

RF Self-Powered Sensor to Design Fully Autonomous IoT Devices

by Majid Amiri

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of A/Prof. Mehran Abolhasan, A/Prof. Justin Lipman and Dr. Negin Shariati Moghadam

University of Technology Sydney
Faculty of Engineering and Information Technology

February 2022

STATEMENT OF ORIGINALITY

I, Majid Amiri declare that this thesis, is submitted in fulfilment of the requirements for the award of the degree of doctor of philosophy, in the faculty of Engineering and Information Technology at the University of Technology Sydney. This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Signature:

Production Note:

Signature removed prior to publication.

Majid Amiri February 22, 2022

ABSTRACT

The need for continuous, accurate and autonomous sensors has increased significantly given the rapid growth of the Internet of Things (IoT). Sensors collect data for a specific measurable phenomenon. Data may then be transmitted to a controller or cloud service for processing. Alternatively, data may be (pre)processed on the sensor device prior to transmission. Sensors are a necessary element of IoT devices. Sensors are designed to detect specific phenomenon and covert this into digital data that can be leveraged for analytics and machine learning to determine future actions.

The energy consumed by a sensor has a direct impact upon the IoT device and its application and requirements. Depending upon the phenomenon being sensed, supporting continuous operation may be critical as discontinuities in sensing may result in the sensing of a phenomenon missing vital data points thereby limiting accuracy. Further continuous sensing increases the overall energy consumption of the IoT device, reducing overall lifetime of operation of the IoT device or the need for frequent battery replacements. Self-powered sensors provide a promising solution to produce autonomous sensors that can operate both indefinitely and free from energy source limitations. Self-powered sensors can acquire energy using varying types of ambient energy.

Recently, various ambient energy sources have been used to implement self-powered sensors. However, these structures require specific requirement to provide electricity. Alternatively, ambient electromagnetic (EM) waves in the environment can be used as a new power source due to the ubiquitous wide spread modern use of wireless communication. However, the available energy levels of ambient EM signals is low. Therefore, to harness EM signals, a highly efficient receiver is required. The use of a rectenna is a common solution to convert EM signals to electricity, however there is still need for EM energy harvesting to be significantly improved. Metamaterials are a promising solution to address this problem. Literature has shown metamaterial perfect absorbers (MPAs) are promising candidate for both sensing and EM energy harvesting. This thesis explores potential uses of MPAs for highly efficient EM harvesting and passive sensing of phenomenon.

ACKNOWLEDGEMENTS

This thesis would not have been fulfilled without the supervision and guidance of many individuals who contributed and extended their valuable assistance in the preparation and completion of this study.

First, I would like to express my profound gratitude to my supervisor A/Professor. Mehran Abolhasan for his continuous guidance and support throughout my PhD study with his patience and knowledge. A/Professor. Mehran Abolhasan has provided me with an excellent research environment. I am greatly inspired by his deep insights into technical issues.

My sincere thanks goes to my co-supervisors Dr. Negin Shaiati and A/Professor. Justin Lipman, for their unconditional support and valuable guidance during this thesis. It is an honour for me to work with them during my studies. They were always available and willing to assist. They have not been only a great advisors, but also an encouraging and motivating friends.

Being a member of RFCT Lab at University of Technology Sydney (UTS) was an excellent experience for me. Many of the ideas in our work emerged from discussions and teamwork. My sincere thanks goes to all the students and staff of RFCT Lab for their help in the whole process leading to conseptualization of the project.

I like to thank all my friends (too many to list here but you know who you are!) for providing support and friendship that I needed all these years as well as happy distractions to rest my mind outside of my research.

In the end, I would like to express my forever thanks to my parents for their unconditional love, unreserved support and encouragement through my life.

LIST OF PUBLICATIONS

Peer-reviewed Journal Papers

- M. Amiri, M. Abolhasan, N. Shariati, and J. Lipman, "Remote water salinity sensor using metamaterial perfect absorber" *IEEE Transactions on Antennas & Propagation*, 2022, early access, DOI: 10.1109/TAP.2022.3161485.
- 2. **M.** Amiri, M. Abolhasan, N. Shariati, and J. Lipman, "Highly efficient polarization insensitive EM energy harvester using metamaterial absorber" *IEEE Transactions on Industrial Electronics*. (Under review)
- 3. **M. Amiri**, M. Abolhasan, N. Shariati, and J. Lipman, "RF-self powered sensor for fully autonomous soil moisture sensing" *IEEE Transactions on Microwave Theory & Techniques*. (Minor revision)
- 4. **M. Amiri**, M. Abolhasan, N. Shariati, and J. Lipman, "Soil moisture remote sensing using SIW cavity based metamaterial perfect absorber" *Scientific Reports*, vol. 11, no. 1, pp.1-17, 2021.
- 5. **M. Amiri**, F. Tofigh, N. Shariati, J. Lipman, and M. Abolhasan "Review on metamaterial perfect absorbers and their applications to IoT" *IEEE Internet of Things Journal*, vol. 8, no. 6, pp. 4105-4131, Sep. 2020.
- 6. **M. Amiri**, F. Tofigh, N. Shariati, J. Lipman, and M. Abolhasan "Wide-angle metamaterial absorber with highly insensitive absorption for TE and TM modes" *Scientific Reports*, vol. 10, no. 1, pp.1-13, 2020.
- 7. **M. Amiri**, F. Tofigh, N. Shariati, J. Lipman, and M. Abolhasan "Miniature tri-wideband Sierpinski–Minkowski fractals metamaterial perfect absorber" *IET Microwaves, Antennas and Propagation*, vol. 13, no. 7, pp. 991-996, 2019.
- 8. F. Tofigh, **M. Amiri**, N. Shariati, J. Lipman, and M. Abolhasan "Polarization-insensitive metamaterial absorber for crowd estimation based on electromagnetic energy measurements" *IEEE Transactions on Antennas & Propagation*, vol. 63, no. 3, pp. 1458-1467, Nov. 2019.
- 9. F. Tofigh, **M. Amiri**, N. Shariati, J. Lipman, and M. Abolhasan "Crowd estimation using electromagnetic wave power-level measurements: A proof of concept" *IEEE Transactions*

- on Vehicular Technology, vol. 69, no. 1, pp. 784-792, Nov. 2019.
- 10. F. Tofigh, **M. Amiri**, N. Shariati, J. Lipman, and M. Abolhasan "Low-frequency metamaterial absorber using space-filling curve" *Journal of Electronic Materials*, vol. 48, no. 10, pp. 6451-6459, 2019.

Peer-reviewed Conference Papers

- M. Amiri, M. Abolhasan, N. Shariati, and J. Lipman, "Multi-band SIW Cavity Based Metamaterial Perfect Absorber" Asia Pacific Microwave Conference (APMC), 2021.
- 2. **M. Amiri**, M. Abolhasan, N. Shariati, and J. Lipman, "Perfect EM Waves Absorption Using Metamaterial Structures" 17th Australasian Symposium on Antennas (ASA), 2021.
- 3. **M. Amiri**, M. Abolhasan, N. Shariati, and J. Lipman, "Ultra Wideband Dual Polarization Metamaterial Absorber for 5G frequency spectrum" 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, IEEE 2020.
- 4. **M. Amiri**, M. Abolhasan, N. Shariati, and J. Lipman, "Miniature tri-wideband fractals metamaterial perfect absorber to crowd sensing" 4th Australian Microwave Symposium (AMS), 2020.

CONTENTS

1	Intr	oduction	n	1
	1.1	Motiva	ation	1
	1.2	Challer	nges	3
		1.2.1	Absorbing RF signals	3
		1.2.2	Providing usable energy from RF signals	4
		1.2.3	Sensing targeted parameter	4
		1.2.4	Simultaneous sensing and energy harvesting	5
	1.3	Researc	ch Questions	5
	1.4	Researc	ch Objectives	6
	1.5	Deliver	rables	6
	1.6	Contrib	oution and Novelty	7
	1.7	Thesis	Organization	7
2	Lite	rature F	Review	10
	2.1	Introdu	action	10
	2.2	Metam	aterial Perfect Absorber Background	13
	2.3	Design	Principles	15
		2.3.1	Equivalent circuits for MPAs	16
	2.4	Method	ds to Enhance Absorber's Characteristics	17
		2.4.1	Increasing Electrical Length	18
		2.4.2	Adding lumped elements	18
		2.4.3	Air gap	21
		2.4.4	Multi-resonator absorber	21
		2.4.5	Multi-layer structure	23

		2.4.6	Manipulating ground plane	23
		2.4.7	Resonator shape manipulation	25
		2.4.8	Reconfigurable structure	27
		2.4.9	Using unconventional materials	29
		2.4.10	3D metamaterial absorber	30
	2.5	Compa	urison of Absorber Efficiency	31
	2.6	Metam	aterial Absorber Applications	33
		2.6.1	Absorption of undesired frequency	33
		2.6.2	Terahertz applications	33
		2.6.3	Thermal emitter absorber	35
		2.6.4	Optical switches	38
		2.6.5	Energy harvesting	40
		2.6.6	MPA as a sensor	46
		2.6.7	Discussion on different possible structures in one application	48
	2.7	IoT Ap	oplications of MPA in Industry	49
	2.8	Future	Work and Challenges	50
		2.8.1	Metamaterial Perfect absorber for future IoT devices	50
		2.8.2	Passive sensing	51
		2.8.3	Autonomous IoT sensors and devices	52
	2.9	Conclu	ision	53
3	Meta	amateri	al Perfect Absorber	54
	3.1	Introdu	action	54
	3.2	Polariz	eation and Incident Angles Insensitive	55
		3.2.1	Unit Cell Design	55
		3.2.2	Numerical Results	58
		3.2.3	Fabrication and Measurement	62
		3.2.4	Discussion on Adjusting Sensitivity	63
		3.2.5	Conclusion	66
	3.3	Broadb	pand Metamaterial Perfect Absorber	68
		3.3.1	Unit Cell Design Principles	69
		3 3 2	Results and Discussion	72

		3.3.3	Conclusion	74
	3.4	Multib	and Cavity-Based Metamaterial Perfect Absorber	75
		3.4.1	Unit Cell Design	75
		3.4.2	Simulation Results	76
		3.4.3	Conclusion	78
	3.5	Summ	ary	79
4	EM	Energy	Harvesting	80
	4.1	Introd	uction	80
	4.2	Miniat	ture Tri-wideband Sierpinski–Minkowski Fractals MPA	81
		4.2.1	Unit Cell Design	82
		4.2.2	Design Analysis and Parametric Study	84
		4.2.3	Fabrication and Measurement Results	88
		4.2.4	Conclusion	90
	4.3	Highly	Efficient Energy Harvesting by Using Metamaterial Perfect Absorber	91
		4.3.1	Unit Cell Design	92
		4.3.2	Channeling the Unit Cells	97
		4.3.3	Rectifying the Signals	103
		4.3.4	Final Structure and Measurement	106
		4.3.5	Conclusion	109
	4.4	Summ	ary	110
5	Sens	sing		111
	5.1	Introd	uction	111
	5.2	Soil M	Toisture Sensor	113
		5.2.1	Design Principles of Cavity-Based MPA	114
		5.2.2	Substrate Integrated Waveguide Structure	116
		5.2.3	MPA Simulation Results	118
		5.2.4	Channeling to Create Effective Medium	123
		5.2.5	Soil Properties with Different Level of Moisture	124
		5.2.6	Sensing Capability of Proposed Sensor	124
		5.2.7	Fabrication and Measurement	127

		5.2.8	Conclusion	131
	5.3	Remot	e Water Salinity Sensor Using Metamaterial Perfect Absorber	134
		5.3.1	Unit Cell Design	134
		5.3.2	Microfluidics Channel	135
		5.3.3	MPA-based Sensor	136
		5.3.4	Fabrication and Measurement	145
		5.3.5	Conclusion	148
	5.4	Summ	ary	148
6	RF-	Self Pov	vered Sensor	149
	6.1	RF-Se	If Powered Sensor for Fully Autonomous Soil Moisture Sensing	149
		6.1.1	Introduction	149
		6.1.2	Unit Cell Design	150
		6.1.3	Channelling Unit Cells	155
		6.1.4	Sensing Capability	157
		6.1.5	Adding Rectifier to Structure	159
		6.1.6	Final Structure and Measurement	161
		6.1.7	Discussion on Measurement Results	166
		6.1.8	Conclusion	166
	Bibli	iograph	y	168

LIST OF FIGURES

2.1	First perfect metamaterial absorber structure [68]	15
2.2	Equivalent circuit based on resonator shape [73]	16
2.3	Equivalent circuit based on transmission line theory [75]	17
2.4	Miniaturized structure, (a) Using snake shape around middle resonator to increase electrical length [77], (b) Using fractal based resonator to increase electrical length [78], (c) Combination of corrugated surface and substrate make a 3D structure to increase electrical length [80].	19
2.5	Lumped loaded structure (a) Using 4 lumped capacitors in each resonator to shift absorption frequency downward [83], (b) Using combination of capacitors and resistors to reduce absorption frequency and improve absorption ratio [84], (c) Using combination of capacitors and resistors in different location [85]	20
2.6	Adding air gap to structure, (a) Combining air gap and lumped elements for RFID application [86], (b) Combining air gap and lumped resistors aiming energy harvesting application [87].	21
2.7	Combine several resonators (a) Nested square split ring resonators [91], (b) Super cell structure by combining two sets of different size of ring resonators [94]	22
2.8	Multi-layer structure (a) Repetitive pattern with various sizes on different layers [96], (b) Circle dielectric sandwiches between to circle resonators [101], (c) Two different size of ring resonators using two layers structure for polarization sensitive applications [102].	24
2.9	Using cavity resonator instead of normal metal film as a ground layer [103]	25
2.10	Polarization and incident-angle insensitive, (a) Symmetric structure [110], (b) Combination of several resonators on different layers [111]	26
2.11	Chaos patterned structure as a resonator [113]	27
2.12	Reconfigurable structure by injecting fluid metal in microfludic channel [117]	28
2.13	Rotational re-configurable structure by using two different fluids with various densities [118]	28

2.14	(a) Ultra-broadband metamaterial perfect absorber by using water as a substrate [120], (b) Thermally tunable MPA by combining water and dielectric substrates [121]	29
2.15	Injecting various amounts of water in to the elastic substrate as resonators. [122].	30
2.16	3D Printed Stair-Like Jerusalem Cross MPA [124]	30
2.17	3D printed structures, (a) Completely dielectric metamaterial absorber with no metal resonator on top [125], (b) Combination of honeycomb and resistive films on the walls [126]	31
2.18	(a) Fractal resonator and lumped resistors MPA structure to absorb undesired signal, (b) The absorption characteristics facing different incident angles. [128]	34
2.19	Terahertz metamaterial perfect absorber structures using silicon, (a) Multi-band adsorption using different size nested square ring resonators, (b) Absorption characteristics facing different polarization angles waves [130]	36
2.20	(a) Broadband MPA structure on silicon, (b) Measurement and simulation results of reflection and absorption for the 2D cross array absorber, (C) Broadening the absorption bandwidth by doping the silicon substrate [131].	36
2.21	(a) Metal nano-structure for thermal emitter application (b) Absorption characteristic facing different incident angles. [135].	37
2.22	(a) Flower shape optical switch using FR-4 substrate, (b) Absorption characteristic facing different polarization angles [138].	38
2.23	(a) Optical switch with using nanocomposite metal, (b) The reflection coefficients by changing concentration of metal nano-particles [136].	39
2.24	Inefficient design of EM energy harvester, (a) Unit cell consists of two layers and three nested resonators on each layer, (b) The final structure after adding lumped resistors to harvest energy [36].	41
2.25	Guided EM waves with via to the lumped resistors for harvesting applications, (a) Supper-cell consist of 4 Ohm shape resonators, (b) The amount of absorbed signals in different parts of MPA [157].	42
2.26	Attached layer as a fed network to combine cells output for harvesting applications, (a) Different layers of energy harvester (b) One fed network for all polarization [164].	43
2.27	Attached layer as a fed network to combine cells output for harvesting applications, (a) Supper-cell structure including 2 cell with hole in different positions (b) Separated combiner network for different polarizations [162].	44
2.28	One layer energy harvester with electrical connection between cells, (a) Channelled MPA structure with rectifier for each channel [165], (b) Connected unit	15
	cells using lumped inductor and embedded rectifier in each cell [166]	45

2.29	Sensing the quality of rice using MPA with sample holder [174]	47
2.30	Refractive index sensor for potential biomedical applications [181]	48
3.1	Proposed structure, (a) Unit cell design, (b) Equivalent circuit, (c) Normalize impedance	56
3.2	Numerical setup to analyse MPA structure	56
3.3	(a) Effective permeability, (b) Effective permittivity	57
3.4	Effect of parameters (a) Number of blades, (b) Crescent outer radius, (c) Middle circle radius, (d) Width of blades, (e) Crescent curve angle	59
3.5	Angle insensitivity (a) Different polarization angles for TE waves, (b) Different polarization angles for TM waves, (c) Different incident angles for TE waves, (d) Different incident angles for TM waves	60
3.6	E-field distribution (a) TE polarized waves, (b) TM polarized waves	61
3.7	Co- and cross-polarization reflection	61
3.8	(a) Fabricated MPA, (b) Measurement setup	63
3.9	Angle insensitivity measurement results (a) Different incident angles for TE waves, (b) Different incident angles for TM waves, (c) Different polarization	
	angles	64
3.10	Absorption sensitivity trend by changing α , (a) TE polarized waves, (b) TM polarized waves	65
3.11	(a) Parallel current in structure with increasing Crescent width, (b) Surface current in structure with increasing Crescent width, (c) TE absorption sensitivity for $w=2\ mm$, (d) TM absorption sensitivity for $w=0.5\ mm$	67
3.12	Proposed structure, (a) Unit cell design, (b) Equivalent circuit	70
3.13	The absorption characteristic by changing, (a) First resonator length (L_1) , (b) Second resonator length (L_2) , (c) Third resonator length (L_3) , (d) First resonator width (W_1) , (e) Second resonator width (W_2) , (f) Third resonator width (W_3) ,	
		71
3.14	The absorption characteristic by changing, (a) Upper gap (g_1) , (b) Lower gap (g_2)), (c) Offset of resonators (O)	72
3.15	Electirc field distribiurtion in (a) $f=23.16GHz$, (b) $f=32.04GHz$, (c) $f=45.16GHz$, (d) $f=52.53GHz$	73
3.16	Sensitivity of the proposed structure facing, (a) Different incident angles of TE mode waves, (b) Different incident angles of TM mode waves, (c) Different polarization angles of TE mode waves, (d) Different polarization angles of TM mode	
	waves.	73

3.17	(a) SIW cavity resonator structure, (b) SIW cavity resonator dimensions	76
3.18	(a) Effect of slots' distance (d_s) , (b) Effect of slots' width (w_s) , Effect of slots' length (l_s)	77
3.19	E-field distribution at (a) $f=2$ GHz, (b) $f=2.5$ GHz, (c) $f=5.1$ GHz, H-field distribution at (d) $f=2$ GHz, (e) $f=2.5$ GHz, (f) $f=5.1$ GHz, E-field distribution at (g) $f=6.8$ GHz, (h) $f=8.4$ GHz, (i) $f=9.8$ GHz, H-field distribution at (j) $f=6.8$ GHz, (k) $f=8.4$ GHz, (l) $f=9.8$ GHz,	78
3.20	Absorption characteristics facing different polarization angles (a) TE mode, (b) TM mode.	79
4.1	Proposed structure (a) 3D model of a cell unit, (b) Unit cell structure, (c) Equivalent circuit of unit cell.	83
4.2	Absorption characteristics for different design steps	84
4.3	Simulation setup for unit cell in CST Studio	84
4.4	Effects of design parameters, (a) The effect of line width, W, with L=0.9 mm, h=12.5 mm, and R=70 Ω , (b) The effect of curve length, L, with W=0.3 mm, h=12.5 mm, and R=70 Ω , (c) The effect of air gap, h, with W=0.3 mm, L=0.9 mm, and R=70 Ω , (d) The effect of lumped resistor, R, with W=0.3 mm, L=0.9 mm, and h=12.5 mm.	85
4.5	Real and imaginary values for Impedance, $Z(\omega)$	86
4.6	Surface current, H- energy densities at frequencies, (a1) Surface current (2.1 GHz), (a2) H-field density (2.1 GHz), (b1) Surface current (5.1 GHz), (b2) H-field density (5.1 GHz), (c1) Surface current (12.8 GHz), (c2) H-field density (12.8 GHz).	87
4.7	Energy consumption in different part of structure	88
4.8	(a) The fabricated metamaterial perfect absorber, (b) The measurement setup, (c)	
	Simulated and measurements results	89
4.9	Absorption dependency on oblique angle and polarisation, (a) Dependency on the oblique angle (TE), (b) Dependency on the oblique angle (TM), (c) Dependency on the polarisation (TE), (d) Dependency on the polarisation (TM).	90
4 10	Unit cell (a) Structure and dimension, (b) Equivalent circuit	93
	Input effective impedance of proposed MPA	94
	Effect of parameters: (a) Metal square, (b) Width of microstrip, (c) Microstrip line	74
4.12	gap, (d) Transmission line, (e) Resistors	96
4.13	The power distribution in different sections of the proposed MPA	96

4.14	Changing in the MPA absorptivity for different polarization angles (a) Facing TE polarized incident waves, (b) Facing TM polarized incident waves	97
4.15	Power flow for different polarization angles, (a) Facing TE polarized incident waves, (b) Facing TM polarized incident.	97
4.16	Channeled cells by adding lumped capacitors	99
4.17	Effect of parameters: (a) Metal square, (b) Width of microstrip, (c) Microstrip line gap, (d) Transmission line	100
4.18	Implementing via holes in channeled structure	100
4.19	(a) Power flow in 4×4 channeled MPA, (b) Surface current in 4×4 channeled MPA	101
4.20	Unit cell (a) Structure and dimension, (b) Equivalent circuit	102
4.21	The schematic of EM-DC system	105
4.22	Effect of load resistor on DC output.	105
4.23	The bandwidth of rectifier circuit for different load resistors (RL)	106
4.24	The rectifier bandwidth circuit at various levels of input power (Pin)	106
4.25	Fabricated structure (a) Top side (MPA resonators), (b) Bottom side (rectifiers and metal film).	107
4.26	(a) Absorptivity measurement setup, Absorption efficiency of MPA for changing:(b) Polarization angle, (c) Incident angle.	108
4.27	Energy harvesting measurement setup.	108
5.1	(a) Cavity resonator MPA unit cell, (b) Numerical setup to analyse MPA structure.	115
5.2	SIW-cavity MPA's return loss before etching channels	115
5.3	(a) Effect of changing slots width , (b) Effect of changing slots length	116
5.4	(a) SIW cavity resonator structure, (b) SIW cavity resonator dimensions	117
5.5	The effects of via hole parameters on absorption characteristics (a) Hole's diameter, (b) Hole's distance	117
5.6	Electromagnetic fields facing TE polarized incident waves (a) E-field distribution at $f=2.4~{\rm GHz}~(TE_{102})$, (b) H-field distribution at $f=2.4~{\rm GHz}~(TE_{102})$, (c) E-field distribution at $f=5~{\rm GHz}$ (Hybrid mode of TE_{102} and $TE_{104})$, (d) H-field distribution at $f=5~{\rm GHz}$ (Hybrid mode of TE_{102} and $TE_{104})$ (e) E-field distribution at $f=7.7~{\rm GHz}~(TE_{104})$, (f) H-field distribution at $f=7.7~{\rm GHz}~(TE_{104})$.	119

5.7	Electromagnetic fields facing TM polarized incident waves (a) E-field distribution at $f=2.4~\mathrm{GHz}~(TE_{201})$, (b) H-field distribution at $f=2.4~\mathrm{GHz}~(TE_{201})$, (c) E-field distribution at $f=5~\mathrm{GHz}$ (Hybrid mode of TE_{201} and TE_{401}), (d) H-field distribution at $f=5~\mathrm{GHz}$ (Hybrid mode of TE_{201} and TE_{401}) (e) E-field distribution at $f=7.7~\mathrm{GHz}~(TE_{401})$, (f) H-field distribution at $f=7.7~\mathrm{GHz}~(TE_{104})$.	
	*This figures have been created by CST Studio 2019 Version 2019.07	119
5.8	Input impedance of SIW cavity resonator	120
5.9	(a) Effective permittivity, (b) Effective permeability.	121
5.10	Angle insensitivity (a) Different polarization angles for TE waves, (b) Different polarization angles for TM waves, (c) Different incident angles for TE waves, (d) Different incident angles for TM waves.	122
5.11	Co- and cross-polarization reflection	123
5.12	(a) Final unit cell after etching the channels, (b) The frequency shift by changing the soil moisture content from 0% to 30% for different depth of channels	124
5.13	Sensing efficiency of the proposed MPA for different moisture levels in sand soil (a) Facing TE polarized incident waves, (b) Facing TM polarized incident waves.	126
5.14	Sensing efficiency of the proposed MPA for different moisture levels in Loamy soil (a) Facing TE polarized incident waves, (b) Facing TM polarized incident waves.	126
5.15	(a) Fabricated 6×6 MPA, (b) Implemented measurement setup	130
5.16	Angle insensitivity measurement results (a) Different incident angles for TE waves, (b) Different incident angles for TM waves, (c) Different polarization angles.	131
5.17	Measuring sensor capability (a) Filling MPA channels by sand with different levels of moisture, (b) Changing absorption characteristics by varying the soil moisture.	132
5.18	Frequency shift by changing soil moisture level	133
5.19	(a) MPA structure [291] (b) The absorption characteristic without microfludics channel	135
5.20	(a) Different tested microfluidics channels, (b) Frequency shift for different shapes.	136
5.21	(a) The final unit cell structure, (b) Cross-section of the square channel in the substrate, (c) Equivalent circuit of the final structure.	137
5.22	The effects of different parameters on absorption band, (a) The width of channel $W_{channel}$, (b) The height of channel $H_{channel}$, (c) The width of channel inlets w_{inlet}	141
	~mer	

5.23	Channel widening effect on electric field penetration depth	142
5.24	Channel heightening effect on electric field penetration depth	142
5.25	Sensitivity of MPA sensor with empty channel facing (a) Different polarization angles (TE), (b) Different polarization angles (TM), (c) Different incident angles (TE), (d) Different incident angles (TM).	143
5.26	Sensitivity of filled MPA sensor with distilled water facing (a) Different polarization angles (TE), (b) Different polarization angles (TM), (c) Different incident angles (TE), (d) Different incident angles (TM)	144
5.27	Sensor's absorption characteristics for various permittivities	144
5.28	Fabricated structure (a) Half channel structures, (b) Resonator and metal film, (c) Assembled sensor with empty channels, (d) Assembled sensor with filled chan-	
- -0	nels	145
5.29	Experiment setup to measure sensor's characteristics	146
5.30	Measured absorption characteristics of MPA sensor (a) Facing different polarization angles, (b) Facing different incident angles, (c) Different level of water salinity	
	levels	147
6.1	(a) The final unit cell structure, (b) The top view, (c) The bottom view	151
6.2	The effect of adding lumped capacitor to the structure	152
6.3	The unit cell's equivalent circuit	152
6.4	Effect of different parameters: (a) The width of the metal path (w_t) , (b) The width of the metal patch (w_p) , (c) The gap between resonators (g) , (d) The distance between resonator and substrate's cuts (d_c) , (e) The air-gap height (h_a) , and (e)	
	lumped resistors' load (R)	154
6.5	The power flow diagram for: (a) unit cell, (b) 2×2 channeled structures, (c) 3×3 channeled structures, and (d) 4×4 channeled structures	156
6.6	Absorption characteristics for (a) Changing polarization angle, (b) Changing incident angle	156
6.7	Absorption characteristics for changing soil moisture level in and loamy (a) Sand, (b) Loamy	158
6.8	The schematic of EM-DC system	159
6.9	Effect of load resistor on DC output (a) 5% moisture rectifier at, (b) 25% moisture	
	rectifier. MHz	160
6.10	Efficiencies of two rectifiers at lower and higher soil moisture levels	161
6 11	Fabricated structure	162

6.12	Measurement setup to measure the absorption characteristics	162
6.13	Measured absorption characteristic facing, (a) Different polarization angles, (b)	
	Different incident angles	164
6.14	Measurement setup to test sensing capability	165

LIST OF TABLES

2.1	Effectiveness of methods to enhance metamaterial absorber for different aims	32
2.2	Some reported MPAs for removing undesired signals applications	35
2.3	Some reported MPAs for energy harvesting applications	46
2.4	Some reported MPAs for sensing applications	48
2.5	Different possible structures for one target application	49
2.6	Industrial applications of MPAs	50
3.1	The optimum values of unit cell	59
3.2	Comparison of proposed absorber performance with other insensitive absorber in	
	literature	62
3.3	Final values of parameters	70
3.4	characteristics comparison	70
3.5	Final values of structural parameters	77
4.1	Comparing the proposed and reported structure	88
4.2	The optimum values of unit cell	95
4.3	Comparison of the performance of the proposed structure with literature	101
4.4	Coefficient factor for different number of cells in each channel	103
4.5	Performance comparison of the proposed structure with literature	103
4.6	The minimum required power to run rectifier circuits	104
4.7	Power at different sections of structure	109
4.8	Performance comparison of reported Metamaterial-based energy harvester	109
5.1	The optimum values of unit cell dimension.	118
5.2	The characteristics of various types of soil with different levels of moisture	125
5.3	Comparing different types of soil moisture sensor based on various methods	128

5.4	Some reported MPAs for removing undesired signals applications	129
5.5	Final dimensions of unit cell	135
5.6	Final dimensions of channel	141
5.7	Comparing Reported structures for liquid sensing	145
5.8	The relation between salinity level and absorption frequency shifted	147
6.1	Effect of number of cell in each channel on absorption and harvesting efficiencies	156
6.2	Coefficient factor for different number of cells in each channel	157
6.3	The characteristics of various types of soil with different levels of moisture	158
6.4	The minimum required power to run rectifier circuits	160
6.5	Comparing different types of soil moisture sensor based on various methods	163
6.6	The optimum values of rectifiers' components	164
6.7	Power at different sections of structure	165

LIST OF ABBREVIATIONS

ABC Acrylonitrile Butadiene Styrene

AC Alternating Current

ADS Advanced Design System

BW Bandwidth

CP Circularly-PolarizationCPW Coplanar Waveguide

DC Direct Current

DNG Double Negative Material

EIRP Effective Isotropic Radiated Power

EM Electromagnetic

EMC Electromagnetic Cage
 ERR Electric Ring Resonator
 ESA Electrically Small Antenna
 FSS Frequency-Selective Surfaces

IoT Internet of Things

ITU International Telecommunications Union

MPA Metamaterial Perfect Absorber

PCB Printed Cicuit Board

PCR Polarization Conversion Ratio

RF Radio Frequency

SIW Substrate-Integrate-Waveguide

SRR Split-Ring Resonator
TE Transverse-Electric

TENG Triboelectric Nanogenerator

TM Transverse-Magnetic

UWB Ultra-Wideband

VHF Very High Frequency

1D One-dimensional2D Two-dimensional3D Three-dimensional

5G Fifth Generation