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Summary

Privacy leakage in images attracts increasing concerns these days, as photos uploaded
to large social platforms are usually not processed by proper privacy protection mech-
anisms. Moreover, with advanced artificial intelligence (Al) tools such as deep neural
network (DNN), an adversary can detect peopl€’s identities and collect other sensi-

tive personal information from images at an unprecedented scale. In this paper, we

Email: bo.liu@uts.edu.au introduce a novel face image de-identification framework using adversarial perturba-
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transferability of our framework. Moreover, the proposed feature space adversarial
perturbation generation algorithm can successfully protect the identity-related infor-
mation while ensuring the other attributes remain similar. Finally, we conduct extensive
experiments on two face image datasets to evaluate the performance of the pro-
posed method. Our results show that the proposed method can generate real-looking
privacy-preserving images efficiently. Although our framework has only been tested on

two real-life face image datasets, it can be easily extended to other types of images.
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1 | INTRODUCTION

The rapid development of computer vision (CV) technology has recently made the automatic processing of large-scale visual data prevalent. How-
ever, those visual data contain alarge amount of personal information, leading to inadvertent disclosure of an individual’s privacy. While we enjoy the
benefits of advanced CV technology, including camera surveillance and video conferencing, we are reluctant to surrender our privacy and in-dignify
ourselves as manipulable data records. In addition, the information that people share on the Internet is facing more powerful malicious attack-
ers than ever before. The traditional privacy-preserving methods are less effective against deep learning based attacking models. Therefore, new
privacy preservation methods are urgently needed.

Various defense techniques and mechanisms have been proposed to enhance privacy by de-identifying face images.! Traditional
obfuscation-based methods usually obfuscate the sensitive information by blurring, pixelating, or masking animage, which areillustrated in Figure 1.
However, the image processed by these traditional methods can be easily and accurately detected by deep learning models. Therefore, new defence
techniques and mechanisms have been designed to protect image privacy from the deep learning models, including face identity transformer,
differential privacy (DP), GAN-based inpainting, and adversarial examples (AEs), and so forth.?? The face identity transformer was proposed in
Reference 2, which can perform automatic photo-realistic password-based anonymization and deanonymization of human faces. DP-based meth-
ods can provide provable privacy guarantees, but produce lower-quality images by including DP noises to the original image or in the transformed

domain of the image.® GAN-based inpainting was proposed to generate content to cover the sensitive information or identity of the image without
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(A) Original (B) Blur (C) Pixelation (D) Fawkes (E) DeepPrivacy (F)CIAGAN (G) Ours

FIGURE 1 Facede-identification results. From left to right, (A) Original image; (B) Blur noise; (C) Pixelation noise; (D) Fawkes;?! (E)
DeepPrivacy;!! (F) CIAGAN; (G) feature space adversarial perturbation (Ours).

degrading the quality of the original image.* The conditional GAN (CGAN)-based method was designed by adding labels to the generator and the
discriminator for better network training.> Conditional Identity Anonymization Generative Adversarial Network (CIAGAN)'® and DeepPrivacy,!!
both based on CGAN, proposed to add AE noises in the feature space of the images. CIAGAN can de-identify faces and bodies while generat-
ing high-quality images and videos. DeepPrivacy can generate an image with considerations of both pose and background. Nevertheless, both
CIAGAN?C and DeepPrivacy! add the latent noise in a vague direction, without considering the specific features of the image.

Considering deep learning-based privacy attacks, adversarial examples (AE)-based protection methods have great potential. The earliest
research on AE was proposed by Szegedy et al.!? It was shown that a small perturbation could have a considerable and negative impact on the accu-
racy of deep neural networks. In a recent paper,!® the author designed an adversarial example attack against deep neural networks to mislead the
classifier. It was revealed that the deep neural network is different from humans in the task of image classification, and AE is an efficient method
to generate noise on images that affects the deep neural networks. Many subsequent studies have focused on adversarial noise in different set-
tings, such as adversarial noise for the convolutional neural network (CNN), deep neural network (DNN), recurrent neural network (RNN), and more
robust adversarial noise.!* There is an arms race-like relationship between attack and defence technologies in such circumstances. One of the major
issues of AE is its transferability, that is, its effectiveness on alternative black-box or unknown models. To improve AE noise’s transferability, some
papers>1¢ have transferred the calculation of noise direction from the output layer to the intermediate layer of the model. This can avoid the dif-
ferences between models, thereby increasing transferability. Pidhorskyi et al.” studied the potential of adding adversarial perturbations on the
feature level of images.

Most of the above existing work treated AE as a threat to system security. Only very recently, researchers started to use adversarial examples
(also called adversarial perturbations) as a method to protect image privacy.'®2® However, these methods either focus on the utility'®22 or focus on
the privacy protection,?® which is hard for users to choose a good trade-off.

To overcome the problems mentioned above, we propose a novel face image de-identification framework, where latent noise is generated
based on the gradient directions concerning the identity and the attributes of an individual face image, which can accurately de-identify the image.
Moreover, we use a pre-trained model as a decoder that can map the perturbed feature vector back to an image (i.e., the generated AE). The main

contributions of our work are summarized as follows:

1. Wepropose anovelfaceimage de-identification framework based on feature space adversarial perturbations referred to as the FSAP framework
for short. This framework can preserve face identity information against automated recognition by DNNs while keeping a high utility of the

image.
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2. We propose a feature space adversarial perturbation generation algorithm. By alternative updating the perturbation according to the specially
designed ID loss and attribute loss items, we can successfully direct the noise to identity-related information while ensuring the other attributes
remain similar. In addition, feature space manipulation can provide good transferability of the generated perturbation. Furthermore, users can
select a trade-off between privacy and utility according to their own needs by adjusting the parameters.

3. We implement the proposed image protection framework and methods on a real-life image dataset and show its effectiveness in safeguarding

people’s privacy.

2 | RELATED WORK

Recent image privacy researches?*2¢ have focused on altering identity-related information in images via different methods, including obfuscation,
GAN-based in-painting, differential privacy (DP) and adversarial examples (AEs).

The main techniques under investigation are obfuscation and in-painting. Simple obfuscation has been shown to be ineffective against
DNN-based recognizers.?’28 Therefore, some researchers have started to use GAN and AE to generate content to replace the sensitive information
in the images.?-34 For example, Sun et al.?? proposed GAN-based head in-painting to remove the original identities. Hukkel3s et al.!! proposed a
CGAN-based architecture to anonymize faces without destroying the data distribution of the original image. Deb® proposed a framework to gener-
ate face masks based on GAN and AE techniques. Valeriia®® proposed a method to optimize the AE method in privacy protection. Zhang®” proposed
aface protection framework against DNN by filtering the AE methods.

Furthermore, there have been some recent attempts to combine the DP with image privacy.®® Fan®’ proposed an e-differential private method
at the pixel level of the image. However, making image pixels indistinguishable does not make much sense in practice, and the generated images are
of low quality. In another work from the same author,*® metric privacy is defined in the image transformation domain, but the obfuscated images
are still of low quality. Lecuyer et al.*! proposed the PixelDP framework, which includes a DP noise layer in the DNN. The PixelDP scheme forces
the output prediction function to be DP, provided that the input changes on a small number of pixels (when the input is an image). However, the
purpose of PixelDP is to increase robustness to adversarial examples rather than image privacy. Chen et al.% proposed a variant of DP by considering
a perceptual similarity of the facial images, named perceptual indistinguishability (Pl)-Net, which can achieve image obfuscation while ensuring PI.

To achieve a good trade-off between privacy and accessibility for face de-identification, reversible privacy protection has been studied in the lit-
erature.*?%4 Pan et al.*2 proposed a Multi-factor Modifier (MfM) based on conditional encoder and decoder framework, which achieves multi-factor
facial de/re-identification. Based on a deep generative model, a personalized and reversible de-identification method was designed in Reference 43
to control the direction and degree of identity change by introducing a user-specific password and an adjustable parameter. You et al.** proposed a
reversible privacy protection framework with an encoder and decoder using U-Net architecture to generate high-quality protected images without
visible facial features. The original images are encoded with embedded face information before uploading onto the cloud.

Video-related de-identification has also been investigated in References 45-47. Unlike the face image de-identity, it requires to be modi-
fied seamlessly without causing any visual distortions or artifacts. In Reference 45, a multi-task extension of GAN was formulated to eliminate
privacy-sensitive information of a video and detect privacy-preserving actions. In Reference 46, a feed-forward encoder-decoder network archi-
tecture was proposed conditioned on the high-level representation of a facial image. By coupling the latent space of the auto-encoder with a trained
classifier network, arich latent space with embedded identity and attribute information can be achieved.

Compared to the existing method for face image de-identification, to the best of our knowledge, ours is the first method that generates feature
space AE noise in an optimization style. And compared to the state-of-the-art techniques, ours achieves compelling results in privacy, utility, and

transferability.

3 | FEATURESPACEADVERSARIALPERTURBATION BASED FACE IMAGE DE-IDENTIFICATION
FRAMEWORK

In this section, we elaborate on the design of the proposed feature space adversarial perturbation (FSAP) based image de-identification framework.
Under this framework, we further propose privacy protection methods against CNN face recognition.

3.1 | Problemformulation

Let x € R™wxc denote a face image with ¢ channels, each having a size of height h and width w. A CNN encoder f¢(x) can generate a latent vector W

of the face image x and a decoder fp(W) can reconstruct the face feature W to the output face image X € R™"=¢_ |f both the encoder and decoder

are ideal, we should have X = x, that is, fp(fe(X)) = x.
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Our ultimate goal is to find a noise AW in the latent space that can perturb the identity of the input face image such that the output face image

X has the following characteristics:

1. De-identification. The perturbed image X is likely to be recognized as a different face from the input image x by an arbitrary CNN face recognizer
fi(-), that is, £,(x,X; f)) > 7, where L,(-) indicates the identity loss. = denotes the threshold of the two face images being recognized as different
identities.

2. Maintaining the utility. While targeting de-identifying the face identity, the perturbed image X should suffer from the minimum attribute loss
to the input image x, that is, min £p(x, X), where Lp(-) indicates the attribute loss. To the naked eye, the perturbed image X should have similar
properties to the input image x, so that it would be difficult for humans to distinguish which image is real or an impostor.

To summarize this process into an optimization problem, we have

min Lp(X,X)
s.t. L£y(x, X; f[) > 1. (1)
The optimization problem (3.1) tries to maximize the dissimilarity of the face image identities, while minimizing the similarity of the face

image attributes. To achieve this goal, we design novel architecture, referred to as the feature space adversarial perturbation based face image

de-identification framework (FSAP framework for short).

3.2 | FSAPframework

The framework for generating feature-level adversarial examples is shown in Figure 2, which consists of three stages: (1) Stage 1 - encodes the
input image x into the latent vector W by using a pre-trained CNN, that is, f;. (2) Stage 2 - updates the image latent vector W’ by adding adversarial
perturbation iteratively. (3) Stage 3 - the output image X is reconstructed from W’ by a pretrained decoder, that is, fp. The output image X is an image

that does not contain the identity information of the original image.

3.2.1 | Feature extraction

In order to extract the face image features, we adopt the pixel2style2pixel (pSp)*® encoding framework, which can be used to solve various
image-to-image translation tasks and is compatible with StyleGAN2 architecture. We use the intermediate layer between the encoder and the

1

1
. 5 Conventional Proposed !

> . 1
» Identity Loss L(z, &; fr) X — it 1
1 structure structure :

1

Attribute Loss Lp(z, &)

1 1 1 , ]
I Feature | | W ,
1 . | ! I
i extraction ! i :
1 | 1 I
- 5 _|_>€ - L A
Input z ! Encoder fg o ] Y — Decoder fp | Output
1 | ! I
1 | 1 I
1 | 1 . I
i W | Image |
F—— ' _ reconstruction _ ___________
. |
i AP generation !
! 1
1 > !
! Alternative e !
: update :
! 1
1 AW 1
! I
: @ Update AW in the direction L,((,IWJCM :
: @ Update AW in the direction —%"Jf,ﬁ :
! 1
! 1
! 1
! T
! 1
! |
! T
! 1

FIGURE 2 Feature space adversarial perturbation (FSAP) based privacy protection framework.

S9|DIHe SSEDDY UDd () 404 3dadX3 ‘PaRIWIad 30U AjIDIIS S| UOIINGUASIP PUB 3SN-3Y 2202 19qWada 9| UO - Bl[eiIsny aueiyd0) [euoiieN DYINHN Ag "Wod Asjim Aleiqiiauljuo//:sdily woly papeojumoq ‘0 '2z02 ‘v €902ES L



XUEET AL. Wl LEY 50f13

decoder as our latent code, denoted as W. Here, W contains 18 style vectors, with each vector of length 512. The encoder extracts the feature maps
of the input image in three levels (low, medium, high) through a typical CNN (e.g., ResNet). These feature maps then were mapped to the latent

vector. The process can be formulated as:

z4 51(Kpigh (X))
Z S2(Kpigh(x))
Z3 Ss(kmedium(x)v khi,gh (X))
w=|"|= : = fe(x). 2
Zg sé(kmedium(x)9 khlgh (X))
Z7 57(Kiow (%) Kmedium (X), khigh(x))
Z1g | | 518(Kiow ), Kimedium (%) Kigh (X))

where s,(k),n € [1,2, ... , 18] is a fully convolutional network to map the feature maps k into the style vector z,. The feature maps k have three
different dimensions, that is, dim(kxigh) < dim(Kmedium) < dim(kiew), and are built with a nested structure. z, € R*2,n € [1,2, ..., 18] are the style

vectors corresponding to the 18 layers of the latent vector W. The input image x is an RGB face image, and f¢ is the encoder.

3.2.2 | Adversarial perturbation generation

The latent vector W can be used to ideally reconstruct an output image X that is close to the original image x. We now start to train an AP
to change the face identity, that is, train an AP (i.e., AW) that can generate a face ID loss above the threshold, while minimizing the face
attribute loss.

The two loss items are calculated as described below:

1. ID loss. The ID loss L(x,X;f;) is to measure the identity similarity of the two faces. This loss function maps the input image x and the output
image X into the face feature space, also known as face embedding. We adopt the most widely used method cosine similarity to compute the face

embedding loss (i.e., ID loss), which is defined as:

100 - fi(%) 3)

Lyxxf=1- ————————.
X = ol - 1T,

2. Attribute loss. The attribute loss £p(x, X) measures the attribute similarity of the two faces. The loss function is a combination of three typical
losses, including MSE (£,,), LPIPS*? (£)), and SSIM (L), and is defined as follows:

Lp(X,%) 1= {41 L0 (%K), A2 L1(X, R), A3 Ls(X, )} (4)

MSE (£,,), Mean Square Error, takes the pixel loss of the input and output images, which controls the amount of noise added to the image. LPIPS*°
(L)), Learned Perceptual Image Patch Similarity, takes the perceptual loss from the perceptual latent distance of the input and output images and
measures the perceptual similarity of the images, which controls the visual quality of the image. SSIM (L), Structural Similarity Index Measure,
controls the structural similarity of two images. The combination of these three losses can guarantee the utility of the image from different levels.

The details of the AP generation algorithm will be described in Subsection 3.3.

3.2.3 | Image reconstruction

We adopt the StyleGAN2¢ synthesis network as the generator. Unlike a traditional decoder, which uses the latent vector as the bottom layer of the
network, StyleGAN2 generates the images from a constant vector. The latent vectors were fed to 18 layers of the network to affect the identity of
the face. In order to de-identify the face image, the perturbed latent vector W = W + AW is thus fed to each layer of the synthesis network as well.

The process can be formulated as follows:

X =W, (5)

where fp is the reconstruction network that decodes the modified latent vector W’ back to the RGB face image.
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3.3 | Adversarial perturbation generation process

Traditional adversarial perturbations can be grouped into two major categories: target and non-target. Target attacks require that the model classi-
fier misclassifies the AEs to a specific class for malicious purposes. The non-target attacks only require AEs to be misclassified with any wrong label
to avoid detection. In the context of privacy protection, non-target AP just pushes the image away from the current identity. Therefore, it is a better
option than target AP

In addition, we want to minimize the AP so that the utility of the image can be kept as much as possible. While this is often a non-convex opti-
mization problem. Some approximate methods have been developed. The fast gradient sigh method (FGSM) proposed by Goodfellow!? is a widely
adopted method of generating AE/ARP The AP generated by FGSM and its variants is superior to other traditional methods when facing the white-box
model. However, traditional FGSM has less transferability when facing the black-box model. Some studies'>¢ have found that adding noise to the
feature space can improve the transferability of AP The argument was that the existing recognition networks generally map the pictures to latent
space vectors through the CNN to recognize images. Therefore, the noise added to the latent space vector will have better transferability. To sum
up, our proposed method adds noise to the latent vector of the input image x in a non-target manner.

Also, our method differs from the conventional GAN-Based methods that add the latent noise in avague direction. The conventional GAN-Based
methods use a large dataset to train the network and one network to process all the data. Even with a large dataset and time-consuming train-
ing, the generalisation ability of the network is inversely proportional to the accuracy. Whereas our method can accurately add latent noise on the
identity-related information of an individual image. The proposed latent noise is generated based on the gradient direction with regard to the two
losses described before, that is, £, and Lp.

The perturbation AW takes the update from the following two losses alternately:

e LXK 1) .
AW, = Asign ( P ) ; (6)
(LK) _[oL,(%) (L)
AW, = — (Alslgn (#) + Aysign ( W > + Agsign (W)) , (7)

where AW, and AW, are the latent noises regarding the identity and attributes of the input image, respectively. The first loss function, £,(x, X; f;),
measures the face identity dissimilarity between the input image x and the output image X with an arbitrary CNN face recognizer f,. The second loss
function, £p(x, X), computes the face attribute loss between the input image x and the output image X. When updating, the gradient is accumulated
on the potential identity free face latent vector W/ = W + AW. It is worth noting that to simplify the experiments, we use the same attribute update

rate Ap to replace A4, 4,, and 13. AW, can be rewritten to:

_ . AL (X, X) . AL (X, X) . 0L (X, X)
AW, = —4p <S|gn <7BW’ ) + sign < W ) + sign <—6W’ )) , (8)

The AP generation algorithm is shown in Algorithm 1.

4 | EXPERIMENTS

In this section, we carry out extensive experiments to verify the effectiveness of the proposed method. We also compare our method with the
state-of-the-art face de-identification methods, that is, GAN-based: CIAGAN,'® DeepPrivacy,!! and AP-based: Fawkes.?!

41 | Experimentsetup

41.1 | Dataset

In this experiment, human faces are selected as the object of image privacy protection because they contain a large amount of identifiable informa-
tion and have been the main concern in the field of image privacy protection. The face images for our experiments come from two well-known public
face image datasets, that is, FFHQ"® and CelebA.>!

1. The FFHQ dataset contains 70,000 high-quality PNG images with a resolution of 1024 x 1024 and considerable variation in terms of age,
ethnicity, and image background.

2. The CelebA dataset contains 202,599 face images covering large pose variations and background clutter.
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Algorithm 1. AP generation algorithm based on the FSAP framework

Parameters: ID update rate: 4;; Attribute update rate: 1p; Maximum iteration number: N; Adjustable iteration number: k; ID distance threshold: 7.
Input: The original image x.
Output: The released privacy-preserving image X.
Stage 1:
Obtain the latent vector W = fg(x).
Stage 2:
Initialization: latent noise AW = O; Perturbed latent vector W(’) =W.
for1 <n<Ndo
&n = fo(Wp);
W) =W, + AWy;
forl1<i<kdo
X = fo(Wp);
W) =W + AW,;
i=i+1;
end

if £,(x,%n; f)>7 then
| Break

end

S

=n+1;

>

= %

end

412 | Experimental settings
In this paper, we adopt a pSp encoder*® pre-trained on the FFHQ dataset for feature extraction. The ID Discriminator f; used in this paper is
pre-trained on the state-of-the-art face recognition network ResNet°2 with arcface loss>® on the real-life dataset. The synthesis network of
StyleGAN2¢ is pre-trained on the FFHQ dataset.

Parameter settings: N = 100,k = 6,7 = 0.8, 4, = 0.02, 1, = 0.008. 7 is the threshold of the ID distance.
4.1.3 | Evaluation metrics

The following methods will be used to measure the proposed algorithm:

1. De-identification:

Successful protection rate (SPR): We define successful protection as:
I(x,%) > 6, (9)

where I(x, X) is the identity distance calculated on the identifier I. § is the threshold that recognizes the face as a different identity. SPR is then

formulated as:

1 m
SPR = - ;gP(Xi)v (10)
where
1, if I(x,%X) > 6,
gp(X) = (11)
0, otherwise,

with m being the number of tests.
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2. Utility:
1. (1) Successful detection rate (SDR): We defined SDR as the de-identification rate of face images that can be detected. It evaluates the utilities
of computer vision tasks and is formulated as:

1,
SDR = Egg.)(x,). (12)

If the face can be detected, then gp = 1. Otherwise, gp = 0.
2. (2) Landmarks distance. chin/nose/eyes/mouth indicates the mean distance of the key points corresponding to each facial area. It evaluates the
utility of facial analysis.
3. Distortion metrics:
Mean square error (MSE) is used to measure the distortion between two images at the pixel level.

4.2 | Performance evaluation

In this section, we display the results of our proposed method from three aspects. (i) Ablation Study; (ii) Results compared to other methods; (iii)
Analysis of the Parameters.

421 | Ablationstudy

We conduct an ablation study on the framework to confirm the effectiveness of the proposed ID loss and attribute loss as introduced in Section 3.2.
In particular, we consider the following cases: the framework is equipped with the ID loss module only.

It is worth noting that in order to protect the face identity with the ID loss module only, the perturbation AW adds on the gradient ascent
direction of L, thatis, AW = ﬂ,sign(%), with sign(-) being a Sign function. In this case, the perturbation is added to the ID information without
attribute constraints. The bi-loss mode images is generated based on Algorithm 1. Both the ID and attribute constraints are used to generate the
perturbation.

Figure 3 gives the visual results of the proposed ablation study. The quantity result of the privacy evaluation method (SPR) and the utility
evaluation methods (SDR and MSE) are reported in Table 1.

We use the framework of Face Recognition Library for the SPR, and dlib for the SDR. The ablation result shows that compared with the ID
loss-only framework, the Bi-loss framework achieves a 0.4% increase in privacy performance and a 2.1% increase in face detection. Furthermore,
the distortion of the Bi-loss framework has been reduced by 73.7%. In ablation experiments, the actual number of unsuccessfully protected samples

is almost the same. However, since the Face Recognition Library first uses a face detection module to find faces in an image before figuring out the

Original ﬁ
ID loss ! 2
o ﬁ ‘

FIGURE 3 Thevisual results of the ablation study. The first row is the original image. The second row and third row are the de-identity
images generated by ID loss and bi-loss framework, respectively.

A
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TABLE 1 Ablationstudy

SPR(1) SDR (1) MSE (])
ID loss solely 0.901 0.979 0.426
Bi-loss (ours) 0.905 1 0.112

Note: We use the same ID distance threshold, r = 0.8, for all settings in this table. The second column is the protection rate under Face Recognition Library.
The third column is the detection rate by using dlib.>* The hyperparameters are set to 4; = 0.02, Ap = 0.008, and the maximum iteration number N = 100.

TABLE 2 Privacy evaluation

Face recognition (1) FaceNet (VGGFace2) (1)
CIAGAN10 0.918 0.943
DeepPrivacy!! 0.939 0.816
Fawkes?! 0.704 0.564
Ours 0.967 0.960

Note: The values in this table are the successful protection rates (SPRs). The generation mode of Fawkes?! is set to high, which is the highest privacy level
authors recommended. The threshold of Face Recognitionis § = 0.6 and the threshold of FaceNet is 6 = 1.1 according to Reference 55.

TABLE 3 Utility evaluation

Landmarks distance

SDR (1) Chin (}) Nose (|) Eyes () Mouth (|) MSE (|)
Original 1 0 0 0 0 0
CIAGAN™ 0.9939 2.635 2.130 2422 2.622 0.131
DeepPrivacy!! 0.9989 2.070 1.631 1.384 2.712 0.344
Fawkes?! 0.9990 0.720 0.3921 0.389 0.492 0.422
Ours 1 0.704 0.6664 0.484 0.375 0.112

Note: The face detection network used in this table is dlib. The landmarks distances are generated under the face recognition library.

face ID for that image, the images protected by the ID-loss only sometimes make the image invisible to the face detection network, which lowers
the protection rate.

422 | Results compared to other de-identification methods

This section compares our method with the state-of-the-art face de-identification methods.

Table 2 shows the privacy protection evaluation results with the widely used face recognition networks. We use both the Face Recognition
Library and the FaceNet>® network trained on VGGFace2 to evaluate the SPR. The results prove that our method can better de-identify the face
image under the most widely used face recognition methods. Our method is better than CIAGAN, DeepPrivacy, and Fawkes by 4.9%, 2.8%, and
26.3%, respectively, in terms of the SPR under Face Recognition Library. Under FaceNet (VGGFace2) network, Ours (thick) improves the SPR by
1.7%, 14.4%, and 39.6% compared to CIAGAN, DeepPrivacy, and Fawkes, respectively.

Table 3 summarizes the utility performance of our method compared with the state-of-the-art methods. We evaluate our method with the SDR,
MSE and the average distance of the face feature landmarks on the pixel level. The result shows that our approaches achieve the highest SDR. In
other words, our de-identified faces lead to better performance for face detection tasks. Moreover, compared with GAN-Based methods, that is,
CIAGAN, ' DeepPrivacy,'! our methods strike a compelling score on minimizing the distance of each facial feature. Our method lowers the average
face feature distance of that on CIAGANC and DeepPrivacy!! by 77% and 71%, respectively. Both our method and Fawkes?! have the lower average
face feature distance, but Fawkes achieves the score at the expense of privacy-preserving effectiveness (lowest privacy score). In addition, our
method achieves the lowest pixel-level distortions. Compared with CIAGAN, DeepPrivacy and Fawkes, our distortion is decreased by 14.5%, 67.4%
and 73.5% respectively.
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(A) The trade-oft between privacy and utility under different parameters.  (B) The analysis between the parameters and face features.

FIGURE 4 Parameters analysis. The values of 4, (or 4p) range from 0.01 to 0.1 with a step size of 0.01. The maximum iteration number N = 30.
The threshold 7 = 0.8.

Taking into account the above all, our method has better performance in protecting the face ID while minimizing the impact on image utility. The
images being protected by our method can be used in multi-image tasks.

423 | Analysisonthe Hyperparameters

To evaluate the influence of the hyperparameters, we evaluate the perturbation performance with different controllable noise coefficients, that
is, 4; and 4p. Figure 4A shows a trade-off between the SPR and the SDR under different values of 4; and ip,. We see that the SDR first decreases
slowly when 4; = Ap < 0.05, and then decreases rapidly when A; = Ap > 0.05. In contrast, the SPR increases rapidly when 4, = 1p < 0.05, and then
flattens out at 4, = Ap = 0.08. In other words, with the growth of 4, and /p, the success rate of protection (privacy) increases while the success rate
of detection (utility) decreases.

Figure 4B gives the mean feature distance under different hyperparameter settings. The result shows that the distance of the feature will

increase when the hyperparameter increase. From the first point 0.01 to the last point 0.1, the average distance increases 135%.

4.3 | Discussions
43.1 | Privacy protection against the commercial network

In this section, we test our protected images on the two most widely used commercial networks, Microsoft Face API°¢ and Face Plus Plus API.5”
These two APlIs are built on large face recognition networks, which use the advanced deep neural network and are trained on a large dataset. They
provide several applications, including face detection and analysis, identity verification and finding similar faces. In this experiment, we use the
identity verification service to evaluate our method. In identity verification, the APIs will take the original images and the protected images as the
input and output a score of confidence that indicates the probability that two faces belong to the same person. The higher the confidence, the higher
chance they belong to the same person. If the input is the images without protection and the original image, the confidence score equals 1.0.

The experiment results are shown in Figure 5. Microsoft Face APl and Face Plus Plus use different confidence thresholds. While Microsoft Face
API takes 0.5, Face Plus Plus takes the value of around 0.69. The sample with a score below the threshold is recognized as a different person in the
API. The results show that our method lowers the score of 82.9% samples under the threshold of 0.5 against Microsoft Face API, which makes the
network almost ineffective. And the score of 55.8% samples on Face Plus Plus API is under the threshold of 0.69, which makes the network works
in a random guess. The experiment result proves that our method is transferable in different networks. Because these commercial APIs networks

do not open their source code and we did this experiment in a black box mode.

43.2 | Limitations

Although our proposed framework for face identity protection can achieve compelling results in both privacy and utility, it has some room for further

improvement. First, the face latent code generated by the auto-encoder architecture comes with a cost - the de-identity image quality is limited
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Confidence

MS API FACE++ API

FIGURE 5 The confidence of commercial API.

Output 1

Output 2

FIGURE 6 Failure examples. Output 1 refers to the generated images without protection. Output 2 shows the de-identity image with our
method.

to the image-to-image translation ability of the chosen auto-encoder. Thus, de-identifying the face image with complex attributes, for example,
background, might be challenging if such examples were not synthesized well in the auto-encoder. Figure 6 presents a few examples of such images.

Ascanbeseenin Figure 6, the complex attributes, for example, background and hands, which are non-identity-related attributes, can not display
correctly due to the reconstruction failure.

5 | CONCLUSION

In this paper, we propose a novel face image de-identification framework. This framework de-identifies the face by adding feature space adversarial
perturbation (FSAP). Moreover, we conduct intensive experiments to prove the effectiveness of the framework. With the latent vector W trained on
the elaborate loss, the perturbed faces are equipped to reduce the risks of identity leakage under CNN face recognition technics while balancing the
utility for computer vision tasks. The merits of the proposed framework are two-folded. First, compared with the GAN-based face de-identification
network, instead of adding perturbationsin ageneralised direction, FSAP adds noise on the gradient, which ensures accuracy. Second, compared with
the AP-based face de-identification network, feature-space adversarial perturbations have better transferability among different neural network

models.
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