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Abstract: African buffalo are the natural reservoirs of the SAT serotypes of foot-and-mouth disease
virus (FMDV) in sub-Saharan Africa. Most buffalo are exposed to multiple FMDV serotypes early
in life, and a proportion of them become persistently infected carriers. Understanding the genetic
diversity and evolution of FMDV in carrier animals is critical to elucidate how FMDV persists in
buffalo populations. In this study, we obtained oropharyngeal (OPF) fluid from naturally infected
African buffalo, and characterized the genetic diversity of FMDV. Out of 54 FMDV-positive OPF,
5 were co-infected with SAT1 and SAT2 serotypes. From the five co-infected buffalo, we obtained
eighty-nine plaque-purified isolates. Isolates obtained directly from OPF and plaque purification were
sequenced using next-generation sequencing (NGS). Phylogenetic analyses of the sequences obtained
from recombination-free protein-coding regions revealed a discrepancy in the topology of capsid
proteins and non-structural proteins. Despite the high divergence in the capsid phylogeny between
SAT1 and SAT2 serotypes, viruses from different serotypes that were collected from the same host had
a high genetic similarity in non-structural protein-coding regions P2 and P3, suggesting interserotypic
recombination. In two of the SAT1 and SAT2 co-infected buffalo identified at the first passage of
viral isolation, the plaque-derived SAT2 genomes were distinctly grouped in two different genotypes.
These genotypes were not initially detected with the NGS from the first passage (non-purified) virus
isolation sample. In one animal with two SAT2 haplotypes, one plaque-derived chimeric sequence
was found. These findings demonstrate within-host evolution through recombination and point
mutation contributing to broad viral diversity in the wildlife reservoir. These mechanisms may be
critical to FMDV persistence at the individual animal and population levels, and may contribute to
the emergence of new viruses that have the ability to spill-over to livestock and other wildlife species.
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1. Introduction

Foot-and-mouth disease (FMD) is one of the most economically significant trans-
boundary diseases affecting livestock and wild ungulates. The etiologic agent of FMD,
foot-and-mouth disease virus (FMDV), is a highly transmissible picornavirus that causes
fever and characteristic vesicular lesions on the feet and oral cavities in clinically infected
animals [1,2]. The seven distinct FMDV serotypes (A, Asia1, C, O, SAT 1–3) are further
classified into topotypes, lineages, and sublineages based on the VP1 coding sequence [3].
The Southern African Territories (SAT) serotypes have been historically endemic and lim-
ited to sub-Saharan Africa, but have caused outbreaks in North Africa and the Middle
East [4,5]. FMDV SAT serotypes’ natural reservoir is the African (Cape) buffalo (Syncerus
caffer), though SAT infection can also occur in other wildlife species, and can circulate in
domestic livestock in Africa [6,7].

In domestic livestock, FMD is characterized by an acute clinical phase of infection
consisting of fever and vesicles that resolve within two weeks. However, FMDV also
causes long-term subclinical, persistent infection in epithelial cells of the nasopharynx
of cattle [8,9] and oropharyngeal tonsils of sheep [10,11]. Additionally, there is an early
form of subclinical infection (neoteric phase) which has higher levels of shedding and
transmissibility compared to the persistent phase [9]. In African buffalo, acute clinical
disease is not frequent [7], and persistent infection occurs in the palatine tonsil [12].

Although there is high FMDV seroprevalence in some buffalo populations [13], and
contact between African buffalo and domestic cattle herds occurs in shared grazing areas,
the frequency of FMDV spill-over from buffalo to livestock is not well understood [14,15].
Molecular (genomic) epidemiology can provide a framework to elucidate disease trans-
mission by analyzing the genetic similarity between viruses sampled from buffalo and
cattle [15–17]. In Kenya, the only two published whole genomes of buffalo-derived FMDV
sequences (one SAT1 and one SAT2) are genetically distinct from those isolated from cat-
tle, suggesting a low frequency of transmission across species [18]. However, the lack of
available reference genomes prevents explicit understanding of the relationship between
livestock- and buffalo-derived viruses.

Point mutation of RNA viruses during fast-occurring viral replication and absence
of proof-reading ability of the RNA polymerase results in a diversity of viral genomes
existing within one host [19]. Additionally, African buffalo can sustain multi-serotype
FMDV-persistent infections simultaneously, providing conditions for related viruses to
recombine [12,20]. All of these evolutionary mechanisms may contribute to alterations of
viral fitness, host range, and transmissibility.

The current NGS technologies based on short sequencing reads have provided a plat-
form to efficiently perform whole viral genome sequencing. However, technical challenges
may arise when bioinformatically assembling the fragmented nucleic acid into represen-
tative consensus viral haplotypes. These challenges are exacerbated by the presence of
multiple related viruses in co-infected animals. Under such circumstances, techniques that
enable the isolation of each virus separately may be required to obtain the multiple viral
genomes present in one sample.

In this study, we acquired complete FMDV genome sequences from African buffalo
naturally infected with FMDV in Kenya. We further characterized the within-host FMDV
genetic diversity in animals co-infected with multiple serotypes. This improved under-
standing of viral evolution during co-infection contributes to elucidation of the emergence
of new variants, and may enable the prediction of alterations of host range and transmission
of FMDV.

2. Materials and Methods
2.1. African Buffalo Sample Collection

Samples were collected from African buffalo located within the Ol Pejeta Conservancy
(OPC) in central Kenya during January 2016 (Figure 1). Within and beyond the bounds of
this conservancy, approximately 1200 buffalo travel in herds of 30–200 individuals. The
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fence surrounding the conservancy freely allows animal movement to maintain contiguity
of the larger Laikipia–Samburu–Isiolo ecosystem. In addition to wildlife conservation
efforts, OPC maintains ~8500 cattle which are allowed to graze and intermingle with
wildlife during the day but are corralled at night. The Ewaso Ngiro River forms the
only natural boundary traversing the conservancy, in many cases preventing east–west
animal movement across the river, and shaping the distribution of bacterial and viral
pathogens (Figure 1) [15,21]. Cattle are vaccinated against FMDV at <12 months of age, but
no FMDV control is performed on the buffalo. The fifty-four buffalo oropharyngeal fluid
(OPF) samples utilized in this study were collected as described previously [15,22]. Briefly,
Kenya Wildlife Service veterinarians anesthetized the buffalo with etorphine hydrochloride
and azaperone via a dart gun. OPF samples were collected using a probang cup [22].
OPF samples were transported to Plum Island Animal Disease Center, Plum Island, NY,
and stored at −80 ◦C until use.
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Figure 1. Buffalo herd geographic distribution in the Ol Pejeta Conservancy (OPC). A map of the
OPC indicating the location of each sampled buffalo herd (black text indicates the name, the buffalo
head indicates the location in the conservancy where the animals were sampled). The Ewaso Ngiro
River is indicated by a blue line. The specific location of the OPC in central Kenya appears in the
inset on the bottom right.

In addition, two samples previously collected during an outbreak in cattle (VE; vesicu-
lar epithelium) in OPC in 2014 were sequenced and included in the phylogenetic analyses.

2.2. Virus Isolation

OPF and VE samples were filtered by centrifugation in Spin-X filter columns (0.45 uM,
Sigma-Aldrich, Saint Louis, MO, USA) to remove contamination. The filtrate was used to in-
fect LFBK-αvβ6 cells [23]. Virus Isolation (VI) was performed as previously described, and
FMDV was confirmed by qRT-PCR on first-passage supernatants (‘first passage virus’) [24].
VI supernatants from all samples were subsequently subjected to random-and-targeted
deep sequencing (described below).

2.3. Identification of Co-Infected First-Passage Buffalo Samples

FMDV-positive first-passage supernatant RNA was subjected to RT-PCR targeting
the P1 FMDV genomic region as previously described [25]. Amplicons were assessed by
agarose gel, and bands of the anticipated sizes were extracted and purified. Libraries
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were generated from gel purified amplicons using the Nextera XT library preparation kit
(Illumina, San Diego, CA, USA), and sequenced on an Illumina NextSeq platform. Co-
infected samples were identified in CLC Genomics Workbench v.10.0 by analyzing the VP1
sequence data. Co-infections were identified when reads mapped to references belonging
to two different serotypes’ reference sequences. This procedure was applied to the entire
cohort of 54 buffalo OPF samples [15], of which five were found to be co-infected with
SAT1 and SAT2, whereas the remainder were infected with a single serotype (SAT1 n = 16,
SAT2 n = 33, SAT1/2 n = 5) (Table 1).

Table 1. Isolates obtained from plaque purification of oropharyngeal fluid of African buffalo. The
supernatants of the virus isolated from the original clinical sample were serially diluted and plaque-
purified in LFBK-αvβ6 cells. The resulting supernatants were subjected to whole genome sequencing
and genotypic analysis.

Buffalo ID 6 36 51 59 61 Total

Dilution of OPF 10−2 > −3 10−4 > −6 10−2 > −6 10−1 > −2 10−3 > −6 10−2 > −3 10−4 > −6 10−1 > −2 10−3 > −6 -
# Purified Plaques 14 8 22 21 2 14 8 22 1 112
Plaque Serotypes SAT1 SAT2 SAT1 SAT2 SAT1 SAT2 SAT2 SAT2 -

# Full CDs 12 3 7 12 9 9 21 16 89
Genotype - - - A B - - A B - -

# Isolates Obtained 12 3 7 6 6 9 9 17 4 16 89
# Sequences
Analyzed 12 3 7 12 9 9 21 16 89

Abbreviations: Virus isolate (VI); Coding domains (CDs); Number of (#).

2.4. Plaque Purifications

Co-infected samples were subjected to plaque purification to further characterize
the viral genomes (Table 1). LFBK-αvβ6 cells were grown in 6-well plates to 90% con-
fluence, then inoculated with serial dilutions (10−1, 10−2, 10−3, 10−4, 10−5, and 10−6)
of co-infected VI supernatants in Calcium/Magnesium-supplemented PBS plus 1% calf-
serum. One hour after infection at 37 ◦C, the inoculum was removed, and each well was
overlaid with minimal essential media (Invitrogen, Waltham, MA, USA) containing 1.25%
agarose. Twenty-four hours post-infection, approximately 20 plaques were picked for each
sample, and individual plaques were used to infect LFBK-αvβ6 cells in separate wells of
90% confluent 24-well plates. Supernatants were collected the following day and stored at
−80 ◦C until deep sequence analysis.

2.5. Deep Sequencing of Virus Isolates and Plaques

Total RNA was extracted from cell supernatants using the MagMAX 96 Total RNA
isolation kit (Ambion, Austin, TX, USA) as specified by the manufacturer. Subsequently,
the total cell supernatant RNA was subjected to a random-and-targeted viral deep sequenc-
ing preparation similar to previously described methods with slight modifications [26].
Briefly, remaining host DNA was depleted using the DNA-free DNase kit (Ambion) per the
manufacturer’s protocol. Treated RNA underwent first strand synthesis using the Super-
script II first–strand synthesis system (Invitrogen) using random hexamer primers alone or
random hexamer primers in combination with a 2A-specific (GCCCRGGGTTGGACTC)
and a tagged oligo(dT) (ACGCTCGACATTTTTTTTTTTTTTTT) primer. Subsequently, the
NEBnext (Ipswich, MA, USA) ultra non-directional RNA second strand synthesis module
was utilized to generate double-stranded cDNA, which was purified using SPRI-select
beads. Purified cDNA was quantified with the Qubit dsDNA HS Assay Kit (Thermo
Fisher Scientific, Waltham, MA, USA) as specified by the manufacturer, and prepped for
deep sequencing with the Nextera XT library preparation kit. Sequencing was performed
on a NextSeq 500/550 platform using NextSeq Reagent kit v2 (Illumina). We performed
sequencing on the first-passage isolates, as well as the plaque-purified isolates from the
selected dual serotype infected samples.
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2.6. Deep Sequence Data Analysis

A total of 112 plaque-purified isolates (Table 1), the 54 OPF isolates from the first
passage, and the 2 outbreak isolates were deep-sequenced in duplicate, and full polyprotein
open reading frames (ORFs) were assembled by either de novo or reference assembly meth-
ods (when the complete ORF was not obtained by the de novo assembly). The duplicate
sequences for each sample were analyzed for similarity and quality control metrics. Se-
quences were assessed for completeness, similarity between duplicates, and SNP presence
(first-passage (non-plaque-purified) samples only). Sequences were used in the analyses
only if they fulfilled three criteria: (1) covered the complete polyprotein, (2) had 100% simi-
larity between duplicate consensus sequences, and (3) had 100% identity to the previously
published VP1 sequence (first-passage samples only) [17]. A total of 89 plaque sequences, as
well as the 54 first-passage sequences and 2 outbreak sequences, met the criteria and were
included in further analyses. Consensus sequences, reference mapping, and low-frequency
variants (first-passage samples only) were generated from deep sequence data in CLC
Genomics Workbench v11.0 using default parameters. Genomes were aligned and SNPs
were visualized in Geneious Prime version 2019.2.3.

2.7. Assessment of Assembly of Co-Infected Samples

The consensus sequences of SAT1 and SAT2 assembled from the first passage (non-
plaque purified) samples from co-infected animals (#6, #36, #51, #59, #61) were compared
to the sequences obtained from each individual plaque to identify artifacts in the short read
assembly process. We constructed phylogenies using the recombination-free areas using
IQ-TREEv2.0 with the automatic selection of the substitution model (-m TEST) option [27].
Potential sequence artifacts would show in the phylogenetic tree as viruses distant from
the plaque-purified groups.

2.8. Recombination Detection

A total of 149 sequences were included in recombination detection analyses. These
corresponded to the 89 consensus sequences obtained from plaque-purified isolates from
co-infected animals #51 (n = 9 SAT 1 and n = 9 SAT 2), #6 (n = 12 SAT 1 and n = 3 SAT 2),
#36 (n = 7 SAT1, n = 12 SAT2), #59 (n = 21 SAT2), and #61 (n = 16 SAT2). The remaining
sequences were the 54 first-passage sequences [16,25], 2 sequences from a cattle outbreak
in 2014, and 4 closely related reference sequences published in GenBank: KEN_004/2002
(SAT 1, JF749860.1), TAN/22/2012 (SAT 1, KM268899.1), KEN_002/2002 (SAT 2JF749861.1),
TAN/5/2012 (SAT 2KM268900.1). All sequences were aligned using MUSCLEv5 [28].
Recombination was detected in the alignment using RDP4 using default parameters [29].
The resulting breakpoint recombination plot (using permutations = 1000 and window
size = 200 nucleotides) was used to determine the recombination breakpoints.

2.9. Time Divergence Estimation

The RDP4-detected breakpoints were used to partition the genomes into recombination-
free segments. Plaque-purified sequences from co-infected samples, first-passage sequences
from singly infected samples, and references as described in the recombination analysis
methods were included in the analysis. Each segment was aligned, and a time diver-
gence phylogeny was estimated using BEAST v1.8.4 [30]. A general time reversible
model with a gamma distribution and an uncorrelated relaxed lognormal clock were
used. A Bayesian skyline and an exponential growth tree prior were run for each of the
segments. The best tree prior was selected based on stepping-stone marginal likelihood
estimation [31]. The chain length for tree sampling was set to 500,000,000 trees and sampled
every 50,000 iterations. The final maximum clade credibility (MCC) tree was annotated
using FigTree v1.4.3. The 95% high posterior densities (95% HPD) for common ancestors
were extracted from the MCC tree.
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2.10. Within-Host Recombination Network Analysis

To visualize the within-host plaque virus diversity and haplotype relationships, a net-
work analysis was performed in PopArt v1.7 [32] on potential chimeric viruses using a
median joining algorithm [33].

2.11. Within-Animal Sequence Diversity

The set of sequences obtained from plaque assays from each ‘genotype’ identified in
the phylogenetic analyses were analyzed separately to investigate within-animal sequence
diversity. A genotype was defined as sequences that formed a monophyletic group across
all protein-coding regions. The location and type of within-host nucleotide substitution
based on the specific nucleotide change, transition or transversion, and synonymous or
non-synonymous changes were identified in AliViewv3 [34].

3. Results
3.1. FMDV Sequence Acquisition

A total of 54 first-passage buffalo samples and 2 isolates from outbreak samples yielded
complete polyprotein coding sequences (Supplementary Materials Table S1). Five buffalo
samples (ID = #6, #36, #51, #59, #61) were determined to be co-infected with FMDV-SAT1
and SAT2. These five samples underwent plaque purification, and complete polyprotein
coding sequence was obtained from a total of 89/112 plaques (Table 1). Despite the
identification of both SAT1 and SAT2 in the first-passage supernatants, viruses from animals
#59 and #61 were all identified to be FMDV SAT2.

All SAT1 sequences obtained in this study (derived from OPF single and co-infected
samples) belonged to the topotype I (NWZ), and SAT2 viruses belonged to topotype IV
(Figure S1).

3.2. Evaluation of the Assembled Genomes from Original Co-Infected Samples Compared to the
Plaque Sequences

To investigate the effects of bioinformatic tools on the assembly of genomes in co-
infected samples (first-passage isolates), maximum likelihood trees were constructed for the
SAT1 and SAT2 capsid protein (Figure 2C), Lpro, and P2 and P3 genomes regions of FMDV
(Figure S2). The trees were constructed using the sequences obtained by plaque assay, first
passage, and references. With respect to SAT1 sequences, #51/SAT1 plaque sequences are
similar to the assembly obtained from the co-infected first-passage isolate. However, the
first-passage sequences from #6/SAT1, #61/SAT1, and #36/SAT1 may have been incorrectly
called due to co-infection based on their divergence from the plaque-isolated sequences
(Figure 2). With respect to SAT2, the sequences obtained from first-passage samples were
similar to the ones obtained by plaque assay; however, the two distinct genotypes obtained
from animals #36 and #59 (SAT2 A and B) were not resolved by analysis of the first-passage
isolate (Figure S2).

3.3. Recombination Detection and Bayesian Time Divergence Estimates

Six recombination breakpoints were identified in the alignment with significant
p-values across the FMDV genome; specifically, two in VP4, two in 2B, one in 2C, and
one in 3C. Based on the results of the breakpoint analysis, Bayesian phylogenies were
reconstructed using the recombination-free coding regions: 1-633 (Leader Proteinase-Lab),
766-2889 (VP4 partial, VP2, VP3, VP1), 3148-4235 (2B partial/2C partial 3′), 4236-5295
(3A/3B/3C partial 3′), 5295-7029 (3C partial 5′/3D) (Figure 3). The incongruent topologies
of each of the segments supported the results of the breakpoint analysis. First-passage
sequences from co-infected samples were excluded due to potential assembly artifacts.
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Figure 2. Assembly error induced by viral co-infections. (A) Describes the assembly process without
and (B) with plaque purification. (C) Maximum likelihood phylogeny of the capsid protein including
SAT1 sequences from co-infected samples obtained by direct NGS from the first passage of the sample,
and from individual plaque-purified viral. The highlighted sequences depict an incorrect assembly
of consensus SAT1 sequences obtained from first-passage co-infected samples. Short reads of related
viruses resulted in a biased consensus. Therefore, these sequences have an apparent distant genetic
relationship from the sequences obtained with the plaque purification assay.

3.3.1. Capsid-Coding Segment (ORF Alignment Positions 766-2889)

In the reconstruction of the capsid-coding segment, sequences from animal #6/SAT1
diverged earliest from the #36/SAT1 and #51/SAT1 sequences, with a most recent com-
mon ancestor estimated in 1987 (95% HPD 1971–2001; Figure 3). Animal #36/SAT1 and
#51/SAT1 sequences were more closely related (TMRCA: 2001 95% HPD 1992–2009). The
estimated ancestor for all sequences of #51/SAT1 was 2014 (95% HPD 2012–2015), indicat-
ing a higher within-host divergence of this virus. SAT2 capsid sequences from #36/SAT2,
#51/SAT2, and #6/SAT2 were closely related, with an estimated TMRCA in 2011 (95% HPD
2008–2014). Interestingly, there were two different clusters of SAT2 viruses from animal
#36. These two SAT2 viruses were denoted as #36/SAT2A and #36/SAT2B. The sequences
had a recent estimated common ancestor in 2015 (95% HPD 2014–2016) based on the capsid
sequences. Notably, animal #59, which was initially identified as co-infected, but from
which only SAT2 was recovered from plaques, also had two different SAT2 viruses, denoted
#59/SAT2A and #59/SAT2B. These viruses had a recent common ancestor estimated at
2014 (95% CI 2013–2015) based on the capsid sequences. Interestingly, one virus within
the #59/SAT2A group (named #59/SAT2-plaque4) was considerably divergent (marked
with an * in Figure 3) from both #59SAT2A and #59SAT2B clades. This virus had a unique
phylogeny not only in the capsid-coding region, but throughout all recombination-free
coding areas.
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and K29.

3.3.2. Leader Proteinase Coding Segment (ORF Alignment Positions 1-633)

The topology of Lpro grouped predominantly by serotype, except for #36/SAT2A,
which grouped with the SAT1 viruses (Figure 3). The TMRCA estimated for SAT1 and SAT2
was within the 95% HPD of the capsid segment estimates. For example, the TMRCA for
all SAT1 sequences was estimated at 1987 (95% HPD 1971–2001) by the capsid phylogeny,
and 2001 (95% HPD 1995–2007) by the leader proteinase segment. Similarly, estimation of
TMRCA for all SAT2 (excluding divergent #36/SAT2A) was 2005 (95% HPD 1999–2010)
using leader proteinase, whereas it was 2011 (95% HPD 2008–2014) for the capsid segment.
The genetic diversity within animals was low (mean nucleotide difference = 0 for all groups,
except #51/SAT1, which had a mean nucleotide difference of 2.6). #59/SAT2-plaque4
chimeric virus had a mean difference of eight nucleotides with #59SAT2A, and seven with
#SAT2B. There was a remarkable divergence between the #36/SAT2A and #36/SAT2B; the
leader proteinase TMRCA was estimated at 1982 (95% HPD 1970–1993) in contrast with the
capsid-coding region TMRCA estimated at 2015 (95% HPD 2014–2015).
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3.3.3. 2B Partial/2C Partial (ORF Alignment Positions 3148-4235)

The topology in the 2B partial/2C partial segment differed from that of the cap-
sid and Lpro segments (Figure 3). Interestingly, in this segment, viruses from the same
animal tended to share a close genetic relationship regardless of serotype. Specifically,
viruses #51/SAT1 and #51/SAT2 were grouped together, as were #6/SAT1 and #6SAT2,
and#36/SAT1 and#36/SAT2A. The single exception was #36/SAT2B, which grouped
with sequences distant from #36/SAT1 and #36/SAT2A. TMRCA was estimated at 2008
(95% HPD 2002–2011), 2013 (95% HPD 2011–2015), and 2010 (95% HPD 2007–2013) for
SAT1/SAT2 sequences from animals #51, #6, and #36 (excluding #36/SAT2B), respectively.
The TMRCA for animal #36 sequences including the divergent group was 1981 (95% HPD
1967, 1992). Similar to the other segments, the within-group nucleotide difference was
greater for animal #51/SAT1 (mean nucleotide difference = 9.6) compared to other groups
(mean differences #36/SAT1 = 0.3, #51/SAT2 = 0.2, #6/SAT1 = 0.2, 59SAT2B = 0.5, and 0
for the remaining groups). The chimeric virus #59/SAT2-plaque4 had a mean nucleotide
difference of 13 with #59/SAT2A, and 14.25 with #59/SAT2B.

3.3.4. 3A/3B/3C Partial (ORF Alignment Positions 4236-5295)

The topology of 3A/3B/3C partial was similar to the 2B/2C topology, with viruses
grouping by host animal rather than serotype. This trend was upheld even in the divergent
groups of animal #36 (SAT1 and SAT2A and B). The TMRCA between the SAT1 and
SAT2 viruses for animals #51, #6, and #36 was 2011 (95% HPD 2008–2014), 2010 (95%
HPD 2005–2014), and 2007 (95% HPD 2002–2011), respectively. The branching pattern
of #51/SAT1 had three divergent sequences. Within this genotype, three subclades are
distinguishable in most regions with a common ancestor. Although these sequences
appear more closely related to the SAT2 viruses from the same animal, the small number
of nucleotide differences between them may not provide a conclusive resolution of the
clades. The chimeric virus #59/SAT2-plaque4 had a mean nucleotide difference of 9 with
#59/SAT2A, and 20 with #59/SAT2B.

3.3.5. 3C Partial/3D (ORF Alignment Positions 5296-7029)

The topology of the coding sequences for 3C-3D was similar to 2B partial/2C partial
and 3A/3B/3C partial topologies (Figure 3). The TMRCA for SAT1 and SAT2 sequences
collected from animal #51 was 1997 (95% HPD 1985–2010), which is 14 years earlier than the
estimation by the 3A/3B/3C partial and 2B partial/2C partial phylogenies. The TMRCA
for #36/SAT1 and #36/SAT2 was 2010 (95% HPD 2006–2013), and the TMRCA for #6/SAT1
and #6/SAT2 was 2009 (95% HPD 2002–2013), similar to the estimates of the 3A/3B/3C
partial and 2B partial/2C partial phylogenies. The chimeric virus #59/SAT2-plaque4 had a
mean nucleotide difference of 14.06 with #59/SAT2A, and 11.00 with #59/SAT2B groups.

3.4. Within-Host Recombination Network Analysis

The phylogenetic analyses indicated that one plaque-derived virus (#59/SAT2-plaque4)
had a unique branching pattern. The genetic relationship of this virus was not clearly asso-
ciated with a particular genotype. A network analysis using all plaque-derived sequences
from animal #59 was generated to investigate #59/SAT2-plaque4 as a potential chimera of
#59/SAT2A and #59/SAT2B (Figure 4A).

Network analysis placed this sequence in an intermediate path between #59/SAT2A
and #59/SAT2B, which may indicate an evolutionary potential recombinant (chimeric)
virus (Figure 4). To further rule out assembly problems related to low coverage, low
quality/short reads, or partial read alignment, #59/SAT2-plaque4 was queried on multiple
platforms to ensure sequence quality. The #59/SAT2-plaque4 raw reads, when mapped to
the SAT2/KEN 002/2002 reference (Genbank #JF749861), had an average read length of
144.73, minimum coverage of 344, and maximum coverage of 2850.



Viruses 2022, 14, 897 10 of 16

Network analysis was also conducted for #51/SAT1 and #51/SAT2 due to the significantly
higher genetic diversity of #51/SAT1 to exclude the existence of a chimeric virus (Figure 4B).
Interestingly, the diversity of #51/SAT1 was similarly divergent in three subgroups.

A. B.

10 samples

1 sample

SAT2A
SAT2B
SAT2 (plaque 4)

10 samples

1 sample

SAT1
SAT2

#59/SAT2A+B #51/SAT1+2

Figure 4. Network analysis of plaque sequences. (A) One sequence from this animal (#59/SAT2-
plaque4) is a potential chimera of #59/SAT2A and #59/SAT2B. The network analysis confirms
this observation by creating a network in which two genotypes originate from the same node.
(B) Representative datasets were used from #51/SAT1 and #51/SAT2. Despite the divergence of the
sequences, there is no apparent shared network between the SAT1 and SAT2 viruses.

3.5. Within-Host FMDV Genotype Sequence Diversity

Ten distinct representative genotypes were identified according to the topology of
the phylogenetic trees (Figure 3). Animal #36 had three different viruses: #36/SAT2A,
#36/SAT2B, and #36/SAT1. The nucleotide identity between #36/SAT2A and #36/SAT2B
P1 regions was 98.3%, whereas the amino acid identity was 98.8%. Animals #6 and #51
had one SAT1 and one SAT2 each. Animal #59 had two SAT2 viruses, and #61 had one
SAT2 virus (Table 1). Of all the viruses sequenced, #36/SAT1 (n = 7) and #36/SAT2A
(n = 6) were completely clonal. Sequences from #6/SAT1, #6/SAT2, #36/SAT2B, #51/SAT1,
#51/SAT2, #59/SAT2A (excluding the chimeric sequence #59/SAT2-plaque4), #59/SAT2B,
and #61/SAT2 contained polymorphic sites, varying between 1–5 SNP sites per group.

Virus #51/SAT1 contained a high number of polymorphic sites throughout the entire
genome (Figure 5A). Out of 7008 total sites, 76 (1.08%) were polymorphic in #51/SAT1.
Notably, 66 polymorphic sites in #59 SAT2A were due to a single sequence (plaque4). The
remaining six viruses had between 1–5 polymorphic sites across the genome.

Transitions and non-synonymous mutations were frequent throughout the genome of
the eight viruses. The majority of nucleotide substitutions were C→ T (30.4%) and T→ C
(25%), followed by A→G (15.2%) and G→A (12%) (Figure 5B). No trends in the location of
nucleotide substitutions across the genome were observed. Interestingly, non-synonymous
mutations were located throughout the genome in the highly variable virus #51/SAT1,
except in the 2C protein-coding region. However, non-synonymous mutations were located
in the 2C region in less variable viruses #61/SAT1 and #51/SAT2.
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Figure 5. Location and frequency of single nucleotide polymorphisms in FMDV plaque-purified
samples. (A) Location of synonymous (dS; teal) and nonsynonymous (dN; red) mutations across each
viral subtype per animal. Nonsynonymous mutations are annotated, where the less frequent amino
acid is treated as the mutated amino acid. Chimeric sequence #59/SAT2-plaque4 was excluded. The
grey dashed lines indicate the recombination breakpoints identified by RDP4 (Figure S3). The total
number of sequences (n) for each alignment are reported. (B) Frequency of specific nucleotide
polymorphisms in the plaque sequences.

4. Discussion

African buffalo are the main wildlife reservoir of FMDV in sub-Saharan Africa. FMDV
can circulate subclinically in buffalo for up to 5 years [35], and individual animals can
harbor multiple serotypes [12]. However, little is known about the viral dynamics and
evolution of FMDV during naturally occurring co-infections. In the current study, we used
plaque purification coupled with deep sequence analysis to increase the resolution of
unique FMDV sequences obtained from buffalo co-infected with SAT1 and SAT2. In some
cases, the viral diversity characterized in the co-infected animals revealed the simultaneous
presence of related genotypes within a serotype [36]. Additionally, phylogenetic grouping
of non-structural protein-coding sequences of the viruses sampled from the same animals
tended to have a close genetic relationship, suggesting that interserotypic recombination
had occurred within those animals.

In addition to the SAT1-SAT2 co-infections recovered from the plaque assays in animals
#36, #51, and #6, we identified two SAT2 variant viruses in animals #59 and #36. Within
each animal, there was a small but clear divergence in the capsid sequences, and the SAT2
variants were very distant in other regions of the genome, such as Lpro (#36). This is the first
time that naturally occurring co-infection of different genotypes from the same serotype
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have been reported resulting in a nucleotide identity of 98.3%. The presence of such a
diversity of viruses within a single host, and the inconsistencies of tree topologies between
different coding areas of the virus, suggest that recombination occurs often, perhaps within
these animals, as seen for animal #36/SAT2A and #36SAT2B (TMRCA = 2010 and 2011
in 3A-3D). This is consistent with previous reports of recombination within the FMDV
genome [25,37,38]. A recent experimental study in cattle demonstrated that serotype A/O
recombination occurred in the nasopharynx of serotype A-infected carriers within 10 days
of superinfection with FMDV-O [39].

Phylogenetic analyses revealed an expected discrepancy of the tree topologies for
distinct regions of the virus (Lpro, 2B-2C, 3C-3D). The six recombination breakpoints
identified for SAT1 and SAT2 in the current study (two in VP4, two in 2B, one in 2C, and
one in 3C) are similar to those identified previously for serotype O and A viruses [25,40].
The topology discrepancies in non-structural regions are conserved within-host, even
between SAT1 and SAT2 serotypes, suggesting significant host-derived selection occurs in
non-structural coding regions following FMDV infection.

As a host species with long-term asymptomatic infection, buffalo can be co-infected
with multiple FMDV genotypes, creating the conditions necessary for the emergence of
new variants associated with within-host evolution and recombination. For example, the
#59/SAT2-plaque4 sequence represents a potentially unique combination of #59/SAT2A
and #59/SAT2B plaque sequence groups. Further assessing the quality of the assembly
robustly supported the accuracy of the within-plaque consensus sequence. Although
we cannot determine whether the chimeric sequence was a result of recombination that
occurred within the animal or during sample preparation and analysis, this observation is
relevant to understand within-host viral evolution. Bioinformatic errors, particularly the
assembly of short reads for samples with viral co-infections, complicate the differentiation
of multiple similar sequences from the same dataset (Figure 2A,B). In this study, it is possible
that plaque purification resulted in plaques seeded by multiple virus particles, thereby
confounding some results. However, in animal #36/SAT2 and #59/SAT2 plaques, both
groups A and B were made up of at least four identical viral genomes, suggesting improper
plaque purification did not take place, and bioinformatic analyses did not confound the
results. It is unlikely that each of the four plaques were seeded by two different, but
identical, virus particles to produce these results, further confirming the results in this study.

The potential for, and prevalence of, FMDV recombination have received substantial
attention recently [20,38,39]. Though the mechanism of FMDV recombination remains
incompletely elucidated, it is thought to occur by a copy-choice recombination, which
requires co-infection of a single cell with two distinct viruses [41]. This mechanism has been
identified for other picornaviruses, such as enteroviruses and rhinoviruses [42]. Widespread
persistent and neoteric subclinical infection of African buffalo with multiple FMD viruses
provides an opportunity for copy-choice recombination, and likely contributes to FMDV
strain diversity and emergence. Multiple studies have found statistically significant evi-
dence of FMDV recombination based on historical FMDV sequences [25,38].

The time to most recent common ancestor (TMRCA) estimated for each recombination-
free region can be used to infer past recombination events. For example, #36/SAT2 A
and B capsid region sequences had an estimated TMRCA of 2015, whereas the remaining
partitioned genomic regions had an earlier TMCRA estimate (1989–2012). The divergence
of Lpro and P2 suggest different evolutionary origins of these two viruses. Considering
the long duration of FMDV infections in African buffalo [35], and the age of this buffalo
(5 years), it is possible that a recombination event from different viruses occurred in the
animal. It is possible that viruses with the observed #36SAT2 capsid out-competed the
parental virus that contributed one of the divergent non-structural protein clades. The
divergent grouping of the two related capsid clades (#36/SAT2A and #36SAT2B) may have
been driven by the differences in non-protein-coding regions.

In this study, we assessed both the plaque-purified sequences, as well as the first-
passage sequences obtained from co-infecting viruses. Our analyses suggested that it
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would be difficult to separate the sequence data from the first passage into the unique
viral groups that were identified in the plaque-derived sequences. Of the 10 genotypes
identified by plaque purification in 5 animals, one virus, #51/SAT1, had a high within-
animal genetic diversity. Specific genotype and cluster information could only be resolved
with plaque purification, whereas without plaque purification, the broad viral diversity in
these samples would not allow for proper genome assembly. Although plaque purification
will selectively filter out certain viruses, it represents a unique modality to study subpop-
ulations of viruses in the host. Our results also suggest that sequences from co-infected
samples obtained using NGS without plaque purification may be inaccurate, and should
be examined critically when used in downstream analyses. It is highly problematic that, in
many cases, coinfection would be missed, leading to misinterpretation of sequence data
and epidemiological findings.

FMDV often circulates subclinically in the buffalo population, and the virus is ex-
tremely successful in persisting in the population. Studies in several geographic regions
have reported a high seroprevalence, indicating exposure to multiple serotypes in buf-
falo [13,15]. The mechanisms of FMDV persistence within the buffalo population has
been an important area of investigation because most studies fail to observe transmission
from persistently infected animals. A recent study combining experimental infection and
modeling concluded that this persistence cannot be sustained only by infections in young
calves after waning of maternal immunity, and that virus transmission from persistently
infected carrier animals is needed for maintenance of the virus in the population [43].
Animals persistently infected with multiple FMDV genotypes may play an important role
in virus evolution and divergence, and in the antigenic differences, allowing for infection
or transmission to a new host. This viral diversity is also important due to the poten-
tial emergence of variants that are more fit and likely to cause occasional ‘spill-over’ to
livestock [7,44,45]. Although the diversity of FMDVs in the study animals is clear, the
epidemiological significance cannot be addressed by the retrospective, descriptive study
design of the current investigation. It is not clear if the samples in this study were collected
from persistently or acute subclinically infected animals. Additionally, it is unclear if these
viruses were associated with clinical disease in these or any other animals. Future directions
should aim at a longitudinal sampling of persistently infected buffalo that may provide
essential genetic information at different times during infection. Utilizing these samples to
isolate viruses would provide evidence of genetic and phenotypic differences that confer
the ability to replicate, persist, and transmit to non-reservoir hosts.

Widely used methods of short-read NGS have triggered abundant genomic research
that has deepened our understanding of viruses’ evolution. However, this tool has an
important limitation when studying within-host viral diversity, due to the inability to cor-
rectly assemble closely related viral genomes. In this study, we applied plaque purification
coupled to deep sequencing to investigate FMDV viral population dynamics in co-infected
buffalo. This method confirmed the presence of recombination in co-infected samples with
a higher level of confidence and resolution than would otherwise be possible. Additionally,
plaque purification revealed that subclinically co-infected animals maintained up to three
distinct viruses simultaneously. These findings improve our understanding of how the
diversity of FMDVs co-existing within a subclinically infected host may provide optimal
conditions for viral recombination and the emergence of novel viral variants. Further
investigation may elucidate whether such processes lead to altered fitness, transmissibility,
or spill-over to susceptible livestock or other wildlife hosts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14050897/s1, Figure S1: FMDV VP1 phylogenies with study
sequences to determine SAT1 and SAT2 topotypes; Table S1: African buffalo metadata; Figure S2:
Maximum Likelihood Phylogenetic trees of FMDV protein-coding regions; Figure S3: Recombination
detection using Simplot.
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