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ABSTRACT

Two-dimensional (2D) materials have been regarded as promising electrode materials
for rechargeable batteries because of their advantages in providing ample active sites and
improving electrochemical reaction kinetics. However, it remains great challenges for 2D
materials to fulfill all requirements for high-performance energy storage devices in terms
of electronic conductivity, the number of accessible active sites, structural stability, and
mass production capability. Recent advances in constructing 2D material-based
heterostructures offer opportunities for utilizing synergistic effects between the individual
blocks to achieve optimized properties and enhanced performance for rechargeable
batteries. In this doctoral thesis, several 2D material-based heterostructures varying from
0D-2D, 1D-2D to 2D-2D heterostructures have been designed, synthesized, and applied
to rechargeable batteries. These include Sb single atoms and quantum dots co-decorated
Ti3C>Tx MXene-based aerogels (0D-2D heterostructure), N-doped conductive carbon
coating and 2D graphene nanosheets co-modified Sb>Se; nanorods (1D-2D
heterostructure), and superlattice-like 2D-2D heterostructure constructed by unilamellar
MnQO; and graphene nanosheets. The specific morphology features, physicochemical
properties of these heterostructures, and their functions on ion storage mechanisms and
kinetics have also been deeply investigated. The enlightening techniques in this thesis
provide promising design strategies for 2D material-based heterostructure electrodes in

rechargeable batteries.
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