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Thesis abstract

Exposure of marine life to low oxygen is accelerating worldwide as a consequence of climate
change and localized pollution. Global coral populations have been in significant decline now since
the 1950s, experiencing widespread fatal bleaching episodes (i.e., loss of their symbiotic algae).
However, only recently have such events been proposed to be directly associated with an

inadequate oxygen supply (hypoxia).

I first examined the mechanistic basis for coral hypoxia stress response systems between two
common reef-building Acropora species reported to have differential bleaching thresholds to heat
stress in the field. As expected, only the less stress-tolerant species bleached under night-time
deoxygenated conditions, corresponding to contrasting gene expression profiles indicative of

varied effectiveness of their hypoxia-inducible factor (HIF) hypoxia response system (HRS).

I next considered how the responses observed for adult corals applied to coral larvae, where the
latter exhibit very different physiologies related to their predominant free-living planktonic
(without photosynthetic algae symbionts) versus benthic stages. Despite exhibiting a consistent
swimming phenotype compared to control samples, coral planulae demonstrated similar HIF-HRS
expression to the adult and differential gene expression that reflected a disruption of pathways
involved in developmental regulation, mitochondrial activity, lipid metabolism, and O,-sensitive

epigenetic regulators.

I then incorporated deoxygenated seawater into short-term heat assays and demonstrated that
deoxygenation can lower the thermal limit of an Acropora coral species by as much as 0.4 °C and
1°C based on the maximum photosystem II (PSII) photosynthetic efficiency and bleaching index
score, respectively. I showed that even heating alone activates putative genes key to the HIF-HRS,
which may suggest that a hypoxic state is reached in the coral tissue under heat stress, possibly as

a result of an O,-intensive stress response.



Hypoxia stress associated genes I identified from model Acropora corals were then considered
against genomic gene sets of a wider range of coral species based on the notion that a variation in
gene copy number can result in differential gene expression with subsequent differences in the
effectiveness of any given stress response. Therefore, I used an ortholog-based meta-analysis to
investigate how the hypoxia gene set inventory differed amongst 24 coral species. Interestingly,
the highest gene copy number was consistently presented by Porites lutea, which is considered to
exhibit inherently greater stress tolerance to bleaching. As such, the unevenly expanded (or
reduced) hypoxia genes presented here provide key genes of interest to target in examining (or

diagnosing) coral stress thresholds.
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