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ABSTRACT 

Waste/wastewater treatment often rely on microbes and biotransformation for removing 

contaminants and environmental restoration. Insights into the microbial communities associated 

with these processes can help develop better operational strategies. Three common environmental 

engineering processes were investigated in this thesis to demonstrate the application of next-

generation sequencing and bioinformatics tools to elucidate the link between microbial 

community and process performance. 

The first process was membrane fouling in membrane bioreactors (MBRs). Nutritional deficiency 

led to endogenous decay and sludge bulking, which in turn triggered membrane fouling under 

sub-critical flux. The mixed liquor and fouling layer possessed similar microbial composition. 

The most dominant filamentous order Thiotrichales (>60%) positively correlated with fouling 

severity. Under high-flux conditions, MBR biofilm and mixed liquor possessed different 

microbial structures. Low-abundance taxa (<1%) such as Victivallales and Blastocatellia 11-24 

drove the divergence between the two communities. These taxa also played key roles in fouling 

development and positively correlated with fouling indicators. Knowledge of MBR fouling-

associated microbial taxa can help improve fouling control strategies, reduce the cost of 

membrane cleaning and energy consumption, enhance MBR application and increase the treated 

water quality. 

The second process was lignocellulosic biomass (LCBM) valorisation using rumen microbes. 

Biomethane potential analysis showed that rumen microbes can produce four times more volatile 

fatty acids (VFA) than anaerobic sludge. However, VFA accumulation led to pH drop which in 

turn resulted in process inhibition, suggesting the need for continuous extraction of VFA from the 

system. A novel rumen-MBR was evaluated, showing continuous VFA production at 438 mg 

VFA/g substrate. Acetic and propionic acids accounted for >80% of the total VFA produced. 

Most of the produced VFA (73 ± 15%) was continuously extracted by an ultrafiltration membrane. 

Shifts in dominant rumen microbes during operation did not impact VFA yield. This work 

provides an important foundation for the development of a sustainable pathway for producing 

renewable chemicals in a circular economy. 

The third process was chiral inversion of 2-arylpropionic acids (2-APAs) in biological waste and 

wastewater treatment. Despite possessing highly similar chemical structures, eleven 2-APAs 

exhibited diverse and distinctive chiral inversion behaviours. Both unidirectional and 

bidirectional chiral inversions of 2-APAs were observed under aerobic and anaerobic conditions. 

Potential microbes involved in chiral inversion, including Candidatus_Microthrix, Rhodococcus, 

Mycobacterium, Gordonia, and Sphingobium, are aerobic or facultative anaerobic bacteria. This 
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is the first study to report chiral inversion behaviours of a comprehensive suite of 2-APAs during 

biological treatment. 
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