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ABSTRACT

M
achine learning algorithms have achieved tremendous success on various

computer vision tasks in past decades. Large-scale well-annotated data,

such as ImageNet and ActivityNet, are necessary for learning a valuable

model. However, high-quality training samples are often insufficient in practice, and it is

labor-intensive and time-consuming to produce intense supervision for different learning

tasks. Designing algorithms with imperfect training data thus becomes significant in the

current data explosion era.

In this dissertation, imperfect supervision is categorized into three classes: 1) Limited

supervision where only a small portion of training samples are annotated; 2) Noisy

supervision where some labels of training samples are corrupted; 3) Weak supervision

where the labels of training data are imprecise to provide expected outputs. Several

models are developed to learn from the supervision of different data types. A self-paced

co-training algorithm is proposed to improve the model performance when limited

training samples are available. I have also proved that our algorithm can achieve a

better model with diverse classifiers. Moreover, a self-reweighting mechanism based on

online learned class centroids is introduced to prevent the model from deteriorating by

noisy supervision. Experiments are conducted on several image recognition datasets

demonstrating the superiority of our designed algorithms under both limited and noisy

supervision. Furthermore, two practical applications of temporal localization are studied

when weak supervision is available. The first task is the temporal action localization,

where only a single frame is annotated for each action instance. The goal is to produce
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precise temporal boundaries for action instances. An efficient frame expanding algorithm

has been introduced to improve the temporal action localization performance. The other

task uses query language to temporally localize moments in videos where only language-

video pairs are available in the training data. The connections between the video clips

and concepts in query sentences are formed by decoupling the core concepts in the query

sentence.

This thesis demonstrates that our well-designed algorithms yield excellent results

when only imperfect data are available in various vision tasks, ranging from image

classification, object detection, and temporal localization in videos.

Dissertation directed by Professor Yi Yang

Australian Artificial Intelligence Institute, School of Computer Science, Faculty of Engi-

neering and Information Technology, University of Technology Sydney
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