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Abstract: This study evaluated the accuracy of tennis-specific stroke and movement event detection
algorithms from a cervically mounted wearable sensor containing a triaxial accelerometer, gyroscope
and magnetometer. Stroke and movement data from up to eight high-performance tennis players were
captured in match-play and movement drills. Prototype algorithms classified stroke (i.e., forehand,
backhand, serve) and movement (i.e., “Alert”, “Dynamic”, “Running”, “Low Intensity”) events.
Manual coding evaluated stroke actions in three classes (i.e., forehand, backhand and serve), with
additional descriptors of spin (e.g., slice). Movement data was classified according to the specific
locomotion performed (e.g., lateral shuffling). The algorithm output for strokes were analysed
against manual coding via absolute (n) and relative (%) error rates. Coded movements were grouped
according to their frequency within the algorithm’s four movement classifications. Highest stroke
accuracy was evident for serves (98%), followed by groundstrokes (94%). Backhand slice events
showed 74% accuracy, while volleys remained mostly undetected (41–44%). Tennis-specific footwork
patterns were predominantly grouped as “Dynamic” (63% of total events), alongside successful
linear “Running” classifications (74% of running events). Concurrent stroke and movement data
from wearable sensors allows detailed and long-term monitoring of tennis training for coaches
and players. Improvements in movement classification sensitivity using tennis-specific language
appear warranted.

Keywords: wearable technology; machine learning; accelerometery; racquet sports

1. Introduction

Historically, implementation of technology in tennis for detecting critical stroke and
movement events have involved video coding methods or motion capture systems [1–4].
However, these processes have been laborious (i.e., manual notation of strokes) or cost-
prohibitive (i.e., installation costs), limiting their integration in daily training environments.
This has presented opportunities for wearable technology and machine learning approaches
in sport, whereby data collected from sensors on an athlete are trained to detect the key
“features” of the sensor output [5]. Accordingly, the continued development of these
models in sport can benefit coaches and sports medicine staff to monitor athlete training
loads and record sport-specific event data. In tennis, wearable sensors positioned on the
hitting arm or racquet utilise accurate machine learning models for automated stroke
detection [6,7] and present more affordable and accessible technological approaches to
monitoring tennis training. However, their placement precludes quantification of running-
based movement [7], which is also a critical component of tennis training and match-play
profiles [8]. Single wearable sensors capable of interpreting both stroke and movement
data would therefore be of undeniable value from a training monitoring perspective. Other
sports have embraced the use of single cervical-mounted sensors (e.g., global positioning
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systems [GPS] and accelerometry) to report sport-specific event data [9–14], yet their
efficacy in tennis remains largely untested.

Previous literature investigating the stroke detection accuracy from wrist- or racquet-
mounted sensors have demonstrated classification accuracies >90% for serve, forehand
and backhand stroke types [3,15–17]. Commercially available smart watches have been
refined over time and classify these strokes with even greater accuracy (>95%) [15]. The
classification of volleys though remains problematic even using wrist or multiple sen-
sors [18], which is costly and impractical for players and practitioners [19]. To reconcile
this issue, Perri et al. [20] validated a prototype algorithm from commercial cervically
mounted GPS units and found 94%, 86% and 98% accuracy for detecting forehand “drive”
(FH Drive), backhand “drive” (BH drive) and serves. Whilst these findings compared
favourably with stroke detection accuracies of locally positioned sensors on the hitting
arm [3,21], the overall technology represented a first iteration that excluded detailed move-
ment analysis. The wearable sensor’s positioning at the cervical spine seems logical for
reporting tennis’s bi-modal (i.e., hitting and moving) activity profiles and likely warrants
further investigation.

Most commercial wearable sensors for sporting contexts are positioned at the cervical
spine or trunk to infer whole-body mechanical demands [22]. This highlights an advantage
compared to wrist-worn or racquet-mounted sensors, traditionally used in tennis, that
report stroke events but provide limited insight into the locomotor demands of the sport.
Whilst emerging evidence in tennis has utilised wrist-worn sensors and classify movement
as “sprinting”, “running”, “walking” and “standing” activities [6], their validity is cur-
rently unavailable in the literature. Regardless, exploration of prototype machine learning
algorithms from a single commercial cervically mounted wearable sensor to determine
both stroke and movement events is currently missing. Thus, the aim of this study was
to validate; (1) the stroke event detection algorithms and (2) a novel tennis movement
detection algorithm from a wearable microsensor positioned at the cervical spine.

2. Materials and Methods
2.1. Participants

Data for the stroke validation component were originally collected in 2019 from
10 matches by eight junior-elite male tennis players (age 15.5 ± 1.6 y). The participating
players were part of Tennis Australia’s high performance player pathway and engaged in
≈20 h of on-court tennis training per week. The players were also competing regularly in
international level International Tennis Federation (ITF) tournaments. All players were
right-handed with a double-handed backhand. Data for the movement validation were col-
lected during respective ‘simulated’ and ‘natural’ tennis-specific movement drills (Figure 1).
A healthy male tennis player (age 30 y) participated in the simulated tennis movement
protocol comprising four discrete drills (Figure 1). A second healthy male (age 37 y) was
involved in the data collection of the natural tennis movement protocol. Participants were
previous competitors on the Association of Tennis Professionals (ATP) tour and experience
as high-performance tennis coaches. The participants were right-handed and utilised
a double-handed backhand. Both subjects provided their consent to participate in the
study. Participants were familiarised with the movement drills by performing three trials
of each drill at a self-determined ‘low’ and ‘high’ movement speed. All subjects and their
legal guardians provided informed consent prior to participation in the study. The study
methods conformed to the Declaration of Helsinki and was approved by the institutional
Human Research Ethics Committee (ETH19-4062).

2.2. Stroke Validation

Matches used for stroke validation were conducted on hard and grass courts and
played as a best-of-three sets match in accordance with governing body rulings [23]. Video
cameras (HDR-CX700VE, Sony, Tokyo, Japan) were mounted on the fences surrounding
the court and positioned 10 m above and 6 m behind the baseline as per previous filming of
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tennis training and match-play [24,25]. The wearable technology utilised to capture tennis
stroke events as a commercial global positioning systems (GPS) unit (Catapult OptimEye S5,
Catapult Sports, Melbourne, Australia), with an in-built triaxial accelerometer, gyroscope
and magnetometer weighing 102 g. The device was worn in a neoprene harness provided
by the manufacturer with the unit positioned in a pouch between the scapulae. Athletes
were fitted for appropriate harness size to minimise movement on the skin [26] and thus,
mitigate risk of noise in the raw data and artificial stroke detection.
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Classification of stroke events were determined via a new prototype algorithm de-
veloped by the manufacturer (White Paper, Catapult Sports). Details of the algorithm
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are propriety of the manufacturer however, supervised random forest models are applied
on the raw accelerometer, gyroscope and magnetometer data to classify strokes. These
models have estimated overall accuracy to be 90% across “Serve”, “BH Drive”, “FH Drive”
and “Other stroke” categories (White Paper, Catapult Sports). More specifically, these
unpublished investigations have shown respective accuracies of 94%, 96.5% and 99.9% for
FH drive, BH drive and serve events. Perri and colleagues [20] mostly confirmed these
accuracies of 94%, 86% and 98% for detection of FH drive, BH drive and serve actions using
a previous version of the algorithm. For the current study, raw accelerometer, gyroscope
and magnetometer data from the 10 matches were processed using a new customised
web-based application in the R Language (Rstudio, 1.1.463, Rstudio, Inc., Boston, MA,
USA). The Coordinated Universal Time (UTC) (hh:mm:ss) was available for each stroke
and re-analysed to compare against the previous dataset of Perri et al. [20].

This original dataset was manually notated by a coder with five years of experience
coding tennis matches and a coefficient of variation (CV) of <2% for tennis training and
match-play and 0.9% for stroke event classifications [20,24]. The dataset was first analysed
to denote whether a stroke event was detected by the wearable device. This was then
further scrutinised to classify whether the algorithm correctly identified the type of stroke
(i.e., forehand, backhand or serve). In this example, a stroke labelled a “FH Drive” by the
algorithm and manually coded as a forehand volley was considered to be correct from
the algorithms perspective as it does not discriminate between stroke types beyond rally
strokes. Instances where the algorithm detected a forehand, backhand or serve but classified
it as an “Other stroke”, this was categorised as an incorrect classification. However, if
“Other stroke” was recorded by the algorithm and a smash or stroke not meeting the
previous criteria was played, this was considered to be correct.

The manually coded strokes were collated in the .csv file with algorithm stroke out-
comes. Strokes were coded manually from the video footage in accordance with their basic
type of stroke (i.e., forehand, backhand, serve) and further detailed by their specific spin
or trajectory (i.e., rally, slice, volley, drop shot) (Table 1). Strokes that did not meet these
general classifications (i.e., an underarm stroke to pass ball back to server) were coded as
an “Other stroke” and treated separately. As the Catapult algorithm does not differentiate
between smashes and serves, smashes were manually coded as an “Other stroke”. Racquet
swings, which still resemble a forehand or backhand drive but without ball contact, were
coded in respective “forehand” or “backhand” categories (Table 1).

Table 1. Manually coded stroke definitions.

Stroke Type Definition

Drive A typical ‘topspin’ or ‘flat’ forehand or backhand stroke. Also
included ‘offensive’ lobs.

End-Range A forehand or backhand stroke, typically played with the racquet
arm at full stretch and in a wide position of the court.

Volley A forehand or backhand stroke played ‘on-the-full’ with no
bounce prior to the stroke.

Drop shot A disguised forehand stroke that is played with the aim of the
ball dropping short into the opposing player’s side of the court.

Block A forehand or backhand stroke often played by the returner in
response to a fast serve.

Slice A forehand or backhand stroke played where the racquet’s
forward-swing trajectory imparts backspin to the ball.

Dig Strokes played with limited forward-swing and often are more
vertical with a low to high ‘redirect’ trajectory.

Shadow Any stroke pattern played in absence of a ball being contacted.
Adapted from Crespo and Miley [27].
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2.3. Movement Validation

The simulated movement protocol is illustrated in Figure 1. The participant was
familiarised with the drill requirements by the principal investigator and instructed to
perform three trials of each drill at a self-determined ‘low’ and ‘high’ movement intensity
(i.e., speed). Individual trials were separated by 30 s, where the participant remained
stationary to minimise time alignment error in the raw data. Prior to commencement of
each trial, the participant performed a backhand stroke that was used in the raw data trace
to identify the start of each trial. The natural tennis movement protocol was developed
based on terminology from previous research [28]. The participant was given instructions
to move at ‘match-like’ intensities while performing all movements and stroke actions. A
standardised rest period of 30 s was provided between trials to replicate the time-alignment
procedures in the simulated movement protocol and closely simulate between point time
during official tennis match-play.

The movement protocols in their entirety were recorded using video cameras (HDR
-CX700VE, Sony, Japan) and positioned 10 m above and 6 m behind the baseline. Raw
accelerometer, gyroscope and magnetometer data files were processed using a custom
web-based application, which reported each detected movement action and the associated
UTC. Four movement classifications existed from the prototype algorithm and are defined
below as per the manufacturer (Catapult Sports, Melbourne, Australia):

• Alert Load = Preparatory movements preceding strokes (i.e., lowering centre of
mass/racquet take back).

• Dynamic Load = ‘Explosive’ non-linear movements between strokes.
• Running Load = Linear running actions.
• Low Intensity Load = Walking actions.

Details of the algorithm to classify movement events are propriety of the manufacturer,
though movement characteristics within the accelerometer are key in triggering specific
classifications. The principal investigator reviewed the video footage and manually de-
scribed the movement performed by the participant against the output from the prototype
algorithm. Three members of the research team were provided with examples of given
movements alongside their manual classification for verification.

2.4. Statistical Analyses

All cleaning of data and subsequent analysis was performed in both the R Language
(RStudio, 1.1.463, RStudio, Inc.) and Microsoft Excel (Microsoft Excel, 16.49, Microsoft,
Washington, DC, USA). There were 66 individual stroke events detected by the Catapult
unit that were excluded from the analysis due to unresolved time-alignment error. For the
stroke-level analysis, comparisons between the prototype algorithm and manual coding
were performed via absolute and relative measures of error. Specifically, the number of
events from the wearable sensor was divided by the total number of events in that category
and multiplied by 100. Analysis was performed across basic stroke types (i.e., forehand,
backhand, serve) and the detailed stroke classifications from Table 1. Movement event data
are reported as a count across each category from the prototype algorithm and separated
by protocol (i.e., simulated or natural).

3. Results

A total of 5094 stroke patterns were identified for analysis. Summary of forehand,
backhand and serve stroke detection accuracies are reported in Table 2. Serves had the
highest detection accuracies at 98%, with forehand and backhand reported at 94% accuracy.
Similar non-detection and misclassification error rates (7–10%) were noted for both forehand
and backhand swing events, with <1% non-detection and misclassification error on serve
events. Overall false positive rates did not exceed 3% across the three stroke types. A
total of 277 “Other stroke” events were detected, whereby 82 events were determined as
false positives.



Sensors 2022, 22, 8868 6 of 12

Table 2. Stroke-Level Analysis of Catapult Detected Backhand Strokes vs. Manual Coding.

Stroke
Type

Coded
Events

(n)

Catapult
Events

(n)

False
Posi-
tives
(n)

False Positive
Rate (%)

[False Posi-
tives/Catapult

Events]

Non-
Detected
Strokes

(n)

Non-Detection
Rate (%)

[Non-Detected
Strokes/Coded

Events]

Non-
Classified
Strokes

(n)

Non-
Classification

Rate (%)
[Non-Classified

Strokes/Catapult
Events]

Correctly
Classi-

fied
Strokes

(n)

Correct
Classification

Rate (%)
(Correctly
Classified

Strokes/Catapult
Events]

Forehand 2142 1886 49 3% 179 8% 191 10% 1773 94%
Backhand 1936 1774 29 2% 136 7% 138 8% 1670 94%
Serve 1016 1032 3 0% 2 0% 2 0% 1012 98%

Table 3 reports the respective accuracies of forehand stroke types. Forehand “drive”
events showed the highest overall accuracy of 95%, followed by forehand “block” stroke
types (75%); however, the latter classification had a low overall occurrence (i.e., four
total events). Forehand “dig” and “drop shot” strokes were unable to be detected by the
prototype algorithm (accuracy = 0%). “Slice”, “volley” and “end range” forehand stroke
types showed overall accuracies of 37–44%. Specifically for forehand volleys, the associated
error was predominantly due to these strokes not being detected in the prototype algorithm
(41% non-detection rate). Forehand “shadow” strokes had lower overall accuracy rates
of 19%. “Smash” event detection accuracies are also reported in Table 3. There was a
2% difference in accuracy when smash events were considered correct as serve or other
strokes (27% vs. 25%; Table 3).

Table 3. Stroke-Level Analysis of Correctly Detected Catapult Forehand Strokes vs. Manual Coding
Classifications.

Stroke Type Catapult
(n)

Coded
Events (n)

Non-
Detected

Strokes (n)

Non-Detection Rate (%)
[Non-Detected

Strokes/Coded Events]

Non-
Classified
Strokes (n)

Accuracy (%)
[Catapult/Coded

Events]

Forehand drive 1640 1727 14 1% 73 95%
Forehand slice 31 72 23 32% 18 43%

Forehand volley 8 18 44 41% 16 44%
Forehand end range 80 218 69 32% 69 37%
Forehand drop shot 0 2 2 100% 0 0%

Forehand block 3 4 1 25% 0 75%
Forehand dig 0 1 0 0% 1 0%

Forehand shadow 8 42 21 50% 2 19%
Forehand lob 4 11 5 45% 2 36%

Smash
(Serve as correct) 14 51 5 10% 32 27%

Smash
(Other as correct) 13 51 5 10% 33 25%

Backhand-specific event detection accuracies are reported in Table 4. Backhand “drive”
stroke types had the highest classification accuracy of 96%, followed by “slice” events
(74% accuracy). Poorest detection accuracies were noted for backhand volleys, whereby
44% of these events were not detected by the prototype algorithm and resulted in an overall
accuracy of 23%. The accuracy rates for detecting backhand “shadow” swings were greater
than the forehand side, with an overall accuracy of 47%.

Data from the movement validation protocols are reported in Table 5. Within the
simulated movement trials, “Alert Load” was mostly registered when the participant
was lowering their centre of mass (n = 27). Alternatively, this movement classification
from Catapult was least likely to be registered from split step actions (n = 7) or when
the participant engaged in lateral shuffling (n = 2). For “Dynamic Load”, the highest
proportion of movements detected in this category were adjustment steps (34%) followed by
forwards running and lateral shuffling, which each contributed 15% of detected movements.
Individual movement actions comprising the “Running Load” classification from Catapult
were predominantly from forwards (n = 18) and backwards (n = 11) running actions. Lastly,
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“Low Intensity Load” events were mostly registered when the participant was performing
lateral shuffling actions (56% of total “Low Intensity Load” events). Table 5 also contains
data from the natural tennis movement protocol. Of the 41 total movement events registered
from the prototype algorithm, 26 events were categorised as “Dynamic Load”. The second
most detected movement category during the natural tennis movement trials was the “Low
Intensity Load” classification, which registered a total of 12 standing actions.

Table 4. Stroke-Level Analysis of Catapult Detected Backhand Strokes vs. Manual Coding Classifications.

Stroke Type Catapult
(n)

Coded
Events (n)

Non-
Detected

Strokes (n)

Non-Detection Rate (%)
[Non-Detected

Strokes/Coded Events]

Non-
Classified
Strokes (n)

Accuracy (%)
[Catapult/Coded

Events]

Backhand drive 1363 1423 19 1% 41 96%
Backhand slice 160 217 25 12% 32 74%

Backhand
volley 14 62 27 44% 21 23%

Backhand end range 88 145 27 19% 30 61%
Backhand block 3 6 2 33% 1 50%
Backhand dig 3 6 2 33% 1 50%

Backhand shadow 36 77 30 39% 11 47%
Backhand lob 3 8 4 50% 1 38%

Table 5. Occurrence of manually coded movements within the Catapult classifications during
“simulated” and “natural” tennis movement protocols. “Simulated” movement protocol = (1) Small
Square, (2) Big Square, (3) Forehand Pattern and (4) Volley Transition “Natural” movement protocol = (1)
Gravity Split Step and Step-Down Forehand, (2) Split Step and Cross Step to Mogul Forehand, (3) Split
Step and Cross Step to Arabesque Forehand, (4) Split Step to Drop Step and Defensive Forehand and (5) Off
Forehand Transition Pattern.

Simulated Movement Protocol
(n = 282)

Alert Load
(n = 89 [32%])

Dynamic Load
(n = 90 [32%])

Running Load
(n = 39 [14%])

Low Intensity Load
(n = 64 [23%])

Lowering Base
(n = 27 [30%])

Adjustment Steps
(n = 31 [34%])

Forwards Running
(n = 18 [46%])

Lateral Shuffling
(n = 36 [56%])

Adjustment Steps
(n = 21 [24%])

Forwards Running
(n = 15 [17%])

Backwards Running
(n = 11 [28%])

Standing
(n = 21 [33%])

Finishing Stroke
(n = 16 [18%])

Lateral Shuffling
(n = 15 [17%])

Lateral Shuffling
(n = 8 [21%])

Forwards Running
(n = 7 [11%])

Finishing Stroke and
Lowering Base
(n = 16 [18%])

Backwards Running
(n = 9 [10%])

Adjustment Steps
(n = 2 [5%])

Split Step
(n = 7 [8%])

Cross Step
(n = 6 [7%])

Lateral Shuffling
(n = 2 [2%])

Split Step
(n = 5 [6%])

Tennis Running Step
(n = 5 [6%])

Finishing Stroke
(n = 4 [4%])
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Table 5. Cont.

Natural Tennis Protocol
(n = 41)

Alert Load
(n = 2 [5%])

Dynamic Load
(n = 26 [63%])

Running Load
(n = 1 [2%])

Low Intensity Load
(n = 12 [29%])

Split Step and Adjustment
Steps

(n = 1 [50%])

Adjustment Steps
(n = 6 [23%])

Cross Step and Lateral
Shuffling

(n = 1 [100%])

Standing
(n = 12 [100%])

Split Step and Cross Step to
Tennis Running Step

(n = 1 [50%])

Split Step and Adjustment
Steps

(n = 6 [23%])
Cross Step

(n = 3 [12%])
Split Step and Cross Step

(n = 3 [12%])
Cross Step and Lateral

Shuffling
(n = 2 [8%])

Split Step and Cross Step to
Tennis Running Step

(n = 2 [8%])
Finishing Stroke

(n = 1 [4%])
Split Step

(n = 1 [4%])
Cross Step and Adjustment

Steps
(n = 1 [4%])

Lateral Shuffling and
Adjustment Steps

(n = 1 [4%])

Data reported as absolute count of events (n) and the proportion of total events in each category (%).

4. Discussion

This study validated a tennis stroke detection and movement pattern recognition
algorithm from a wearable sensor positioned at the cervical spine. The respective detection
of accuracies of 98%, 95% and 96% for serve, FH Drive and BH drive strokes highlight the
suitability of trunk-mounted wearable devices for quantifying hitting actions. However, the
validity of the movement detection component of the algorithm was mixed for the different
locomotor actions. These findings support the utilisation of trunk-mounted wearable
sensor technology in tennis for monitoring of hitting demands [20], while signalling the
opportunity for wearable sensors and their algorithm to better detect and classify sport-
specific court-based movements.

Consistent with previous reports, the highest detection accuracy was observed for
serve events [20]. Multiple racquet- and limb-mounted inertial sensors have previously
achieved similar accuracies >95% [29]. This is presumably due to the serve being a closed
skill and one with distinct roll features (detected by the gyroscope) similar to accuracies
reported from cricket fast-bowling [30]. This has implications for both tennis coaches
and medical staff given the importance of serving on the lumbar spine [31]. Accordingly,
support staff members working in tennis can have confidence in implementing the present
wearable sensor for longitudinal monitoring of serve volumes and their distribution to
mitigate injury risk and optimise training exposure [32,33].

The stroke detection algorithm classified forehand, backhand and serve swing events
with respective accuracies of 94%, 94% and 98%. In comparison to previous research [20],
this shows a 5% improvement for classifying forehand swing events following recent
manufacturer algorithm refinements. This may point to the trunk rotation signatures of
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the groundstroke actions being better reproduced. An alternative view may attribute
these improves in accuracy towards the re-training the algorithm on a previously analysed
dataset and thus, an overestimation of detection accuracy [19,34]. Despite this possible
limitation, it remains likely that high accuracy classification rates for major strokes remain
indicative of the unique trunk rotation and lateral flexion signatures registered from the
gyroscope and accelerometer. This could also explain the low (≤3%) false positive rates
from the present algorithm and further highlights its suitability for tennis stroke detection
given the similarities with results from studies using wrist-worn devices [6].

Stroke detection performance declined for “slice” events, which concurs with reports
in previous literature [6]. On the forehand side, this could be due to slice strokes being hit
with highly variable ball speeds and therefore comparatively greater variation in upper
limb and racquet kinematics [35], likely confounding the feature extraction and event
classification. In a relative sense, backhand slice detection performed better than the
forehand and may relate to more discernible trunk rotation in backhand slices and/or the
higher frequency with which these shots are played. This would further support the notion
of the magnitude and timing of trunk rotation as key features of interest, whilst explaining
the difficulty of the wearable sensor’s position on the spine to accurately classifying volleys,
given the negligible trunk movement in this stroke [36,37]. Similar degradations in volley
detection accuracy also exist from wrist-worn sensors in samples of elite and sub-elite
players, with precision rates of ≈70–80% [3,38]. The impact on tennis practitioners remain
unclear though given volleys contribute <2% of strokes per match [2], yet are commonly
featured in training drill prescription [25].

General classifications of locomotion revealed mixed results. Indeed, the algorithm’s
specific “Running” classification captured instances of lateral shuffling and adjustment
steps between the designed stroke events. This is interesting in the context of prior research
that highlight the cyclical nature of running to result in more easily identifiable event
detection from wearable sensors [39]. Therefore, it could be reasoned that the specific
footwork actions of tennis are less easily separated from linear running activities when the
sensor is placed on the cervical spine. It is unclear whether this stems from the methodology
underpinning the algorithm’s development or an underlying limitation from the sensor’s
placement at the trunk as distinct from more a distal orientation. In a similar vein, the
algorithm classification of lateral shuffling as “Low Intensity” alongside walking would
highlight opportunities for further model refinement with sport-specific contexts and
terminology in mind.

Classifying tennis-specific footwork from previous wearable sensors worn at the shoes
have achieved recognition rates of 63% that increased to 95% when higher proportions of
training data are used in the model [40]. Whilst the present algorithm can be argued to
resolve a practical issue regarding the use of multiple sensors, the ambiguous movement
classifications from the manufacturer may limit practitioner use. For example, adjustment
steps (i.e., preparing to start the stroke) common to tennis featured in both the “Alert”
and “Dynamic” categories, which seems nebulous [7]. Indeed, that so much of a player’s
court coverage was classified as “Dynamic Load” (63% of natural tennis protocol) may be
traced back to subjectively “good” tennis movers, where the transition between individual
steps of the movement cycle occur efficiently [41]. Alternatively, the notion that a trunk-
mounted wearable sensor could adequately capture and identify the considerable number
of tennis-specific footwork steps of previous research [28] seems ambitious if not unrealistic.

5. Limitations

A limitation of this study is that a small number of participants (n = 8) were involved.
The homogenous sample of this study may represent a further limitation given a male-
only cohort was included and future investigations on female participants are needed.
Additionally, future research may wish to incorporate the influence of participant skill-
level (i.e., amateur vs. professional) on algorithm performance. Another limitation of this
study is that manipulation of the algorithm was not possible given it remains propriety
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of the manufacturer. Further, the stroke algorithm performance was assessed on the
previous training dataset to allow further internal comparisons but may also contribute to
the high accuracies in the present study. However, given the maintained accuracy from
the previous investigation [20], it would appear the stroke detection algorithm remains
suitable. Additionally, the outcome measures of accuracy in this study (“n” and “%”) may
be considered a potential limitation. The authors also acknowledge that all manual coding
of the stroke and movement data was performed by one analyst, where future studies could
be strengthened by adding a second coder [42]. It is also acknowledged that our movement
classifications involve a mixture of research and expert opinion, with no consensus, and
thus influence our interpretation of the algorithm’s accuracy.

6. Conclusions

This study validated the stroke and movement detection algorithm using data from a
commercial microsensor captured during tennis match-play and movement drills. Classifi-
cation accuracies of 94%, 94% and 98% were observed for respective forehand, backhand
and serve swing patterns and represents maintained detection rates from previous research.
Small improvements were noted in this iteration of the algorithm, namely the improved
backhand slice classification; however, volleys remained mostly undetected. The novel
movement classifications show promise in their application, though may require adoption
of sport-specific language to improve training of the algorithm for the user.
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