablation studies have validated the

effectiveness of the proposed CAR approach, which has boosted the existing models’

performance by up to 2.18% mIOU on Pascal Context and 2.23% on COCOStuff-10k

with no extra inference overhead.
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Figure 4.6 : Visualization of the feature similarity between a given pixel (marked

with a red dot in the image) and all other pixels, as well as the segmentation results

of HRNetW48 [52] + OCR [61] on Pascal Context test set. A hotter color

denotes a greater similarity value.
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Figure 4.7 : Visualization of the feature similarity between a given pixel (marked

with a red dot in the image) and all pixels, as well as the segmentation results

of ResNet-50 [18] + DeepLab [4] on Pascal Context test set. A hotter color

denotes a greater similarity value.
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Chapter 5

Summary and Discussion

5.1 Conclusion

In this thesis, we have focused on addressing the challenges in context infor-

mation aggregation of image semantic segmentation. By considering the context

information during the aggregation process to collect useful and effective informa-

tion, new approaches have been proposed to enhance the pixel encoding and ensure

the correctness of classification for semantic segmentation.

Specifically, the earlier multi-scale approaches, such as DeepLab, used multiple

dilated convolutions with different dilation rates to aggregate multi-range informa-

tion into the center pixel, so can cause diverse feature encoding for the same object,

simply because it appears with a different scale. To address this scale variability

problem, a Kernel-Sharing Atrous Convolution (KSAC) approach has been devel-

oped in this thesis. By sharing the same convolution kernel for different dilation

rates, the same objects are always captured with a unified encoding, regardless of

the scale it appears in the image. Moreover, the computational cost and GPU mem-

ory usage have also been substantially reduced since the convolution operation is

only computed once.

As the improvement from multi-scale approaches to context aggregation, the

attention mechanism enables a pixel to aggregate context information from all pixels

in the spatial domain, weight it by its spatial relationships with all other pixels. It

can also be applied to the channel domain, which models the channel-wise relation to

enhance the encoding of a channel in the overall feature map. However, when both
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channel and spatial attention are performed together, feature conflicts can occur

because features of different channels focus on different aspects of the images. To

tackle the issue, a Channelized Axial Attention (CAA) has been proposed, and it

considers channel relation within spatial attention. In other words, they can work

seamlessly. Therefore, the conflicts are alleviated since both attentions are no longer

computed separately. The newly proposed CAA stands in the 1st position in the

Pascal Context dataset and COCOStuff-10K dataset for nearly a year.

Besides only modeling the encoding relations of independent images, class centers

directly bring the unified encoding of each class across the whole dataset. However,

existing methods have only focused on the extraction of the class center from the

feature map and have simply merged or concatenated it with the original feature map

to perform the final prediction, so their effectiveness has bee dramatically decreased

since the extracted class center may be overridden by the original feature. Moreover,

the class center in those works is extracted based on the coarse feature map and

coarse predictions, so the error accumulation problem can occur. In our Class-Aware

Regularization (CAR) approach, the class center is computed from real ground truth

during training to get as accurate class encoding as possible. Instead of focusing on

the class-center extraction process, the proposed CAR uses class-center to achieve

three targets, i.e., 1) reducing pixels’ intra-class distance, 2) reducing inter-class

center-to-center dependency, and 3) reducing pixels’ inter-class dependency. By

using CAR to regularize the existing neural networks and including the networks

w/ or w/o class center designs, they have minimized the intra-class feature variance

and maximized the inter-class feature separation automatically. With the help of

CAR, the CAA again stands in the 1st position in the Pascal Context at the time

when this thesis is submitted.

All three works completed during this PhD project have resolved the critical

issues associated with the existing context aggregation works, increased the accuracy
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of the context encoding, and boosted the performance of semantic segmentation to

a new level with reduced or negligible computational overhead.

5.2 Future Work

In this section, a few directions that may further improve the robustness of

context-aware image semantic segmentation are suggested.

5.2.1 Mining Inter-class Relations with Inter-class Dependent Encod-

ings

In CAR, the importance of keeping the inter-class features separated so as to

reduce the dependency between inter-class objects in both CNN and Transformer

encoder has already been verified (see the Experiment sections of Chapter 4 for

details). Based on our observation, pixel feature extraction should be strictly inter-

class independent so as to provide zero-dependency pixel encoding.

However, it is hard to deny that inter-class relations may help improve the accu-

racy of semantic segmentation, especially for imbalanced datasets or when there are

strong reasonable connections between some classes. Another reason that CAR can

achieve success after removing the inter-class reasoning is because of the weak inter-

class and intra-class modeling of the existing networks. In other words, without the

regularization from CAR, the existing networks can easily rely on the inter-class

encoding before fully mining intra-class encoding, whereas the intra-class encoding

may become hard to learn due to the dataset imbalance but should be carefully

considered in pixel encoding.

After the encoding of a class-independent pixel is extracted (the intra-class con-

text is fully mined), it is now safe to perform inter-class modeling to enhance the

class encoding. One of the possible ways to model the inter-class relations is to use

the knowledge graph model to predict the low confidence pixels.
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5.2.2 Decouple Upsampling Encoding

Because of the hardware limitation, major neural networks have to process a

downsampled feature map, and it is required to upsample to the original input size.

Bilinear interpolation has been used for feature map upsampling in semantic seg-

mentation for many years since it has replaced the transposed convolution because

of the “checkerboard effects”. Bilinear interpolation works very well in many sce-

narios. Many works have also been proposed to improve the interpolation, they are

usually called “refinement”, and can be categorized into “low-level feature fusion”

(e.g., UNet [45], FPN [32]) or “boundary supervision” [63].

However, there are some details that many works are not aware. A plain bilin-

ear interpolation without “boundary supervision” can already bring many “good-

looking” boundaries in up-sampled prediction, even in some complex images, though

it still has many failure cases, leading to the motivation of boundary supervision.

This means, by considering the algorithm of bilinear interpolation, the pixel en-

coding of the low-resolution feature map has a significant effect on assisting the

interpolation process.

It also means that, given a limited encoding space (limited size of the channel

domain), especially in the boundary pixels, it is hard to reach to class center (e.g.,

regularized by CAR) because many of channels are taken to consider interpolation.

It may even become an issue because a boundary pixel may need to consider 64

missing pixels (output stride = 8) in order to achieve the class optimization target.

Obviously, disentangling class encoding and interpolation encoding from pixel

encoding, and allowing them to be optimized by different targets is necessary to

avoid this issue. However, it is very hard to perform disentanglement since lacking

the theory and methodology to understand the effects of each channel in hidden

layers.
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