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ABSTRACT

Emerging technologies such as the Internet of Things, sensors, and communication
networks have been integrated into traditional homes to provide a wide range
of smart home services to simplify and improve people‚Äôs lifestyles. However,

as the Internet of Things has grown in popularity, so have the concerns it poses. As a
result, concerns like data privacy, security, and decentralisation of IoT systems present
substantial threats to the future of smart home IoTs.

This thesis presents efforts towards a blockchain-based smart home framework which
supports data confidentiality, differential privacy, and robustness. The thesis achieves
three novel contributions. We first deploy a private blockchain using Ethereum smart
contracts for a smart home to ensure only the homeowner can access and monitor home
appliances. The smart contracts are designed to allow devices to communicate without
the need for a trusted third party. Our prototype demonstrates three key elements of
blockchain-based smart security solutions for smart home applications: smart contracts,
blockchain-based access control, and the performance evaluation of the proposed scheme.

Next, we propose an authentication scheme that integrates attribute-based access
control using smart contracts with an ERC-20 Token (Ethereum Request For Comments)
and edge computing to construct a secure framework for IoT devices in a smart home
system. The edge server provides scalability to the system by offloading heavier compu-
tation tasks to edge servers. We present the system architecture and design and discuss
various aspects of testing and implementing smart contracts.

Finally, we conduct a performance evaluation to demonstrate the feasibility and effi-
ciency of the proposed scheme. The core features that blockchain technology is leveraged
upon are a trust-less environment, immutability and transparency, which come at the
cost of a lack of data privacy. Therefore, we propose a privacy-preserving architecture
for smart home-based blockchain. The architecture utilises differential privacy machine
learning algorithm to send private IoT smart home data to the cloud and achieve data
privacy. The main objective of the model is to protect privacy with high accuracy when ag-
gregating the data from traffic analysis, linking and mining attacks by adding Gaussian
noise. The implementation of our model ensures better accuracy and improved model
utility. The goal of the privacy protection scheme used in our architecture is to enable
smart home data to be used without disclosing privacy and provide published data to
different service providers with lower information loss and higher data utility.
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1
INTRODUCTION

This chapter introduces our research area starting with the introduction in Section 1.1,

the motivation of our research in Section 1.2, and the research questions we devise

in Section 1.3. Section 1.4 describes the research objective and section 1.5 details the

research methodology and research contribution. Section 1.6 provides the structure and

the organization of this thesis.

1.1 Introduction

W
ith the rapid advancement of automation technology, home automation systems

are improving their technology to take advantage of the revolution of industry

4.0, which is the current trend in manufacturing technologies for automation

and data interchange. The term "automation" refers to a variety of control systems that

do not require human interaction. It entails the control and operation of a wide range

of equipment, machinery, and industrial mechanisms. It will lead the management and

real-time monitoring of home appliances through the Internet by merging Internet of

Things (IoT) apps. Every day, the IoT grows from small scale machines to enormous

machines that can share data and perform tasks while people are occupied in other

activities [119].

The term home automation or smart home refers to a living arrangement that is
equipped with technology to monitor and support the well-being of its residents. In

other terms, it is the process of automatically managing home appliances utilising a

1



CHAPTER 1. INTRODUCTION

variety of control systems. In recent years, various control system techniques are being

used to operate and monitor electrical home appliances and different types of sensors

such as lights, fans, motion sensors, temperature sensors, and others [19]. According

to researchers [119] "the primary function of a smart home is to have more intelligent

monitoring and remote control so that daily activities are automated without user

intervention or with the user’s remote control in a more convenient, efficient, safer, and

less expensive manner " (p.10488).

The smart home IoT ecosystem is undergoing a transition triggered by the advance-

ment of information and communication technologies. Maintaining the confidentiality,

integrity, and authenticity of data is a must when it comes to IoT. Hence, it is critical to

meet the security considerations of the smart home network. IoT refers to the integration

of devices with the Internet. Such devices are called IoT devices, and they support the

expansion of Internet connection beyond the usual standard devices like computers,

laptops, smartphones, etc. Some common examples of IoT devices include:

• Smart Lighting- Smart lighting can be used for energy saving by adapting lighting

to the ambient conditions and by switching lights on/off according to the user needs.

This can reduce the use of energy to a great extent. Saving energy also helps in

reducing costs.

• Smart Door lock- Crimes such as burglary and theft can happen to anyone at

anytime. Smart door locks allow you to lock your home or give access to anyone

from anywhere using a smartphone application.

• Smoke Detection- This application can be used for sensing the smart home envi-

ronment for healthy living. In the case of fire, it can raise an alert to a nearby fire

station and a user via email/SMS, informing them about the situation.

A rising number of devices are likely to become part of the IoT in the future, each of

which is designed to collect, store, and communicate a vast amount of data. These data

may be utilised to offer real-time information about a person’s health and finances, as well

as their locations, contacts, habits, behaviours, and activities. Finally, IoT devices provide

an environment in which information about each individual can be kept, analyzed,

monitored, made available, and shared with other networked devices and possibly other

users.

The advantages provided by the smart homes are numerous, yet they are not widely

adopted either by the general mass or by older people [6]. This can be attributed to

2



1.1. INTRODUCTION

the fact that different technologies, which function as the core towards providing these

services, are still in a stage of development or pending commercialization. Another reason

is most of the research on smart homes focus on the underlying technologies, sensors,

actuators, and various other services that they can provide [6].

According to new statistics [27], older Australians have embraced smart home appli-

ances and have grown more tech-savvy. The survey found that, 33% of older Australians

lack confidence and believe they are not tech-savvy enough to recognise the hazards

associated with smart gadgets. These individuals refuse to utilise smart home devices

because they do not feel they can adequately safeguard themselves. Smart appliances are

vulnerable, according to 21% of respondents [27]. Therefore, one of the key challenges in

smart home applications is to ensure security and privacy.

The following list summarises our research approach to smart home security and

privacy. The security is achieved by offering an authentication scheme that integrates

attribute-based access control using smart contracts with ERC-20 Token (Ethereum

Request for Comments) and edge computing. Privacy is achieved by employing dif-

ferential privacy based on machine learning and designing a privacy-preserving and

secure decentralized Stochastic Gradient Descent (SGD) algorithm with our blockchain

architecture.

• Security and privacy: The security of smart home systems is one of the most

significant aspects to protect the privacy of smart home consumers [124]. The

communication between real-life objects creates considerable challenges in trust,

security, and privacy. Many security threats and attacks currently exist for the

IoT. Due to the enormous size of data transmissions, adversaries such as the man-

in-the-middle (MiM) attack and denial of service (DoS) and distributed denial of

service (DDoS) attacks may target important data transmissions in the network.

• Scalability: Since IoT based smart homes support a massive number of devices

that connect and communicate with each other, scalability is one of the significant

challenges facing the middleware approach [63]. As the number of devices increases,

the risk of network failure, too, increases. Hence, to perform efficiently in a small

and big IoT environment, a reliable middleware is essential to control the number

of devices and effectively address scaling difficulties.

• Authentication: Authentication and identity management (IdM) are a set of pro-

cesses and technologies used to manage and secure access to information and

resources. IdM uniquely identifies items, and authentication requires establishing
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the establishment of identity between two communicating parties. [137]. Because

numerous users and devices must authenticate each other through trusted services,

it is critical to investigate how to manage identity identification in a smart home.

• Authorization: Authorization enables one to determine if the person or object, once

identified, is permitted to access the resource [86]. Access controls are commonly

used to implement it. Authorization and access control are critical for establishing

a secure connection between several devices and services. Unauthorized access

to a system controller, particularly at the administrator level, makes the entire

system insecure. Since many smart home devices may be operated by battery and

networked wirelessly with a low operational duty cycle, flooding a network with

requests can lead to denial of service [97].

• Privacy: Protecting the user’s personal information is the primary focus of privacy

protection. It could be the person’s name, location, movement, or any other infor-

mation about the individual (that the person does not want to share with others).

Personal photos, movies and other digital data are stored in smart homes. Cameras

on smart devices can be activated remotely and photos and videos can be accessed

from anywhere. Furthermore, microphones on a variety of gadgets may be able to

receive private phone calls and text messages. [140].

The encryption/decryption ID authentication method, cryptographic keys and hash

algorithm have been proposed and examined in previous works [151]. However, all these

solutions are based on centralised topology and require a trusted intermediary with huge

computational and storage capacities. Thus, new solutions are needed to converge smart

home security toward a decentralised model. Blockchain technology has the potential to

overcome these issues because of its distributed and secure nature.

Blockchain is an underlying technology and closely linked to the cryptocurrency-

Bitcoin, the digital currency introduced by the pseudonym Satoshi Nakamoto In 2008

[114]. Blockchain refers to a distributed and decentralised public ledger that keeps

all transactions executed in a peer-to-peer network and shared among participants. A

consensus mechanism is used to verify every transaction in the chain. This decentralised

information reduce the ability to tamper with data.

The adoption of foundational technologies typically happens in different phases.

Each phase is defined by the novelty of the applications and the complexity of the

coordination efforts needed to make them workable. Blockchain applications are in their

early phase [82]. Blockchain technology can be considered as one of the main drivers
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to achieve a substantial cost saving. According to Satander FinTech study, distributed

ledger technology could reduce financial services infrastructure cost between US$15

billion and $20 billion per annum by 2022, providing the possibility to decommission

legacy systems and infrastructure and significantly reduce IoT costs [68]. Therefore,

despite the current high cost of Ethereum implementation for smart homes, it is likely

that this cost will be decreased after the technology is matured over time. In our research,

we mainly investigated the security and privacy aspects of data flow between various

entities using blockchain based scheme for smart home application.

In this research, managing and controlling the IoT devices in the smart home system

without a trusted intermediate party is critical in the canalised topology. The aim

is to introduce blockchain architecture, which provides decentralised, secure peer-to-

peer networks that allow non-trusted members to interact securely without a trusted

authority. Moreover, there is a developing sense of urgency for blockchain based smart

home framework designs to include mechanisms for the preservation of user privacy.

Protecting the privacy of smart home data aims to enable data usage without disclosure

as well as to reduce data loss when providing published data to service providers.

This research analyses a real-time interaction model between users at the smart

home and a fully validating private blockchain node to authenticate users of smart homes

and IoT devices. We also incorporate a differential privacy technique into our suggested

approach to protect data privacy. Our proposed model resolves the issue of the traditional

access control method based on the centralized design and meets the access control

requirements in IoT by combining attributes-based access control, differential privacy,

and edge computing. In this study, we created the Ethereum blockchain and several

smart contracts, and our implementation shows improved performance of our suggested

model. With the production of ERC-20 tokens, we achieve more fine-grained access

control than the current scheme while using edge computing to reduce computation

costs.

1.2 Research Motivation

IoT smart home devices, while providing advantages to users, also brings many threats

because of their poor or inconsistent implementation of security and privacy protocols.

Current IoT devices rely on a client-server model and a canalised architecture with

huge computational and storage capacities. The centralized architecture has different

weaknesses such as a single point of failure, a central authority and limited transparency.
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Therefore, the existing approach is expensive due to the high costs of cloud server

infrastructure, network equipment and the associated maintenance. Furthermore, no

existing platform supports communication between all smart home devices or guarantees

the interoperability of the services offered by different manufacturers on the cloud [41].

Thus, using a standard peer-to-peer decentralised approach can overcome and reduce

the costs corresponding to the maintenance and infrastructure of the client-server model

and share the processing and space requirements of devices on a smart home network.

Blockchain architecture can provide an appropriate solution that suits the need for such

a platform.

However, a lack of user privacy as a result of blockchain’s wide adaption and imple-

mentation remains a major concern [48]. Data confidentiality has subsequently emerged

as an issue of primary importance as smart home generated data contain sensitive

content including user health information and location details. The main concerns about

the integrity of blockchain are around attacks related to user privacy such as linking

attacks. Such attacks utilise accessible data recorded in blocks to gain access to private

information by tying the information to alternative datasets or relevant background

knowledge. Attackers may have a greater chance of working out target smart home

privacy data [76].

The use of differential privacy can create a level of indistinguishability in statistical

blockchain data, leaving the analyst unable to predict with any certainty the accessibility

of individual blockchain nodes. Differential privacy is a good fit for use in blockchain

technology to preserve the individual’s identity during a broadcast. While ensuring that

the information remains useful for completing transactions, differential privacy can

still perturb the person’s identity to the network and an adversary will be unable to

determine the sender’s or receiver’s actual identity.

This research aims to achieve the secure and private communication of IoT devices

within a smart home by proposing a novel lightweight Ethereum blockchain based multi-

tier, integrated with edge computing and a differential privacy enhancement model.

1.3 Research Questions

The thesis investigates the answers to the following research questions:

1. How can Ethereum smart contracts be used to secure access to smart home devices?
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2. What benefits are achieved using a blockchain-based scheme in comparison with

an existing scheme?

3. How can our proposed scheme be used to enhance data privacy?

4. How effective is our proposed scheme against current as well as future cyber

threats?

a) Developing a new scheme for the threat analysis procedure.

b) Thoroughly testing the proposed scheme against major cyber threats.

c) Enhancing blockchain based authentication and privacy measures.

1.4 Research Objective

The existing literature on blockchain architecture primarily indicate the opportunities

and challenges of using blockchain in general. However, only a few researchers have in-

vestigated the smart contract applications; the majority of current research is conducted

in the bitcoin environment rather than smart contracts [163]. Regarding the IoT domain,

a considerable amount of current research practices have been proposed, but it lacks

implementation and testing as a proof of concept, especially in relation to smart homes.

Consequently, this gap will be one of the focus of this research. There is a need for a

framework that supports a smart home system based on blockchain, powered by smart

contracts.

Furthermore, while blockchain is regarded as the future of data storage due to its

decentralised structure, several issues are still to be resolved before it is implemented

in daily life scenarios. A significant parameter in blockchain applications that needs

further development is data preservation and transaction privacy. That is, blockchain’s

distributed nature means that an individual’s identity or personal information may be

leaked during transactions. To overcome aforementioned issues and protect privacy, it

may be useful to integrate differential privacy based on machine learning with the latest

blockchain technology. Differential privacy is efficient at preserving privacy in statistical

databases and real-time settings.

This research aims to investigate the potential use of an Ethereum smart contract on

constrained IoT devices and establish decentralised security in a smart home environ-

ment and also, to investigate whether it is possible to implement the access management
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aspect of it globally. This is done by implementing and evaluating simplified smart

contracts as a proof of concept over the Ethereum blockchain.

Moreover, this research examines the main threats that need to be solved in smart

home environment and what are the main security vulnerabilities that will be covered

by the proposed model. Furthermore, to achieve privacy preservation, the architecture

utilises the differential privacy machine learning algorithm to send private smart home

data to the cloud. Our research aims to provide a privacy-preserving data aggregation

method in the context of smart homes that agree to provide their data to a cloud server,

so this cloud can learn privately from the data produced from IoT devices inside people’s

homes and then deliver these data to an external entity to provide better services for

home users. The proposed framework based on Ethereum smart contracts aims to achieve

end-to-end secure and private communication of smart home devices within the private

blockchain network. The specific objectives of this research project are as follows:

• to develop a smart home framework that allows IoT devices to communicate

securely with each other.

• to simulate IoT smart home devices using Raspberry pi to build a prototype of a

private Ethereum network powered by access control and smart contracts.

• to conduct a performance evaluation of the proposed prototype in terms of process-

ing time, gas cost and block size. Also, to calculate its memory consumption and

compare the results with existing models.

• to design a privacy-preserving and secure decentralised stochastic gradient descent

(SGD) algorithm using blockchain.

• to design a threat model to simulate a denial of service (DOS) attack and linking

attacks that are particularly relevant to smart homes and to perform security and

privacy analysis to prove the security strength of our proposed scheme and analyse

the effectiveness of the prototype to prevent attacks.

• to observe the results of the performed attacks and analyse how well the proposed

scheme withstands the attacks.
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1.5 Research Methodology and Research
Contributions

This research will mainly be based on the theoretical analysis and practical understand-

ing of blockchain technology and smart home systems. Information for the research will

be generated through the literature review, expert opinions, software design, experimen-

tal simulation, and performance analysis.

To achieve the research objectives discussed in section 1.4, we divide this project into

six tasks:

Task 1: Review the existing literature about blockchain technology and cur-
rent smart home architecture.

A broad literature review was conducted on the related topics, and knowledge was

acquired on blockchain architecture, application use cases and security along with an

understanding of the different platforms to build and implement a blockchain network.

Also, information on current smart home architectures is gathered and the main security

threats in a smart home environment are identified to be addressed by the research.

Task 2: Develop a smart home framework based on blockchain architec-
tures.

Current trends and platforms are further examined in this task. Also, the existing

works on blockchain, especially in relation to IoT applications, are reviewed. Details

and abstract ideas on the revolution of blockchain and the promising solutions it has

brought are studied. Then, Ethereum blockchain is selected to build an initial prototype

of a smart home system with possible scenarios.

Task 3: Implement a private Ethereum network for the proposed scheme.
IoT devices are simulated and connected to the private network; two smart contracts

are written to determine the behaviour of devices in the network through access and

monitor transactions.

Contribution 1: This work is based on our publication[126], which discusses the

implementation of private blockchain using Ethereum smart contracts for smart homes

to ensure only the homeowner can access and monitor home appliances.

Task 4: Present an architecture involving authentication rules and logic
based on Ethereum smart contracts integrated with edge computing. This work
proposes ERC-20 token generation and an attribute based access control mechanism

that utilizes Ethereum smart contracts integrated with edge computing (servers) for

authenticate user access to IoT smart home devices.
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Task 5: Evaluate the proposed scheme’s performance and undertake a se-
curity analysis.

During the task, we discuss the performance evaluation of the proposed scheme

and compare it with existing models with respect to various performance metrics. Also,

we examine how the scheme accomplishes security goals (confidential, integrity, and

availability), and is able to overcome modification and denial of service (DoS) attacks.

Contribution 2: This work is based on our publication [127], in which we propose an
architecture involving authentication rules and logic based on Ethereum smart contract

integrated edge computing.

Task 6: Apply machine learning on the differential privacy mechanism to
send data from a private smart home to the cloud.

After achieving the security and authentication structure using smart contracts, the

next objective is to move towards model privacy. After this, differential privacy machine

learning was added on top of blockchain to achieve privacy-preserving and secure a

decentralized model.

Contribution 3: This work is based on our publication [128]. We develop a privacy

preserving and secure decentralized stochastic gradient descent (SGD) algorithm using

blockchain. We apply the algorithm on our own dataset which was generated from a pcap

file of the private network traffic of our experiment.

Task 7: Examine the accuracy and utility of two metrics on our proposed
algorithm using different datasets.

The proposed model’s effectiveness is defined in terms of accuracy, utility and privacy

leakage. The experiments are performed using three publicly available datasets, UNSW-

NB15 dataset, NSL-KDD datasets and ToN-IoT.

Task 8: Design the threat model and inference attack scenarios and per-
form privacy analysis.

Conduct further research on the latest privacy threats and then design a threat

model and attack scenarios to ensure the privacy of our scheme.

Contribution 4: This work is based on our publication ( Differential Privacy Model

for a Smart Home-based Blockchain Architecture) communicated to the Future Genera-

tion Computer System (FGCS) journal.
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1.6 Structure of the thesis

This thesis is organized into three parts and a total of seven chapters. Summary of each

chapter is given as follows.

• Chapter 2 presents a literature review on the topics, background and related

works relevant to the research area. The chapter reviews smart home systems and

blockchain technology. Also, this chapter discusses the integration of blockchain

and cloud computing, the security and privacy mechanism in blockchain and finally,

the threats and attacks related to the research are explained.

• Chapter 3 describes the initial implementation of Ethereum smart contracts. The

use of blockchain infrastructure is proposed to secure smart home transactions.

Using a private Ethereum blockchain, smart home IoT devices are configured.

Smart contracts are built to specify the behaviours of IoT devices on the network.

As a proof of concept, raspberry Pis was used to simulate IoT devices in one smart

home scenario.

• Chapter 4 presents a novel lightweight Ethereum blockchain-based multi-tier edge-

smart home architecture. The multi-edge servers work as local blockchain miners.

Rules and policies are enforced using smart contracts in an automated manner

to regulate smart home IoT devices based on the Attribute-Based Access Control

(ABAC). This chapter describes ERC-20 token generation and the attribute-based

access control mechanism that utilizes Ethereum smart contracts integrated with

edge computing (servers) to authenticate user access to IoT smart home devices.

Smart contracts issue access tokens directly, with no need for an intermediary or

trusted third party.

• Chapter 5 focuses on the privacy aspect of our smart home-based blockchain

architecture. This chapter presents the use of differential privacy machine learning

as a privacy-preserving mechanism. In this chapter, the dataset was produced

by generating a pcap file using Wireshark to capture the network packets in our

private network.

• Chapter 6 focuses on assessing the differential privacy algorithm’s performance
using three publicly available IoT datasets. We aim to achieve a better privacy

guarantee to protect smart home data with better accuracy and utility.
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• Chapter 7 concludes the thesis and summarizes the research outcomes along with
future works which may be conducted to further enhance the security and privacy

architecture developed in this research.
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2
LITERATURE REVIEW

This chapter presents a survey of the literature on the main topics of the thesis. Section

2.1 overviews smart homes and Section 2.2 overviews blockchain technology. In Section

2.3, cloud infrastructure and support for smart homes is discussed and in Section 2.4,

security mechanisms and privacy-preserving techniques based on blockchain are detailed

in Section 2.5. Finally, threats and attacks are discussed in Section 2.6.

2.1 Smart Home

2.1.1 What is a Smart Home?

The inception of information and communication technology is associated with the advent

of the Internet. Since then, Internet services have been evolving at an astonishing rate,

to the point where technology specialists have had to create a novel terminology that

explains how one can fully utilize the revolutionary characteristics of these services. This

terminology is the Internet-of-Things, and it includes an array of applications, such as

smart homes, that depend on the Internet [61].

Consequently, the idea of enriching the existing literature with novel research ap-

proaches proposed over the last ten years regarding various patterns of data used in

smart home systems is mainly attributed to the exponential growth in the data itself, and

this alone has proven to be more than enough to cause a revolutionary transformation in

relation to how smart homes are designed and further developed [172].
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To understand how smart homes function, one should first comprehend the essence

of the unique integrative and communicative network that a smart home creates, within

which several devices and appliances can be used, controlled, and regulated remotely,

not to mention the ability of each device to send and receive messages from other

devices in such a distinctive manner as to assists the residents of these homes to build a

personalized environment that fits their lifestyles [17].

In this vein, researchers define a smart home as "one in which a communication

network links sensors, appliances, controls, and other devices that allow for remote

monitoring and control by occupants and others to provide frequent and regular services

to occupants and the electricity system" [67](p.96). This serves as a useful paradigm for

us to build upon.

Therefore, as seen in Fig. 2.1, the key technical attribute of smart home systems

seems to revolve around creating a central control hub that is mainly responsible for

playing the role of mediator element between several other appliances and household

items and the owner of the smart home who operates these appliances and tools. This

central control hub is called the Home Gateway, and it uses a number of communication

protocols that, in turn, link the external network to the home network [95].

Figure 2.1: Depiction of the traditional structure of a smart home system

Some authors state that smart homes require a well programmed safety system that

prevents others from breaking into the house or hacking into its devices and using them

for undesirable purposes [5]. Security is important, but that does not mean that it is

automatically factored in. It is also important to keep in mind that these systems also

need to be user-friendly, with an interface that allows almost anybody to effectively and

swiftly utilize their functions.
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According to experts, smart homes require a number of elements to be present,

including [95]:

• a master system that involves communication networks, servers, and workstations.

• an easy-to-use interactive terminal for family members that allows them to control

and operate all smart household equipment and appliances.

• smart sockets that can be installed in a manner that connects appliances to power

outlets.

• smart appliances, including television units, refrigerators, air conditioners, cookers,

and washing machines that are programmed to send/receive data to/from the smart

home master system.

• smart home security systems that prevent hackers and intruders from breaching

the privacy of the household or using its items without permission. These systems

include smart cameras, smoke and gas-leak sensors, and emergency buttons.

2.1.2 Centralized Smart Home Architecture

Generally speaking, traditional smart home systems are controlled by a centralized

architecture. This form of architecture places all kinds of appliances and household

equipment into one network that is controlled via a home gateway, which in turn can be

used by the smart homeowner to reach these appliances and equipment from one central

hub of control [155].

This home gateway system serves as the only element allowing every single device

within the home network to establish some sort of communication with the external

network. Smart home gateways are also meant to carry out specific functions such as

gathering information regarding energy consumption, processing the smart homeowner’s

data, and also accurately monitoring his/her location [165].

Thus, the main idea of using centralized architecture revolves around having one

central processing gateway that is responsible for receiving, managing, analysing, and

processing data that will later be used by the end-users to take action [120]. Thus, not

only remote access but centralization of that access is important for understanding the

possible ways in which the benefits of smart technology may be reaped.

It is suggested in [7] that centralized architectures require a Central controller whose

main function is to gather information related to appliances and household equipment
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to further process this information. This controller is considered the most vital element

within the processing procedure, as it controls all appliances and household items, as

well as smart grid data with regard to the amount of energy that these devices and items

are meant to consume [7]. The use of this data is key to the benefits of certain types of

smart home technology.

Therefore, centralized smart home architecture is a type of programmed control

scheme that can be installed in a computer system. It uses a number of outlets and

sources, from which it gathers various patterns of information. These outlets and sources

encompass client interfaces, actuators, sensors, and control calculations, which makes

centralized smart home architecture clearly different from the type of architecture known

as distributed smart home architecture [105].

2.1.3 Security and Privacy Issues Related to Centralized
Architecture

Centralized architecture is regarded as the main system through which IoT applications

operate. However, it has faced a great deal of criticism as far as security and privacy

issues are concerned, due to its rigid and vulnerable programming that can easily be

infiltrated by hackers and malware, which endangers all information stored within the

system and causes the users to fall prey to exploitation [39]. We intend to consider

whether these criticisms are justified.

Researchers indicate that hackers normally find systems programmed using a central-

ized architecture to be the perfect environment for practising their nefarious activities

against smart home users [94]. The intrusion occurs through tampering with the home

gateway’s data first, then it becomes easier for the attacker to start using household items

and devices, or even steal critical information about the smart home users themselves.

The main problem with centralized architecture as regards privacy and security

issues lies in the fact that it uses one control hub that directs every single command,

which could allow the whole smart home system to collapse at any point if just one small

malfunction occurs. It also makes the task of hacking easier for attackers, as all they

need to do is to hack into the home gateway to gain access to the entire system [129].

One way of hacking into a centralized smart home architecture system is to simply

use a decoy disguised as a member device within the smart home network, which can

easily allow the attacker to contaminate the home gateway network and obtain the data

it contains, which exposes the system to further privacy and security risks [88].
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2.1.4 Decentralized Smart Home Architecture

Decentralized smart home architecture is constructed differently to its centralized

counterparts. As one author puts it, decentralized architecture systems are becoming

a better alternative that offers much more effective protection schemes than other

centralized smart home architecture systems [37]. Decentralized architecture is also

considered to to be beneficial in allowing owners to enjoy data sovereignty, as well as

preserving the confidentiality of data.

Some researchers indicate that decentralized architecture could also be referred

to as distributed architecture which is evident through an actualized control system

and addressed and used as a processing framework that is disseminated, which further

embeds all software components into one home automation network [105].

2.1.5 Security and Privacy Issues Related to Decentralized
Architecture

Decentralized architecture-based systems are seen as an effective solution that could

be used as an alternative to centralized systems, due to their strong ability to ensure

privacy and security for system users. This gives decentralized architecture systems

an immense advantage as against centralized architecture systems when it comes to

creating a more secure environment that maintains users’ privacy [144].

Research also clarifies that experts in the field of programming and IoT always tend

to use decentralized architecture systems as the ’perfect’ architecture that aims to reach

a high level of privacy and security for all users in residential environments [4].

Although decentralized smart home architecture is supposed to be more secure and

offers more protection and privacy than its centralized architecture counterpart, it still

faces a few issues when it is applied in larger networks. At that point, the decentralized

architecture system becomes exposed to a number of threatening risks related to security

and privacy. These issues can be listed as follows:

• Iteration Issues: Decentralized architecture provides network agents with the
ability to communicate directly with each other without using a central control hub

as a mediator [81]. Although this might prove to be secure, the mandatory iterative

attempts to communicate may pose some threats, leaving the system vulnerable

on the security and privacy front.
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• Inconsistency Issues: Decentralized architecture-based systems are somewhat
inconsistent when it comes to their overall level of performance, which may create

an opening for attackers within this inconsistent performance timeline, putting

users’ privacy and security at risk [102].

• Dissemination Issues: Decentralized architecture-based systems are always

supported by a dissemination scheme that allows multiple users to gain access

to the stored data, which creates an environment where unauthorized users can

infiltrate the dataset as administrators and steal as much data as they want [153].

It is therefore important to consider the notion that the security benefits of decentralisa-

tion are not an open-and-shut case.

2.2 Blockchain Technology

2.2.1 Blockchain Overview

Blockchain is a useful form of technology that is used to store data in a decentralized way,

to prevent most attackers and hackers from committing any sort of criminal act against

users, such as blackmail, information exploitation, and using the data for fraudulent

purposes. Blockchain is well known for its reliable database infrastructure and it can be

utilized in various fields and contexts [157].

Blockchain originated for the first time as a novel technological approach, during

the 1980s and the 1990s, and then witnessed a revolutionary shift in 2008 when it was

acknowledged and applied in the field of crypto currency [15].

Blockchain normally consists of a number of blocks structured in a consecutive

manner [46, 87, 98, 110, 176, 184], as Fig. 2.2 shows. Each one of these blocks is designed

and programmed to contain the core data of a given system, and clustered into two

sections. The upper section, known as the "Header", includes hashes of current and

previous blocks, timestamps, and other relevant information, while the lower section,

known as the "Body", contains the main data of the system. The technical terminology

can be further demonstrated as follows:

• Main Data: This refers to any form of data that is related to the core service

provided by the blockchain application. This data could involve the IoT or banking

data records.
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• Hash: This refers to the most important factors in any blockchain. A hash is

a function that meets the encrypted demands needed to solve for a blockchain

computation and developed based on the information present in the block header.

• Timestamp: This refers to how long it takes for a block to be generated, i.e., the

timeline of each block from inception to completion.

• Other Information: This refers to any other related information that has something

to do with the blockchain application’s main data, operated and utilized by the

user.

Figure 2.2: Depiction of a traditional blockchain

On the other hand, a blockchain’s consensus function indicates the state of compatibil-

ity among all nodes related to the blockchain, which means that every node is sequenced

in an organised manner with each other node, ensuring that all data transferred from

one node to another remains the same, without being altered or hacked in any way,

shape, or form [98]. Blockchains are divided into the following three types:

• Public Blockchains: This type of blockchains is publicly available for anyone to
see, download, compare to other blockchains, and even construct new blockchains

that are added to the main one.

• Private Blockchains: Unlike the first type, private blockchains are more central-
ized and require a few authorized users to control and view them. This is because

only a small group of participants controls the network. Anyone else who would

like to view or edit the blockchain should ask for the main user’s permission.
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• Consortium Blockchains: This distinctive type of blockchain is highly favoured
by executive managers in various institutions, thanks to its unique privacy and

security features that only allow those who work and communicate with the

institution to view and use the blockchain.

Blockchain is thus clearly a technology suited for when privacy is needed, hence our

giving it major consideration.

2.2.2 Blockchain Technology for Smart Home Security and
Privacy

Blockchain technology has been recently chosen by a number of smart homeowners as the

most secure way to ensure high levels of privacy and protect their smart household items

from being manipulated and abused. Blockchain technology allows smart homeowners

to safely send their critical information to other institutions such as banks and online

markets without having their privacy breached by any third party service providers [110].

Consequently, blockchain is becoming increasingly popular in smart homes, and a variety

of recent research papers have been published on this topic. Table 2.1 summarises the

most recent works on blockchain and smart homes. Only three works discuss both the

security and privacy of their proposed architectures, demonstrating the value of looking

into this matter in the present research.

One work describes a smart district model that combines the IoT with blockchain

along with user access to the power grid. This prototype model enables users to work

with the power grid via blockchain. Users with solar panel configurations can use the

network and its blockchain mechanisms to purchase and/or sell energy. This illustrates

how IoT applications using blockchain may be performed and replicated in real-world

situations. The authors also draw attention to significant prerequisite factors for smart

home systems for consideration in the design and development of new smart home

applications [93].

One work describes the design of an Energy-Chain which is a safe energy trading

scheme for automated homes that uses blockchain in the smart grid ecosystem. The

scheme provides comprehensive security assessments of the frameworks related to

communication, costs, and computation times [3].

Some researchers have conducted a case study on a blockchain-based smart home

system. They provide details of the central building blocks of the smart home tier

as well as exploring the transactions and practices related to the components being
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Table 2.1: Summary of the most recent works on blockchain and smart homes

Reference
Number

Main Contribution security privacy

[93]
An IoT/blockchain-based smart district approach to improving
power grid access for end-users.

No No

[3]
In the smart grid ecosystem, an energy-chain for automated home
using blockchain is being developed.

Yes No

[47] As a sample case study on blockchain, a smart home system is used. Yes Yes

[73]
Three sensors are used in a blockchain-based Smart Door Lock
system to detect motion and distance between nodes.

No No

[108]
IoT systems in smart homes have been created using an efficient
lightweight integrated blockchain (ELIB) architecture for IoT.

No No

[94]
Ethereum-based smart home solution that reduces IoT device secu-
rity, integrity, and authentication concerns, as well as issues with
centralised gateways.

Yes No

[46]
A secure and lightweight blockchain-based design for a smart home
that is supervised by its owner is proposed.

Yes Yes

[109]
A secure and efficient five-layered blockchain-based IoT system
framework that is flexible enough to be adopted by smart houses is
proposed.

Yes No

[91]
A novel lightweight blockchain and smart contract-based architec-
ture for smart home hierarchies is presented.

Yes No

[185]
For the proposed architecture, each IoT device maintains the dis-
tributed ledger locally, and each smart home uses a local miner to
execute transactions on a private or public blockchain.

Yes No

[173]
Smart contracts, which can be formed with Ethereum, are used to
store data collected by smart home sensors.

No No

[150]
To ensure secrecy, integrity, scalability, and availability, consortium
blockchain is integrated with cloud computing and the smart home
architecture.

Yes Yes

[145]
A data privacy-focused smart home solution is developed based on
consortium blockchain.

No Yes

[16]
A smart home architecture that includes a private blockchain, a
smart home miner (SH miner), local storage connected to smart
home sensors (SH sensors), and actuator devices is proposed.

No No

[2]
Blockchain in smart home is explained with the main three tiers:
smart home, overlay, and cloud storage.

Yes No

[139]
A new paradigm in which mobile agents, including data migrated
between two different household devices, are protected and main-
tained in a secure blockchain architecture is presented.

No No

[174]
A private blockchain-based access control (PBAC) scheme which
involves employing a private blockchain to provide an unforgeable
and auditable foundation for smart home systems is proposed.

Yes No

23



CHAPTER 2. LITERATURE REVIEW

described. In addition, the authors have conducted an analysis of the security and

privacy outcomes in blockchain-based smart homes. They conclude that the method

being proposed demonstrates low-level processing overheads and is suitable for low-

resource IoT devices. In turn, the authors assert that their study represents an initial

step towards optimising blockchain for connected smart homes [47]. We can therefore be

assured that blockchain has already been considered in this context, and is not viewed

as an off-the-wall suggestion.

Other proposed a blockchain-based smart door lock system in 2017. The system

included plain blockchain processes where three users function as a node to carry

out proof of work (PoW). Three sensors are embedded into the system to detect the

nodes’ motion and distance. Single homeowners (i.e. single node), however, are yet to be

discussed as part of the solution. Single nodes raise concerns related to the process by

which the blockchain-based door verifies the transactions produced by the single node

[73].

Other researchers report their design of an efficient lightweight integrated blockchain

(ELIB) model using public blockchain, the cloud, and smart contracts for IoT systems.

Their model was applied in smart homes to evaluate its performance and although it

reduced processing times and demonstrated satisfactory performance outcomes, the use

of the cloud runs the risk of increasing overall system cost [108]. We attempt to offer a

better attempt to achieve the aims.

In One paper proposes an Ethereum-based smart home solution to minimise of

confidentiality, integrity, and authentication problems with IoT devices. The design also

addresses centralised gateway concerns but not the added computational complexities

created by blockchain [94].

In addition, a blockchain-based secure and lightweight architecture for smart homes

has been proposed. The architecture permits the centralised supervision of the local

blockchain by the smart homeowner. All local device and overlay node communication

utilises a shared key provided by the miner to support communication security [46]. The

authors report that they employed lightweight hashing to uncover transaction anomalies;

data confidentiality, integrity, and availability is assured along with safeguards against

DDoS attacks. The architecture takes advantage of cloud storage to avoid memory issues

with smart home devices. We consider DoS (and DDoS) in due research.

One paper highlights the extensive and difficult to manage security aspects of the

implementation of blockchain in IoT settings [109]. The authors propose a five-layered

state-of-the-art framework to develop more secure and efficient blockchain-based IoT
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systems. The framework includes the basic IoT layers in addition to an added storage

layer to support enhanced data transmission in a blockchain-based permissioned network.

They also use the cloud to store IoT sensor records in response to the limited storage

capacity of sensing devices. This enhances the security features related to transactions

such as minimal block creation time, integrity, accessibility, availability, scalability,

and immutability. Specifically, a blockchain is created in the storage layer when block

variations emerge while running consensus algorithms and mining functions. The model’s

design also has sufficient adaptability to appeal to smart homes, businesses, schools, and

smart cities. The question of block creation time was to prove significant in our research.

IoT home devices do not have a great deal of computing power or storage capacity. In

addition, they may incur high costs and consume a lot of time when data streaming. A

new lightweight blockchain and contract-based hierarchy architecture has been proposed

to improve the security levels in smart homes [91]. Specifically, smart contracts are

scripts embedded into the private blockchain and are activated by the IoT device when

specific conditions are met. This latter point informed our work.

Architecture is presented to support the local storage of the distributed ledger by each

IoT device [185]. A local miner is utilised by the smart home for processing transactions

in both private and public blockchains. This local miner may also store the data on the

device, add other devices to a private blockchain, and insert IoT devices with smart

contracts. In response to the limited computing and storage capabilities of IoT devices,

the authors established time limits for uploading private blockchain data to local miners.

The authors argue that the private blockchain data should be uploaded to local miners

every 10 days and that the last five blocks only should be maintained for subsequent

transactions.

Researchers report the design and implementation of an Ethereum-based decen-

tralised smart home system [173]. As a software platform, Ethereum emerges from

blockchain technology to support developers to assemble and implement decentralised

applications. As such, they have used Ethereum to develop smart contracts to store

sensor data. The use of Ethereum for smart contracts has enabled the authors to design

a system prototype to simulate a smart home application. The model is designed to

automatically update humidity and real-time temperature sensors in smart homes when

triggered by certain events, demonstrating the benefits underpinning what we seek to

do. The authors do not, however, mention that their system is costly to run and some

of the design elements require further improvement, a matter that is pertinent to the

present research.
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Other authors report how they merged consortium blockchain with cloud computing

in their system’s architecture to improve data confidentiality, integrity, scalability, and

accessibility, and thus smart home safety and security [150]. Their system demonstrates

how blockchain-based smart home networks can manage transactions utilising green

cloud computing. A green broker is utilised to reduce environmental externalities.

Elsewhere, researchers present their consortium blockchain-based smart home sys-

tem design to address data privacy issues specifically [145]. The model’s performance has

been positively evaluated using simulation methods; however, no explanation is provided

in relation to its energy consumption and processing time, a matter which I do not ignore.

Lastly, the impact of Ethereum on a smart home system and developed smart home

architecture including private blockchain, a smart home miner, sensors linked to local

storage, and actuator devices has been reported [16]. Their architecture is a modified

form of the design developed by the authors in [47], but with added Ethereum applica-

tions and smart contracts. The system can generate policies for handling transactions

which include specifying individuals authorised to access and monitor data.

These authors further claim that Ethereum-based blockchain may be less effective in

time-sensitive conditions given it requires around 20 seconds to complete a transaction,

which is too long for situations where an urgent response is needed [16]. While we

improve on that timescale, there are indeed limits to speed.

Other work reports a thorough study that indicates that blockchain technologies

are extremely effective in securing smart homeowners’ information, based on what

blockchain technology has to offer in relation to a decentralized architecture system,

which does not place data in harm’s way, by allowing the database to be expanded

and preventing past records from being altered [2]. Blockchain technology also has the

ability to withstand hazardous and malicious attacks waged by hackers and other online

attackers.

A different paper presents a new paradigm in which mobile agents, including data

that is automatically and autonomously migrated between two different household

devices, are protected and maintained in a secure series of hashes within an architecture

fortified by blockchain technology, which protects the smart home system against possible

threats and attacks [139]. The paradigm has proven to be successful and easily applied

in other patterns of IoT systems.

On the other hand, there is the report of the development of a new scheme known as

private blockchain-based secure access control as a perfectly secure system to control

household items and devices in smart home systems [174]. The scheme serves as a shield
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that blocks both internal and external attacks and threats. It functions in a unique

yet simple fashion, as the blockchain technology stores access records privately while

minimizing the communication and computational overhead. We attempt to achieve

similar advantages, not giving external actors write access to the blockchain.

2.2.3 Challenges of Integrating Blockchain Technology into
Smart Home Systems

Blockchain technology has been used as an essential solution for ensuring security and

maintaining data privacy for its users. However, one cannot overlook a few critical issues

that bring about the following challenges regarding the use of blockchain technology in

IoT applications [43]:

• data mining requires an intensive amount of computing power

• IoT devices include resources that are highly restricted

• mining blocks takes a long time

• poor scalability and hence a poor ability to cope with the increasing number of

nodes in the network

• a tendency to create a staggering amount of overhead traffic due to the underlying

protocols related to blockchain technology.

Other authors also identified the following challenges facing blockchain technology [2]:

• Storage: Data tends to take up a large amount of space due to the increasing

number of nodes over time, which leads to an increase in the ledger size.

• Scalability: Scaling could eventually change the core characteristic of the blockchain,
shifting its approach into a more centralized style of control.

• Poor Operating Skills: Unfortunately, only a few people are actually equipped

and qualified to skilfully use blockchain technology applications.

• Time-Consuming: Although blockchain technology provides a great deal of secu-
rity and privacy, its encryption process may take a large amount of time.

When it comes to smart home systems, researchers indicate that blockchain technol-

ogy is not perfect, and could actually result in the following obstacles for users [110]:
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• Enormous computational power is required in order to establish a consensus among

all nodes within their respective blocks in the integrative network so that certain

malicious threats against smart home units can be detected and thwarted.

• The overflow of streaming data from node to node and block to block could easily

cause some issues and bring the whole process of communication to a halt, and

this data requires a balanced computational scheme that uses high processing

power and lightning-fast speed, which is not always the case with every blockchain

technology application.

• Within home networks, whenever the number of nodes increases, the scalability of

the blockchain noticeably decreases, which affects the effectiveness of transferring

data and of keeping it private.

• While blockchain systems do prove to be secure and decentralized, the amount

of communication and collaboration between household equipment and devices

could lead to data leakage, which makes smart home systems more vulnerable to

cyberattacks and threats.

2.3 Cloud Infrastructure and Support for Smart
Homes

2.3.1 Cloud Computing Overview

Authors show that cloud computing offers users processing methodologies that are char-

acterized by both flexibility and convenience, which allows for sharing and outsourcing

different amounts of data related to certain contexts [69]. Others have stated that cloud

computing includes an essential number of components that encompass the following

three factors [11]:

1. Clients: The first component represents the end users’ tool that allows them to

manage a plethora of information packets held on the cloud. These tools might be

any type of computing device such as mobile phones, laptops, or desktops.

2. Distributed Servers: The second component represents the servers which are

responsible for the provision of high-quality security and accessibility services,

managed from different geographical locations.
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3. Data Center: The third component represents the servers through which informa-

tion can be obtained using the process of virtualization of physical servers to host

the service virtually.

A simplification of the concept of cloud computing has been offered, explaining an

approach that integrates a number of resources and places them within a virtualized

platform online, which allows internet users to gain access to a broadly articulated

library of information regarding all fields of research, without being restricted by any

spatial or temporal factors or having to use hard drives that cost the user or the operator

a huge sum of money and require periodic maintenance, which proves to be a tedious

process [104]. While this is not inherent to the nature of blockchain, it is still worth

noting, and we will return to it in a moment. Our work builds on ideas of how smart tasks

can be performed more efficiently if the computation takes place where more resources

are available to do so.

2.3.2 Integration of Blockchain Technology with Cloud
Computing

The effective gains one can make by integrating blockchain technology with cloud com-

puting are confirmed in the literature, as this level of integration can easily enhance

the overall computational performance, obviate of all challenges related to data leak-

age, increase the processing power of operating blocks, and transfer an exponentially

increasing amount of data streaming from node to node [58].

As researchers highlight, once cloud computing is fused with blockchain technology,

the capability to protect the system and the data it contains against various threats

improves, since data manipulation is much more difficult to process when data is stored

in multiple blocks and kept safe at various different locations [113]. According to others,

using blockchain technology and cloud computing together is deemed inherently benefi-

cial in numerous professional and academic contexts, including the healthcare sector,

the educational sector such as e-learning, and logistics [33]. This is one of the questions

that the present research considers for its own context.

Some authors report conducting a study that indicates how safe and effective it is to

integrate blockchain technology applications with cloud computing. The study introduces

a new achievement in the context of blockchain technology, cloud computing, and IoT

called blockchain cloud internet-of-things (BCoT). This new technology provides a secure
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and consistent sharing and transferring of data on cloud IoT for many applications that

function in an array of services such as the healthcare system [117].

In addition to the aforementioned studies, we can read of a study that highlights the

significance of using cloud computing as a scaffold for blockchain technology applications,

especially in smart home settings, and this is attributed to how cloud computing allows

users to reach and use data from the cloud online, which maintains a steady flow of data

and enhances blockchain scalability and overall processing power [150]. This corroborates

the suitability of our approach.

2.4 Security Mechanisms Based on Blockchain

2.4.1 The CIA Triad

Based on what has been established, and to gain more insight into the interactions of

the CIA triad, all three principles are further and separately elaborated as follows:

Confidentiality: The confidentiality principle involves keeping users’ information
safe, including their professions, identities, and other related information. This occurs

through both the establishment of restrictions and the encryption of data related to the

critical details of their life and financial transactions [111].

Integrity: The integrity principle uses a distinctive security measure that involves a
security parameter through which it can detect the level of information accuracy, thus

providing authorization based on how accurate this information is. This also helps with

the maintenance of data consistency and offers the user, and nobody else, the ability to

fully control and regulate their information [72].

Availability: The availability principle is regularly seen as a double-edged sword.
At its core, it provides the ability to gain access to all kinds of information as the user

sees fit. However, this often comes with a high price to pay, as security professionals

are required to add more restrictions, strengthen the network, and offer more privacy

options for users to properly and safely secure the information that is being accessed

[123].

Both organizations and individuals who carry out their professional and daily tasks

online share and receive a huge amount of data flowing from different sources which

is stored on either cloud drives or traditional drives. With this in mind, researchers

have argued that a set of security principles must be promulgated to protect the privacy

of data users and maintain an optimally secure online environment [101]. One of the
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most significantly effective models used to ensure security and privacy for users is the

CIA triad, which comprises these principles of confidentiality, integrity, and availability.

Should any of these three principles be breached, users’ information becomes exposed to

a great deal of danger. However, the intensity of this danger might be:

• low and limited, with little to no effect

• medium, with noticeable critical damage

• high, which causes a hazardous impact for users with a severely damaging effect.

Therefore, blockchain technology should seek the full utilization of the CIA triad to

integrate its principles of confidentiality, integrity, and availability into its applications,

which can, in turn, provide access to a variety of privacy and security measures, such as

encryption, transparency, resilience, and auditing [164].

2.4.2 Access Control

In the context of IoT systems, access control has proved to be one of the most effec-

tive modalities for assuring users’ security and privacy. These users include individu-

als,institutions, and business organizations [22]. Access control boils down to a checkpoint

that either refuses or grants users access to a certain body of information. On the other

hand, blockchain technology can easily use access control to help establish a system that

is more decentralized and offers an architecture that is well able to overcome single-point

failures [135]. This flexibility is relevant to our approach.

Access control encompasses three main types known as trust-based access control

(TBAC for short), role-based access control (RBAC), and credential-based access control

or (CBAC) [40]. These are further elaborated as follows:

Trust-Based Access Control (TBAC): Normally speaking, TBAC methods always

use a number of trust parameters as a mechanism for gauging the amount of trust

granted by users, knowing how much data is restricted, and what type of information

can be either revealed or locked away [133].

Role-Based Access Control (RBAC): is an access control framework that offers a
mechanism that allows organizations to communicate different strands of data based on

each user’s role within each organization, and though it is not used in computer networks,

RBAC is still used in direct communication networks [34].

Credential-Based Access Control (CBAC):
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is an access control method that forces users who wish to gain access to certain

datasets to possess some sort of authority of credentials first, as a way of enhancing

privacy and security measures. Credential-based access control is further divided into

two types, attribute-based access control (ABAC) and capability-based access control

(CBAC) [162]. These are further explained as follows:

Attribute-Based Access Control (ABAC): researchers have concluded that ABAC
is an effective solution that helps mitigate the problems caused by other traditional

access control frameworks, due to its unique architecture that allows users to gain access

to datasets stored within the system based on their attributes, and not their roles or

security labels given to them by system administrators [143]. This is clearly beneficial in

creating an autonomous system that does not require any form of manual intervention.

Capability-Based Access Control (CBAC): is another access control framework,
which allows users to gain access to different datasets depending on the signature of

key figures and factors in charge of operating and influencing the system, such as the

copyright owner, service providers, and access periods. This could easily be effected by

generating and then verifying tokens to help users gain access to data [99].

2.5 Privacy-Preserving Techniques Based on
Blockchain

2.5.1 Privacy-Preservation Techniques

Blockchain technology applications face several challenges regarding the preservation

of users’ privacy due to the possible data leakage which may occur when the number

of nodes in a block progressively increases. Therefore, some of the following privacy-

preserving techniques can be implemented into blockchain technology to mitigate the

serious impact of these incidents. Researchers have listed the following main types of

privacy-preservation techniques [75, 122]:

• Encryption:This strategy is common in blockchain networks to secure transac-
tions and data transmissions. Each user in the blockchain network is allocated two

keys: a public key to use with other blockchain users and transmit messages to a

specific node, and a private key to decrypt read only messages. The encryption/de-

cryption approach protects messages and maintains the privacy of blockchain

transactions. Encryption-based privacy-preserving features do, however, increase
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the computation and communication demands on the IoT network. For instance,

nodes supported by encryption and decryption have high computation costs to

produce and deliver keys, which significantly increases computation demands. Fur-

thermore, encryption strategies can have loopholes in their mathematical formulas,

resulting in a compromised capacity to deliver total data privacy [146].

• Anonymization: This strategy to preserve IoT system privacy has been applied by

researchers in blockchain-based IoT applications such as electronic health records,

financial platforms, vehicle networks, and energy systems. Researchers have pro-

posed an increase in anonymization strategies including k-anonymity, t-closeness,

and l-diversity [75]. Although anonymization delivers robust privacy guarantees to

most blockchain-based IoT systems, they are prone to compromise, such as linking

attacks, where data from external sources is combined with protected anonymized

data to access IoT users’ private data [160]. Additionally, anonymization may limit

the extent to which details of records can be accessed, leaving the analyst/receiver

unable to access potentially necessary details from the anonymized dataset.

• Mixing: Coin-mixing protocols support user anonymity when engaging in financial
transactions using blockchain-based IoT systems. Traditional mixing methods are

not fully decentralized, meaning a trusted third-party server is often needed to

transmit transactions. These services generally take transactions from several

users and intermix them to protect the transaction identity from adversaries.

In ’mixing’ transactions, each blockchain user in the IoT system transmits an

encrypted new address to a third-party (the mixer) which is then decrypted and

shuffled among other addresses before being returned to the transmitter nodes

[112]. Current mixing strategies do not, however, utilise a third-party for mixing.

Researchers have developed coin-shuffle and mix-coin protocols to protect user

privacy during financial IoT blockchain transactions. Mixing approaches function

well in financial transactions, but the level of anonymity remains low and may

be compromised due to their vulnerability to interception and cyber attacks [32].

Furthermore, full privacy cannot be assured using mixing approaches because a

transaction may be traced via the analysis of transactional graphs.

• Differential Privacy: Differential privacy is a privacy-preservation technique

used to secure participants’ information and personal details when this sensitive

information is included within a statistical dataset, which in turn allows operators

and analysts to review all information needed for their work without revealing the
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participants’ personal details [53]. Differential privacy has solidified its significance

as one of the most renowned privacy-preservation techniques that guarantees

that users’ and participants’ personal details will be secured and protected from

being infringed upon or stolen. This happens in an environment where specific

relevant data could be statistically analysed for research purposes without having

to endanger the users’ sensitive data [85].

Researchers define differential privacy as "a precise mathematical constraint

meant to ensure the privacy of individual pieces of information in a database even

while queries are being answered about the aggregate" [35](p.43).

This indicates that differential privacy is nothing but a method for certain analysts

who use datasets to only view and edit the data that fits their research, without

reaching the participants’ personal data, through adding noise to these datasets.

This noise is made of randomized fragments of data to create false information

that has no meaning or relation to the original dataset, hence protecting the users’

vital and personal information.

The reason why differential privacy is the most suitable technique for blockchain

technology applications is that it only reveals information that is being used to

help specialists and users to carry out certain tasks, without jeopardizing any of

their critical information or undermining the privacy of their networks. This allows

blockchain technology applications and systems to function in a more effective

manner and eliminates the negative impact of any privacy issues that might be

related to these applications [76].

2.5.2 Privacy-Preserving through Differential Privacy

Blockchain is a ground-breaking technology that has revolutionised digital trading and

data storage. The decentralized design of blockchain is regarded as next-generation data

storage security. Nonetheless, blockchain still has issues that require solutions before

it can be implemented in everyday scenarios. One significant issue requiring attention

is data preservation and transaction privacy in blockchain applications. Each user in a

decentralized blockchain network is identified by their public key, meaning they cannot

retain full privacy or anonymity. Hence, an adversary may present themselves as a

third-party to analyse transactions in the network and subsequently work out the users’

identities [76]. We attempt to tackle this issue, achieving good results.
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The dynamism of differential privacy means it is suitable for use in blockchain

scenarios. For instance, point-wise data perturbation differential privacy techniques

can introduce noise into the data without disrupting accuracy levels in real-time and

broadcast it using blockchain applications [54]. The mechanisms used in point-wise data

perturbation first calculate error rates and then calculate the noise value based on the

error rate. Noise is then added based on the calculated value to support privacy protec-

tion. The noise value recorded is differentially private, thus leaving potential observer

adversaries unable to accurately determine the actual value or existence /absence of

users within the decentralized database.

Prior to the analysis of statistics from blockchain databases by a third-party, it is pos-

sible to provide user protection through the application of differential privacy. Specifically,

differential privacy renders aspects of the statistical blockchain data indistinguishable.

As a result, the analyst is unable to predict with any confidence the availability of partic-

ular blockchain nodes in the dataset. Differential privacy can therefore provide privacy

controls for important data, meaning its application in blockchains can provide many

positive privacy outcomes. It is thus not surprising that blockchain with differential

privacy has been widely investigated across several fields including healthcare [30, 166],

crowdsensing [48], cloud computing [60, 176], smart grids [59, 141], and data publishing

[9, 42]. However, the application of differential privacy in smart home applications still

needs research, an omission which we feel able to tackle.

2.6 Threats and Attacks

2.6.1 Denial-of-Service Attack (DoS) Attack

A denial-of-service Attack (DoS) attack is one of the most well-known forms of attack

within the cyber realm. It simply revolves around the idea of altering the normal char-

acteristics of a specific set of functions carried out by system users, rendering them

unavailable and completely malfunctional, so that the user is no longer able to use the

services or functions of this system [132]. Fig. 2.3 shows the structure of a regular DoS

attack.

Thus, it could be noted that attackers who tend to rely on DoS attacks as their

weapon of choice always seem to follow a specific and organized trajectory, which includes

sending artificially and maliciously created fake messages to the server, causing the

whole system to be brought to a halt, and cutting any form of communication between
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Figure 2.3: Structure of a regular DoS attack

the server and the user [100].

2.6.2 Modification Attacks

Modification attacks function through a specific technique where the attacker tends to

alter, add, or eliminate data in the victim’s dataset. Data can also be mixed, a process

called tampering. This attack also includes another commonly used technique that

involves the injection of false and incorrect data, in a process known as fuzzing, which

allows the attacker to freely falsify information while staying under the radar of detection

the whole time. Attackers normally do this by disguising a machine program to roam

into the dataset [167]. Authors also highlight that the main objective of any modification

attack is to take advantage of any form of communication that takes place between the

attacker and the victim, to win the privilege to alter data packets [70]. Our work deals

with this issue by means of an appropriate access control.

2.6.3 Linking Attacks

Linking attacks are quite unique in that they do not require any programming skills

or heavy-duty coding. All the attacker needs to do to perform this attack is to gather

fragments of data related to an anonymous user to link them into one body of information,

which no longer keeps the user anonymous. It is simply a matter of searching for the

data and linking it all together [47].

Accordingly, this relates to data that is normally published online to the public.

However, the same data might be scattered all over the internet, or in different datasets.
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Therefore, it will take attackers considerable effort to link this data so that they can

eventually form a unified picture of sensitive information about users [158].

2.6.4 Inference Attacks

The purpose of launching an inference attack is to gather useful information about

system users. This information is usually not revealed by the users themselves. However,

they might add fragments of their personal details to different systems. For example,

an inference attack involves obtaining data on the user’s activities relating to his/her

daily routine and habits. This data, while it seems trivial, is highly beneficial for the

attacker, to figure out other important details such as room temperature data that could

be hacked and altered [147]. We consider air conditioning in the smart home context,

therefore the recording of temperature data is obviously relevant. The exact condition of

the home, and how the occupier wants it to be, enables an attacker to draw inferences

about where the occupier is.

Therefore, researchers have indicated that inference attacks are mainly based on the

practices and techniques of data mining, so that the attacker can obtain and fully reveal

valuable information about the victim, using bits and pieces of other trivial information

that might not otherwise prove monumentally critical for the user [161].

2.7 Summary

Based on the above review, which has surveyed an extensive body of work conducted

by a number of experts whose works’ core ideas were extracted by the researcher, we

obtain a thorough and cohesive comprehension of fortifying smart home systems with

a decentralized blockchain-based architecture that uses certain privacy-preservation

techniques to protect residents from possible threats and attacks that seek to reveal and

compromise their personal information.

The researcher realizes that even the most effective sets of architecture in the field

of home networking might cause the smart home master system to be vulnerable to

data leakage, data overflow, or even identity theft. The stolen data might be used and

tampered with to blackmail the resident, or simply to render one or more of their smart

devices or household items ineffective.

Creating smart home models programmed via centralized architecture systems

defeats the purpose, as these architecture systems can be swiftly taken down and
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manipulated.

Blockchain technology applications, on the other hand, are more effective than other

systems, providing more privacy and security options for smart home residents and

users, thanks to their decentralized architecture and resilient characteristics, which

allow them to have other security and privacy-preservation techniques integrated into

their coding scheme to produce a much more powerful system that detects, withstands,

and even eliminates possible threats and attacks.

One should be mindful of the fact that blockchain technology applications and so-

lutions might have some technical difficulties and malfunctions while operating smart

homes, such as scalability, a poor ability to handle increased number of nodes or amounts

of data, and decreased processing power when the amount of data increases. Blockchain

technology applications and solutions also happen to be slightly more time-consuming

and require specialized skills and knowledge.

These issues can easily be overcome by integrating these applications and solutions

with cloud computing technology that utilizes the aforementioned privacy-preservation

techniques such as differential privacy, where data can be stored in the cloud over the

internet, which decreases data overload and helps the blockchain to process the flowing

streams of data at a consistently steady level.

38



C
H
A
P
T
E
R

3
ETHEREUM-BASED SMART HOME ARCHITECTURE

This chapter is organized as follows: Section 3.2 presents the existing work on blockchain,

Section 3.2.1 summarizes traditional smart home architecture, and Section 3.2.2 briefly

explains the security functions in blockchain. We develop a prototype implementation

of a few smart home components with the help of IoT devices and we demonstrate our

scheme in Section 3.3. Prototype evaluation is discussed in Section 3.4. Finally, Section

3.5 summarizes the chapter.

3.1 Introduction

In the modern world, Internet of Things (IoT) devices such as sensors and actuators are

considered valuable resources for data. This data, which is collected by "things", repre-

sents private personal and organizational information and raises privacy, security, and

ethical challenges. To overcome the potential issues, well defined and flexible protection

mechanisms are required. Many security and privacy approaches have been examined in

the IoT environment but tend to be inapplicable and may present limitations because

of the nature of decentralized topology and the resource constraints of common devices

[45]. Therefore, one proposed solution is to use blockchain-based approaches, which could

provide decentralized, secure peer-to-peer networks. Blockchain allows non-trusting

members to interact with each other without a trusted intermediate party and without

the need for one to give the other write-access. The integration of blockchain- based

approaches with IoT devices can produce distributed and trustworthy access control for
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IoT [62].

An extensive body of research has been published recently using blockchain as a

solution for IoT-based applications, the majority of which only offer proof of concept

with possible scenarios. In [118], the authors introduce fair access as a fully decentral-

ized authorization management framework which satisfies the user requirements of

controlling and mastering their own privacy. The UTXO model of blockchain was used

as a database or policy retrieval point where all access control policies are stored as

transactions. Authorization tokens are defined as digital signatures that represent the

access rights for specific resource. However, the main limitation of their model is the

long-time conformation needed, which is not appropriate for applications requiring high

integrity.

To increase the security and privacy of smart home architecture, a lightweight

blockchain-based architecture is suggested in [44]. The authors adopt a hybrid approach

consisting of three tiers: smart home, overlay network, and cloud storage. IoT devices in

the smart home gain the advantages of a private Immutable Ledger (IL), working in a

fashion similar to blockchain but managed centrally to reduce the processing overhead.

Also, a public blockchain involves higher resource devices joined together to create

a distributed trust overlay, which is employed to decrease the process and overhead

in the validation of a new block. Different entities communicate in different tiers by

transactions which are then grouped into blocks.

In [74], blockchain has been used as database storage. The authors propose a dis-

tributed, decentralized publication-subscription-based mechanism that is based on

blockchain technology and capabilities, access lists, and access rights control policies. In

a user-centric system, different roles can interact and communicate securely in a more

private way using scalable messaging services based on a publish-subscribe model and

data management protocol stored in blockchain.

In this chapter, the use of blockchain infrastructure is proposed to secure smart

home transactions and smart home IoT devices are configured using private Ethereum

blockchain. Smart contracts are built to specify the behaviours of IoT devices on the

network. As a proof of concept, Raspberry Pis were used to simulate IoT devices in one

smart home scenario.

3.1.1 Traditional Smart Home Architecture

The concept of a smart home involves the integration of a system and smart devices

into the human environment to make people’s everyday lives easier. A smart home has
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an extensive range of solutions such as meters, sensors, and micro-systems that have

been built based on a range of technologies, standards, and devices. These solutions can

be used to report the required information about the environment on a daily basis. For

example, smart devices in a smart home can provide information on the temperature

level or energy consumption [21].

Traditional smart homes, as shown in Fig. 3.1, are based on a centralized architecture

where home devices are connected to an intermediate hub which provides direct internet

connectivity. The communication between these devices and the hub is wireless, using

different protocols such as Zigbee or Z-wave. Then, the hub is connected to the home’s

router to connect the devices to the outside world [62].

Figure 3.1: Architecture of a traditional smart home [62]

Integration between all the devices results in increased security and privacy issues

in the smart home environment [19]. Research and previous work have been performed

to identify and understand the potential threats and existing techniques that have been

adapted for the smart home environment. For example, [151] proposed a network-centric

approach which monitors network activities to detect suspicious behaviour and the use

of software defined networking (SDN) technology in the context of the smart house to

dynamically block devices based on their network activities. The work in [12] describes

a practical traffic-shaping method that effectively protect smart home privacy from a

passive network adversary without significantly increasing data cost or reducing net-

work performance. The work in [169] applies a new lightweight encryption/decryption ID

authentication method among sensor nodes using a dynamic variable cipher security cer-

41



CHAPTER 3. ETHEREUM-BASED SMART HOME ARCHITECTURE

tificate. However, traditional security approaches are mostly centralized and expensive.

Energy consumption and processing overheads are high and there is also a difficulty of

scale. Therefore, smart home devices demand a scalable and decentralized approach to

overcome this challenge [45].

3.1.2 Security and Blockchain

Any security design should address the CIA triad: confidentiality, integrity, and availabil-

ity functions associated with data and systems. Confidentiality prevents unauthorized

users from accessing private data while ensuring it is received only by the correct users.

Integrity maintains the consistency and accuracy of the data by making sure the trans-

mitted data is received unaltered. Availability guarantees access to the data when users

need it [45]. In blockchain, confidentiality can be addressed by the use of a pair of private

and public keys which every node has to own. The sender node uses the private key to

sign a digital signature and broadcast the transaction throughout the whole network.

The receiver node validates the transaction using the sender node public key. In this

way, only valid transactions are stored and added to the blockchain [16]. Although it has

been argued that confidentiality and privacy in blockchain are hard to achieve due to

the visibility of all the transaction content to every node on the network, many methods

have been proposed to tackle this issue [31]. Zero-knowledge proofs and homomorphic

encryption are two different methods which have been discussed in the literature [83, 90].

In addition, to ensure data integrity, several cryptographic tools and appropriate

data replication strategies are used [57]. In a blockchain-based architecture, the full

replications of blockchains exist on a large number of nodes, where all nodes have the

same copy of the blocks. Moreover, many cryptographic techniques are used in blockchain

including the hash function, digital signatures, and the Merkle tree. A series of SHA-256

hashing functions conduct the mining process to write new transactions, timestamp

them, and add them to a block. When a block becomes part of the chain, all miners

have to validate and agree on its contents. Hence, it is practically impossible to reverse

a transaction because of the one-way nature of the hashing function and the huge

computing power that is needed to tamper with the blockchain. The elliptic curve digital

signature algorithm (ECDSA) is used in blockchain to generate a digital signature to

ensure that all transactions are conducted only by the rightful node. Also, blockchain

uses a Merkle tree structure which allows the secure verification of the contents of large

data by sending only the hash of the data: the receiver node checks the hash against

the root of the Merkle tree. Any change in any transaction at the bottom will result in a
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change in the hash of the node above and so on up to the root of the tree, which means

the hash of the block will be different and will become an invalid block [159].

With regard to availability, blockchain is a fully decentralized architecture which

ensures that there is no single point of failure and data is distributed over multiple

nodes. Each node in the network has a copy of all transaction history which can be

verified and traced back to the first transaction. This results in distributed and fault

tolerant architecture [159, 175]. It is assumed in [4] that the blockchain infrastructure

is much more resilient to availability threats such as impersonations or DoS than other

IoT centralized architecture.

Therefore, the cryptographic hashing in blockchain and its consensus protocol, which

verifies whether or not the hash matches its block, make blockchain theoretically tamper-

proof. The hash requires a great deal of computing time and energy to generate and

serves as proof of work to ensure that each node undertakes computational work to add

a new block to the chain without altering the content of the block. Also, hashes link each

block with the previous block’s unique hash. So, any change in one block will require the

calculation of a new hash for that block and also for every subsequent block or else the

block will conflict with existing blocks and other nodes will reject the alteration. This is

what makes blockchain immutable.

3.2 Proposed work

Compared to other blockchain technologies, the Ethereum proposed by Vatalik Buterin

in 2013, is a publicly distributed blockchain technology executed by Ethereum Virtual

Machine (EVM) [80] which allows users to create their own programs with the desired

complexity using a smart contract. This characteristic allows Ethereum to be used by

different decentralized applications, not limited to cryptocurrencies. It is suited for

applications that require automatic interaction between peers on the network [25, 171].

At its simplest, the transaction time for Ethereum is 12 seconds compared to Bitcoin

which has a block time of 10 minutes, given that it is used for a wide variety of appli-

cations. Recently, many organizations and industries have tried to build their own use

cases for Ethereum [80].
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3.2.1 Ethereum-based Smart Home Architecture

In the smart home scenario, smart devices may communicate with each other directly to

request data to offer certain services. For example, a smart air conditioner (AC) requests

the present room temperature from the temperature sensor in order to turn on the

AC automatically when the temperature goes up to a certain value or turn the heater

on if the temperature falls below a certain value. Both devices can also send alerts or

notifications to the user about their state.

We may begin by considering current smart solutions and looking at how they function

via conventional methods as shown in Figure Fig. 3.2 If one wishes to remotely control a

smart air conditioner, then one would usually require a (hopefully) secure web service

which allows access only after one enters the login and password. It is then possible to

send a command, and the web service will instruct the hardware to activate or deactivate

the AC.

Figure 3.2: Traditional way to control a connected smart device

The issue here is that the web services provide what is termed "write access". The

instructions sent are translated into hardware instructions by the web service and then

executed by the attached device, in this case the AC. By definition, it is not secure to

allow write access. No web service is impenetrable. Granting access to a device from "the

outside" always raises the possibility that someone will be able to hack this access for

ulterior ends. This vulnerability is a consequence of a single point of failure, the point at

which the authentication is verified and where incoming instructions are accepted.
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Therefore, we propose a prototype built on blockchain and using the smart contract

to controls the permissions for changing the (AC) state.

The architecture of our proposed prototype is based on Ethereum smart contract and

consists of a smart home miner connected to private blockchain, temperature sensor, and

air conditioner (AC). We use Raspberry Pi to simulate IoT devices. . Fig. 3.3 shows the

experimental prototype for smart home IoT devices and shows the interaction between

the devices through monitor transactions and access transactions.

Figure 3.3: Experimental prototype

3.2.2 Smart Contract Creation process

For our experiment, we create two smart contracts. The first is the monitor contract to

check the temperature sensor reading deployed in the first Raspberry Pi. The second

smart contract is deployed in the second Raspberry Pi’s access contract, which allows the

AC to request a temperature reading value from the monitor contract.

Monitor Contract. This contract allows the homeowner to check the current value
of the temperature. Only the owner can set and change the temperature value, by

specifying the address of the owner who has the permissions to set the value in the

contract body. The contract can send alerts to the owner at certain times to show the

current room temperature.

Access Contract. This contract can request temperature reading values by calling
the value from the monitor contract. Then, based on the value, the contract will either

turn the A/C on or turn it off, and send notifications to the owner about its current state.
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3.2.2.1 Hardware and Software

We build a case using one laptop (Dell XPS) and two single-board computer (Raspberry Pi

3 model B). On each device, we install a geth client (command line interface implementing

in Go-Ethereum) transfer devices to Ethereum nodes [170]. For each node, we create

an Ethereum account and configure these nodes to form a private blockchain network,

where the laptop plays the role of two miners because it’s large computing and storage

capability. The Raspberry Pi functions as a lightweight Ethereum node to deploy the

monitor contract and access contract.

For the writing and compiling of our contracts we used the Remix integrated develop-

ment (IDE) [134].This is a browser- based IDE for Solidity, which is the language used

to write smart contracts. For deploying and compiling the contract and also monitoring

the contract state, Web3.js (Ethereum JavaScript API) is adapted to interact with the

corresponding geth client through an HTTP connection [125]. A simple HTML web page

is built to facilitate the interaction between the homeowner and the devices.

3.2.2.2 Implementation

Based on the guidelines discussed in the Ethereum white paper [28], we next configured

our private blockchain with some modifications:

1. A compatible version of the Ethereum client for each device is chosen for download

and installation.

2. Windows power shell is used to start geth by executing "geth" command..

3. In our private blockchain, each node has to fulfil the requirements to be able to

join the same blockchain; these requirements include:

a) the same genesis file (Test.json) has to be initialized by every node. The ini-

tialization creates the genesis block, which is the first block of the blockchain

and does not refer to any block.

b) the same network ID has to be used by each node to connect to the same

blockchain. Any ID can be assigned except 1, 2, and 3 since they are reserved

for the main chain. For our configuration we assign network id 4224 as follow:

{

"config": {

"chainId": 4224,
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"homesteadBlock": 1,

"eip150Block": 2,

"eip150Hash": "0x0000000000000000000000000000000000000",

"eip155Block": 3,

"eip158Block": 3,

"byzantiumBlock": 4,

"ethash": {}

},

"nonce": "0x0",

"timestamp": "0x5b41b451",

"extraData": "0x00000000000000000000000000000000000000000",

"gasLimit": "0x47b760",

"difficulty": "0x80000",

"mixHash": "0x0000000000000000000000000000000000000000000",

"coinbase": "0x0000000000000000000000000000000000000000",

"alloc": {

"0000000000000000000000000000000000000000": {

"balance": "0x1"

},

"0000000000000000000000000000000000000001": {

"balance": "0x1"

}

},

"number": "0x0",

"gasUsed": "0x0",

"parentHash": "0x00000000000000000000000000000000000000000"

}

4. to initialize our private blockchain, the following geth command is executed

geth \ - datadir / user/Amjad/Test/miner1 init Test.json

5. Then we create an account for each node where every account has a private and

public key and is indexed by its address, which is derived from the last 20 bytes of

the public key.

geth -datadir / user/Amjad/Test/miner1 account new
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6. To start geth on each node, the following command is executed, which includes

different flags for different functionalities. For more information on each flag, refer

to the Ethereum white paper [28].

geth --networkid 4224 --mine --minerthreads 2 --datadir "." --nodiscover

--rpc --rpcport "8543" --port "30304" --ipcdisable --rpccorsdomain "*"

--nat "any"--rpcapi admin,eth,web3,personal,net

--unlock 0 --password ./password.sec

7. Due to the limited number of nodes used in our framework, there is no need to use

discovery mechanism to pair nodes. Static-nodes.json file is used to pair the nodes.

We obtained the enode ID using the following command.

>admin.addPeer("enode://5f1d23c79a9bd7505469ed524047d276ad3a5964db76

3ae4e5c13a53326b9f492e7a02367f8e5c350a960e08bed1604e6860262b9013cf7c

0c70aad9f91c1094\$@[::]:30303?discport=0")

8. The last step is repeated to add the two Raspberry Pis as nodes to give a private

blockchain with fully synchronized nodes.

3.2.2.3 Smart Contract Development and Deployment

A remix browser is utilized. For the monitoring contract, two main functions are defined:

setValue() and getValue(). Only the homeowner can set the temperature value, so a

modifier is used to restrict the use of a set function to the address of the homeowner. Any

other nodes can request the temperature value by calling the get function, which will

return the temperature value.

pragma solidity ^0.4.18;

contract Test {

string public Sensor;

address owner;

function Test() public{

owner = msg.sender;}

modifier onlyOwner{

require(msg.sender == owner);

_;
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}

event Value(string sensor);

function setValue(string _Sensor) onlyOwner public {

Sensor = _Sensor;

Value(_Sensor); }

function getValue() public constant returns (string){

return(Sensor); }

}

The access contract is developed to allow any node to read the current temperature value.

It has only one function, which calls the getValue() function from the monitor contract

based on its address. Therefore, it impossible to alter the value because it will only be

read from the specific address of the monitor contract.

pragma solidity ^0.4.18;

contract Access {

function getSensorValue(address addr) returns (string){

Test T = Test(addr);

return T.getValue(); }

}

contract Test {

function getValue()returns(string);

}

Finally, a simple HTML user interface (UI) is built to interact with the smart contract

using web3.js. The first UI consists retrieves the temperature value from the getValue()

function, and forms one input field for the value which will be set via jQuery from the

input text field.

In the head tag, the Web3.js library is imported to connect to our private blockchain

nodes. Then, in the script tag the code is written to work with the smart contract. The

web provider is set to our localhost 8543. The web3.eth.contract() method is used to

create the contract, accepting the Application Binary Interface (ABI) parameter, which

allows us to call functions and receive data from our smart contract. The ABI is copied

from the Remix browser where our smart contract is written. Then, the actual contract

address is defined based on the associated contract address in Remix.

The second UI is built to simulate the AC state. It retrieves the current temperature

from the access contract that calls the getValue() from the monitor contract. Every 5
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seconds, the temperature reading is updated by calling the new temperature value.

Based on the value, a notification will be sent about the current temperature and the AC

state (on/off).

3.3 Prototype evaluation

3.3.1 Snapshot Examples for the UI

1. The monitor contract shows the current value and the minimum to allow the

homeowner to set the value. Once the Update Temperature value button is hit, the

miner as shown on the left side receives the transaction and commences mining as

Fig. 3.4 shows.

Figure 3.4: Owner sets a new value for the temperature
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2. Once the transaction is mined, an alert appears as shown in Fig. 3.5 to show the

temperature value has been changed and that there is a new temperature reading.

3. Access contract UI, as shown in Fig. 3.6, shows the different present room tempera-

tures and the AC state. It is updated every 5 seconds. Three different notifications

are set, based on the temperature reading. If the temperature reading is more than

30◦C (Fig. 3.6.a), the AC will turn on. If it is less than 20◦C, the AC will be turned

on in heater mode, (Fig. 3.6.c). Otherwise, the temperature will be normal and the

AC will be set to off (Fig. 3.6.b).
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Figure 3.5: New temperature alert

(a) Room temperature is more than 30 (b) Room temperature is normal

(c) Room temperature is less than 20

Figure 3.6: Current room temperature

3.3.2 Security evaluation

Table 3.1 summarizes how our framework achieves the security requirements discussed

in Section 3.2.2. Our framework relies on the Ethereum blockchain. Validated trans-

actions are taken to be tamper-free and it is assumed the user keeps his private key

securely. Therefore, only the home owner has control over the blockchain data. The
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Table 3.1: Security evaluation achievements

Requirement Defense

Confidentiality The use of a pair of private and public keys

Integrity Hash function, Curve Digital Signature Algorithm, and Merkle tree

Availability Only validated transactions by the miner are accepted

signed digital transaction and the decentralized nature of the blockchain guarantee that

attackers cannot access the network or impersonate a real user. Attackers have to gain

control over the majority of the network resources or fake the owner’s digital signature

to control the nodes. In addition, the miner in the framework accepts transactions only

from those nodes that have been given both a private and a public key when they are

added to the private network.

Blockchains such as Ethereum typically require a set number of "confirmations"

from other nodes. This makes sure that the transaction has been mined and correctly

embedded into the blockchain, creating multiple third-party "witnesses" to ensure the

transaction’s authenticity. Even if a hacker somehow hijacks a single node or intercepts

instructions, it will prove impossible to hijack all of these simultaneously and trick the

network into believing that the device is off when it should be on.

Due to the smart contract acting as the vehicle for the command, and doing so only

after multiple third party confirmations, the AC being controlled in this example no

longer requires any external accessibility, it can be a read-only node with only outbound

connection and that syncs with other blockchain nodes. Security is achieved by proven

cryptographic methods, whereby the private key makes it possible to create an unforge-

able signature, one which can then be verified as genuine by any third party without

any need for access to the private key. Thus, blockchain is in effect a secure database

joined with a range of programming options, called smart contracts. A smart contract is

simply an uncomplicated computer program. These computer programs can be set up

to only trust instructions from an authorized node. This node authenticates them self

by a signature from their private key, something which can be kept completely secret.

Thus, sending instructions to the blockchain cannot compromise security. There is at

present no proven way for an attacker to interfere with a message being sent to the smart

contract, as against a client-server system with a central database and a multitude of

security layers, all necessary to fend off attackers.

One additional security benefit is the separation of writing and reading from the
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hardware switch. An old-fashioned client-server system must always protect its database

using layers of security, it is where all the important information sits. A blockchain, on

the contrary, spreads its information around a network. In a client-server system one can

attack a single node to alter a system’s state. To affect the same in a blockchain system,

it would be necessary to attack and subvert each and every node, practical impossibility.

Thus, IoT home devices are protected from malicious requests and DDOS attacks. In

fact, DDOS attacks are one of the critical types of attack that are generally relevant for

smart homes [45], a point which is effectively addressed by our framework.

3.4 Summary

In this chapter, our objective has been to offer an implementation of secure smart home

transactions using Ethereum smart contracts. Each IoT device in a smart home is

assigned a private and public key by the miner to ensure data integrity. Each transaction

is validated by the miner and only valid transactions with a valid address are mined. This

increases smart home availability by limiting the accepted transaction and eliminating

the risk of DDOS attacks.

The analysis offered in this chapter is valuable in tackling the first research question

of this thesis, by presenting a prototype implementation whereby, Ethereum smart

contracts is being used to secure access to smart home devices. This demonstrates

the benefits of using a blockchain-based scheme and the relevance of blockchain in

data security. In the course of the development of our prototype, the main weakness

of Ethereum blockchain encountered was its inability to perform in real time. The

transaction time was around 12 second which is high if an immediate response is

necessary. Furthermore, the resource constraints of IoT devices are a key challenge when

they are integrated with blockchain technology. A large amount of storage is required

to record the entire blockchain. Therefore, in order to address this research challenge

addressing scalabilty, Chapter-4 presents the integration between blockchain and edge

computing.
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4
ATTRIBUTE-BASED ACCESS CONTROL AND SMART

CONTRACTS

This chapter is organized as follows: Section 4.2 presents the research background.

Section 4.2.1 summarizes the access control scheme; Section 4.2.2 introduces the ERC-20

Token and Section 4.2.3 briefly explains edge computing. In Section 4.3, we review the

previous works on blockchain. We propose attribute-based access control and demonstrate

our scheme in Section 4.4. The architecture is validated, and an analysis of the results is

presented in Section 4.5. Finally, Section 4.6 summarizes the chapter.

4.1 Introduction

Constructing a residence with an integrated Internet of Things (IoT) network provides

homeowners with outcomes such as increased comfort, security, and quality of life. A

smart home network is underpinned by the IoT infrastructure, which connects hetero-

geneous smart devices (e.g. smartphones, smart meters, wearable devices, etc.). Smart

home systems can both enable and enhance people’s ability to live independently. They

include a suite of invaluable technologies including those to monitor and assess health (a

point that we mention only in passing, though we will allude to it briefly below), thus

making them attractive to users and device designers. Not surprisingly, it is predicted

that by 2022 the value of the global smart home market will exceed $53 billion. This

prediction is based on an almost 21 percent annual rate of growth forecast for the market
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from 2018 to 2022. Although the benefits of smart homes to homeowners and stakehold-

ers are well documented, several risks must also be considered, including cyber-attacks

and threats to the data security and privacy of users [110].

Traditional approaches to the resolution of such risks rely on centralised frameworks

which are susceptible to cyberattacks. Hence, the access control function is important for

preventing access to unauthorised users via explicit or implied specifications and only

permitting access to resources for authorised parties. Access controls have traditionally

been supported by a centralised system which is relatively simple to manage [116]. This

means that a central server is used to process all access controls: namely, assigning access

rights, managing access (e.g., updates, revocations), and access verifications. However,

there are risks around the server being the point of failure due to ’natural’ (functional)

or external (cyberattack) forces and potentially compromising the access control system.

Furthermore, the large scale and distributed nature of IoT systems means there are

difficulties related to controlling requests by centralised schemes to access the desired

resource [116].

Distributed access control networks can counter some of the aforementioned limita-

tions of centralised networks. These networks perform the processes related to access

control using multiple nodes rather than a single server. The nodes ’agree’ on the rights

to be assigned, the policies to provide access and the verification results to provide solid

and reliable access controls that can resist malicious attacks. As a result, there is growing

interest in utilising emergent blockchain technology for distributed and reliable access

control.

The emergence of distributed and tamper-resistant ledger-based blockchain tech-

niques to protect data has opened up new possibilities for smart home data privacy,

security, and integrity challenges. Blockchain is made up of a digital ledger that records

and shares transaction information in the network. Each user has access to secure

cryptographic public and private keys to interact with the system. One user can initiate

the transaction with his keys, and the other users in the network can accept it with their

own keys. Once the nodes agree that the originating user possesses the data he claims,

the transaction is accepted; else, it is rejected [184].

Blockchain technology achieves strong performance across a range of smart home

applications including control over access to the home, data sharing, and so forth. The

implementation of blockchain in smart home networks is also justified on the basis that it

exists independently of the current heterogeneous protocols often applied in smart homes

(e.g., Z-Wave, Zigbee, Bluetooth and Thread)[103]. Nonetheless, due to the high level of
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resources consumed during the mining and consensus procedures and the limitations of

the node resources in smart home devices, it is challenging to use blockchain directly in

a smart home.

Blockchain works as the backbone of the proposed architecture. The end user accesses

the device as a node of the blockchain. The access control functions mentioned in the

smart contracts are used to authenticate the nodes. All of these constitute parts of our

blockchain. The level of security support through the implementation of blockchain is

presented in Chapter 3 of the thesis.

Edge computing offers an alternative and complementary method for managing PoW

puzzles and supporting the blockchain applications in a smart home. Edge computing

takes place at the network extremes (edges) by extending the distribution of cloud-based

resources and services. It supports a multi-access system for users to access cloud-like

services for enhanced computing, applications, and storage. Resource-constrained smart

home appliances can consequently increase their computing capabilities by farming

out the mining and storage jobs to edge servers. The incorporation of blockchain and

edge computing sets up a decentralised system for computation outsourcing and storage

security related to scalable and safety-proof operations [178].

To address the concerns discussed above and motivated by the advantages of in-

tegrated blockchain technology and edge computing, we present a novel lightweight

Ethereum blockchain-based multi-tier edge-smart home architecture. This moves beyond

and improves upon the prototype presented in the previous chapter, using the integration

of edge computing to solve storage issues and those around access control to provide

an extra level of authentication. In our framework, every single home has multiple

edge servers as local blockchain miners and the smart contracts are used to enforce the

rules and policies in an automated manner to regulate the smart home’s IoT devices

based on the Attribute Based Access ABAC. In particular, we present an architecture

involving authentication rules and logic based on Ethereum smart contract integrated

edge computing.

• We propose ERC-20 token generation and an attribute-based access control mecha-

nism that utilizes Ethereum smart contracts integrated with edge computing(servers)

to authenticate user access to IoT smart home devices. The access tokens are issued

by the smart contracts with no intermediary or trusted third party.

• We portray the overall system details including the design architecture, workflow

scenario, and interactions among entities with the smart contracts including the
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attribute access control scheme designed to provide protection from illegal data

access in a smart home system.

• We include the complete design of the Ethereum smart contract including the

implementation and the testing scenarios.

• We discuss the performance evaluation of the proposed scheme and compare this

with existing models with respect to various performance metrics.

• We provide security analysis of our proposed authentication scheme and we exam-

ine how the scheme achieves security goals (confidentiality, integrity, and availabil-

ity), and is able to overcome modification and DoS attacks.

4.2 Chapter Background

This section provides the background information needed to understand the proposed

framework. It discusses the key concepts, access control, ERC 20 tokens and edge

computing which sets the stage for the rest of this chapter.

4.2.1 Access control scheme

Access control systems are usually based on access control lists (ACLs), which provide

users’ access permissions. When there is an increase in the number of users seeking

resources, ACLs become more difficult to govern. As a solution to this limitation of ACL

systems, designers have created role-based access control (RBAC) systems, [9] which

add an intermediate layer to the process of distributing role permissions rather than

giving them directly to users and then assigning them their roles. This strategy can

considerably reduce the time and effort required to monitor access control rules. This

is true even when the number of subject roles and resources are increased, or when

the system contains many administrative fields. ABAC systems attempt to address the

issues associated with an increase in the number of roles by allowing users to apply the

subject’s attributes directly, as well as the resource and environmental properties. This

can be done to describe the access policies and, as a result, reduce the number of rules or

rule updates. On the other hand, ABAC still needs to access a consistent description of

the field attribute and the definition of attributes across many fields [71].

Research has demonstrated the applicability of attribute-based encryption to share

audit-log information and broadcast encryption [66]. In this scenario, the data are stored
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on the server in an encrypted form while different users are still allowed to decrypt

different pieces of data according to their security policy. This effectively eliminates

the need to rely on the storage server to prevent unauthorized data access. Moreover,

others have published a guide to attribute access control with a definition of ABAC

and 149 descriptions of the functional components of ABAC [79]. Also, the guide pro-

vides planning, design, implementation, and operational considerations for employing

ABAC within a large enterprise with the goals of improving information sharing while

maintaining control of that information. Furthermore, attribute-based access control

has been used in blockchain architecture. Authors have presented a new digital asset

management platform, called DAM-Chain, with transaction-based access control (TBAC)

which integrates the distribution ABAC model and blockchain technology [186]. They

take transactions as a bridge to integrate ABAC and blockchain into a new platform

for resource distribution and sharing. They claim that their proposed platform supports

flexible and diverse permission management as well as a verifiable and transparent

access authorization process in blockchain-based architecture.

Others propose a distributed ABAC system based on blockchain to enable the trusted

auditing of access attempts [138]. In addition to auditability, this system presents a

level of transparency that both access requesters and resource owners can benefit from.

They present a system architecture with an implementation based on Hyperledger

Fabric, achieving high efficiency and low computational overhead. They have validated

their solution through a decentralized access control management application in digital

libraries.

This chapter examines attribute-based access control in particular because it is

deemed to be an appropriate decentralised model for an IoT setup and provides scalabil-

ity, flexibility, and strong dynamics. Our access control scheme is different from other

reported work, in which the authors used three types of access control procedures; device-

to-device (D2D) access control, device-to-user (D2U) access control, and device-to-fog

server (D2FS) access control to authenticate users in the Internet of Everything (IoE)

[20]. Our access control is based on different policies which combine a set of subjects

(users), a set of objects (IoT devices), and a set of actions to state that such and such

user can perform a given action in the IoT device. The policy is invoked whenever there

is an access request from any user or device in the network using the smart contract.

Moreover, we integrate the token mechanism to further finalize permissions to access the

IoT devices. The smart contract checks the policies and then tracks the token amount to

’who owns’ a particular token and ’how much’ of it to access a certain IoT device.
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4.2.2 ERC-20 Token

ERC-20 stands for Ethereum Request for Comments, and the number 20 serves as a

unique identifier to differentiate it from the other standards. It is a protocol that defines

a set of standards and rules for token issues on the Ethereum network and is used

to create blueprints for smart contracts based on Ethereum. As a technical standard,

ERC-20 has become one of the most important and widely used tokens for all smart

contracts on the Ethereum blockchain [26]. ERC-20 defines a set of six functionalities

within the Ethereum system for the benefit of other tokens.

1. totalSupply (): to figure out how many tokens have been created and exist in the

system.

2. balanceOf (address owner): to return the number of tokens in the account for a

given address.

3. allowance (address tokenowner, address spender): the user’s balance is one of the
most critical data needed to complete a transaction. To carry out a transaction, the

user must have a certain number of tokens. If the user does not have the required

number of tokens, the allowance () function is used to cancel the transaction.

4. approve (address spender, unit tokens): the contract owner allows the required
quantity of tokens to be collected from the contract’s address once the user has the

required number of tokens for a transaction and the balance has been checked. By

comparing the transaction against the total token supply, this function ensures

that there are no additional or missing tokens.

5. transfer (address to, unit tokens): this transfer() function enables the contract owner
to send tokens. It enables the contract owner to transfer a number of the tokens to

other addresses. It also enables a specific number of tokens to transfer between the

total supply and a user account.

6. transferFrom (address from, address to, uint256 tokenId): the contract owner can
transmit tokens using the transfer() function. This function allows the contract

owner to send token amounts to different addresses. Also, it allows a certain

number of tokens to be transferred from the overall supply to a user account.
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4.2.3 Edge computing

The ability of cloud computing to provide limitless processing, data storage, and system

administration resources has led to the development of many cloud-based apps and

the rapid expansion of Internet-based corporations, such as Amazon, in recent years.

The trend recently has been to move cloud functions to network edges [142]. This is

dependent on delay-sensitive applications (for example, virtual reality) with strict delay

requirements. Edge computing has put more pressure on cloud resources and services

to provide mobility, location detection, and lower latency. As a result of these benefits,

network edge technology is critical to realise the future of the IoT [180].

The edge computing structure has three levels: end device (front-end), edge server

(near-end), and core cloud (far-end). The three-level hierarchy depicts the elements’ com-

puting capacity as well as their edge computing characteristics. Sensors and actuators

on the front-end provide additional and improved user responsiveness. The resource

requirements have to be dispatched to the server, however, given their restricted capac-

ity, near-end edge servers handle most network traffic and a variety of resource needs

(such as real-time data processing and computation offloading). As a result of deploying

edge servers, end users benefit from improved computation performance at the cost of

increased latency. Far-end cloud servers provide greater processing power (e.g., big data

analytics) and additional data storage space. The objective of this system architecture

is to enable the edge network to support computation-intensive and time-critical ap-

plications. Furthermore, certain edge server apps offer data synchronisation via cloud

communications.

4.3 Blockchain based architecture

Data security and privacy with IoT devices in a smart home is one of the major challenges

as connected IoT devices are vulnerable to various attacks and they lack basic security

features. To address these issues, numerous centralized solutions have been proposed

[149]. Researchers propose an information-centric network-based system for smart

home services with a three-layered architecture namely remote cloud, fog layer with

smart home servers and end devices [10]. The platform enables real-time systems to

be deployed, including smart monitoring and control applications. Another framework

proposes integrated existing IoT architecture components [154]. These authors have

looked at IoT smart home challenges and solutions to bridge the gap between current

state-of-the-art smart home applications and the possibility of integrating them into
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an IoT-enabled world. Others promote the vision of smart and connected communities

(SCC) [156]. They integrate IoT with cyber-physical cloud computing and big data

for smart tourism to enhance a community’s preservation, liveability, revitalisation,

attainability, and security. However, all this work is based on central architecture, where

communication and processing overhead, access control, and the single point of failure

are major challenges. Therefore, various researchers have turned their attention to

distributed frameworks and proposed popular blockchain-based solutions for various IoT

use cases.

4.3.1 Blockchain Authentication, Access control and edge
computing in smart home applications

Researchers have looked at the concerns surrounding gateways or connections between

IoT devices, claiming that such centralised arrangements present several security risks

such as integrity, certification, and availability [94]. The authors respond by proposing

a blockchain-based smart home gateway network that can protect against potential

gateway attacks. The blockchain technology network, which is made up of three layers:

device, gateway, and cloud, is utilised at the gateway layer to facilitate decentralisation

by storing and exchanging data blocks. This maintains data integrity both inside and

outside the smart home and availability through authentication and communication

between network users. On the other hand, their architecture has some limitations in

terms of the computing complexity imposed by blockchain operations at the gateways.

The benefits of using Ganache, Remix, and web3.js architecture for smart home-based

IoT blockchain (SHIB) to overcome the difficulties of data privacy, trust access control,

and the ability to extend the system were advocated by other authors [36]. They present

an IoT gateway for connecting a smart home’s cluster of IoT devices to a blockchain

network. Their work is complicated by the fact that each user and IoT device must be

assigned to one and only one subject-object pair due to the fact that, the gateway may

not have enough computer power to handle large transactions.

Some authors have presented a private blockchain-based access control (PBAC)

approach to solve data security and privacy issues while using smart devices in smart

home systems [174]. Within the IoT system, the proposed PBAC provides "an unforgeable

and auditable foundation" that can prevent unauthorised data access, protect data

security from threats, and enable accurate, robust, and instant access to information.

They only recommend one internet server as an administrator. However, the entire
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system fails if the administrator is inactive.

Other works proposes utilising a blockchain-based approach based on Proof-of-

Authority to develop a consensus mechanism to better manage home appliances in

a decentralised framework [149]. When compared to a standard Proof-of-Work based

system, the authors demonstrate additional features to improve the effectiveness of

a blockchain method using proof-of-authority as the consensus mechanism to address

security concerns.

The implementation of IoT and blockchain-based multi-sensory frameworks in the

context of in-home quality of life (QOL) for recently diagnosed cancer patients has been

studied [131]. Multiple medical and ambient intelligent IoT sensors can capture QOL

data from the smart home environment and securely share it with a specified community

of interest using the authors’ suggested blockchain and off-chain-based framework. The

in-home secure monitoring system captures QOL data, such as transactional records and

multimedia-based big data (e.g. physiological and mental state data), which the authors

can manage using blockchain-based data analytics.

Another author proposes a blockchain-based IoT architecture that reduces the im-

pact on IoT devices while maintaining the most of traditional blockchain’s security and

privacy advantages [47]. An overlay network can be created using high-resource devices

to employ a public distributed blockchain that assures privacy and security at all stages

of the transaction process. Furthermore, it employs distributed trust to provide excel-

lent security and privacy for IoT applications, and it minimizes the time necessary to

execute block validation. However, no information on the establishment of this scalable

blockchain or the security certificates is provided.

One author has implemented IoT-based architecture in tandem with BC (Hyperledger

Fabric) to assess the validity of the communicating devices to identify whether they are

normal or malicious [8]. They have tested their scheme in a smart home-based scenario.

However, the transaction size in Fabric is larger than other blockchain platforms because

they also carry the certificate information for approval. Therefore, the latency becomes

worse with increase in block size in their scenario.

Other authors have integrated both blockchain and a group signature to anonymously

authenticate group members, as well as a message authentication code to efficiently

authenticate home gateways without leaking information in a smart home scenario [96].

In HomeChain, all the request records from group members (or revocation requests

from the group manager) will be chained into the blockchain. Due to the immutability

of blockchain and the traceability of a group signature, it is not easy to tamper with or
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delete these records and hence they may provide reliable auditing. However, as there

was no access control policy, they have adopted a revocation list to revoke the authorities

of malicious users.

Others authors propose an ABAC framework for IoT systems through the use of

Ethereum smart contract technology [181]. The system is made up of four smart contracts

that manage ABAC rules, subject and object attributes, and access control. However, the

main drawback of their framework is that, the average time for access control is high

due to the complex interactions between the access control contract and other smart

contracts to retrieve attributes and policies.

Researchers have developed a smart contract structure for distributed and trust-

worthy access control IoT systems [182]. The proposed structure includes numerous

access control contracts (ACCs), one judge contract (JC), and one register contract (RC).

However, only one subject-object combination is handled by a single ACC. A larger im-

plementation cost is implied by an increasing linear relationship between gas costs and

system subject-object pair counts.

It must be acknowledged that the work presented by other researchers are found

to be encouraging, however, there are certain limitations on computational complexity

covering parameter such as, computing cost, time requirement, etc .. In this thesis we

develop and integrate a novel architecture which would integrate the access control

scheme within two smart contracts deployed in multi-edge servers to achieve a secure

distributed blockchain to serve smart home IoT devices. The use of multi-edge servers as

an admin provides a complementary way to overcome the computation cost and single

point of failure. We also investigate one of the popular blockchain technologies, Ethereum

smart contract and ERC-20 token generation, for the implementation of a simulation

smart home devices.

4.4 Proposed Attribute-Based Access Control
Scheme

The core architectural and design features of our proposed blockchain-based system are

described in this section, which uses Ethereum smart contracts to register and manage

the home user, IoT smart home devices, and the edge server.
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4.4.1 System Architecture

The proposed system architecture is shown in Fig 4.1. The architecture is made up

of four primary participants, each of which has Internet access to Ethereum smart

contracts: end users (home users, services accessors), IoT smart home devices, edge

servers, and the cloud servers hosting IoT data. Each IoT smart home equipment has its

own Ethereum address (with public and private keys). All other parties have their own

Ethereum Addresses (EA) and interact with the smart contract directly, either through

an Ethereum client for edge and cloud nodes or a front-end application/wallet for end

users.

Figure 4.1: System architecture

The key roles of the various system participants are summarised below:
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1. End user: Requests access permission through the smart contract to access certain

smart home devices.

a: Home user: A user device (e.g., PCs, laptops, smartphones) is a device that

allows users to access services supplied by servers (e.g., monitoring the current

temperature of his or her home).

b: Service accessors: Any service providers such as health care, police or other

parties who need to access the smart home data to provide any type of service. We

offer these as examples of why service accessors might exist; the implementation

details are not within the scope of the present research.

2. IoT devices: Sensors and actuators are the two main types of IoT devices in the

system. Sensors can collect environmental data (such as temperature) and send it

to edge servers or storage devices for later use. On the other hand, actuators can

perform operations (such as turning on the air conditioner) in response to a user’s

command.

3. Smart home multi-edge servers (Admin Edge): An edge node is a device or a set of

devices that can communicate with IoT and storage devices to provide a variety

of services. Examples of interactions between servers and other peers include

collecting environmental data from sensors, issuing commands to actuators to

conduct certain activities, and accessing or writing data to storage devices. Edge

nodes process all incoming and outgoing transactions and use a shared key for

local communications with IoT devices and local storage. This maintains the smart

contracts that manage the registration of the end users and IoT devices and

authenticates the end users to access the IoT devices. Because IoT devices lack

sufficient processing power, only edge servers can perform the mining operation.

4. Cloud: Provide long-term data analytics and storage. The resources in the cloud

can also be configured as nodes on blockchain to ensure the privacy and integrity

of the data in the system.

4.4.2 Attribute-based access control and Smart contracts

To avoid complexity of in a single smart contract, the proposed framework consists of two

Ethereum smart contracts, namely the register contract and the access contract. The

first contract is responsible for storing and managing (e.g., updating, adding, deleting)

the subject and object attributes, as well as policies. The access contracts are responsible
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for controlling the access of the IoT devices by generating ERC-20 tokens and finalising

the permission to access the IoT devices. The smart contracts are introduced as follows:

1. Register contract: The policy is deployed on the blockchain to register and manage

the attributes of users and IoT devices as shown in following code. Only the

administrator has the permission to execute this contract. A relevant code is posted

on GitHub (https://github.com/jklepatch/eattheblocks/blob/master/dapp-30/day5-

crud/smart-contract/Crud.sol).

pragma solidity ^0.5.0;

contract Add{

struct User {

uint256 id;

string name;

bool set; // This boolean is used to

differentiate between unset and zero struct values

}

address owner;

modifier onlyOwner() {

require(owner == msg.sender);

_;

}

mapping(address => User) public users;

function createUser(address _userAddress, uint256 _userId,

string memory _userName) public onlyOwner

{

User storage user = users[_userAddress];

// Check that the user did not already exist:

require(!user.set);

//Store the user

users[_userAddress] = User({

id: _userId,

name: _userName,

set: true

});

}
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}

function deleteUser(address user) public onlyOwner

{

if (user.length<2)

throw;

else {

unit i=0;

while (i<user.length){

if(user[i] == user){

delete user[i];

userDeleted(user, msg.sender);

}

i++;

}

}

}

Each user and IoT device has a unique identifier (Ethereum account address)

and multiple attributes associated with its ID. This contract has the function of

managing the subject and object attributes such as adding, deleting and updating.

A user struct is created to save the address of the new user. Mapping is introduced;

namely: users where the users link a user’s address to a set of users it can access.

The deletion functions used within the contract are restricted modifiers for owner

users to execute. deleteUser function allows the deletion of users from the system.

However, The contract would reject the delete operation if less than two users

remain in the system and throws an exception. In our system, we use one laptop

device to simulate the edge server running two miners; therefore, we need at least

two users to keep running the miners.

Also, this contract specifies the policy associated with each user and IoT device

based on user type, as described below:

contract Request Access{

function checkAttrebute (addressOf User)

attribute my_at = attribute (addressOf User);

function GetPolicy (address0f User)

Policy my_po = Policy (addressof user);
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if (my_at.checkAttrebute() == true & my_po.GetPolicy ()== true)

return my. sendToken()

return FAILURE;

}

A policy is a statement that combines a set of subjects (users), a set of objects (IoT

devices), and a set of actions to state that this user can perform such and such an

action on the IoT devices. An example of a policy is shown in Table 4.1.

Table 4.1: Example of user attributes, IoT attributes and permissions.

User attributes IoT Device attributes Action

UserAddress IoTAddress Execute

UserType IoTName Read

UserName IoTFun write

2. Access Contract: This contract governs access requests from users (subject) to IoT

devices (object). As following code shown , the user executes this contract to request

a token to communicate with an object.

contract Attribute is ERC20Interface, Owned(

string public Symbol;

string public decimals;

mapping (address => unit) balance;

mapping (unit256 => AttributeData) checkAttribute;

mapping (unit256 => Policy) GetPolicy;

event Sendtoken (address from, address to, unit tokens)

struct AttributeData{

unit256 AttributeID;

string Attribute;

string approve,

}

struct Policy{

unit256 PolicyID;

string Policy;

string approve;
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}

function AttributeToken () public {

balances [msg. sender]= 100 ;

totalSupply = 100;

name = "ACoin";

decimals = 0;

symbol = "A";

}

function checkAttribute (unit256 AttributeD, string Attribute,

string approve) public

returns (bool success)

{checkAttribute[AttributeID]= AttributeData(AttributeID,

Attribute, approve);

return true;

}

function GetPolicy (unit256 PolicyID, string Policy,

string approve) public

returns (bool success)

{GetPolicy[PolicyID] = Policy (PolicyID , Policy, approve);

return true;

}

function sendToken (address to, unit tokens) public

returns (bool success)

{require (! frozenAccount[to]);

emit sendtoken (msg. sender, to, tokens);

return true;

This contract includes functions for validating subject attributes and checking

policy; the access contract (AC) assesses whether the subject has the right to

perform an action on the object based on the policy received, and then sends a

token to the subject. The main functions in the contract are Check attribute(),

Get policy() and TransferToken(). This contract is also in charge of generating

ERC-20 tokens. Fig 4.2 illustrates how to use some access contract functionalities.

To prevent a valid user from flooding the network with access control requests,

each user has a specific number of valid tokens at a time dependent on user type.
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(a) Transfer function

(b) Approve function

(c) Token balance

Figure 4.2: Example of access contract functions execution

4.4.3 System design

The proposed system provides authentication for users using an attribute access contract

and token distribution. Fig 4.3 illustrates typical attribute-based access contract trans-

actions with this authentication mechanism. Users can remotely access or control home

devices using the freshly generated token so that only the requester is able to receive the

response from the legitimate home admin. We now describe four phases in our system:

Initialization, Request Control, State Delivery and Chain Transaction.

1. Initialization: For illustration purposes, we assume that family members consti-

tute a group of users from amongst whom a group admin is chosen. An admin

invokes the Register Contracts to add other users and IoT devices. Users allocate

their Ethereum address (EA) and individual private keys for signing transactions.

Correspondingly, each home admin holds the group public key for transaction

verification. The admin is run in different miners in multiple edge nodes to avoid a

single point of failure.
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Figure 4.3: Typical transactions in proposed scheme

2. Request Access: When a user wishes to publish an access or control request with

the home admin, a token is generated for a certain duration and exact access

time. This is the suggested approach to avoid replay attacks and profiling. After

obtaining the token by invoking TransferToken () from the access contract, the

user constructs the transaction based on his/her requirements. For example, the

user requests the room temperature, the transaction is computed after the user

is redirected to the smart contract and request token, and three main functions

are invoked in that contract: Check attribute(), Get policy(), TransferToken(). The

user sends the received valid token with the request access to the admin, and if

the user has a valid token, then the access will be granted. The output of valid and

invalid user requests for accessing data on room temperature is shown through

the screen shots in Fig 4.4.

3. State Delivery: The home admin monitors the smart contract for new requests once

a user requests a new access or service. If the transaction passes the verification,

then the home admin checks the token validity and grants or denies access to the

IoT device.
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(a) Only a user with a valid token will be permitted to check the value of the sensor.

(b) User without enough tokens or if an unregistered user requests to check the
temperature.

Figure 4.4: User request for room temperature data

4. Chain Transaction: Admin nodes (miners) are responsible for retrieving trans-

actions in the smart contract and compete with each other to be the first to suc-

cessfully solve the PoW for chaining the block to the blockchain. In order to reach

consensus, the miner publishes his solution to the blockchain network once he has

solved the PoW problem. Those who mine the first block to reach consensus are

awarded the mining reward.

4.4.4 Implementation

The detailed hardware and software configurations are as follows. Our system is de-

veloped on a private network. The model runs on a Private Ethereum network which

consists of one laptop device (Dell XPS ) to simulate the edge server running two miners

connected to two single-board computers (Raspberry Pi 3 Model B) which are simulating

the temperature sensor and LED and one home user laptop. The edge server is equipped

with 4 independent CPU cores and 16 GB RAM. One processor core is dedicated to the

mining environment, while the remaining processor cores are dedicated to the edge

computing service. The miner can boost up to 3.5 GHz CPU, 8 GB RAM, and 1 TB storage.

As the IoT devices, two Raspberry Pis have 1.2 GHz CPU, 1 GB RAM, and 32 GB storage

with accessory modules including a temperature sensor and LED sensor. The laptop as

home user has 2.2 GHz CPU, 16 GB RAM, and 256 GB storage.

In the edge server, the blockchain running framework is Go-Ethereum, and Solidity

is used as the development language for smart contracts. Remix integrated development

(IDE) is used to write and compile the contracts (Remix 2020). This uses Solidity as the
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language to write smart contracts. Web3.js (Ethereum JavaScript API) is also used in the

model to deploy and compile the contracts and to monitor the contract state. JavaScript

is used to interact with the corresponding geth client via the HTTP connection. A simple

HTML web page is built to support the interaction between the home users and the

devices. A light version of the Raspbian operating system and Go-Ethereum have been

loaded on the Raspberry Pis, which disables block mining function. Windows 10 home

(64bit) version is used in the home user laptop.

In the testbed, the first laptop’s operation supports two edge service providers and

a block miner solving a PoW puzzle. The Raspberry Pis and the second laptop act as

blockchain clients generating and sending transactions of resource requests to the edge

server. With the above setup, the edge server functions as a full blockchain node, storing

all transactions, running predefined smart contracts, and creating new blocks. Only

transaction data is stored on the IoT devices, which function as light nodes in the

blockchain.

The private blockchain is configured following a series of steps, including the selection

of a compatible version of Ethereum, the use of the Windows power shell to initiate geth,

and the requirement for each node to satisfy multiple requirements before being able

to join the blockchain. This includes (1) initialisation of the genesis file (Test.json) to

create the first block, (2) use of the network ID to connect to the same blockchain, and (3)

initialisation of the private blockchain using a geth command. An account with a private

and public key is created by the miner for each node and indexed according to its address

whereby it can interact with other nodes and smart contracts. The geth on each node is

then started using a command which includes different flags for different functions. In

order to prevent external attackers from gaining access to the nodes, the "no discovery"

flag has been set on all nodes. A specific command is then used to retrieve the node ID to

allow syncing to occur. This last step is repeated to add the two Raspberry Pis as nodes

and the home user laptop to create a private blockchain with fully synchronized nodes.

It is important to note that while the edge server has full rights to access all features,

other users and IoT devices are only given authorisation to use a subset of those features

under the smart contracts. In the event that a user or vulnerable devices are compromised

and used to carry out malicious operations, this configuration reduces the harm.
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4.5 Evaluation and Analysis

This section provides a complete discussion of the security and performance of the

attribute-smart contract-based edge scheme. In this section, we briefly define the possible

threats and attacks and then discuss the handling techniques to ensure satisfaction of

the security goals of the CIA triad, namely that, confidentiality, integrity and availability

are satisfied. Authentication and access control are provided in our architecture to

address these goals.

4.5.1 Security analysis

Confidentiality aims to ensure that unauthorised users are prevented from gaining

access to IoT devices and their data and to make sure that private data is delivered only

to the intended users. One approach to achieving confidentiality is message encryption

using an SSL session after authenticating the user successfully [20]. As a powerful

feature of blockchain, our framework assigns a unique 20-byte Ethereum addresses

(EA) directly to authorised node (including IoT devices) with almost no collision. EA

has asymmetric public key pairs that can be used to establish a secure SSL session

for communication between any authenticated nodes such as an authenticated user or

IoT device. During the private network formation,the miner distributes private and

public keys associated with the EA for each node. The temperature sensor or the LED,

as the sender node, utilises the private key to provide a digital signature, allowing the

requested transaction to be broadcast across the entire network.

In terms of availability, our architecture leverages the inherent properties of blockchain

technology, which offer reliability and robustness. Because of the decentralised structure

of blockchain and the ledger replication in multiple locations, there is no possibility

of a single point of failure and all data is circulated via multiple nodes. A copy of the

transaction history is stored in each admin node, enabling it to be verified and linked

back to the initial transaction. Moreover, to increase smart home availability, IoT devices

are protected from malicious requests by limiting the accepted transactions to those with

users who have a valid token. So, every transaction received is authorised by the admins

before forwarding it to the IoT devices.

Furthermore, the use of a valid token increases the level of security in our architecture.

This can be observed as only the admins can issue a valid token and only the intended

user can use the token. Fig 4.5 shows the revert error when anyone other than the admin

tries to create a user or issue a token. Also, the token’s owner cannot transfer the token
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to any other users, so if the public key of a user is compromised, the smart contract

construction prevents token transfer. The admin will only allow transactions that have a

valid token associated with a valid user to be accepted in the network.

(a) Invalid user requesting to create a new user

(b) Invalid user requesting a token

Figure 4.5: Revert transaction

1. Denial of service (DoS) Attack: In this type of attack, the attacker sends a large

number of transactions to the target in order to disrupt its availability. The use of

attribute-based access control smart contracts in our architecture reduces the effect

of this attack since only authorized transactions will be accepted. The admin has

to examine the address and policy for each user and device to issue a valid token to

send a transaction. If the admin receives several unsuccessful access requests from

an unauthorized entity, it can block that transaction and reject it. Furthermore,

the policy is enforced automatically by the smart contracts. If malevolent outsiders

compromise and control the IoT devices for malicious activities, such as making

continuous resource requests or initiating DoS attacks, the smart contracts will

execute automatically based on the preprogrammed policies of the total token

supply, the access time, and the duration. For example, in our scenario we specify

the total token supply as 100 from each user and if users or devices request access,

the request contract will issue one valid token at a time; if the requests exceed the

number of tokens supplied, the transaction will be rejected.

In our experiment we built a prototype to simulate only two smart devices in

a smart home scenario with one admin for the sake of testing the architecture.

However, in a large-scale scenario, the network will have more than one admin

and many nodes to mine and the architecture will use the advantages of the
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distributed and immutable ledger of blockchain. So, by design, it would appear

that blockchain is equipped to face up to and withstand a DDoS attack. In the first

place, it eliminates the risk of having a single point of failure. It can maintain

a list of compromised IPs in its ledger, and this would be resistant to disruption

attempts. As soon as a server with the list is compromised, a user can switch to

any other node on the network to access a safe copy.

2. Modification attack: In this form of attack, the attacker may try to alter or delete the

stored data of a particular user or device. To launch this attack, the attacker has to

compromise the local storage security. Different cases of modification attacks have

been discussed in blockchain-based information sharing frameworks. It is claimed

that the implementation of a smart contract protocol prevents the adversary from

breaking the security of their proposed scheme [50][49]. Similarly, in our scheme

only the admin has the right to store, delete, or update the data, based on the

policy in the smart contracts. All the information about users, devices, and policy,

is shared between the edge nodes and the cloud; assuming the adversary wants to

change or modify the ID of a user or any device, the change will be detected by the

edge nodes since every block contains its previous hash block and a change in one

block will result in a break in the chain.

The authentication and access control threat is the next type of threat. According

to published work, an attacker may be able to take control of a smart home device

or install a fake device into a home network [55]. To protect against these threats,

we have implemented a hierarchical defense mechanism in our design. In order to

prevent smart home devices from being directly accessed via the Internet, there is

an admin node that manages all incoming and outgoing transactions. A transaction

is dropped if the admin notices that it does not adhere to the contract’s policies.

Secondly, every device in the home must have a unique address and follow the

same genesis transaction in the local blockchain that allows each to communicate

with the admin and other devices. A device is isolated from the network if it lacks

a unique address and genesis transaction. As a result, an attacker will be unable

to connect to the network and install malicious devices.

4.5.2 Performance analysis

To evaluate the performance of the proposed model, we are conducting experiments

in a private Ethereum network where the edge server represents the home admin to

79



CHAPTER 4. ATTRIBUTE-BASED ACCESS CONTROL AND SMART CONTRACTS

add a home user, as well as the two sensors (temperature and LED). The home user

requests the room temperature to turn on/off the AC (change the state of LED) based on

temperature. The admin checks the user’s validity and then gives access to the user as

described previously in the system design section. We simulate two types of transactions

in a smart-home setting i.e. store and access. Here, we investigate the store transaction

(adding a new user or IoT device using the register contract) and the request access

transaction to invoke some data (using the access contract). We evaluate the block size,

gas cost and time cost by comparing our scheme with other works [8, 96, 181, 182].

1. Block size: The block size in Ethereum is based on the contracts being run and

the associated number of transactions known as a Gas limit per block, and the

maximum can vary slightly from block to block. Depending on how much gas each

transaction spends, transactions are combined in the form of blocks. There are 280

storage transactions and 300 access transactions in a 1MB block. The storage size

is 2.80KB and the access transaction size is 4.00KB. More than 200 registrations

can be stored with an average block size of 130KB.

Since the size of the block is the key factor that impacts overall latency, in our

experiment, we find the block size varies between 118 KB to 145 kB based on the

contract being executed. We evaluate the interaction delay of register contract and

access contract which are important to ensure system effectiveness.

Fig 4.6 shows that the time for one transaction to be completed is less than 30ms

for the register contract and 50ms for the access contract. Such a delay should

satisfy the latency requirement of real-time applications.

Figure 4.6: Time to complete one transaction
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However, latency worsens for the register contract as the block size is increased. The

latency increases due to the increased time needed to include the transaction in the

block and the increased bandwidth required to propagate a bigger block through

network. However, the completion of new block validation and transmission is

faster since the edge server has more computing and bandwidth resources. On

the other hand, when compared with other work [8], IoT-BC is based on Fabric

architecture, which in general has a larger transaction size because it carries the

certificate information for approval. As a result, the total increase in transaction

latency in IoT-BC is 22.45% while in our scheme it measures 20.23%.

Figure 4.7: Resource usage for single transaction

The CPU and memory usage are also explored, as illustrated in Fig 4.7. We realize

that a very low percentage of CPU resources are taken by regular transactions,

while memory usage is slightly greater since the blockchain client uses 8% even

when in a normal state. However, we note that in a real smart home environment,

the number of IoT devices connected will be increased and this will have a possible

impact on blockchain overhead. Since the miner is located on the edge server,

mining, verifying, and storing new blocks will increase the computing resources

used. Therefore, specifying the number of IoT devices to be managed by one edge

server, or launching more VMs as the miners to share the load of the computation

required is recommended.

2. Gas cost: In the deployment of smart contracts on the blockchain and execution of

these contracts, Application Binary Interfaces (ABIs) require a fee to be paid to the

miner which mines the block. The amount of gas needed to execute an operation,
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such as implementing a smart contract or executing an ABI, is measured by

Ethereum using a unit called gas. In general, with a more difficult task, more gas

is used. The price of gas varies depending on the time. A task’s fee is determined by

the amount of gas used and its cost. Table 4.2 lists the amount of gas paid for some

functions, such as adding a subject or policy, or deploying or executing the ACC.

Table 4.2: Calculated gas cost

Proposed Scheme Scheme in [182] Scheme in[181]

AddUser 85,662 - 152,863

AddPolicy 360,273 128,777 363,964

DeployACC 1,377,071 1,706,290 1,301,972

In our proposed scheme, the gas amount required to deploy the access contract

is 1,377,071, which is more than in the existing schemes compared here. We can

observe from the table that when we compare with the proposed ABAC framework

in reported work [181], it consumes less gas than our scheme. This increased value

is due to the relatively complex interactions in our scheme for retrieving attributes

and policies between the access contract and admin policy smart contract and

authority contract.

However, in another piece of work, , one ACC is deployed for only one subject-object

pair [182]. The gas cost increases linearly as the number of subject-object pairs

of the system increases, while in our proposed system, there is no need to deploy

a new access contract when the subject and object increase. This results in less

gas consumed and hence, less cost. Moreover, when comparing the gas cost for

performing functions such as add user or add policy, our proposed scheme consumes

less gas for the same functions in the scheme [181].

3. Time cost: The approximate time cost for executing the access contract is 40 seconds

in our proposal which is more than the 36 seconds average time for ABAC presented

elsewhere [181]. This is due to the time it takes to invoke the token in our proposed

scheme and the extra time needed to check token validity and call other smart

contracts. However, the fresh onetime token generated during each access request

is used for securing the session, and this ensures data confidentiality, which is

worth the difference of a few seconds. Furthermore, the time to deploy our access

smart contract is around 185.83 seconds compared to the framework deployed in
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other research [96]. This is due to smart contract invocations (i.e., getRequest,

getRL, uploadResponse, and getResult).

Note that the ABI’s execution time varies based on a variety of factors such as the

system’s CPU capacity, network design, mining schedule, and so on, and therefore

the execution time may change amongst Ethereum networks.

4.6 Summary

This chapter evaluates a real-time interaction model between home users and a fully

validating private blockchain node through the use of attribute-based access control to

authenticate smart home users and IoT devices. By combining blockchain technology

with attribute based access control and edge computing, this model solves the problem of

the traditional access control method which is based on centralized design to meet the

access control requirements in IoT.

In this chapter, we have described the development of Ethereum blockchain with mul-

tiple smart contracts, and the implementation is detailed to demonstrate the feasibility

of the framework. Compared with existing schemes, our proposed scheme achieves more

fine-grained access control with fresh token generation and less computing cost with

edge computing. Our framework also achieves the desired security goals and is resilient

against modification and DoS attacks.

The analysis offered in this chapter is valuable in tackling the second research

question of this thesis, by comparing our result with existing work and shows that we

archive better time and gas cost than others. We also answer the fourth question by

showing how our scheme is effective against current threats such as Denial of service

(DoS) Attack and modification attack.
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PRIVACY-PRESERVING MECHANISM IN SMART HOMES

USING BLOCKCHAIN

The chapter is organized as follows. Section 5.2 introduces the chapter. Section 5.2.1

summarises the privacy issues in blockchain-based IoT. In Section 5.2.2 we review the

strategies to preserve blockchain privacy. In Section 5.3, we discuss differential privacy.

We propose a layer architecture and demonstrate our scheme in Section 5.4. The privacy

evaluation is discussed in Section 5.5. Finally, Section 5.6 summarizes the chapter.

5.1 Introduction

While blockchain is regarded as the future of data storage due to its decentralized struc-

ture, several issues are yet to be resolved before it is implemented in daily life scenarios.

A significant parameter in blockchain applications that needs further development is

data preservation and transaction privacy. Blockchain user identification across the

decentralized network is supported by the public key. As a result, identities do not all

remain private or anonymous. An adversary in the role of a third-party may analyse

the transactions on the network and potentially infer the identities of other users. In

addition, blockchain’s decentralized structure allows unprotected blockchain scenarios to

be observed. Moreover, additional privacy features are needed to better protect personal

data on the blockchain nodes. With financial blockchain systems for instance, the transac-

tion details are broadcast across the decentralized network whenever a transaction takes
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place [56]. This broadcasting occurs to safeguard each blockchain node with up-to-date

information. Furthermore, the ledger recording the transaction remains uniform across

the network. An adversary may use this information to monitor an individual and go

back through the transaction details to discover transaction information. Moreover, with

regard to blockchain-based IoT devices, an adversary may compromise the information

exchange between devices for illegal purposes.

Furthermore, there are also privacy risks associated with applying blockchain in other

sectors such as financial, real estate, and asset management [55]. That is, blockchain’s

distributed nature means that the individual’s identity or personal information may be

leaked during transactions. To date, the literature in the field on how to preserve the

individual’s privacy in blockchain has mostly focused on anonymization strategies and

their derivatives [18]. However, studies show that anonymization cannot ensure total

privacy because of the potential to combine anonymized data with similar datasets to

discover personal information [38].

To overcome the aforementioned issues and provide privacy protections, it may be

useful to integrate differential privacy based on machine learning with the use of the

latest blockchain technology. Differential privacy is efficient at preserving privacy in

statistical databases and real-time settings [76]. Differential privacy is an approach

to preserve the confidentiality of data without risking its leakage by adding noise to

data without influencing the correct output of the data analysis result. Therefore, in

this chapter, we aim to prove that the machine learning scheme has the same or better

accuracy when differential privacy is employed and that it should therefore be utilised for

the sake of increased privacy. This chapter therefore compares the accuracy of machine

learning with and without the differential privacy as an initial test of the concept, rather

than taking the machine learning algorithm as a topic for discussion for its own sake.

The use of differential privacy can create a level of indistinguishability in statistical

blockchain data, leaving the analyst unable to predict with any certainty the accessibility

of individual blockchain nodes. All the nodes are taken to be part of the blockchain

network. In the present chapter (and building upon these matters with larger datasets

in the following chapter) we investigate the advantages of differential privacy in the

attempt to optimise privacy between the smart home devices and both the home user and

the cloud. Differential privacy is a good fit for use in blockchain technology to preserve the

individual’s identity during a broadcast. While ensuring that the information remains

useful for completing transactions, differential privacy can still perturb appearance of

the person’s identity to the network such that an adversary will not be able to determine
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the sender’s or the receiver’s actual identity. Thus, differential privacy can help to keep

sensitive/personal information private in a dataset. Differential privacy in blockchain

applications may thus prove to be beneficial to protect data privacy [76].

5.2 Summarises the Privacy Issues in
Blockchain-based IoT

Blockchain technology relies on authentication and encryption services to preserve data

security (i.e., secure transactions). Cryptography and the use of public key encryption

are linked to such blockchain services. This means that users must have access to both

the public and private keys to manage their transactions.

Two types of keys are used in public key cryptography: distributed network keys,

which are also known as public keys, and individual personal keys, which are also known

as private keys. The public key infrastructure (PKI) is the most frequent technique

providing key management functions for cryptography in the blockchain. PKI techniques

based on blockchain are decentralised, which eliminates the need for a centralised access

point or a trusted third party [76]. Furthermore, these methods do not require trust-

worthiness to be established via nodes or system users to make the public system more

visible. Instant Karma PKI, Blockstack, and Certcoin are only a few of the blockchain

approaches that have been mentioned in the literature to enable PKI encryption and

transaction security on blockchain nodes. Blockchain privacy and security, on the other

hand, are only now beginning to be fully addressed. As explained in published research

any exposure of the private key owner’s identity can lead to the disclosure of additional

transactions by that owner using linking techniques [115]. Furthermore, when exposed

to certain types of attacks, the anonymity of blockchain users may be compromised [78].

Moreover, as a means of ensuring privacy, Ethereum uses cryptographic hash func-

tions and transactions are secured using cryptographic mechanism-based privacy. How-

ever, since Ethereum is a public ledger, all users may access the decentralized ledger. The

transaction data is available online but the inclusion of these cryptographic frameworks

does not guarantee full privacy. Deanonymization attack is the most well-known privacy

attack on Ethereum, in which data from a distributed ledger is deanonymized by tracing

and linking features with other databases [28].

Hence, the methods for preserving privacy in blockchain applications constitute an

important research issue. Some researchers have sought to improve blockchain privacy

through the use of different strategies such as the use of two-level anonymity. Addition-
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ally, some have focused on resolving confidentiality issues based on public blockchain

transactions to enhance blockchain trustworthiness [31]. Another potential solution

is the use of a differential privacy preserving strategy that utilises data perturbation

methods for the protection of private data in the blockchain, as alluded to above. Adding

noise to the stored distributed ledger records is a feature provided by differential privacy

to overcome this issue. Non-trusted users or those who lack a specific role in the network

can benefit from the unpredictability noise of differential privacy. It may be possible

to only allow query evaluation in the public ledger to analyse any record or previous

transaction and add noise to this query evaluation to protect privacy. Also, Ethereum’s

smart contract gives developers the ability to add differential privacy to their transaction

[28]. The flexibility of choosing a suitable way to add noise based on privacy and utility

requirements makes the use of differential privacy optimal to overcome the privacy

issues in blockchain-based architecture.

5.2.1 Privacy preserving mechanism in Blockchain

Blockchain-based IoT systems do not have privacy features embedded in their design.

As a result, the private data of users may be uncovered by adversaries using targeted

attack strategies. To address this issue, researchers have suggested several strategies to

preserve user privacy for different blockchain-based IoT system applications [75].

Encryption: Encryption is a technique to preserve users’ privacy by scrambling

their critical data and sensitive information or details, and coding them in an unreadable

format that is nearly impossible to break. Once the programmer reaches a higher

understanding of how to appropriately implement this technique, the users’ data is then

completely secure and thus kept private [122].

Anonymization: Anonymization is another technique of privacy-preservation that
creates anonymous protocols for users so that they do not appear online with their real

personal details; this is supposed to protect their identity and allows them to control the

amount of information they communicate [122].

Differential privacy: Differential privacy is a useful privacy preservation strategy
for maintaining data confidentiality without the risk of leakage. The concept was initially

introduced by Dwork who developed a mechanism for protecting database privacy via

the addition of noise during query evaluation [23]. As the approach was strengthened, re-

searchers began to apply different differential privacy variations in everyday applications.

Researchers continue to develop different differential privacy-based IoT systems which

apply data perturbation concepts in real-time and dynamic settings [136]. However, the
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(5.1) Pr[M(D) ∈ S]≤ Pr[M(D′) ∈ S]× eε+δ

application of differential privacy in smart home applications still needs research. This

chapter investigates the integration of differential privacy based on machine learning

with blockchain technology in the smart home scenario.

5.3 Differential privacy

Differential privacy is described as a probabilistic mechanism used for the provision

of an information-theoretic security guarantee. The following definition is provided by

Dwork [51].

In the case of two adjacent datasets D and D’ which differ by a single record, M

preserves (ε;δ)-differential privacy if

where ε is the privacy budget and δ is the failure probability. In this equation, ε functions

as a privacy budget controlling how much noise is added. In addition, δ is the sensitivity

value typically established based on the dataset. S is the scope query output for query

function M.

In addition to the standard definitions, researchers have sought to propose privacy

variations to address different privacy requirements [77]. The variants are classified

into four data perturbation processes: Laplace, Gaussian, Uniform, and Geometric; all of

these support differential privacy. The Gaussian process is used in this work.

One method to improve utility in a privacy budget is to broaden how deferential

privacy is defined. Some broader definitions have been offered that provide enhanced

utility, including small ε values [77]. Three broader differential privacy definitions

which are regularly applied include zero-concentrated deferential privacy [24], advanced

composition deferential privacy [52], and Rényi deferential privacy [106]. All three

provide an enhanced evaluation of cumulative privacy loss by exploiting the fact that

privacy loss random variables are based on an anticipated privacy loss. The cumulative

privacy budget gained from the evaluation ties the composition mechanism’s greatest

privacy loss with all except the δ failure probability. As a result, there is a reduction

in the amount of noise needed and therefore an enhancement utility across multiple

compositions. This work applies Rényi differential privacy (RDP).
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(5.2) Dα(M(D) ∥ M(D′))≤ ε

Through the concept of moment accounting, RDP allows for a better composition result

[1]. Several studies [107, 168, 187] have shown that analysing the RDP of subsampled

techniques provides a tighter bound on total privacy loss than utilising typical strong

composition theorems [64].

5.4 Proposed Architecture

5.4.1 Privacy preserving Differential Privacy Mechanism

We implement privacy-preserving classification using edge computing and a blockchain

scenario. The proposed mechanism trains the machine learning model accurately to suit

all IoT smart home data. The model also classifies a given packet to an IoT device in the

smart home scenario as shown below

dict_labels = {'Pc': 0, 'Temperature sensor': 1, 'LED sensor': 2}

for i in range(y_train.shape[0]):

y_train[i] = dict_labels[y_train[i]]

y_train = y_train.astype('float')

The aim is to provide a privacy-preserving data aggregation method in the context of

smart homes that agrees to provide their data to a cloud server, so that the cloud can

learn privately from the data produced by IoT devices inside the home and then deliver

these data to an external entity to provide better services for home users.

As Fig 5.1 shows, we consider that a number of edge nodes have private data from

the IoT devices in the smart home and collaborate with each other to return the results

to the cloud. These edge nodes assist the smart home in sharing their data with the cloud

by learning the model and training the data before sending the final result to the cloud.

The edge nodes first calculate the gradients based on the current model while attempting
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Rényi differential Privacy (RDP) is defined as [106]: a randomised process M which has
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to limit privacy leakage. They employ a differential privacy scheme to perturb their data.

Figure 5.1: Edge node functions for data privacy scheme

The cloud collects the gradients broadcast by the edge nodes and performs the desired

scheme to analyse the data. For the proposed model, we consider two different methods to

train the model using a machine learning algorithm on the prepared data. First, without

considering privacy, we train a one-layer neural network on the data and analyse the

accuracy of the proposed scheme. We call this approach a "plain algorithm". Second, we

train the same one-layer neural network on our data based on the scenario previously ex-

plained. We use stochastic gradient descent (SGD), one of the most popular optimization

algorithms [29]. SGD algorithms have received significant attention recently because

they are simple and satisfy the same asymptotic guarantees as more computationally

intensive learning methods [152]. We call the second algorithm a "private algorithm".

5.4.2 Algorithms and dataset

5.4.2.1 Plain Algorithm

As previously mentioned, this algorithm does not consider any matters of privacy and

the data is handed over in the full to the cloud server through the following algorithm:

kfold = KFold(n_splits=10, shuffle=True)

fold_no = 1

for train, test in kfold.split(X, y):

model = Sequential()
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model.add(Dense(no_classes, activation='softmax'))

# Compile the model

model.compile(loss=loss_function,

optimizer=optimizer,

metrics=['accuracy']

The algorithm specifications are as follows:

• Model: K-fold-one-layer neural network

• Loss function: categorical cross entropy

• Optimizer: adam (adaptive moment estimation)

• Number of epochs (training rounds): 10

5.4.2.2 Private Algorithm

The basic idea of this approach is presented in following algorithm:

models.append( tf.keras.Sequential([tf.keras.layers.Dense(3)]))

optimizers.append( DPGradientDescentGaussianOptimizer(

l2_norm_clip=l2_norm_clip,

noise_multiplier=noise_multiplier,

num_microbatches=num_microbatches,

learning_rate=learning_rate))

losses.append(tf.keras.losses.CategoricalCrossentropy(

from_logits=True, reduction=tf.losses.Reduction.NONE))

models[i].compile(optimizer=optimizers[i],

loss=losses[i],

metrics=['accuracy'])

The scheme called differential private stochastic gradient descent (DP-SGD) modifies

the gradients used in SGD, which lies at the core of almost all deep learning algorithms.

Models trained with DP-SGD provide demonstrable differential privacy guarantees for

their input data. We have made the following two modifications to the SGD algorithm in

to accommodate privacy aspects with the data [121]:

• "First, the sensitivity of each gradient needs to be bounded. In other words, we

need to limit how much each individual training point sampled in a mini batch
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can influence gradient computations and the resulting updates applied to model

parameters. This is done by clipping each gradient computed on each training

point" [128].

• "Random noise is sampled and added to the clipped gradients to make it statistically

impossible to know whether or not a particular data point was included in the

training dataset by comparing the updates which SGD applies when it operates

with or without this particular data point in the training dataset" [128].

• We select the following parameters and specifications in the design of our algorithm:

– Model: k-fold-one-layer neural network

– Loss function: categorical cross entropy

– Optimizer: DP-SGD (differentially private stochastic gradient descent)

– Number of epochs (training rounds): 10

– l2-norm-clip: 1.5

– Noise multiplier: 2

5.4.2.3 Dataset

The experiment was conducted to detect and classify a type of device in a private

blockchain in a smart home; the ultimate purpose of this is to prove whether machine

learning has the same or better accuracy when using differential privacy and that for

the sake of increase the privacy, as alluded to above. One way of doing this is to observe

how machine learning techniques on captured packets (stored in files such as pcap files)

are applied to distinguish different devices in the network. The dataset was produced by

generating a pcap file using Wireshark to capture the network packets in our private

network. Our synthetic dataset consists of n = 11,000 samples. Using Tshark, we then

filtered the captured packets and extracted the headers of each packet. Then, the dataset

was created and processed using the Python script. We selected our dataset based on

network traffic generated by our private Ethereum network, thus providing accurate

representations of the devices we use in the experiment.

5.4.2.4 Threat model

Our goal is to collect smart home data from the edge nodes and analyse the efficiency of

our proposed scheme using different threat models. Since all data stored in blocks will be
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available to all blockchain users, we assume that the adversary in our model may have

full access to the data. We focus on side channel attacks where adversaries use machine

learning algorithms to infer information on smart home IoT devices by monitoring the

incoming/outgoing network traffic from/to smart homes. We would like to emphasize that

traffic patterns extracted from IoT data may enable adversaries to correlate their inside

information on some residents, thus giving adversaries prior information to assist in

launching an inference attack on the system. As a result, the adversaries can create a

profile on smart home residents and launch subsequent sophisticated attacks such as

the linkage attack.

In addition, we also consider other threats associated with the malicious user where

adversaries steal identity information such as geographical data about the edge node and

allowing the adversary to steal specific tasks that the edge node executes. Also, another

assumption is that the adversary can legally communicate with the edge node and as a

result, leak geographical information. Attackers can easily measure the communication

time and estimate the physical distance from measuring/ comparing latency.

We assume that the cloud server deployed is secure, as it is one element of the

architecture described in Chapter 4 in Fig.4.1. The classification model is trained on

different edge nodes with a tailored machine learning algorithm to classify a given packet

to one of the IoT devices in the smart home.

5.5 Evaluation and Analysis

5.5.1 Privacy analysis

In our proposed model, we assume that all participants have a verified identity that

is managed and issued by the access control scheme in the smart contract in a private

blockchain. Therefore, identity privacy in our framework is out of the scope of our work.

We only consider privacy leakage from data when a learning process runs.

We present a security analysis on the proposed differential privacy-based blockchain

system, which is associated with the pre-defined threat environment discussed in the

threat model section. Based on the threat assumption, adversaries have full access to

all data stored in the blocks. In our model, for the first type of threat, without adding

noise, adversaries can easily obtain the real identities and behaviour of users by mining

information or launching a linkage attack. Fortunately, our model uses a differential

privacy protection method (Gaussian Distribution Mechanism) to add noise into the real
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data, such that a distortion is effected to protect the target set. We observe that using

the Gaussian mechanism it is possible to successfully screen and classify the IoT devices

while ensuring the privacy of all data.

In data mining-based attacks, from the adversary’s perspective, adding the noise

can escalate the complexity of feature extraction and information retrieval. Moreover,

added noise is also essential to defend users’ and IoT devices’ identities to prevent the

second type of threat, as matching data rarely occurs between blockchain data and other

supportive databases for the processed data. Thus, our model can efficiently improve the

privacy-preserving capability.

5.5.2 Experiment results

We compare the performance of both machine learning techniques provided in the

previous section using the confusion matrix. The alternative outputs of a classification,

which in our case are ’0’ for the PC, ’1’ for the temperature sensor, and ’2’ for the LED

sensor, are compared to the actual values of the class feature already available in the

evaluation (testing) dataset, as illustrated in Fig 5.2.

Figure 5.2: The confusion matrix of device classification

There are four parameters presented in the confusion matrix, True Positive (TP),

where the classifier has correctly measured the number of packets that are correctly

classified to a device type, True Negative (TN), similar to TP but the value of the class

feature is negative, False Positive (FP), where the classifier measures the number of

packets that are incorrectly classified as a device type and False Negative (FN), which

measures the number of packets that are incorrectly not classified as a device type. One

metric is created by combining the TP, TN, FP, and FN values, namely accuracy which

we can use to evaluate the classifiers. Accuracy represents the probability that a record

is correctly identified as one of the device types.

The accuracy (overall success rate) is calculated using the following equation:

(5.3) OSR = (TN +TP)/(TP +FP +TN +FN)
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Figure 5.3: 10-fold validation results

For the classification stage, we use Python in the Google Colab environment to

apply a well-known machine learning algorithm. We illustrate the approach using k-fold

cross-validation on the neural network model to ascertain the efficiency of our proposed

scheme.

Fig 5.3 shows the accuracy of the model before (plain algorithm ) and after (private

algorithm) adding the noise.

Table 5.1: Calculated accuracy

Classifier Accuracy

Plain algorithm 0.95

Private algorithm 0.93

As shown in Table 5.1, the plain model has an average accuracy close to 0.95 (95%)

while for the private model, accuracy is close to 0.93 (93%).

Our experiment shows that the accuracy of our private model is very close to that

of the plain one when the privacy budget is 0.7 because the private method with noise

disturbance is relatively small. Therefore, the accuracy of this classification method is

close to that of the plain classification method. It is shown in the experiment that the

private model has the same accuracy as the plain model in classifying the device type.

Thus, our results demonstrate the feasibility of differential privacy guarantees without

significant loss in terms of accuracy; edge nodes aggregate noisy data to the cloud while

preserving smart home privacy and providing accurate data for further analysis.

Nonetheless, there is a trade-off between accuracy and privacy that directly links to

adding noise to the scheme. To increase the level of privacy, we increase the amount of

noise. However, on the other hand, this may result in a loss of data accuracy. Therefore,
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efficient measurements are required to achieve the best result. However, it is outside of

the scope of the present chapter and we leave it for our next chapter, where we conduct

further analysis to measure the differential privacy guarantee to reach improved privacy

protection without any loss in accuracy.

5.6 Summary

In this chapter, we have extend our work published in [127] and expand the functional

capabilities of our architecture by adding differential privacy as a scheme to preserve

the privacy of users.

The basic characteristics of blockchain technology are a trustless environment, im-

mutability, and transparency, all of which come at the expense of data privacy. From a

privacy-preserving perspective, information recorded on blockchain may raise privacy

concern. The blockchain itself cannot solve the privacy issue caused by data sharing

[173]. Thus, a formal, mathematical model for data privacy is required to address the

issue of privacy. There is a need to build a design mechanism for blockchain usage that

does not compromise data privacy while gaining the benefits of the technology.

We integrate differential privacy based on machine learning with the use of our

blockchain model. The model classifies a given packet to an IoT device in the smart

home scenario. The dataset was created using Wireshark to record network packets in

our private Ethereum network and create a pcap file. The experiment shows that the

differential privacy model has the same accuracy as the plain model, and it guarantees

privacy without sacrificing accuracy.

The analysis presented in this chapter is useful in addressing the thesis’s third

research question. Also, this chapter is the foundation for the following chapter, where

we test our proposed model with Rényi differential privacy on a wider scale with differ-

ent classifier algorithms as a proof of concept. Moreover, we conduct further research

to achieve better privacy guarantee to strongly protect smart home data with better

accuracy.
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6
DIFFERENTIAL PRIVACY MEASURES ON DIFFERENT

DATASETS

The chapter is organized as follows: Section 6.1 introduces the chapter. Section 6.2

describes the threat model. In Section 6.3, we propose our differential privacy model. In

Section 6.4, we discuss the experiment setup. The experiment results are discussed in

Section 6.5. Finally, Section 6.6 summarizes the chapter.

6.1 Introduction

The ever-increasing gathering and transfer of personal information in smart home

networks (along with the possible communication of this data to other wired or wireless

networks) has implications for user security and privacy. In turn, these implications

must be addressed if the full range of affordances and benefits of smart home networks

are to be exploited effectively [130].

The current application of blockchain technology in IoT and smart cities is of interest

to both academia and industry. Blockchain is a disruptive technology emerging from

the digital currency domain which is becoming more widespread in various other areas.

Bitcoin was the first digital currency to successfully apply blockchain technology to

support a tamper-free transaction recording ledger. Ethereum developed the smart

contract via the Ethereum Virtual Machine (EVM) on its blockchain. Smart contracts

enable people to use a trusted computing machine in the blockchain, thus facilitating
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the future use and success of decentralised apps (DApps) [177].

Blockchain is increasingly being identified as the pathway to addressing concerns

about IoT security, reliability, trustworthiness, and scalability [14]. Blockchain adoption

in smart homes lessens security worries around authentication, authorisation, confi-

dentiality, and single point of attack. Blockchain technology is built upon cryptography

that supports digital ledger decentralisation. Rather than using centralised networks, it

utilises a distributed database that retains a chain of blocks. The blocks in the blockchain

are connected by keeping the previous block’s hash to safeguard the blocks from interfer-

ence [75].

However, a lack of user privacy linked to blockchain’s widespread adoption and

implementation remains a major concern [48] [76]. Data confidentiality has subsequently

emerged as an issue of primary importance as smart-home-generated data contain

sensitive content including user health information and location details. The main

concerns about the integrity of blockchain are around attacks related to user privacy

such as linking attacks [59]. Such attacks utilise accessible data recorded in blocks to

gain access to private information by tying the information to alternative datasets or

relevant background knowledge. Attackers may have a greater chance to work out how

to target smart home privacy data. Launching such an attack may include the use of

data mining algorithms, with the process made easier when it involves unencrypted raw

data [48]. Thus, there is a developing sense of urgency for blockchain-based smart home

framework designs to include mechanisms for the preservation of user privacy. Privacy

protections of smart home data aim to permit data usage without disclosure as well as to

reduce data loss when providing published data to service providers.

To date, anonymization and its strategic derivatives have only been identified in the

literature in relation to the preservation of user privacy in blockchain [76]. However,

several studies have demonstrated that anonymization does not offer complete privacy

because anonymized data may be blended with similar datasets to disclose personal

information. To satisfactorily address this problem, the combination of differential

privacy and modern blockchain technology may offer a sustainable solution due to

its dynamism and robust theoretical base [76]. Differential privacy can be applied in

blockchain to access private databases through queries that achieve data aggregation, as

well as to receive user data with statistical differences from sources while maintaining

the user’s chosen privacy levels.

This chapter presents a secure privacy-preserving layered architecture for smart

home based-blockchain. To maintain security among IoT devices, users and the cloud,
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The main contributions are:

1. This chapter presents a secure privacy-preserving layer architecture for smart

home-based blockchain. To maintain security among IoT devices, users and the

cloud, an access control smart contract in private Ethereum blockchain is designed

to authenticate access to IoT smart home devices. Furthermore, to achieve privacy
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an access control smart contracts in private Ethereum blockchain is designed as we

presented in chapter 4. Furthermore, to achieve privacy preservation, the architecture

employs the differential privacy machine learning algorithm to send a private smart

home data to the cloud.

In the context of smart homes that agree to submit their data to a cloud server, our

proposal intends to provide a privacy-preserving data aggregation mechanism, so this

cloud can learn privately from data generated by IoT devices in people’s homes and then

transfer that information to an external entity to improve services for home users.

This chapter is extended further to prove the advantages of using differential privacy

based on our scheme we presented in Chapter 5 of the thesis. In Chapter 5 we used

our own dataset for the experimental part. In Chapter 6 we use differential privacy

techniques with three different IoT datasets consisting large amounts of data and

different machine learning algorithms. Also, we investigate various metrics over and

above accuracy in this chapter. Using differential privacy in our small dataset produced

promising results. We also use three benchmarked datasets and demonstrate how they

perform under different conditions to validate our proposed scheme.

The main objective of the model in this chapter is to protect privacy with complete

accuracy in relation to the model’s predictions when aggregating the data from traffic

analysis attacks, linking and mining attacks by adding Gaussian noise. The implementa-

tion of our model ensures the accuracy of the calculation is reliable and the model utility

is elevated. The accuracy requires that noisy data will not influence the correct output of

any data analysis. Furthermore, correct data are retrievable for further analysis and

investigation while implementing our model.

Undoubtedly, between utility and privacy, there is a trade-off. As a result, while

increasing the privacy budget improves model utility, it also improves inference attack

success rates. Therefore, we are seeking a set of privacy budget ε values that achieve

a balance between utility and privacy, as well as a way to evaluate the exact privacy

leakage that occurs when an inference attack is implemented. We study neural network

models on three different datasets.
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preservation, the architecture employs a differential privacy machine learning

algorithm to send private smart home data to the cloud.

The remainder of the chapter is structured as follows. In Section 2, we present a

review of the related literature. We describe the threat model in Section 3. In Section 4, we

detail the proposed layered architecture, algorithms and datasets used. The experiment’s

setups are described in Section 5 and the experiment results are described in Section

6. Finally, in Section 7, we conclude our work and discuss the potential future scope for

additional work.

6.2 Threat model

The threat assumptions are indicated in this chapter through an elaboration of what

the cloud is required to access from the data in the smart home. First, the blockchain

platform is a trusted party because its features preserve the integrity and availability

of data but may lack confidentiality. Smart contracts are tamper-free and will function

as specified. After the deployment, the code can be seen and checked by anyone. Fur-

thermore, submitted and stored contract data may be read directly by any parties with

access to the blockchain.

As a threat, consideration is given to data consumers such as service providers who

are interested in aggregate statistics generated from smart home sensors. They try to

infer individual data to achieve added benefits such as improving their services via

arbitrary inference methods.
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2. The proposed model’s effectiveness is defined in terms of accuracy, utility and

privacy leakage. Experiments are performed using three publicly available datasets,

the UNSW-NB15 dataset, NSL-KDD dataset and ToN-IoT.

3. We compare the performance on two metrics, accuracy and utility, of our private

algorithm using three IoT-based datasets which have recently been used in recently

related smart-home-based blockchain frameworks.

4. We determine how much privacy leakage our proposed algorithm will allow in

adversarial scenarios such as inference attacks using all three datasets. Through

the evaluation of the private model, we choose different values of privacy budget ε

quantifying privacy leakage, attack accuracy and F1-score.
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This work examines membership inference attacks specifically to demonstrate the

usefulness of its metrics for the evaluation of privacy leakage.

A membership inference attack aims to deduce that a given record exists within

the training set. Such attacks can reveal information from the training data as highly

sensitive. Membership inference attacks may be fully black-box whereby the attacker

has query access only to the targeted model [148] or they may assume full white-box

access to the targeted model by the hacker, in addition to auxiliary information [179].

Shokri et al. [148] first proposed membership inference attacks on machine learning

by considering attackers with the capability to deploy black-box methods to query the

target model to gain confidence scores related to the queried input. Attackers attempted

to manipulate the confidence score to establish the presence of the query input within

the training data. The attack method initially requires the labelled dataset on training

shadow models to then be produced by black-box queries or via assumptions regarding

the underlying training set distribution. Attackers then develop an attack model utilising

shadow models to determine if an input record is present in the shadow training set.

Lastly, attackers then conduct API calls to obtain confidence scores for the stated to

target model input record and deduce if the input is part of the training set. Hence,

inference models distinguish between the target model’s training set input predictions

and the predictions that are not trained on. This is based on the idea that the confidence

score in the target model will be higher in incidences of training compared to arbitrary

instances outside the training set. The cause of this may be the generalisation gap

prominent in models which overfit training data.

The objective of differential privacy is to obscure the existence or absence of dataset

records. The objective of membership inference attack, conversely, is to reveal the exis-

tence or absence of dataset records. Intuitively, the two ideas are in opposition, with some

researchers pointing to the direct relation between differential privacy and membership

inference attacks [183].

To measure privacy leakage in differential private machine learning implementations,

this work evaluates the extent to which an attacker can infer information from a model.

It is to be noted that we measured privacy leakage via the use of membership inference.

6.3 Differential privacy model

In this section, we present the layered architecture with differential privacy. The ar-

chitecture demonstrates a layered access scheme to secure sensitive data as shown in
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Fig. 6.1.

Each layer obtains input queries from the layer above it and invokes appropriate

access policy based on the role of the user. Our main objective is to demonstrate the

functions associated with Layer-3, the differential privacy layer. Our previous work

describes in detail the functions of Layer-1 and Layer-2 [127]. However, we briefly

present the use of these layers as follows:

Figure 6.1: Use of Differential Privacy in a layered architecture

• Client Layer: The client layer accepts queries from different users and sends them

to the access control layer along with their credentials.

• Access Control Layer: The access control blockchain layer is responsible for grant-

ing data access requests. After the client layer executes a smart contract, the

transaction is initiated. The user is granted the necessary access credentials to

perform the transaction based on the inputs submitted to the smart contract. The

smart contract is executed on all nodes attempting to access the data tables. Fol-

lowing this, the block is disseminated over the blockchain network. All network

nodes validate the block, agree on the consensus algorithm, and add the block to

the blockchain. Any user can not modify the smart contract code, and the logic

is always run once a user tries to access data. To allow secure access, the access

control system uses blockchain technology and smart contracts, returning the key

required to conduct the queries. The fundamental benefit of smart contracts is that

any complicated access permission logic may be easily implemented.
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• Differential Privacy Layer: To provide additional protection to sensitive informa-

tion, the differential privacy layer uses differential privacy approaches. Differential

privacy is a perturbation-based computing technique. To maintain privacy, it is

implemented by introducing noise to the data. By doing this, only the owners of the

data have access to the real data. The differential privacy layer is invoked after the

access control layer compels all users to provide all of their queries. Actual results

are adjusted based on the user type to protect individual privacy and operational

privacy. This layer is responsible for moving the data from edge nodes to the cloud

server to make it available for further use and analysis.

As seen in Chapter 4, attribute-based access control is implemented on the Ethereum

blockchain with the user’s roles stored in the access control smart contract. Users can

send queries to the system using a public address. Upon receiving a user’s public address,

the client layer calls the smart contract. If access is allowed, the smart contract returns

the user’s authorisation; otherwise, access is refused. The client layer request is either

transmitted directly to the data repository (for the administrator) or passed through the

differential privacy module if the access control layer so authorises (service accessor).

Users who are not legitimate are, of course, refused access.

6.3.1 Differential Privacy mechanism

In this scenario, we suppose that there are many smart home edge nodes and that there

is one cloud server. The edge nodes have access to the data of IoT devices inside the smart

home. The cloud server can be accessed by service accessors based on their credential.

The service accessors are interested in having access to the data of IoT edge nodes to

undertake analysis by implementing machine learning algorithms. For example, service

accessors can learn how customers interact with their IoT devices and appliances using

specific machine learning algorithms and also learn about customer usage insights, which

guides the development of their future products and services. Also, health providers can

apply machine learning algorithms to user behavioural patterns learned from medical

sensors to detect anomalous behaviour which could be a sign of user health or safety

risk.

Suppose that each edge node has gathered hundreds of IoT packets that have been

passed through it and between different IoT devices inside the smart home. Edge nodes

have access to the label of those packets, which in our scenario shows whether the packet

is malicious or not. Assuming that the number of packets gathered by each edge node
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is not large enough to run a machine learning algorithm on them, the cloud server will

gather all the packets and make it available for further analysis which compromises the

privacy of smart home users. Therefore, we need to consider a way to aggregate the data

to the cloud while ensuring privacy. We propose a private algorithm which adds noise to

the data and results in sending noisy data to the cloud without compromising privacy.

Our algorithm trains the model on private data using differential privacy. Learning

with differential privacy gives verifiable privacy assurances and decreases the danger

of disclosing sensitive training data. A model trained with differential privacy could,

intuitively, be unaffected by any single or small group of training samples in its data

set. The edge nodes actively participate, applying the machine learning algorithm in a

differential private setting. There are a number of alternative approaches that may be

considered. First, edge nodes can add noise (Laplace or Gaussian noise) and make their

data noisy. The noisy data can be sent to the cloud server. The variance of the noise is

related to the level of privacy. The more noise is added, the higher the level of privacy is

provided. On the other hand, more noise results in lower utility.

Second, the edge nodes can be involved in the computation phases of running the

algorithm in the cloud. They can do the computation element of their own data separately

(if applicable) and return the results to the cloud without handing over their data to

the cloud. They can also add noise to the outcome of computations to enact the privacy

of their data. The challenge is to find the level of noise that should be added without

compromising privacy while improving utility. In our scenario, we investigate different

noise levels to attain better privacy with acceptable utility.

6.3.2 Privacy preserving Differential Privacy Model

This section demonstrates how we apply differential privacy in machine learning systems,

with an emphasis on the privacy budget variations that have been made to achieve

acceptable utility. The choice of privacy budget (ε) is critical to the effective privacy given

by differential privacy mechanisms. While higher privacy budgets provide better utility,

a lower privacy budget provides better privacy.

On the prepared data, we explore two distinct methods for training the machine

learning algorithm. Non-private algorithms without considering privacy and private

algorithms are investigated. Fig. 6.2 shows the two steps that distinguish the two

algorithms.

For both algorithms, we train a three-layer neural network on the data and analyze

the method outputs including the confusion matrix based on the scenario previously
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(a) Non-private SGD

(b) Private SGD

Figure 6.2: Non-private SGD and private SGD algorithms’ steps

explained. For this, the activation function is used to determine the output of each node

on the neural network. ReLU is the most used activation function while working with

fully connected deep neural networks [13]. The function returns 0 if it receives any

negative input, but for any positive value x, it returns that value. The vanishing gradient

problem is solved using ReLU, which allows the model to learn faster and perform better.

The optimizer uses the algorithm to change the attributes of neural networks such as

weight and learning rate to reduce the losses and, hence, provide more accurate results.

We use stochastic gradient descent (SGD) as one of the most common and successful

optimisation methods [84]. SGD is an iterative procedure. Each iteration takes a random

sample of data from the training set (this is where stochasticity comes from). The error

between the model’s prediction and the training labels is then calculated. The loss is then

discriminated in relation to the model’s parameters. These derivatives (or gradients)
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indicate how each parameter should be updated to bring the model closer to correctly

predicting the label. Iteratively recomputing gradients and using them to update the

model’s parameters is referred to as the descent [65].

6.3.3 Non-private Algorithm

As previously mentioned, this algorithm has no regard for privacy and the data is sent

directly to the cloud server. The algorithm specification is as follows

• Model: three-layer neural network

• Loss function: categorical cross entropy

• Optimizer: Stochastic Gradient Descent

• Number of epochs (training rounds): 10

model = tf keras.Sequential([

tf.keras.layers.Dense(64, activation='relu'),

tf.keras.layers.Dense(32, activation='relu'),

tf.keras.layers.Dense(2, activation='softmax' ])

model.compile(optimizer-'SGD',

loss-tf.keras.losses.SparseCategoricalCrossentropy(fromlogits-True)

,metrics=-['accuracy'])

model.fit(X train, y train, epochs=10)

6.3.4 Private Algorithm

The concept underlying this method, known as differential private stochastic gradient

descent (DP-SGD), is to adjust the gradients used in SGD, which is at the core of nearly

all deep learning algorithms by injecting calibrated noise into the training gradients.

As shown in Fig. 6.3, the model trained with DP-SGD provides verifiable differential

privacy guarantees for their input data. Using the Gaussian mechanism, the framework

can successfully screen and classify the normal packets while ensuring and guaranteeing

the privacy of all data.

The major process for training a model with privacy-specific hyperparameters is

summarized as the follows:

1. Compute the gradient for a random subset of examples.
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Figure 6.3: Learning using DP optimizer

2. Clip the L2 norm of each gradient.

3. Compute the average gradients.

4. Add some noise to protect privacy.

5. Take a step in the opposite direction of this average noisy gradient.

6. Obtain model output.

"DP-SGD has three privacy-specific hyperparameters and one existing hypermeter that

must be tuned to obtain fine-grain results.

• l2_norm_clip (float) - The maximum Euclidean (L2) norm of each gradient that

is applied to update model parameters. The optimizer’s sensitivity to individual

training points is limited by this hyperparameter.

• Noise_multiplier (float)- The amount of noise sampled and added to gradients

during training. Generally, more noise results in better privacy (frequently, but not

always, at the cost of reduced utility).

• Microbatches (int) - Each batch of data is split in smaller units called microbatches.

By default, each microbatch should contain a single training example. This allows

us to clip gradients on a per-example basis rather than after they have been

averaged across the minibatch. This, in turn, decreases the (negative) effect of

clipping on a signal found in the gradient and typically maximizes utility. However,

increasing the size of microbatches to include more than one training example can
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reduce computational cost. The average gradient across these multiple training

examples is then clipped. The total number of examples consumed in a batch,

i.e., one step of gradient descent, remains the same. The number of microbatches

should evenly divide the batch size.

• Learning_rate (float) - This hyper parameter already exists in vanilla SGD. Each

update becomes more important as the learning rate increases. A low learning

rate may assist the training procedure in converging if the updates are noisy

(for example, when the additive noise is considerable compared to the clipping

threshold)" [128].

Table 6.1 shows the parameters and specifications of the algorithm shown below:

Table 6.1: Architecture of ANN AutoEncoder using DP-SGD

Number of layers 3

Activation function in the
hidden layers

ReLU

Optimizer DPGradientDescentGaussian

Number of epochs 10

Number of micro batches 100

Number of sample data for
each edge node

100

l2_norm_clip 1.5

noise multiplier 1.5, 2.5

model = tf.keras. Sequential([

tf.keras.layers.Dense(64, activation='relu'),

tf.keras.layers.Dense(32, activation='relu').

tf.keras.layers.Dense(2, activation-'softmax!)])

optimizer = DPGradientDescentGaussianOptimizer(

12 norm clip=12 norm clip,

noise multiplier=noise_multiplie,

num microbatches=num_microbatches,

learning rate=learning_rate)
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loss = tf.keras.losses. CategoricalCrossentropy(

from logits-True, reduction tf.losses.Reduction.NONE)

model compile(optimizer=optimizer, loss=loss, metrics= ['accuracy'])

model.fit(X train, y train,

epochs=epochs,

validation data=(X test, y test),

batch size-batch size)

6.3.5 Selection and description of the smart home dataset

To evaluate and test our proposed model, we used three different IoT datasets.

Firstly, we use the UNSW-NB15 dataset, which is a new generation of Internet of

Things (IoT) and Industrial IoT (IIoT) datasets to evaluate the fidelity and efficiency of

different cybersecurity applications based on artificial intelligence (AI). It was created

by UNSW Canberra’s Cyber Range Lab, which is part of the Australian Center of Cyber

Security. We chose UNSW-NB 15 since it is one of the newest datasets and in widespread

usage today, giving realistic representations of both normal (non-malicious) network

traffic and a variety of botnet network attacks [89].

Secondly, NSL-KDD is an effective benchmark dataset to help researchers compare

different intrusion detection methods. This dataset is an improvement over KDD’99 data

set, from which duplicate instances were removed to remove biased classification results.

This dataset contains a standard set of data to be audited, which includes a wide variety

of intrusions and has been the most widely used dataset for the evaluation of anomaly

detection methods [87].

Thirdly, the ToN-IoT dataset was created by UNSW Canberra Cyber IoT Lab, School

of Engineering and Information Technology (SEIT), UNSW Canberra @ The Australian

Defense Force Academy (ADFA) from a practical and large-scale network. A variety of

normal and cyber-attack events from IoT networks were compiled in parallel processing

for the dataset [92]. Prior to analyzing data and training ML algorithms on the datasets,

we processed them and prepared them for the application of the algorithms. We performed

the following steps as data cleaning and preprocessing:

1. Drop the unnecessary columns of data.

• Drop rows with missing values.

• Drop columns with text explanations.
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• Drop duplicate rows.

2. Separate labels and data.

• Split X and y (label - actual values) for test dataset.

3. Normalize data.

• Transform or convert the dataset into a normal distribution.

• Split data frame into training and testing data.

6.4 Experimental Setup

This work uses a fully connected deep neural network and creates a classification model

to train and then build multiple classification models which can classify attacks based

on the type of network traffic versus the normal type of network traffic. We used 3 layers

for the autoencoder and DP-SGD (differential private stochastic gradient descent) as an

optimizer function.

We evaluated the neural network’s differential private algorithms using gradient

perturbation. We considered Rényi differential privacy (RDP) [106] with a different

privacy budget and compared their accuracy, utility, and privacy leakage. We evaluated

the models on three main metrics:

• Firstly: accuracy, the model’s accuracy on the test set in comparison to the non-

private baseline.

• Secondly: model utility based on accuracy loss as defined by [84]. This is determined

by the differences between the accuracy of the non-private model and the private

model.

• Thirdly: privacy leakage is defined by [179] the calculation of the differences

between the adversary’s true and false positive rates for membership inference

attacks. We also use the attack accuracy and F1-score to quantify the model’s

vulnerability.

We use the confusion matrix [89] to compare the performance of both ML algorithms

provided in the preceding section to evaluate accuracy. As shown in Table 6.2, the two

possible outputs either "1" (attack identified) or "0" (normal network traffic), are already

in the evaluation (test) dataset when we check the classifications against actual values.
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The metric accuracy is created by combining the TP, TN, FP, FN values, which we can

use to evaluate the classifiers.

Accuracy refers to the probability of a record being correctly identified as an attack

or normal traffic. The calculation of accuracy (overall success rate) is based on Equation

5.3.

Table 6.2: Classification outcomes

Actual neg-
ative

Actual pos-
itive

Predicted Negative TN FP

Predicted positive FN TP

To clearly represent the model utility, the accuracy loss of non-private and private

models is normalised with regard to the accuracy loss of private models. An accuracy

loss value of 1 indicates that the model loses 100% of its accuracy and hence has no

benefit, whereas a value of 0 indicates that the model reaches the same accuracy as the

non-private baseline.

An inference attack is evaluated using a 20,000-record set, 10,000 of which come from

the training set and another ten thousand come from the testing set[84]. The records

in the training set are referred to as members, while the records in the other sets are

referred to as non-members. The attacker is unaware of these labels. The attacker’s

goal is to determine if a particular input record belongs in the training set. The privacy

leakage metric is computed by subtracting the inference attack’s true positive rate (TPR)

from its false positive rate (FPR). As a result, the privacy leakage metric is always in the

range of 0 to 1, with 0 signifying no leakage.

The attacker accuracy reports the proportion of instances properly predicted to be

members of the target model’s training dataset. The F1-score is a statistic that combines

the precision and recall measures into a single value. In our case, precision refers to

the ratio of proper anticipation of input being members of the target model’s training

dataset, whereas recall refers to the proportion of input projected to be members of the

target model’s training dataset that are actually members.

6.4.1 Model Scenario

In this scenario, we suppose that there are numerous smart home edge nodes and there

is one cloud server. The edge nodes have access to the data of IoT devices inside the smart
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home. The cloud server can be accessed by service accessors based on their credentials.

The service accessors are interested in having access to the data of IoT edge nodes to

undertake analysis by implementing machine learning algorithms. For example, service

accessors can learn, using specific machine learning algorithms, how customers interact

with their IoT devices and appliances and can also learn about customer usage insights

to guide the development of their future products and services. Also, health providers can

apply machine learning algorithms on user behavioural patterns learned from medical

sensors to detect anomalous behaviour which could be a sign of user health or a safety

risk.

Suppose that each edge node has gathered hundreds of IoT packets that have been

passed through it and between different IoT devices inside the smart home. Edge nodes

have access to the label of these packets, which in our scenario shows whether the packet

is malicious or not. Assuming that the number of packets gathered by each edge node

is not large enough to run a machine learning algorithm on them, the cloud server will

gather all the packets and make them available for further analysis, which compromises

the privacy of smart home users. Therefore, we need to consider a way to aggregate the

data to the cloud while ensuring privacy. We propose a private algorithm which adds

noise to the data and results in sending noisy data to the cloud without compromising

the privacy.

To reiterate, our algorithm trains the model on private data using differential privacy.

Learning with differential privacy gives verifiable privacy assurances and decreases the

danger of disclosing sensitive training data. A model trained with differential privacy

could, intuitively, be unaffected by any single or small group of training samples in its

data set. The edge nodes actively participate in applying the machine learning algorithm

in a differential private setting. A number of alternative approaches may be considered.

First, edge nodes can add noise (Laplace or Gaussian noise) and make the data noisy.

The noisy data can be sent to the cloud server. The variance of the noise is related to the

level of privacy. The more noise is added, the higher the level of privacy that is provided.

On the other hand, more noise results in lower utility.

Second, the edge nodes can be involved in the computation phases of the algorithm

running in the cloud. They can do the computation part of their own data separately (if

applicable) and return the results to the cloud without handing over their data to the

cloud. They can also add noise to the outcome of computations to ensure the privacy of

their data. The challenge is to find the level of noise that to add without compromising

privacy along with improving utility. In our scenario, we investigate different noise levels
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to attain better privacy with acceptable utility.

6.4.2 Training membership attack model

In our attack framework instantiation, we use five shadow models with the same model

architecture as the target model. The inference model is made up of two 64-layer hidden

layers in a neural network. This setting is consistent with the original work[148].

1. Compute the prediction vector y = fI shadow(x) for every (x, y) ∈ Dtrain shadow i.

2. Set Dtrain attack, to the attack training set and add the record (y,y, in).

3. Let Dtest shadow I be a set of records disjoint from the training set of the ith

shadow model.

4. Then, ∀(x, y)∈ Dtest shadow i, prediction vector y= fI shadow(x) is computed and
the record (y,y, out) is added to the attack training set Dtrain attack.

5. Finally, divide the Dtrain attack into ctarget partitions, each with its own class

label. Train a separate model for each label y that predicts whether x is in or out

of the membership set based on y [148].

6.5 Experimental Results

6.5.1 Model Accuracy

The confusion matrices of our classification algorithms are listed in Fig. 6.4 for the three

different datasets: the UNSW-NB15 dataset, NSL-KDD and ToN-IoT.

(a) UNSW-NB15 dataset (b) NSL-KDD dataset

(c) ToN-IoT dataset

Figure 6.4: The confusion matrices of our classification algorithms
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To calculate the accuracy from the confusion Matrix and equation 5.3, the accuracy

of the non-private algorithm for UNSW-NB15 dataset will be:

Accuracy (OSR)= (TN+TP)/(TP +FP+TN+FN)

=(20601+43352)/(43352+1980+20601+16399) =0.77

While for the private algorithm:

Accuracy (OSR)= (TN+TP)/(TP +FP +TN+FN)

= (17818+ 45295)/(45295+ 37+ 17818+19150) = 0.76

Therefor, as Table 6.3 and Fig. 6.5 shows, the baseline model for the non-private

model in the UNSW-NB15 dataset has a test accuracy of close to 77% while for the

private model, the accuracy is 76%. In comparison, ANN achieves an accuracy of 63%

in [89]. Using the same equation for the NSL-KDD dataset, the test accuracy of the

non-private algorithm is 80% while in the private algorithm it is 79% compared with past

results [87] at 80% also, in the ToN-IoT dataset the accuracy is 69% for the non-private

algorithm and 74% for the private one.

Table 6.3: Performance evaluation of private algorithms compared with non-private
algorithms

Classifier UNSW-NB15 NSL-KDD ToN-IoT

ANN 63% [89] 81%[87] 77%[92]

Non-private 77% 80% 69%

Private 76% 79% 74%

private-K-Fold 91% 95% 76%

It is worth noting that the accuracy of the private model increases dramatically when

using private-K-fold in all the three datasets. The accuracy is similar in all 10 folds. This

means that our algorithm is consistent and we can be confident that training it on any

data set and deploying it in production will lead to similar performance.

It should be pointed out that the comparison presented above is based on the three-

layer ANN and other cases which have been cited. The use of K-fold is to make full use

of all the data in the datasets; we have similar results with all the fold.

In the UNSW-NB15 dataset, when the privacy budget ε is set to 10−1 , our experiment
demonstrates that the accuracy of our private model is extremely similar to that of a

non-private model, as well as the model previously presented over the same dataset

[89]. In the NSL-KDD dataset, when the privacy budget ε is in 10−2, our private model’s
accuracy is very close to that of the non-private model and model in [87], while in the
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Figure 6.5: Overall performance comparison in terms of accuracy using UNBS-NB 15,
NSL-KDD, ToN-IoT datasets

ToN-IoT dataset the accuracy is close to the non-private model when the privacy budget

ε is 10−1.
As a result, this classification method’s accuracy is comparable to that of the non-

private classification method. It is shown through our experiments that the private

model has the same accuracy as that of the non-private model and other models in

distinguishing between botnet and normal network traffic. Thus, there is not great

performance loss. Both the theoretical analysis and experiment results demonstrate

that the private algorithm can efficiently and effectively perform data classification in a

private setting without leaking private information and compromising privacy.

6.5.2 The impact of different choices of privacy budget on both
utility and privacy

The model’s utility increases as the privacy budget is increased. However, accuracy falls

as the privacy budget rises. As a result, we look for a range of values of ε to balance

utility and privacy.

Note that the privacy budget has an inverse relationship to the noise level. Conse-

quently, from a differential privacy point of view, we are searching for a point with the

highest noise level that still has good utility compared to the base classifier. We calculate

the value of ε for the noise multiplier using the code given below:

noise = p.linspace (0.01, 5, 10)
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epsilon = [1]

for noise mltp in noise:

eps, ord = compute_dp_sgd_privacy.compute_dp_sgd _privacy

(n=N, batch_size=samples of each_node,

noise multiplier=noise mltp,

epochs=10, delta=1e-5)

epsilon. append (eps)

Table 6.4 shows the value of the privacy budget ε based on the noise multiplier. To

Table 6.4: Privacy budget ε and noise multiplier

Noise ε

3 ≈ 10−3

2.5 ≈ 10−2

1.5 ≈ 10−1

0.8 ≈ 100

0.4 ≈ 101

0.1 ≈ 102

0.01 ≈ 103

evaluate the impact of different privacy budgets ε in terms of accuracy, we evaluate

different values of ε, ranging from ε= 10−3 to ε= 103 as shown in Fig. 6.6.

Based on the principle of differentiated privacy, a smaller privacy budget ε gives

higher privacy protection. However, we can see that as the privacy budget is reduced,

accuracy decreases, indicating that there is a trade-off between the level of privacy

and prediction accuracy. The private algorithm achieves model accuracy close to the

non-private baseline for ε = 10−1,10−2. As a result, the optimal value to add noise in the
UNSW-NB15 dataset and ToN-IoT dataset was 2.5 whereas it was 1.5 in the NSL-KDD

dataset which achieves an accuracy closer to the non-private model and increases the

model utility.

6.5.3 Model utility

As privacy budget ε is varied, Fig. 6.7 compares the accuracy loss for the models trained

using Rényi differential privacy’s relaxed notions of differential privacy. As depicted in

Fig. 6.7, the three datasets achieve an accuracy loss close to 0 when using optimal noise
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(a) UNSW-NB15 dataset (b) NSL-KDD dataset

(c) ToN-IoT dataset

Figure 6.6: Impact of different privacy budgets ε and level of noise on accuracy

values with privacy budget is ε = 10−1 for UNSW-NB15 and ToN-IoT datasets and ε =

10−2 for the NSL-KDD dataset. This indicates the high utility of the private algorithm

in all three datasets.

Figure 6.7: Accuracy lost for different privacy budget ε
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6.5.4 Privacy Leakage

In our case, the main attack is membership inference, which involves identifying whether

or not a given data item is part of the model’s training dataset. When an adversary

has complete knowledge of a record, learning that it was used to train a specific model

indicates that information is leaking through the model. On the three datasets, UNSW-

NB 15, NSL-KDD, and ToN-IoT, our inference attacks can be used as metrics to assess

privacy leaks from the model. Fig. 6.8 shows the overall amount of privacy leakage

using the non-private algorithm and the private algorithm. Due to model over fitting,

Figure 6.8: Privacy leakage

the impact of privacy leakage is substantially more severe for the non-private model

disclosing over 30%, 60% and 20% of training set members, compared to only 17%, 11%

and 15% for the private model for UNBS-NB 15 NSL-KDD and ToN-IoT respectively. The

privacy mechanisms provide a substantial reduction in exposure in all three datasets.

In adversarial scenarios, we investigate how much privacy leakage the Rényi dif-

ferential privacy relaxed notions allow. On the three datasets, we empirically evaluate

privacy leakage using the relaxed differential privacy notions for various selected privacy

budget values ε. Our experiment’s main objective is to see how actual privacy leaks that

an attacker can exploit in practise are influenced by implementation decisions regarding

the privacy budget and relaxed notions of differential privacy.

Fig. 6.9 depicts the privacy leakage caused by membership inference attacks on

private models trained using Rényi differential privacy. The amount of noise added to

the model, the privacy budget ε, corresponds to the degree of privacy leakage associated

with each variant of differential privacy. The model can withstand an attack for ε <10−1
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Figure 6.9: Privacy leakage trained with different privacy budget ε

and 10−2, but the model discloses some privacy leakage for higher ε values. The leakage

is significant at higher privacy budget ε values due to model overfitting. For ε = 102, the

model has leakage of more than 25% in all three datasets. Thus, the model provides both

acceptable model utility and meaningful privacy when the ε value is less than 10−1.

To maximise model utility while minimising inference risk, Rényi differential privacy

gives tighter cumulative noise limitations that reduces the amount of noise that can

be generated. As a result, privacy is not free and lowering the noise requirements by

relaxing the Rényi differential privacy definition brings with it additional privacy risks.

While these definitions nevertheless satisfy the(ε;δ)-differential privacy claims, the

practical utility of these assurances diminishes rapidly as the privacy budget ε rises.

6.5.4.1 Attack Accuracy

On the UNSW-NB15 dataset, Fig. 6.10a displays the membership inference attack

accuracy against private and non-private models. As predicted, the non-private model

reveals a significant amount of information about its training dataset. As a result, attack

accuracy ranges from 53% to 68%, which is immediately above the baseline of 50%. The

plots for the private model with privacy budget ε = 10−1 demonstrate that the attack
accuracy against the related models is not statistically significant and is practically as

low as the baseline. This result shows that the private model has the ability to protect

against an adversary who knows everything about the training mechanism and model

parameters for these specific values of the privacy budget ε for this dataset.

On the other hand, a privacy budget of ε= 101 achieves higher attack accuracy but
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(a) UNSW-NB15 dataset (b) NSL-KDD dataset

(c) ToN-IoT datasets

Figure 6.10: Attack accuracy

with lower model utility, as discussed earlier regarding privacy lost in Fig. 6.7. Therefore,

the private model may be able to withstand strong adversaries while decreasing model

utility (e.g., more privacy for less accuracy). Nonetheless, when providing an appropri-

ate utility level for ε= 10−1, it demonstrates modest vulnerability to the membership
inference attack.

On the NSL-KDD dataset, Fig. 6.10b exhibits the attack accuracy of the membership

inference attack against private and non-private models. Compared to the UNSW-NB15

dataset, for different ε values, the membership inference attack on the NSL-KDD dataset

is more successful.

With a particular interest in the optimal value of the privacy budget for ε= 10−2, this
model’s attack accuracy is around 50%, which is quite close to the baseline, resulting in

significant information leakage regarding the training data. However, referring back to

Fig. 6.6b, we can observe that the private model requires a minimum privacy budget of

ε= 10−2 to achieve a comparable accuracy on the NSL-KDD dataset. Consequently, it

is vulnerable to membership inference attacks when giving an acceptable utility level
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(e.g., ε= 10−2), although it may provide security against such attacks by reducing model
utility by a minor margin.(e.g., ε= 101 or above).

In the ToN-IoT dataset, Fig. 6.10c demonstrates similar results to the UNSW-NB15

dataset for the private model with different privacy budget ε. The attack accuracy

against the related models is insignificant and is nearly as low as the baseline. This

result demonstrates that the private model has the potential to provide protection against

a strong adversary.

6.5.4.2 F1-Score

Since the attack model’s test dataset includes an equal number of members and non-

members, our classifier’s recall is 1.0 and precision is 0.5, resulting in a baseline F1-score

of 0.67.

Table 6.5: F1-score on the three datasets

Baseline
Non-
private

Optimal ε

value
ε= 101

UNSW-NB15 0.67 0.53 0.44 0.75

NSL-KDD 0.67 0.54 0.49 0.61

ToN-IoT 0.67 0.45 0.42 0.49

Table 6.5 shows an average F1-score for 10 epochs of the membership inference attack

against the private models (achieved by varying the privacy parameter ε) as well as a

non-private model on the three datasets.

The F1-score results in the UNSW-NB15 dataset following a similar pattern with

regards to accuracy, with the F1-score for the optimal value being significantly below the

baseline. The F1-score with a privacy budget of ε= 101, on the other hand, clearly shows

a high level of vulnerability to membership inference attacks, with the vulnerability

approaching that of the totally non-private model. This is consistent with the attack

accuracy scores we obtained on this dataset, and therefore, repeats the observation that

the private model with ε= 101 on UNSW-NB15 dataset cannot survive the membership

inference attack.

In the NSL-KDD dataset, as before, while the private model with a privacy budget

of ε = 10−2, is unable to live up to its promise to survive privacy attacks, for these

models, the F1-score of the attack is typically lower than the baseline. Nevertheless,

the private model with a value of ε = 101 is vulnerable to a membership inference
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attack, making it nearly as bad as the totally non-private model. Similarly for attack

accuracy, the membership inference attack reaches a higher F1-score on NSL-KDD than

on UNSW-NB15.

For ToN-IoT datasets, F1-scores are under the baseline for the different private

models as achieved by varying the value of ε as well as for a non-private model. For the

optimal ε value the F1-score is the lowest, keeping its promise to survive the privacy

attacks. The model also resists the attacks even when using a higher ε value and has

a similar F1-score to the non-private model. This is in line with the attack accuracy

results we attained on this dataset, therefore, confirming that a private model with

varied values of ε on the ToN-IoT dataset can withstand a membership inference attack.

On the other hand, it may cause poor model utility. Therefore, the optimal value ε= 10−1

is the best privacy budget value to offer an acceptable utility level on this dataset.

In some circumstances, such as the NSL-KDD dataset, our experiment results in-

dicate that private models with higher utility levels are vulnerable to a membership

inference attack. This vulnerability is comparable to that displayed by non-private

models. Furthermore, when offering an acceptable utility level, it reveals moderate

vulnerability to the membership inference attack in both UNSW-NB15 and ToN-IoT

datasets.

We use attack accuracy and F1-score as performance metrics to quantify the private

model’s vulnerability. This analysis also explains the amount of the privacy parameter ε

that is recommended, to protect from membership inference attack. Moreover, it suggests

optimal values for ε that may offer a good trade-off between utility and privacy for the

private model.

6.6 Summary

In this chapter, a privacy-preserving secure data aggregation method achieve by inte-

grating blockchain and differential privacy in the context of smart homes is presented.

Differential privacy has earned a reputation for providing verified privacy. However, to

preserve utility, compromises must be made when it is employed for complex tasks like

machine learning. It is important to properly comprehend the privacy consequences of

these compromises. Our findings contribute to that understanding by revealing that

commonly used deferential privacy relaxations such as Rényi differential privacy (RDP)

may result in unacceptable utility-privacy trade-offs. Our techniques use TensorFlow

machine learning software and are based on a differential private variant of stochastic
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gradient descent. The performance of the proposed framework was evaluated with three

public datasets UNSW-NB15, NSL-KDD and ToN-IoT.

The experimental results demonstrate that the proposed framework outperforms

some of the existing state-of-the-art techniques in terms of accuracy. We further sys-

tematically study the impact of membership inference attack against the differential

private model. According to our findings, differential private models can only offer pri-

vacy protection against adversaries by sacrificing model utility to a substantial extent.

As a result, we propose an empirical value of ε that optimally balances utility and privacy

for the current datasets’ smart home scenario. According to our results, our proposed

architecture can ensure increased protection for smart home privacy.
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CONCLUSION

In this chapter, we present all of the thesis questions as well as the evaluation outcomes.

We highlight the key contributions of this research to the scientific research community.

Towards this end, we discuss potential future works.

7.1 Summary of the thesis

The Internet of Things (IoT) has been a major talking point amongst technology en-

thusiasts in recent years. The IoT has been emerged and evolved rapidly, making the

world’s fabric around us smarter and more responsive. The smart home uses one such

transformation of IoT, which seems to be the wave of the future. However, with the

increasingly wide adoption of IoT, data security, and privacy concerns about how our

data is collected and shared with others has also risen. To solve these challenges, an

approach to data privacy and security in a smart home using blockchain technology is

proposed in this thesis.

As discussed in previous chapters, we propose an authentication scheme that com-

bines attribute-based access control with smart contracts and edge computing to create

a secure framework for IoT devices in smart home systems. The edge server adds scal-

ability to the system by offloading heavy processing activities and using a differential

privacy method to aggregate data to the cloud securely and privately. Furthermore, we

present several aspects of testing and implementing smart contracts, the differential

private stochastic gradient descent algorithm, and system architecture and design.
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We demonstrate the efficacy of our proposed system by thoroughly examining its

security and privacy goals in terms of confidentiality, integrity, and availability. Our

framework achieves the desired security and privacy goals and is resilient against

modification, DoS attacks, data mining and linkage attacks. Finally, we undertake a

performance evaluation to demonstrate the proposed scheme’s feasibility and efficiency.

The proposed work is summarised in the following.

This thesis introduced three major significant parts required to provide security and

privacy-preserving mechanisms in the context of smart homes . These parts have been

discussed, implemented, and tested in Chapters 3, 4, 5, 6 of this thesis. The research

questions posed in Section 1.3 have been addressed in Chapters 3 through 6.

In Chapter 3, research question one is answered by developing a smart home frame-

work that allows IoT devices to communicate securely with each other in the smart

home context. We build a prototype of a private Ethereum network powered by smart

contracts simulating IoT smart home devices on Raspberry Pis. This is accomplished by

developing and analysing simplified smart contracts on the Ethereum blockchain as a

proof of concept. Our framework is based on the fact that the Ethereum blockchain is

tamper-proof and that the user keeps his private key in a secure manner. Also, because

of the signed digital transaction and the blockchain’s decentralised nature, attackers

are unable to gain access to the network or impersonate a real user. However, several

improvements to the prototype are considered in the next chapters.

In Chapter 4, research question two is answered. We further improve our prototype

by proposing an authentication scheme which integrates attribute-based access control

using smart contracts with an ERC-20 token (Ethereum Request For Comments) and

edge computing to construct a secure framework for IoT devices in a smart home system.

The edge server provides scalability to the system by offloading heavier computation

tasks to the edge servers. We present the system architecture and design and discuss

various aspects related to the testing and implementation of smart contracts. We show

that our proposed scheme is secure by thoroughly analysing its security goals with

respect to confidentiality, integrity and availability. Finally, we conduct a performance

evaluation to demonstrate the feasibility and efficiency of the proposed scheme.

In Chapter 5, research question three is answered by extending our earlier framework

and expanding the functional capabilities of our framework by adding differential privacy

as a scheme to preserve the privacy of users. To send data from a private smart home to

the cloud, we use machine learning and the differential privacy mechanism. We develop a

decentralized, secure and privacy-preserving stochastic gradient descent (SGD) algorithm
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1. It employs blockchain technology as a distributed ledger to allow users and IoT

devices in smart homes to be easily authenticated without relying on a trusted

authority. This answers the thesis’s first research question by demonstrating how

the experimental prototype of Ethereum smart contracts can be used to secure

access to smart home devices.

2. It uses ERC-20 token generation and an attribute-based access control mechanism

that utilizes Ethereum smart contracts integrated with edge computing (servers)

for authenticate user access to IoT smart home devices.

3. It incorporates blockchain and edge computing to set up a decentralised system to

improve computing capabilities by divesting the mining and storage jobs to edge

servers. The work on chapter four and six show better evaluation of our proposed

architecture when compared with other work and that tackle the research question

two.
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using blockchain. The experiment has been conducted to detect and classify a type of

device in a private blockchain of the smart home. To provide accurate representations of

the devices we use in the experiment, the dataset was produced by generating a pcap file

using Wireshark to capture the network packets in our private network.

In Chapter 6, research question four is answered by assessing the performance of

the differential privacy algorithm performance in three publicly available IoT datasets

UNSW-NB15, NSL-KDD and ToN-IoT. We wanted to provide a more secure privacy

guarantee for highly secure smart home data that was both more accurate and useful.

The main purpose of using differential privacy as a privacy preserving scheme is to limit

what can be inferred about individual training data from the model. Our techniques use

the Rényi differential privacy (RDP) machine learning scheme and are based on a variant

of the stochastic gradient descent function. Our findings show that differential private

models can provide privacy protection against attackers by sacrificing a substantial

amount of model utility. Therefore, we propose an empirical value of ε which optimally

balances utility and privacy for the current smart home scenario datasets.

7.2 Contribution of the research

The research proposes a blockchain-based security and privacy framework to solve

security challenges regarding IoT devices in smart home systems.



CHAPTER 7. CONCLUSION

This study focuses on developing a blockchain-based security and privacy framework

that can offer a higher level of security in smart home systems while also introducing a

decentralized approach to defend against the attacks mentioned above.

7.3 Future Directions

• Part-I of our thesis considered standard blockchains, i.e. Ethereum. This can be

further improved by including a large number of IoT devices to check the scalability

of the proposed framework. Also, our work can be enhanced by implementing the

framework using other blockchain platforms such as Hyperledger Fabric and IBM

Blockchain to achieve better performance and result.

• Part-II of our thesis is to explore the security of our framework. We build smart

contracts that utilize attribute access control to authenticate users and IoT devices
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4. It achieves security goals (confidentiality, integrity, and availability) and can over-

come modification, DoS, linking, and inference attacks. That clearly answer the

research question four by implementing several defence using the access control in

chapter four and all related results has been explained in the chapter, and privacy

mechanism in chapters five and six.

5. It ensures data privacy; the framework employs the differential privacy machine

learning algorithm to send private smart home data to the cloud, this solve the

research question three. According to our findings, differential private models

can only provide privacy protection against attackers by significantly reducing

model utility. Therefore, for the current datasets smart home scenario, it offers an

empirical value of privacy budget ε that optimally balances utility and privacy.

6. It ensures the accurate classification of machine learning algorithms while increas-

ing model privacy. The accuracy of any data analysis demands that noisy data have

no impact on the correct output. Moreover, while adopting our approach, accurate

data can be retrieved for additional analysis and enquiry. This has been addressed

in chapter six where threat models, testing and measurement have been used

to answer the research questions four. We Develop a new scheme for the threat

analysis procedure using differential privacy algorithm. Moreover, we thoroughly

test the proposed scheme against membership inference attack in particular to

show how effective its metrics are for assessing privacy leakage.



7.3. FUTURE DIRECTIONS

and ensure system resilience against modification and DoS attacks. The implemen-

tation can also be utilized to study the security of the framework against a broad

range of possible smart home attacks.

• Part-III of our thesis related to privacy. The architecture employs a differential

privacy machine learning algorithm to send private smart home data to the cloud.

The proposed model’s effectiveness is defined in terms of accuracy, utility and

privacy leakage. We would like to improve these metrics by using larger datasets.

Another interesting direction is to look into the impact of different differential

privacy neural network models on membership inference attacks.

• As future work, A trust measure, how to ensure trust or measure trust in blockchain

environment can be considered which potentially moves toward a more robust

solution for a blockchain-based smart home framework.
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