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ABSTRACT

Figurative language in online user-generated text poses challenges to Natural
Language Processing (NLP) systems designed to automate the understanding
of natural language. This thesis introduces empirical studies that quantify the

presence and describes the nature of figurative language in Social Media posts (i.e. Twit-
ter). It also quantifies the impact of figurative language on particular NLP applications
and introduces new resources (i.e. datasets and methodologies) for the computational
processing of figurative language.

This thesis contains a focused case-study on general figurative language in the
context of Public Health Surveillance (PHS) applications that monitor Twitter for health
events. Findings indicate that some symptom and disease topics are mentioned in a
figurative context more than in a health context, which results in a biased signal. To
address this bias, a new annotated dataset and text classifier is proposed that reduces
bias by targeting figurative expressions of health-related concepts on Twitter.

There is limited research on the expression of hyperbole on Twitter compared to other
types of figurative language (e.g., metaphor). To address this gap, a dataset of tweets
annotated for the presence of hyperbole is collected and explored. Findings show that
hyperbole is relatively common on Twitter and the expression of hyperbole varies from
simple and repetitive to complex and novel. A common theme of hyperbole expression
on Twitter is the strong affective-laden intentions of the authors, heightening the im-
portance of hyperbole understanding for affective computing applications. Several text
classifiers are proposed that leverage pre-trained language models, affective signals, and
privileged information for the detection of hyperbole. Experiments show improvements
in the detection of hyperbole and importantly highlight annotation biases inherent in
the current annotation scheme for hyperbole detection, which is likely to be a roadblock
to further improvements.

This thesis quantifies the occurrence of figurative language on Twitter and demon-
strates a considerable and consistent presence. Additionally, figurative language is often
mishandled by various NLP resources and is scantly addressed by existing datasets
and methodologies. Experiment results show that through direct targeting and careful
handling of figurative language, improvements to the detection of figurative language
are achievable. However, it is concluded that the complexity and novelty of figurative
language requires further algorithmic and data inventions for continued progress.
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1
INTRODUCTION

1.1 Thesis Statement

This thesis is an investigation into the expression of figurative language in social media,
particularly Twitter, as well as an exploration in to the use of machine learning methods
to detect and interpret these expressions. The following thesis statement captures the
central question that is addressed by the work presented in this thesis;

Accurate computational understanding of figurative language on social media is a
complex task that requires modification of existing and creation of new datasets and
methodologies.

This question is addressed via the introduction of new datasets on the phenomena
of figurative language, qualitative and quantitative analysis of these datasets and the
introduction of novel machine learning algorithms evaluated on these datasets.

1.2 Background

This section provides a brief overview of three topics that are important to the work pre-
sented in this thesis, including figurative language, social media and Natural Language
Processing (NLP). Definitions and relationship between these three topics and how they
are related in the context of this thesis are provided.

A critical review of the existing literature relating to these topics will be covered in
chapters 2, 3, 4 and 5 rather than in a single literature review at the beginning of the

1



CHAPTER 1. INTRODUCTION

thesis.

1.2.1 Figurative Language

Figurative Language is a specific type of natural language that has been extensively
studied and debated for centuries, resulting in a vast body of theories and definitions
[198]. In addition to the longevity of research into figurative language, scholars from
disciplines such as linguistics, philosophy, psychology, cognitive science and literary
criticism have studied the phenomena [187, 198]. Identifying a single concise definition
that adequately captures all aspects of figurative language is a challenging task given
such a large body of diverse literature. For the purpose of this thesis, it is necessary to
define figurative language by drawing from several modern definitions.

Figurative language is often defined in terms of a contrast with the phenomenon of
literal language. The Oxford Dictionary defines figurative language as "Departing from a
literal use of words; metaphor" [46]. A more detailed definition states that the intended
meaning of a figurative utterance does not coincide with the literal meaning of the words
and sentences contained within that particular utterance [63]. It is claimed that the
recognition of figurative language is only possible because of a contrast with more literal
language [45].

The provided definitions indicate that figurative language is a phenomenon that is
understood in terms of literal language. This suggests that an understanding of literal
language precedes that of figurative language. The Oxford Dictionary provides the follow-
ing definition of literal language; "Taking words in their usual or most basic sense without
metaphor or exaggeration" [46]. Slightly problematically, figurative language and literal
language are defined in terms of each other by the Oxford Dictionary. A literal meaning
can be more comprehensively defined as being whatever the dominant linguistic theory
determines the meaning to be, based off a rule-by-rule interpretation of the utterance
components [63, 235]. Following on from this definition of literal language, figurative
language can be defined as a form language in which the rule-by-rule interpretation of
the utterance components differs from what the author intends to convey [35], see Figure
1.1.

This deviation in meaning from the literal to figurative sense can be achieved in a
myriad of ways, including through the use of metaphor, hyperbole, irony, personification,
sarcasm, metonymy, idioms, analogy and many other literary devices [171, 187, 235].
The precise definition of these devices, boundaries between them and their importance
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Figure 1.1: Figurative Language Utterances

Utterance, intended meaning and example sentence

have also been a source of debate between scholars from various disciplines for centuries
[63].

This thesis begins with a focus on general figurative language, Part I, followed by an
in-depth focus on hyperbole, Part II.

1.2.2 Online User-Generated Content and Social Media

The social web and web 2.0 are terms that are used to denote the fundamental shift in
the way users interact and contribute to the internet, from consumers of relatively static
information to active producers and consumers of dynamic information [68, 154, 249].
Much like figurative language, there has been debate over the usage and meaning of
these particular terms [154]. The semantics of these terms is outside the scope of this
thesis. However, this fundamental shift in user interaction with the internet is a crucial
event that has lead to the development of web-based platforms that facilitate social
interaction and networking. These platforms are broadly referred to as social media
[74, 249].

An important phenomenon to emerge from social media is ‘searchable talk’. This
refers to how discourse around a specific topic, geographical location, point in time or
any combination of these may be found by searching the vast stores of data collected
by social media platforms [249]. This data provides a snapshot of discourse that has no
parallel at any period in history.

The low signal-to-noise ratio in discourse on social media is a problem given the sheer
amount of content generated by users as well as user anonymity and lack of moderation
in some spaces [50]. In order to ‘cut though the noise’ and achieve virility users resort to
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various strategies for generating content that catches the attention of users [15, 207].
One such strategy for user-generated text content is the use of novel figurative language
to amuse users and gain attention [167]. Through the use of figurative language, authors
can adopt personas, impart a sense of vividness to their content or pique the interest of
the audience by crafting complex scenarios that require effort on behalf of the audience
to interpret [73].

The effectiveness of figurative language in capturing the interest of users has led
to the New York Times proclaiming a ‘death by internet hyperbole’ [14], the Indepen-
dent arguing ‘How Hyperbole ‘won the internet’’ [77] and the Guardian claiming that
‘Exaggeration is the official language of the internet’ [21].

A core focus of this thesis is the use of figurative language on social media platforms
(i.e., Twitter), looking at the expression, intentions and diversity of figuration.

1.2.3 Natural Language Processing

Natural Language Processing (NLP) is an interdisciplinary field with the goal of com-
putationally performing tasks involving natural human languages [95, 131]. The field
of NLP has been an area of fervent academic research and commercial applications for
several decades. As a result, NLP has grown into a broad field with sub-fields that cover
domains and applications which may be categorised differently (see Table 1.1[40] for one
such categorisation of NLP applications).

Most relevant to this thesis is the Text analytics and Natural Language Generation
application domains. Particularly the problem of automated classification of text into
pre-defined categories within the text analytics domain, commonly referred to as text
classification or text categorisation [44]. With respect to natural language generation,
this thesis looks at the generation of natural language as a means of interpreting
figurative language.

The granularity of text classification tasks range from the classification of an entire
document, a paragraph, a sentence or sub-sentence fragments to one or more pre-defined
categories. In addition to this variation in granularity, there is also considerable variation
in the domains that have seen successful application of text classification models. All
the possible variations and applications of text classification methods has resulted in
considerable breadth of datasets and methodologies, a single review that covers all these
resources and related works is an enormous task and outside the scope of this thesis (see
[4, 6, 105, 253] for details).
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Application Description

Machine translation The automated translation of natural language content from
a source language to a target language whilst preserving
meaning of source text.

Speech technologies The conversion of an audio signal of a linguistic utterance
into textual form, referred to as Speech Recognition, or the
conversion of the textual form of an utterance into an audio
signal (Speech Synthesis or Text-to-Speech).

Dialog interfaces Interactive interfaces that allow a user to communicate with
an automated system using natural language and receive
responses in natural language

Text analytics The identification of particular content in text data, typically
via the classification of text sources or via the extraction of
certain content from text sources.

Natural language generation The automated generation of linguistic content.
Writing assistance Automated systems that embellish, provide suggestions or

corrections to human generated text.

Table 1.1: The landscape of NLP

[40]

This thesis focuses on the text classification problem in the context of figurative
language. The analysis of figurative language by NLP systems is a considerable challenge
and has been described as one of the most arduous topics confronting researchers in
the field [180, 187]. Despite significant advancements in text classification and NLP in
recent years, the ability to adequately detect and comprehend figurative language is
lacking [3, 180, 187]. A key focus of this thesis is the challenges in processing figurative
language in online user-generated content using NLP techniques.

In addition to a focus on the text analytics domain, the thesis also deals with the
application domain of natural language generation. The task of interpreting figurative
language has been formulated as a mono-lingual machine translation task (i.e., para-
phrase generation) [18, 164, 203, 206]. However, the work in this area is scant and will
be expanded upon in this thesis.

Style Transfer (ST) is another mono-lingual machine translation task related to
some of the generation methods described in this section. Many different transfer tasks,
associated datasets and models have been proposed. Such as the transfer of texts from
informal to formal English [183], the transfer of texts in to Shakespearean style [244]
and the transfer of product reviews from positive to negative amongst several others
[117]. The transfer of text from figurative to literal is an application of ST that is explored
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in this thesis.

A core focus of this thesis is the evaluation of existing as well as the proposal, imple-
mentation and evaluation of new NLP models for various tasks related to understanding
figurative language.

1.3 Research Questions

In order to address the core statement underpinning this thesis, Accurate computational
understanding of figurative language on social media is a complex task that requires
modification of existing and creation of new datasets and methodologies., three research
questions have been devised:

i. How does figurative language occur on social media and how does this differ
in comparison to the occurrence of figurative language in traditional forms of
communication?

ii. How adequate are current resources (i.e., datasets, models) for the accurate detec-
tion and interpretation of figurative utterances found on social media?

iii. How can the computational detection and interpretation of figurative utterances
be improved?

1.4 Research Objectives

Several artifacts will be produced as a result of answering the three research questions
outline in Section 1.3. The production of these artifacts are considered objectives of this
thesis and are as follows:

i. Create annotated datasets that enable the study of figurative language on social
media.

ii. Quantify the phenomenon of figurative language on social media and how this
impacts the predictive performance of existing NLP text classification models.

iii. Develop and evaluate machine learning algorithms for the task of figurative lan-
guage understanding on social media
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1.5 Thesis Contributions

This section will outline contributions made towards answering the research questions
and addressing both research objectives and gaps in the literature. These contributions
will be presented based on the chapter of the thesis in which the contribution is described
in detail.

1.5.1 Figurative Language and Public Health

The design, collection, annotation and analysis of a dataset consisting of Twitter posts
mentioning health related content is introduced in Chapter 2. This content provides
several contributions:

• This is the first data resource to provide both data and annotations to analyse the
relationship between health related concepts and figurative language usage on
Twitter.

• Analysis of this dataset provided quantitative evidence of figurative language in
the context of symptom and disease words on Twitter

• Findings showed that figurative language occurs frequently on social media in
the context of symptom and disease words, importantly it was observed that some
symptom and disease words were more likely to be used in a figurative sense than
in a literal sense.

• Experiments were designed to quantify the impact of figurative language on public
health applications that rely on mentions of disease and symptom words.

• Experiment findings showed that the majority of false positives were a result of
figurative expressions of disease and symptom words. This result provided evidence
for the need to address this bias caused by figurative expressions of disease and
symptom words.

• It was observed that a particularly challenging feature of the figurative language
usage on Twitter was hyperbolic expressions.

1.5.2 Hyperbole

The design, collection, annotation and analysis of a dataset consisting of Twitter posts as
well as the design, generation and annotation of a probing suite is introduced in Chapter
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3. A number of contributions emerged from the content introduced in this part of the
thesis:

• This is the first data resource containing data and annotations of hyperbolic
expressions on Twitter.

• Analysis of this data provided quantitative evidence of hyperbolic expressions on
Twitter.

• A significantly greater prevalence of hyperbole was observed on Twitter compared
to that found in corpus studies on hyperbole in different communicative forms (i.e.,
conversational English).

• With respect to the intentions of figurative language, Hyperbole was commonly
used on Twitter to convey strong sentiment, which highlights the importance
of understanding hyperbole for computational tasks concerned with identifying
affective content in text (i.e., sentiment analysis).

• A detailed look at the diversity of hyperbole on Twitter showed that some hyperbolic
expression were simply parroted by different Twitter users but also a number of
novel, elaborate and specific hyperbole were constructed by Twitter users. This
finding indicated that adapting to novel hyperbole expressions is a key challenge
in computational analysis and understanding of hyperbole.

1.5.3 Towards Hyperbole Detection

The evaluation of existing methods for hyperbole detection, and the introduction of
several novel methodologies, in Chapter 4 indicated that:

• Hyperbolic language on social media is a challenging phenomena. It was observed
that hyperbole on Twitter was harder to accurately detect compared to idiomatic
hyperbole suggesting that current NLP methodologies were inadequate for the
task, especially detecting hyperbole on Twitter.

• The use of affective signals was combined in various ways in hyperbole detection
models showing some improvement on the task of hyperbole detection.

• A novel hyperbole detection methodology optimised via contrastive-loss and pre-
trained language modelling showed improved performance of the task of hyperbole
detection.
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• Detailed error analysis provides a foundation for future research on the challenging
task of hyperbole detection in social media text.

1.5.4 Towards Hyperbole Interpretation

The evaluation of various natural language generation models for hyperbole interpreta-
tion in Chapter 5 showed that:

• The first dataset of parallel hyperbolic Tweets andmanually composed de-hyperbolised
Tweets was used to pose the hyperbole interpretation problem as mono-linguistic
machine translation problem.

• The automatic generation of literal interpretations is a challenging task. It was
observed that generic paraphrases do not adequately interpret the hyperbolic
content present in an expression.

• Models trained for neutralizing of subjective bias, a similar task to hyperbole
interpretation, do not adequately remove hyperbolic content.

• Detailed error analysis provides a foundation for future research on the challenging
task of automated hyperbole interpretation.

1.6 Thesis Structure

The main content of this thesis is presented in three parts.

• Part I, is on the figurative expression of health related concepts on Twitter and
how this can impact public health applications that rely on NLP methods that use
Twitter as a data source.

• Part II, focuses on general expressions of a particular form of figurative language
(i.e., hyperbole) on Twitter and general idiomatic usage. The introduction of empir-
ical studies quantify how these expressions are realised and probes NLP models
on their detection and interpretation of hyperbole.

• Part III, synthesises the results from the first two parts of the thesis, discusses
overall findings and lays the platform for future research directions.
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The literature review and background specific to the topics covered in a particular
chapter are presented at the beginning of that chapter. This is instead of a large literature
review at the beginning of the thesis that covers the diverse range of topics covered
throughout the thesis.
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Figurative Language and Public
Health
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FIGURATIVE LANGUAGE AND HEALTH MENTION

CLASSIFICATION

2.1 Introduction

This chapter details a study on the figurative expression of health concepts (i.e., symp-
tom and disease words) on Twitter and how these expressions impact public health
applications that rely on Twitter for input data.

The content in this chapter addresses the research questions and objectives outlined
in Section 1.3 in the following ways:

i. Tweets related to health concepts are collected and annotated for the presence of
figurative language. This provides data to understand how figurative language
occurs on social media, in the context of public health on the Twitter platform.
(Research Question i, Research Objective i)

ii. Experiments are conducted on text classifiers trained for the detection of health
related content with a focus on the impact of figurative language on the accuracy of
these NLP classifiers. (Research Question ii, Research Objective ii)

iii. A text classification model is proposed and evaluated for detecting health events
that target figurative expressions. This is to understand how improvements can
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be made to increase the accuracy of figurative language detection in the context of
classifying health events on Twitter. (Research Question iii, Research Objective iii)

The content in this chapter is structured as follows;

• Section 2.2 details the connection between figurative language, health and public
health applications as well as motivations for such an empirical study.

• Section 2.3 details the collection and annotation ofHMC2019, an English language
Twitter dataset that contains annotated tweets relating to various symptoms and
diseases

• Section 2.4 describes the design of experiments that aim to quantify the impact of
figurative language on classifiers trained to detect health mentions.

• Section 2.5 details experiments on different techniques for computing word repre-
sentations and the impacts on the detection of figurative usage of health concepts.

• Section 2.6 proposes a methodology, and accompanying experiments, that focus on
capturing figurative health mentions to correct the bias revealed in experiments
from Section 2.4

• Section 2.7 discusses the results of experiments described in Section 2.6.

• Section 2.8 details a manual error analysis that focuses on classification errors

• Section 2.9 concludes the chapter

2.2 Figurative Language and Public Health

Figurative language is ubiquitous across various registers of communication [140] and
is considered by some scholars to be fundamental to our conceptualisation of the world
around us [108]. Several researchers have documented the prevalence of figurative
language in various registers of communication. Ironic figures of speech were found in
8% of all conversational turns in an analysis of spoken conversations between friends
[60]. Corpus studies revealed that metaphorical expressions occurred in every third
sentence of general-domain text on average [204]. Turning to online user-generated text,
a study of online debate forums found sarcasm in 12% of utterances [232].

The use of figurative language in healthcare communication has also been well
documented and explored [23, 42, 61, 70, 76, 146, 220]. Patients use figurative language
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to help describe the at-times abstract emotions and sensations they experience during
illness. Practitioners and researchers use figurative language to establish a stronger
connection with individual patients and the broader community.

The prolific use of various metaphors by cancer patients has been observed in various
settings in different languages [70, 76, 199, 200]. Two common metaphors expressed
by cancer patients involve relating their experience with the disease via the Battle
(e.g., ‘fighting a battle against cancer’) and Journey (‘cancer is another obstacle along
the journey’) metaphors. The Metaphor in end-of-life Care (MELC) project provides
analysis of online discussion forums of patients sharing their experiences living with
late stage cancer in the United Kingdom [201]. The authors identified strong usage of
these metaphors to describe their experiences and comes to terms with their illness. An
analysis of blog posts by Swedish patients with advanced cancer also identified strong
usage of these metaphors to express their emotions as they progressed through their
illness [76]. The authors also identified what they refer to as the Imprisonment and
Burden (e.g., carry, lift, heavy, weight, etc.) metaphors were commonly employed by
individuals. Analysis of a Spanish language forum for cancer patients and survivors
identified prolific use of ‘Violence’ (e.g., battle, fight, war, warrior, soldier) and ‘Journey’
metaphors to describe their individual experiences with cancer [129].

Figurative language is a common means for communicating the sensation of both
acute and chronic pain [5, 82, 146, 147, 197]. Given the lack of an adequate objective
means to express pain and to measure pain, verbal expression of pain is an important
method of communication. Individuals resort to metaphor and describe pain in terms of
concrete experiences of physical damage (e.g., ‘a stabbing sensation’, ‘a burning pain’,
‘an ear piercing sound’, ‘muscles seizing up’, etc.) [197]. In a survey of women with
endometriosis it was observed that elaborate metaphorical descriptions were often
resorted to as a means for expressing pain [23]. A study of the textual descriptions of the
personal experience of various types of chronic pain revealed prolific use of metaphor.
Such as elaborately describing their pain with experience of physical damage (e.g., ‘like
I’m being hit with a sledge hammer every minute of the day’, ‘like driving a knife into my
bones and muscles and twisting it’) [146].

An important tool for intervention of mental health conditions is psychotherapy. The
abstract nature of mental health experiences means that the expression of emotions,
states and self-image can be difficult to accurately describe. The use of figurative language
to help these illuminate experiences has been well documented [56, 173, 198, 220].
Therapists have noted the importance and positive impact of figurative language usage
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by clients in the therapeutic process. Formal protocols and models have been devised for
the purpose of identifying, affirming and elaborating on the metaphorical expressions
used by clients to describe their personal experiences with mental health [103, 208, 220].

Despite considerable focus on the relationship between health and figurative lan-
guage, there is little focus on the figurative usage of health concepts to convey emotions
and opinions in the absence of actual personal health experience (i.e, ‘My kids give me a
headache’, ‘this video gave me eye cancer’, ‘I have baby fever really bad right now’). One
such analysis found that 30% of all tweets containing the keyword ‘ebola’ or #ebola were
deemed to be sarcastic in nature in an analysis by [152]. Whether this tendency towards
sarcasm in tweets is particular to the disease Ebola or whether it is a common trend in
tweets about other diseases has not been addressed and is a point of investigation in
Part I of this thesis.

2.2.1 Public Health Surveillance

Public Health Surveillance (PHS) is defined by the World Health Organization as ‘the
continuous, systematic collection, analysis and interpretation of health-related data
needed for the planning, implementation, and evaluation of public health practice’ [155].

Traditional systems for PHS rely on the collection and analysis of structured data to
calculate various rates of disease, such as incidence, burden and seasonality [230]. De-
pending on the specific system this data may come from health care providers, voluntary
reports, diagnostic laboratories or other sources. This body of structured data is continu-
ously analysed to identify changes that warrant intervention on behalf of public health
agencies. The collection and aggregation of all the information from various sources has
been identified as a significant bottleneck and imposes limitations on the speed at which
PHS systems can identify and respond to emerging health events [20, 230].

Harvesting data from the internet in the form of news articles, search engine queries
and various social media applications has the potential to circumvent this slow prolifer-
ation of information through traditional channels and provides opportunities for near
real-time PHS systems [20, 88, 230]. A bottleneck when using these data sources is the
complexity of the data, (i.e., volume, velocity, veracity, variety of data) which requires
new tools and methodologies to accurately correct, store, aggregate and interpret the
data.

Social media data (i.e., Twitter posts, Facebook posts etc.) has been collected and
analysed for various public health applications [88, 90, 161, 209]. From monitoring
disease incidence and outbreaks [20, 71, 87, 231], detecting adverse reactions to drugs
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Figure 2.1: Typical Epidemic Intelligence Pipeline

[62, 151, 195], detection of mental health content through social media posts [38, 41, 57]
and several others.

2.2.2 Epidemic Intelligence

Epidemic Intelligence systems are built to detect anomalous health events and issue
early warnings for potential public health emergencies [22, 90, 158]. Much like other
PHS systems, the type and source of data that these systems rely on is diverse and
changing as new technologies emerge. Most important to this thesis are text-based
Epidemic Intelligence systems that rely on social media as their main source of data.
The typical framework for such systems involves two key steps incorporating NLP and
time series analysis techniques to detect anomalous health events, see Figure 2.1 [90].

The detection of influenza and influenza like illnesses on social media are a common
application of Epidemic Intelligence systems [88, 90]. One such early work describes
the implementation of an algorithmic approach for the detection of tweets relating to
influenza and provides a comparison of their results with official influenza rates across a
singular flu season in the United States [20]. The authors found that the predictions of
their system correlated with official rates of influenza provided by government health
agencies, the correlations were statistically significant [20]. Along these lines, three years
worth of influenza related tweets were used to predict the expected number of influenza
patients in Japan [231]. The authors found that their predictions improved upon a simple
baseline and showed strong performance across both rural and urban areas of Japan. The
effectiveness of using Twitter signals to predict rates of disease incidence has also been
shown on a smaller geographical scale. A statistical significant correlation was found
between the amount of Tweets mentioning terms relating to influenza (i.e., headache,
flu, coughing) and clinical data at a paediatric hospital in the United States [71]. Only
tweets that were geo-tagged with locations that fell within the counties serviced by the
hospital were considered in their analysis showing that Twitter can be an effective data
source for predicting influenza occurrence on a local scale.
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A common approach for the collection of data for Epidemic Intelligence systems is
via keyword search, in some cases the keywords may simply be the disease or symptom
terms [62, 98] or a set of terms enriched by medical ontologies [34, 37], topic models
[29, 160] or other ad-hoc techniques. Irrespective of the particular strategy for generating
keywords, the collection of tweets based on a limited set of keywords results in biased
datasets with low precision (i.e. many false positives). The bias in these datasets may be
introduced by an increased awareness of a particular disease outbreak (i.e., influenza).
An increase in awareness of the disease results in an increase in tweets about the disease
(‘Hopefully I don’t catch the flu this season’). These tweets not necessarily talking about
the presence of the disease leading to an overestimation of disease prevalence. [20].
Overestimation bias of influenza incidence was observed on Google Flu Trends and is
speculated to be a contributor to the discontinuation of the service [96, 111].

An important first step in any Epidemic Intelligence system that relies on informal
sources of data is the detection of content related to health events, which could be in
the form of a specific disease or symptom [90]. As previously mentioned keyword search
produces low-precision datasets that captures mentions of health keywords in non-health
contexts. Given the sheer volume of informal data generated on the web the task of
filtering out those non-health related mentions is considerably important and intractable
for manual work, as a result automated systems are crucial [90, 98]. This task has
been presented as a binary sequence classification problem where the task classify if a
sequence of text (such as a social media post) reports a health event [83, 86, 90, 97, 98].
This task is referred to in the remainder of this chapter as Health Mention Classification
(HMC), see Figure 2.1. Statistical learning techniques have been proposed as a solution
to the problem of differentiating between health keywords in health and non-health
related contexts [90].

A method based on Long Short Term Memory (LSTM) [75] network and randomly
initialized word embeddings was proposed to detect whether a tweet is related to a per-
sonal health experience or not (i.e., HMC) [85, 86]. The authors show that their method
outperforms approaches that utilise hand-crafted features and traditional statistical
learning methods (e.g., Logistic Regression, Decision Trees, Support Vector Machine,
K-Nearest Neighbour) and suggest end-to-end deep learning architectures as a promising
direction for addressing the bias introduced by non-health related mentions.

A classification framework consisting of a Logistic Regression classifier trained on
pre-trained word representations was more recently proposed to address the HMC task
[98]. Significant focus of this work was the distorting and partitioning of pre-trained
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word representations. The distortion and partitioning operations, in combination with
manually engineered syntactical features, outperforms several other methods on the
HMC task. This method outperforms both traditional statistical learning methods with
hand-crafted features (i.e., Logistic Regression, Rule-based classifier [109]), and end-
to-end deep learning models (i.e., Convolutional Neural Network (CNN), LSTM-GRNN
[218] and FastText [94]), and performs particularly well with limited data.

A more recent approach incorporated features from an unsupervised model for the
detection of idiomatic utterances [120], into a classifier based on CNNs [83]. Experiments,
indicated that their proposed approach resulted in an increase across a number of
information retrieval metrics on a benchmark HMC dataset [98]. Despite motivating
figurative language and HMC, the authors do not objectively measure for an improvement
on tweets with figurative language, only the overall F1 score for the task, it is not clear
how well their approach actually targets figurative language.

The mentioning of health concepts in a figurative sense has been claimed as a
potential source of overestimation bias that has received scant attention [83, 98]. Words
indicating symptoms and illnesses may be mentioned in figurative statements. Take for
example the following tweets; ‘The language called english they used in this text can cause
one Migraine, Dermatitis & Photophobia altogether’, ‘Why is Jar Jar Binks trending?
Is Twitter having a stroke?’. These tweets are examples of hyperbolic statements that
use disease words for purposes of exaggeration rather than to convey that any one is
experiencing a health event related to the particular disease words. These examples
indicate the bias introduced by figurative language that may pose challenges. This bias
results in a signal that is an over-estimation of the prevalence of a particular health
keyword. However, there is scant research on the impact of figurative language on the
HMC task.

A recent benchmark for HMC, [98], contains limited coverage of health concepts. The
dataset introduced in that paper, PHM20171, only focuses on diseases not symptoms, a
limitation to Epidemic Intelligence. Another limitation is the small number of diseases
covered and the type of diseases covered. Firstly, Alzheimer’s Disease and Parkinson’s
Disease are degenerative diseases that predominantly impact the older population, many
of whom are not avid users of social media. The choice of stroke and heart attack are
also interesting, the utility of a system that monitors social media for instances of these
severe and life threatening health events is not that high. An individual suffering one of
these events is not likely to post on social media before contacting emergency services.

1https://github.com/emory-irlab/PHM2017
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The expansion of this dataset to incorporate symptoms and annotated for figurative
language is a focus of this chapter. As is the impact of figurative language on models
for HMC given that the analysis of figurative language by computational means has
proven challenging to classification problems for tasks in sentiment analysis, machine
translation among other tasks [89, 187, 204, 233].

Keyword Count FP HMP
Alzheimer’s 1,924 0.070 0.143
Cancer 1,995 0.101 0.175
Cough 1,976 0.487 0.222
Depression 1,971 0.242 0.342
Fever 1,987 0.438 0.358
Headache 1,961 0.374 0.552
Heart attack 1,987 0.663 0.123
Migraine 1,964 0.147 0.617
Parkinson’s 1,810 0.043 0.097
Stroke 1,983 0.282 0.147
Totals 19,558 - -
Means 1955.8 0.285 0.278

Table 2.1: HMC2019 Statistics

Keyword is the keyword mentioned in tweet, Count is the number of tweets, FP
indicates the proportion of tweets that mention the keyword in a figurative sense. HMP

indicates the proportion of tweets that mention the keyword in a health context.

2.3 HMC2019

HMC20192 is built upon the foundations of an existing English language Twitter dataset
for HMC that covers six different keywords related to particular diseases (i.e., Alzheimer’s
disease, cancer, depression, stroke, heart attack and Parkinson’s disease) and contains
approximately 7 thousand labeled examples [98]. Twitter is an ideal source of data for
Epidemic Intelligence systems given the content in an individual Tweet, the widespread
global usage of the platform and the real-time nature of the data makes Twitter an ideal
source of data for Epidemic Intelligence systems[98]. To extend the relevance of this
dataset for Epidemic Intelligence systems additional health related keywords are used
as query terms for the Twitter API 3. Four new keywords (i.e., cough, fever, headache,

2https://github.com/biddle-r/HMC2019
3https://developer.twitter.com/en/docs/twitter-api
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Keyword Class Tweet

Alzheimer HM Sorry I’m MIA, I’m dealing w/ some very grim family news about my gpa w/ bad Alzheimer’s.
FM You are delirious, either that or you evidently have Alzheimer’s Disease which makes you

mentally ill to serve as President...
NHM Metabolomic-guided Discovery of Alzheimer’s Disease Biomarkers from Body Fluid

Cancer HM A3 Three years ago when I was diagnosed with cancer, it gave me a learning experience I
wouldn’t have had otherwise. #weirded

FM There’ll never be peace in our country until @CBS looses it broadcasting license. They are a
cancer to a civil society.

NHM Breast cancer prediction model developed for Hispanic women
Cough HM I need home remedies for a dry cough pls and thank you.

FM I will, without fail, return this debt that- *cough* *cough*
NHM Cough And Cold: Causes And Remedies

Depression HM I’m so sick of being sad for no reason (like yeah, depression is like that I get it) but could I
just be sad about regular things like girls or money or something?

FM Twitter is basically depression hour but it’s 24/7
NHM People who complain online are more likely to suffer from anxiety, depression, and stress.

Fever HM So, my brother has fever and currently bed-ridden. He calls me up asking, "Is it okay to take
a bath?"

FM Why do I have baby fever rn?
NHM You now need your yellow fever card to travel to the UAE.

Headache HM I’ve had this headache for more than 6 hours now wow.
FM my headache is bigger than loona’s discography
NHM Headache in your Jaw? What is causing it? https://t.co/YiJFrujRdl

Heart Attack HM I have not intentionally been a little cryptic over the past few days but I just wanted to clear
things up. On Thursday morning July 18 I suffered a heart attack.

FM You who burned the meatballs and gave the entire building a heart attack I aksdkskkak I
got a cut on my finger bc of you

NHM Evolutionary Gene Loss May Help Explain Why Only Humans Are Prone To Heart Attack
Migraine HM My body hurts and I have a migraine

FM The language called english they used in this text can cause one Migraine, Dermatitis &
Photophobia altogether

NHM I just published If you feel challenged by Migraine, consider joining local research studies
Parkinson’s HM Very hard trying to play board games with a grandad who’s got Parkinson’s

FM Y’all ever play Smash bros drunk?... it’s like playing operation with Parkinson’s lmaooo
NHM My story about fantastic dance classes run by @Balletboyz to help people with Parkinson’s

disease
Stroke HM @CharlesMBlow My dad died in his sleep of a stroke at 53.

FM Why is Jar Jar Binks trending? Is twitter having a stroke?
NHM saw a beautiful husky earlier, went to stroke it and it wasn’t even fazed and walked off

Table 2.2: HMC2019 Examples
Keyword is the health keyword mentioned in tweet. Class indicates tweet label, HM = health mention, FM = figurative mention,
NHM = non-health mention Tweet displays the tweet, keyword word in emphasis.
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migraine) are added to the set of query terms more than twelve thousand new tweets
are collected for the dataset. Tweets were collected during July and August 2019.

In Table 2.2 examples of tweets containing figurative mentions and health mentions
of keywords as labelled during manual annotations are shown. Two annotators, native
English language speakers, were given the dictionary definitions of figurative and literal
language and asked to annotate a tweet into one of three categories. One class (NHM)
indicated that the keyword was used in a non-health related context and was used in a
literal sense (e.g., ‘How to cut your risk of Heart Attack in half ’). Another class (HM)
indicated that the keyword was used to indicate a health event (e.g., ‘my headache is
getting worse’). Another class (FM) indicated that health keyword was used in a figurative
sense (e.g., ‘this guy is a literal cancer on my soul’). The inter-annotator agreement was
high, with a Cohen’s kappa of 0.87. This annotation scheme differs from PHM2017 and
other datasets for HMC in that it a label for figurative mentions of health and disease
words is added. It is important to note that whilst this class is a type of non-health
related tweets, and a subset of the NHM class. This label provides a means to produce
quantitative evidence of the extent and impact of figurative language on the HMC task.

Statistics relating to the HMC2019 are shown in Table 2.1. From this table, it can
be see that on average keywords are mentioned figuratively 28.5% of the time whilst
being mentioned as an actual health event 27.8% of the time. This indicates that on
average the health related keywords in HMC2019 are mentioned figuratively in a
similar frequency to which they are mentioned as actual health events. This suggest
that Epidemic Intelligence systems that rely on mentions of symptoms and diseases on
Twitter to track health events may be impacted by the bias introduced by figurative
language. Without filtering out these figurative mentions these systems are getting a
biased signal from the Twitter stream due to the considerable amount of figurative usage
of particular health related concepts.

It is worth noting that ratio between health mentions and figurative mentions is not
consistent across keywords further complicating the issue. Heart attack (5.4 : 1), Cough
(2.2 : 1), Fever (1.2 : 1) and Stroke (1.9 : 1) have figurative mention to health mention ratios
of greater inequality, indicating that they are more frequently mentioned in figurative
expressions than as actual health mentions. Whilst Alzheimer’s (0.5 : 1), Cancer (0.6 : 1),
Depression (0.7 : 1), Headache (0.7 : 1), Migraine (0.2 : 1) and Parkinson’s (0.4 : 1) all have
figurative mention to health mention ratios of lesser inequality, indicating that they are
more frequently mentioned as actual health events then in a figurative expression.
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2.4 Health Mention Classification and Figurative
Language Bias

The aim of this section is to further understand the relationship between figurative
language and HMC task by exploring the impact of figurative mentions on the accuracy
of models trained for HMC. Prior research has identified that these figurative mentions
are potentially detrimental to accuracy of HMC models [83, 90, 98]. One of these works
strongly alludes to the potential negative impacts of figurative mentions however, does
not quantify these impacts or target figurative mentions in their methodology [98].
Conversely, the methodological contributions in one of these works is motivated by the
problem of figurative mentions of health related keywords and directly targets these
mentions in their model [83]. However, this work does not explicitly show that the
improvements in accurate classification of health mentions is a result of better figurative
mention classification or just a byproduct of adding another complex module to their
model.

Keyword F1 P R b f HMP FMP
Alzheimer’s 0.658 0.544 0.844 0.346 0.143 0.070
Cancer 0.626 0.499 0.849 0.141 0.175 0.101
Cough 0.728 0.594 0.943 0.534 0.222 0.487
Depression 0.705 0.562 0.950 0.512 0.342 0.242
Fever 0.769 0.638 0.970 0.724 0.358 0.438
Headache 0.808 0.682 0.994 0.797 0.552 0.374
Heart attack 0.455 0.325 0.777 0.884 0.123 0.663
Migraine 0.860 0.758 0.995 0.415 0.617 0.147
Parkinson’s 0.621 0.506 0.816 0.172 0.097 0.043
Stroke 0.664 0.525 0.915 0.539 0.147 0.282
Total 0.278 0.285 0.689 0.563 0.905 0.506

Table 2.3: Baseline HMC results

Keyword is the keyword mentioned in tweet. F1 is F1 score, P is precision score, R is
the recall score, b f is the proportion of false positives that are figurative mentions, Note:
All metrics averaged over 10-folds. HMP shows the proportion of tweets that mention
the keyword in health context. FMP shows the proportion of tweets that mention the

keyword in the figurative context.

Simple classification experiments are designed to quantify the impacts of figurative
language on classifiers trained for HMC. Specifically, an analysis of the relationship
between predictive performance and proportion of figurative language using a traditional
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Figure 2.2: Correlation Matrix Heatmap

Matrix shows Pearson’s correlation coefficient. FMP is proportion of figurative mentions,
NMP is the proportion literal non-health mentions, Prec is the precision metric.

baseline classifier. The traditional classifier, consists of a Logistic Regression classifier
trained on the HMC2019 dataset with each tweet being represented by a TF-IDF
weighted vector of unigrams and bigrams [130]. A standard 10-fold cross validation
scheme is followed to ensure results are repeatable an not a result of randomness. A
number of information retrieval metrics such as F1 score, precision and recall to represent
the accuracy of the classifier, these metrics are standard evaluation metrics used in
empirical studies on HMC. [90, 130]. See equations 2.1, 2.2, 2.3 for metric formulations,
where f p stands for false positive, f n for false negative, tp for true positive and tn
for true negative respectively. Additionally, a custom metric is proposed to measure
the bias of figurative language on the HMC task, see eq. 2.4 where f p f indicates the
number of false positives that are also labelled as figurative mention tweets (FM). As
mentioned in Section 2.2, datasets created via keyword sampling are low precision
datasets thus improving precision (i.e., lowering false positive rate) is a key step to better
health mention classifiers. The metric proposed by the author, bf , indicates the bias
introduced by figurative mentions and quantifies the impact these mentions have on the
false positive rate and precision.
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(2.1) P = tp
tp+ f p

(2.2) R = tp
tp+ f n

(2.3) F1= 2§ P §R
P+R

(2.4) bf =
f p f

f p

The results from these experiments are presented in Table 2.3. From the bf metric it
can be observed that figurative mentions make up the majority (50.6%) of false positives
across the entire dataset. The extent to which figurative mentions are incorrectly identi-
fied as health mentions varies considerably between health keyword; 14.1% for Cancer
to 88.5% for Heart Attack. The results from this table indicate figurative language is a
source of false positives. However, false positives are just one term in calculating the
precision metric (see eq 2.1). From a focus on the precision metric in Table 2.3, it can be
seen that Heart Attack is often mentioned figuratively (66.3%) and that the traditional
classifier achieves the lowest precision score of 0.325. Conversely, Migraine has a lower
than average rate of figurative mentions (14.7%) and the traditional classifier achieves
the highest precision score of 0.758.

Correlation analysis is performed to gain more insight into the relationship between
precision and figurative mentions of health keywords. Formally, Pearson’s correlation
coefficient is computed using three variables: (i) the precision score (Prec) (ii) The
proportion of tweets with a figurative health mention (FMP) and (iii) the proportion of
tweets that mentions the health keyword in neither figurative nor health-related context
(NMP). These correlations are visualized via heat map, (see, Figure 2.2). Results show
a minor negative correlation, -0.27, between the proportion of figurative mentions and
precision. There is a stronger negative correlation, -0.36, between mentions that are
neither figurative nor health related and precision. This suggests that while figurative
mentions of disease and symptom words are challenging for HMC classification the non
health mentions of disease and symptom words are also challenging.
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The experiments showed that the majority of false positives were a result of figurative
expressions of health keywords. Additionally, considerable variation in usage of keywords
was observed (i.e., heart attack often used figuratively, Parkinson’s disease rarely used
figuratively). Analysis of correlation showed that when the rate at which a keyword was
mentioned figuratively increased that the precision of the HMC classifier decreased. The
presence of this negative correlation allows us to conclude that figurative language is
contributing to a biased signal. This motivates for a focused effort on reducing this bias
via better detection of figurative mentions of health concepts.

2.5 Word Representations for Health Mention
Classification

(2.5) RF = tnf m
f m

The main goal of the experiments detailed in this section is to empirically test the
impact of word representations on the task of HMC. The motivation for this question is
research that shows variation in the kind of information encoded in different layers of
different word representations [123, 170]. To achieve this goal, classification experiments
are performed on HMC2019 using a variety of different word representations. The
experimental setup is similar to that presented in Section 2.4. However, a new metric
(see eq. 2.5) is introduced for these particular experiments that quantifies the ability for
a classifier to correctly identify figurative mentions as not being a health mention. In
this equation tnf m is the number of true negative figurative mentions and f m is the
number of figurative mentions, this metric is essentially Recall but for the figurative class
only. Similar to the previous experiments, multiple information retrieval metrics are
reported (F1, P, R, bf ), Logistic Regression is as classifier and 10-Fold cross-validation
is performed.

For these experiments a variety of popular techniques for computing word represen-
tations are utilised. For contextual word representations, ELMo[168]4 and BERT[43]5,
whilst for non-contextual word representations word2vec[138]6 and GloVe[166]7. Given
that experiments have shown variation in the information encoded in various layers of

4https://github.com/allenai/allennlp
5https://github.com/huggingface/transformers
6https://code.google.com/archive/p/word2vec/
7https://nlp.stanford.edu/projects/glove/
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both ELMo and BERT [123, 170], individual layers as well as different combinations of
these layers are experimented with as features in the following experiments.

A number of preprocessing steps were performed on all tweets before the computation
of word representations;

• Convert all tweets to lowercase

• Remove all punctuation characters

• Emojis were converted to string representations such as ‘:sad_face:’ using an open
source python library8.

• User mentions (i.e., @) are replaced with the token ‘_usr_’

• URLs (i.e., @) are replaced with the token ‘_url_’

• Digits (i.e., 0-9) are replaced with the token ‘_d_’

• # and the text suffix are removed

• Repeated characters and words were normalized to two repeats to address exagger-
ations such as ‘looool’ and ‘lool’, and repeated emojis.

• Tweets were split into individual tokens based on whitespace characters for
word2vec and GloVE.

• Model-specific tokenizer implementations were used to perform tokenization for
ELMo and BERT.

Results from experiments are shown in Table 2.4. Non-contextual word representa-
tions (word2vec, GloVe) are considerably worse across F1, P, and RF than contextual
representations (ELMo, BERT). Unsurprisingly, these results indicate that contextual
word representations are better suited for the HMC task, aligning with studies indicat-
ing the benefits of contextual word representations [43, 123, 169]. With respect to the
different layers and combinations of the contextual representations, it can be observed
that there is not a significant difference between the summations of layers and the final
layers. However, as more layers are included in the contextual word representations the
performance steadily increase for both BERT and ELMo.

Figurative recall, RF , is lower than general recall, R, regardless of word representa-
tions used. Contextual word representations reduce the difference between figurative
recall and overall recall considerably compared to non-contextual word representations.
There is a difference of 0.792, 0.419, 0.159 and 0.167 between recall and figurative recall

8https://pypi.org/project/emoji/
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Representation F1 P R RF

GloVe 0.503 0.343 0.940 0.148
word2vec 0.635 0.486 0.915 0.496

ELMo_Layer_0 0.681 0.541 0.917 0.597
ELMo_Layer_1 0.746 0.627 0.920 0.719
ELMo_Layer_2 0.757 0.646 0.915 0.749
ELMo_SUM 0.757 0.648 0.912 0.753

BERT_Layer_0 0.713 0.583 0.920 0.661
BERT_Layer_1 0.722 0.594 0.921 0.672
BERT_Layer_2 0.725 0.599 0.920 0.679
BERT_Layer_3 0.730 0.605 0.920 0.694
BERT_Layer_4 0.743 0.620 0.927 0.708
BERT_Layer_5 0.746 0.626 0.925 0.709
BERT_Layer_6 0.743 0.624 0.919 0.714
BERT_Layer_7 0.753 0.636 0.925 0.722
BERT_Layer_8 0.761 0.646 0.927 0.738
BERT_Layer_9 0.767 0.653 0.929 0.748
BERT_Layer_10 0.767 0.654 0.927 0.744
BERT_Layer_11 0.768 0.653 0.934 0.741
BERT_SUM4 0.768 0.658 0.924 0.757
BERT_SUM8 0.763 0.651 0.923 0.748
BERT_SUM12 0.763 0.650 0.924 0.743

Table 2.4: Word-Representations and Health Mention Classification

Representation indicates the representations used as features. F1 is F1 score, P is
precision score, R is recall, RF is the recall for figurative mentions. Note: All metrics

averaged over 10 folds, Table is sorted via F1 from lowest to highest.

for GloVe, word2vec, ELMo and BERT respectively. This suggests that contextual word
representations help identify figurative mentions. However, there is still a difference
between figurative recall and overall recall, suggesting that figurative mentions of health
words remain a challenging phenomenon.

2.6 Health Mention Classification

This section provides details on the baselines, methodology and experiments for the
detection of health mentions on HMC2019.
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2.6.1 Baselines

A simple model based on Long Short-Term Memory Networks (LSTMs) [75], was pro-
posed to detect whether a tweet was indicating a personal health experience [86]. The
authors detail a number of generic pre-processing steps before utilising pre-trained
non-contextual word representations to represent the individual tokens contained in
a tweet. The authors showed that this classifier outperformed several other classifiers,
(i.e., Desicion Trees (DT), Support Vector Machines (SVM) and K-Nearest Neighbour
(KNN)) on the task of detecting whether a tweet was indicating a personal health related
experience or not. In addition to the improvements displayed by this model, the authors
also claim that the benefits of their lightweight feature engineering steps. The authors
use their own implementation of this method as a baseline in experiments and refer to it
as JiangLSTM in the remainder of this chapter.

A model for detecting personal health mentions on Twitter with considerably more
detailed and complex feature engineering than the JiangLSTM model was recently
proposed [98]. The authors combine lexical, syntactic, word representation, and dis-
torted+partitioned word representation features with a Logistic Regression classifier
for health mention prediction, this model is referred to as WESPAD, throughout the
remainder of the chapter. For lexical and syntactic features the authors build dependency
tress for each Tweet using a well-known parser for the Twitter domain [102]. Word
representation features were represented via word2vec[138]9. The authors showed that
the inclusion of distorted and partitioned word representation features was beneficial to
the task of HMC. These features are described in detail as they are the key contribution
to their model. Their technique is motivated by what they refer to as ‘noisy’ regions in the
word representation space. The word representation space is partitioned into clusters,
then ‘noisy’ regions are identified by training a classifier on the word representations of a
tweet to predict if the tweet contains a personal health mention. Once these regions have
been identified they are filtered out whilst label information is encoded for tweets in
non-noisy regions. Formally, the authors partition the word representation space using
the K-means clustering algorithm into k clusters. For the ‘noisy’ region identification
the authors define a classification function, f (ti), to predict the probability that a tweet
contains a personal health mention. The authors then construct two feature matrices,
P and N, that indicate the class of a tweet if the tweet is not in a ‘noisy’ region and
the cluster, k, the tweet belongs to (see eq. 2.6 and eq. 2.7). In these equations, Æ, is a
hyperparamater that controls the threshold for noisy regions.

9Available at https://code.google.com/archive/p/word2vec/.
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(2.6) Pik =

8
<

:
1 0.5+Æ∑ f (ti) & ti 2 k

0 Otherwise

(2.7) Nik =

8
<

:
1 0.5°Æ∏ f (ti) & ti 2 k

0 Otherwise

In addition to partitioning the word representation space, the authors also showed
that distorting the representation space before partitioning had a considerable impact on
the task of HMC. They use information gain to distort the word representation centroids
in the context of the classification problem. Firstly the information gain IGi of each word
wi is computed with respect to health mention and non-health mention labels for each
tweet. A distorted tweet centroid representation dti for each tweet is then weighted
using the information gain for each word, see Eq 2.8, whereWi is the word representation
for word wi.

(2.8) dti =
Pn

i=0 IGi §Wi
Pn

i=0 IGi

Another recent work directly addresses the problem of figurative language in the
context of public health and HMC [83]. The authors rely on existing figurative language
classifier ([120]) to predict the likelihood of figurative content in a tweet and incorporate
this as a feature into a Convolutional Neural Network (CNN) based classifier. From
their experiments, the authors concluded that their approach showed improvements,
in information retrieval metrics, on a benchmark HMC dataset compared to a CNN
trained on pre-trained word representations only. This method serves as a baseline and
is referred to as FeatAug+ for the remainder of this chapter. Despite improvements
in predictive performance, the authors showed via an error analysis that FeatAug+
still made errors with respective to the figurative usage of health keywords. Specifically,
tweets that mentioned heart attack were often incorrectly classified, statistics from Table
2.1 showed that this keyword was mentioned figuratively most of the time.

2.6.2 BiLSTM+Senti

In this section, a model is introduced for detecting personal health mentions. BiL-
STM+Senti is based on Bidirectional Long Short-term Memory Networks (BiLSTMs)
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[66] that incorporates contextual word representations, see Section 2.5, and features that
indicate the sentiment contained in a tweet. There are two key motivations in proposing
this model; Firstly, context of a keyword is important in determining whether the tweet
is indicating the occurrence of a health event, and that sentiment contained in a tweet
may be also indicative of the class of the tweet. Annotators observed that context was
essential in prescribing a class label to a particular tweet. This is intuitive but important
for the HMC problem due to data collection strategy (i.e., keyword search). Additionally,
the presence, location and intensity of sentiment was also utilised by annotators to help
determine the class of a particular tweet. Consider the sentiment in these examples:
‘Watching that video was like having eye cancer’ and ‘cancer is destroying my sisters
life in front my eyes, it is devastating to sit here and watch’. In the initial example,
there is a clear lack of sentiment in the context, the author is using the keyword to
convey sentiment. This pattern was routinely observed during annotation. The latter
example provides a stark contrast with respect to the sentiment in the context of the
tweet, another pattern that was observed in honest health mentions.

BiLSTM+Senti text classifier is based on contextual word representations, Recur-
rent Neural Networks(RNN) and sentiment signals (see Figure 2.3). The model incorpo-
rates both word representations and distributions of sentiment to represent an individual
tweet.

(2.9) L,K ,R =

8
>>>><

>>>>:

L=wi8w 2 t|i < k

K =wk

R =wi8w 2 t|i > k

A critical first step in the BiLSTM+Senti framework is preprocessing that follow
those outlined in Section 2.5. In addition to these steps, a tweet partitioning step is
performed that splits all tweets into three partitions. These partitions are based on
the location of the keyword within the tweet; a partition containing the left context,
a partition containing the keyword and and a single partition containing the right
context (see eq.2.9). Where wi represents word at index i in tweet t and k represents the
position of the keyword in t. The motivation for this partitioning scheme is the desire to
explicitly separate the context and the health keyword given the importance of context
observed during manual annotation. This scheme may also capture tweets where there
is a difference in sentiment between the partitions. A difference in sentiment within a
sentence or short text has been shown to identify sarcastic intent [92]. For both the left
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and right context tweet partitions, a sequence based on pre-trained word representations
and a sentiment distribution is computed. The keyword partition is represented by the
word representation and sentiment distribution for the keyword alone. The sequence
of word representations for the left and right context were set to the largest possible
sequence found in the data ensuring no tokens were lost; shorter sequences were padded
to this length.

(2.10) S = [x1,x2,x3]

A sentiment distribution of a tweet is a vector of continuous values, xi 2 [0,1] with
each value indicating a score computed to represent a particular sentiment signal,
(see eq 2.10). There are a number of ways to compute sentiment signals from a text
[134, 245, 251], three different approaches are utilised in this chapter.

(2.11) xp =
1
n

nX

k=1
p(wk)

A simple approach is to use a pre-existing lexicon to lookup the scores for all the
individual words in a tweet and average the scores for the whole tweet, (see eq. 2.11).
Where n is the number of words, wk is the word at index k and p(w) is the polarity
score of word t computed by lookup in the lexicon. The SentiWordnet lexicon is built
by automated annotation of the syn-sets in WordNet [139]10 based on the amount of
positive, neutral and negative sentiment contained within a syn-set [9]11. The VAD lexi-
con12 provides scores for valence, arousal and dominance rather than positive, neutral
and negative like SentiWordnet. These values model different scales of affective mean-
ing; valence models the pleasure/displeasure scale, arousal models the active/passive
scale, and dominance models the dominant/submissive scale [143]. Several researchers
have identified these scales as important dimensions for meaning [143, 234]. Sentiment
distributions computed using both the SentiWordnet and VAD lexicons are used in
experiments in this chapter. Another direction for computing sentiment distributions
is to predict the distribution rather than using lexicons to compute values for individ-
ual tokens. ULMFit [79]13 trained on the Sentiment140 dataset [64]14. The method

10https://wordnet.princeton.edu/
11https://github.com/aesuli/SentiWordNet
12https://saifmohammad.com/WebPages/nrc-vad.html
13https://www.fast.ai
14http://help.sentiment140.com/for-students
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Figure 2.3: BiLSTM + Senti

The 9 different layers of the proposed model are bound by rectangles in this diagram.

for computing sentiment is denoted via subscripts for the remainder of this chapter;
BiLSTM+SentiWN when sentiment distributions are computed using the SentiWord-
net lexicon, BiLSTM+SentiVAD when sentiment distributions are computed using the
VAD lexicons, BiLSTM+SentiULM when sentiment distributions are predicted using
ULMFit.

(2.12) BiLSTM(ei, j)=RNN(e1 : j)±RNN(en : j)

The tweet partition word representations were combined into a BiLSTM architecture
in a similar approach to prior research ([135]) with the addition of sentiment distribu-
tions. A detailed diagram is provided of the proposed model (see Figure 2.3). From this
figure it can be seen that the first module in the proposed model is the Tweet Partitioner,
see eq. 2.9. The partitions produced by this module are sent to Sentence Encoder and
Sentiment Encoder modules. The Sentiment Encoder computes the sentiment distri-
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bution of each of the three Tweet partitions (i.e., sL, sk, sR). These three distributions
are concatenated and sent to a ReLU activation unit. Meanwhile, the Sentence Encoder
produces contextual word representations of all three tweet partitions, (i.e., eL, ek, eR).
These representations are sent to BiLSTMs, (see. eq. 2.12). Where RNN(ei, j) is used to
represent an abstraction of a Recurrent Neural Network (RNN) which computes a vector
representing the hidden state of token j in tweet i using the sequence of word represen-
tations, ei, for tokens contained in tweet i. A BiLSTM[66] incorporates two RNNs, one
in a forward mode and one in a backward mode. These modes refer to the order in which
the sequence is processed, the forward run refers to the standard RNN forward run x1 : n
(i.e., from beginning of sequence up to the specified index). The backwards run processes
the sequence in reverse order, xn : i (i.e., from the end of the sequence to the specified
index), ± is used here to denote vector concatenation. The BiLSTM(ei, j) is run for all
tokens in the three tweet partitions (i.e., L, K and R) and these are all concatenated
together resulting in a vector that contains hidden states for all tokens in a tweet. The
penultimate step of the model consists of ReLUs being applied to the outputs from the
BiLSTMs and the sentiment distributions. In the final layer, outputs from the ReLU
are concatenated and feed into a softmax function in the last layer of the classifier. The
model is optimised via cross-entropy loss, see eq. 4.2.

(2.13) L =° 1
N

NX

i=1

h
yi log( ŷi)+ (1° yi) log(1° ŷi)

i

2.6.3 Experimental Setup

BiLSTM+Senti and baseline models are trained and evaluated on the HMC2019
dataset. The dataset is split into stratified train, development and test sets in a 70
to 20 to 10 ratio with stratification performed on label and keyword to ensure repre-
sentative partitions for experimentation. The number of classes are reduced from three
to two by treating the examples labeled as figurative mentions (FM) and non-literal
non-health mentions (NHM) as the negative class and those examples labeled as health
mentions (HM) as the positive class. The baseline models used in the experiments are
those introduced earlier in this chapter (i.e., JiangLSTM , FeatAug+, WESPAD and a
Linear Baseline). The evaluation metrics reported, F1, P, R and RF , see eqs. ( 2.1, 2.2,
2.3, 2.5), are all averaged across 10-folds of the training set. For all models grid-search
is used to identify optimal parameters for all models, including method of sentiment
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Model F1 ¢% P ¢% R ¢% RF ¢%
Linear Baseline 0.768 - 0.653 - 0.934 - 0.741 -
FeatAug+ 0.791 3.0 0.682 4.4 0.950 1.7 0.780 5.3
JiangLSTM 0.820 6.8 0.721 10.4 0.950 1.7 0.830 12
WESPAD 0.818 6.5 0.752 15.2 0.896 -4.1 0.851 14.8
BiLSTM+SentiWN 0.812 5.7 0.716 9.6 0.940 0.6 0.876 18.2
BiLSTM+SentiVAD 0.829 7.9 0.756 15.8 0.920 -1.5 0.897 21.1
BiLSTM+SentiULM 0.825 7.4 0.761 16.5 0.910 -2.6 0.893 20.5

Table 2.5: Results of HMC experiments (BERT)

Model represents the learning model, F1 is F1 score, ¢% indicates the % change in
metric over Linear Baseline, P is precision score,R is the recall score.RF is the figurative
recall. Note: All metrics averaged over 10-folds

Model F1 ¢% P ¢% R ¢% RF ¢%
Linear Baseline 0.757 - 0.648 - 0.912 - 0.753 -
FeatAug+ 0.764 0.9 0.642 -0.9 0.953 4.5 0.732 -2.8
JiangLSTM 0.776 2.5 0.663 2.3 0.938 2.9 0.775 2.9
WESPAD 0.805 6.3 0.744 14.8 0.878 -3.7 0.845 12.2
BiLSTM+SentiWN 0.813 7.4 0.745 15.0 0.905 -0.8 0.888 17.9
BiLSTM+SentiVAD 0.817 7.9 0.747 15.3 0.903 -1.0 0.898 19.3
BiLSTM+SentiULM 0.817 7.9 0.745 15.0 0.907 -0.5 0.899 19.4

Table 2.6: Results of HMC experiments (ELMo)

computation, type of word representations, learning rates, dropout, and other model
specific parameters (e.g. Æ and k in WESPAD).

2.7 Results & Discussion

Results are presented in Tables 2.5,2.6 and 2.7. The first observation is that the highest
scores for all models are found in Table 2.5 compared to the other two tables. This
indicates that using BERT to compute word representations is beneficial across a broad
range of models for HMC. This aligns with results seen in Section 2.5 that found that a
simple linear baseline classifier benefited from BERT word representations. Focusing
on the results of this table, it can be observed that the BiLSTM+SentiVAD achieves
the highest F1, P and RF scores that are 7.9%, 15.8% and 21.1% above the linear
baseline respectively. A minor reduction in recall, °1.5% compared to the linear baseline
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Model F1 ¢% P ¢% R ¢% RF ¢%
Linear Baseline 0.635 - 0.486 - 0.915 - 0.496 -
FeatAug+ 0.787 23.9 0.742 52.7 0.842 -8 0.853 72.0
JiangLSTM 0.752 18.4 0.630 29.6 0.939 2.6 0.726 46.4
WESPAD 0.754 18.7 0.649 33.5 0.901 -1.5 0.724 46.0
BiLSTM+SentiWN 0.753 18.6 0.637 31.1 0.922 0.8 0.820 65.3
BiLSTM+SentiVAD 0.769 21.1 0.670 37.9 0.907 -0.9 0.849 71.2
BiLSTM+SentiULM 0.770 21.3 0.671 38.1 0.908 -0.8 0.853 72.0

Table 2.7: Results of HMC experiments (w2v)

JiangLSTM FeatAug+ WESPAD BiLSTM+Senti
Keyword F1 RF F1 RF F1 RF F1 RF

Alzheimer’s 0.731 0.546 0.671 0.853 0.716 0.733 0.735 0.940
Cancer 0.702 0.891 0.644 0.904 0.682 0.914 0.684 0.864
Cough 0.822 0.945 0.783 0.934 0.79 0.941 0.831 0.865
Depression 0.726 0.586 0.716 0.822 0.747 0.699 0.749 0.816
Fever 0.846 0.848 0.843 0.886 0.838 0.84 0.862 0.848
Headache 0.906 0.776 0.878 0.773 0.901 0.785 0.915 0.826
Heart attack 0.713 0.917 0.591 0.921 0.686 0.913 0.705 0.923
Migraine 0.912 0.68 0.905 0.778 0.914 0.68 0.926 0.837
Parkinson’s 0.679 0.739 0.608 0.848 0.66 0.841 0.675 0.940
Stroke 0.777 0.828 0.727 0.864 0.789 0.873 0.792 0.917

Table 2.8: Results by Keyword

Keyword refers to keyword. F1 is F1 score, RF is figurative recall.

is observed indicating that these improvements only cost a minor reduction in the
sensitivity of the classifier. Overall, these results indicate that this model is better at
detecting when a tweet is a health mention and when a tweet is not a health mention,
further to this the figurative recall RF indicates that the improvement observed is most
notable with respect to accurately classifying figurative mentions as the negative class
(i.e., non-health mentions).

Pertinent to figurative language understanding is a comparison between the RF

metric for FeatAug+ and the BiLSTM+Senti variants as these two models were the
only models that were motivated by understanding figurative mentions of health topics.
The BiLSTM+Senti variants achieve either considerably higher (Tables 2.5 and 2.6) or
the same (Table 2.7) RF score. This result further provides further evidence that the
proposed approach to focus on figurative language is successful in the context of HMC.
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Similar results are observed in Table 2.6, particularly the ¢% columns. Again, the
BiLSTM+Senti models see the largest increases in F1, P, RF with minor decrease in R
compared to the other baselines. The result from 2.7 (i.e., word2vec as word representa-
tions) do not align with the results seen when using ELMo and BERT as representations.
Interestingly, FeatAug+ is the best performing model using word2vec, however, it should
be noted that overall the scores across all metrics are lower compared to those seen
in Tables 2.5 and 2.6. With respect to the method used to compute sentiment, results
from experiments show that the use of SentiWordnet is the worst performing method.
However, there is little difference in results between using the VAD lexicon and ULMFit
to predict the sentiment distributions.

A breakdown of results by keyword mentions in Tweet is presented in Table 2.8. The
strongest performing combination of model, word representation and sentiment method
is presented in this table and the F1 and RF is provided for each subset of the test
set that contains tweets that only mention a particular keyword. These results provide
further evidence that BiLSTM+Senti is better at the overall health mention task and
dealing with figurative language in a health context. On seven of the ten keyword subsets
BiLSTM+Senti achieves the highest F1 whilst on six of the 10 subsets BiLSTM+Senti
achieves the highest RF .

2.8 Error Analysis

In this section an analysis of misclassified examples is provided to improve understanding
of the limitations of the proposed model and outline future research directions. The errors
covered in this section are examples that were misclassified by BiLSTM+SentiVAD ,
with BERT as word representations, on the test set of HMC2019.

A common theme amongst false positives were tweets that used health concepts
for the purpose of exaggeration in hyperbolic expressions. Particularly, tweets that use
complex realities in the formulation of the hyperbole (e.g. ‘literally trying to not cough
up my lungs from whats happening in my mentions’, ‘just drank a kombucha for the
first time and my depression is cured’). These tweets are quite obviously excessive to
us as readers but this exaggeration, and absurdity, is missed by BiLSTM+SentiVAD .
In the first example, the author mentions a serious, and violent, health reaction as a
response to reading Twitter. The author is obviously exaggerating their feeling of unease,
disgust or pain with a health experience that would be uncomfortable to experience. In
the latter example the author is exaggerating that having a drink has cured a serious
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health condition which is clearly absurd and obviously used for hyperbolic effect. It is
interesting to note here that hyperbolic expressions were also used to exaggerate the
experience of a health event (e.g. ‘Ever had such a bad headache your brain feels like it’s
going to explode into a million pieces? Yep that’s me rn.’). Suggesting that the presence
of hyperbolic expression alone is not enough to indicate that the author is not suffering
from a health event.

Another error was based on the exploitation of surface patterns in the data resulting
in aggressive classification based on words or phrases that were overwhelmingly found
in tweets belonging to a particular class. A particular example of this related to the
phrase cough cough, that is most frequently used in a figurative sense (e.g. ‘the president
is blaming mental health issues on gun violence, its not like there is a solution to this
couGH couGH better gun restrictions’, ‘Cough cough Leaving Neverland accusers
cough cough’. Despite being overwhelmingly used in a figurative sense this phrase
also appeared in tweets that were mentioning health events(e.g. ‘me the past week:
hack cough cough splutter cough’, ‘sick cough cough sneeze’). However, in these cases
BiLSTM+SentiVAD does not take into account the context in which the phrase was
mentioned and classifies them as not being health mentions.

The errors provided in this section appear to showcase that BiLSTM+SentiVAD

seems incapable of dealing with hyperbolic phrases and tends to ignore the context in
which some phrases appear (i.e., phrases in tweets that predominantly belong to a single
class)

2.9 Conclusion

This chapter described the details of an empirical study on the expression of figurative
language in online user-generated content related to health topics (i.e., symptoms and
diseases). Specifically, a study on figurative expressions of disease and symptom words
on Twitter and how these expression impact public health applications that use Twitter
data as an input signal.

The procedures for collection and annotation of a dataset for the study of health
mentions on Twitter, HMC2019, were described. An important aspect of the annotation
procedure HMC2019 was the identification and annotation of figurative language re-
sulting in a dataset that can be used to study the phenomenon of figurative language on
social media, partially satisfying Research Objective i).

An exploratory analysis of HMC2019 showed that, on average, symptom and disease
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words were mentioned in a figurative sense more frequently then when they were used
to actually convey the experience or existence of a particular disease or symptom. This
analysis helped to answer Research Question i) and satisfy Research Objective ii) (see
Section 1.3 and 1.4), specifically that figurative language occurs frequently on social
media in the context of symptom and disease words.

This use of figurative language is problematic for public health applications that
monitor Twitter for disease and symptom incidence (i.e., Health Mention Classification
(HMC)). Experiments were designed to quantify the impact of these figurative expres-
sions on models for HMC, finding that the majority of false positives were a result of
figurative expressions of disease and symptom words. This result provided evidence for
the need to address this bias caused by figurative expressions of disease and symptom
words. These results provided answers to Research Question ii) and partially satisfied
Research Objective ii), by demonstrating that NLP classifiers do not accurately distin-
guish between figurative and non-figurative expression related to symptom and disease
words.

Algorithmic efforts to address this issue were also detailed in this chapter. The
introduction of a text classification model, BiLSTM+Senti, based on contextual word
representations, Recurrent Neural Networks (RNNs) and sentiment signals was in-
troduced. Experiments designed to probe the ability of this model to address the bias
introduced by figurative language were proposed. The results of these experiments
showed that BiLSTM+Senti was able to address this bias and detect figurative expres-
sions of disease and symptom words better than all other baselines models. This resulted
in better predictive performance on the overall task of HMC compared to all other base-
line models. The model proposal, experiments and subsequent results partially answered
and satisfied Research Question iii) and Research Objective iii), by providing evidence
that better incorporation of sentiment signals can improve the detection of figurative
mentions within the context of text classifiers for symptom and disease words.

However, an error analysis found a number of problematic errors made by BiL-
STM+Senti that would remain a bottleneck to more accurate classification of health
mentions on Twitter. An observed error pattern of concern was the undetected use of
hyperbolic expression of symptom and disease words for the purpose of exaggerating
the opinion of an author, as opposed to actually expressing the existence of a disease
or symptom (‘This is the worst joke I’ve read the entire week, y’all are nothing but a
migraine.’).

The experience of a disease and the accompanying symptoms is unpleasant and
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individuals on Twitter invoke these health experiences to exaggerate their current
opinions. The appearance of hyperbolic expressions and the errors made by classifiers
on these expressions is a key finding that led to a concentrated focus on hyperbolic
expressions in the remaining chapters of this thesis.
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HYPERBOLE

3.1 Introduction

This chapter contains details describing the collection, annotation and exploratory
analysis of datasets relating to a particular type of figurative expression (i.e. hyperbole).
The content in this chapter addresses the research questions and objective of this thesis
as follows:

i. The collection and annotation of tweets focusing on hyperbolic expressions, Hy-
perTwit, provides a resource for the study of figurative language on social media
(Research Objective i).

ii. The creation of a synthetic test suite for detecting hyperbolic expressions, Hy-
perProbe, is introduced to get a better understanding of the limitations of NLP
models when detecting hyperbolic expressions (Research Objective i).

iii. An exploratory data analysis of HyperTwit provides a quantitative description
of how figurative language occurs on social media in terms of the prevalence,
intentions and diversity of expression (Research Question i).

The content in this chapter is presented as follows;

• Section 3.2 motivates the importance of hyperbole as a core topic in this thesis and
provides review of literature on hyperbole.
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• Section 3.3 describes an existing benchmark dataset, HYPO, for the computational
exploration of hyperbole.

• Section 3.4, introduces the HyperTwit dataset. This dataset is a key contribution
to computational understanding of hyperbole to emerge from this thesis.

• Section 3.5 details an exploratory analysis of HyperTwit that seeks to answer
questions relating to the expression of hyperbole on Twitter.

• Section 3.6 describes a synthetic dataset, HyperProbe for behavioural testing of
hyperbole detection models. This dataset is a key contribution to computational
understanding of hyperbole to emerge from this thesis.

• Section 3.7 concludes the chapter.

The datasets and exploratory data analysis presented in this chapter sets the founda-
tion for Part II of this thesis and motivates the importance of hyperbole as a focus point
in the study of figurative language on social media.

3.2 Hyperbole as Important Figure of Speech

The author is interested in studying the nature of hyperbole on social media and the
computational detection of hyperbole for several reasons;

• The commonness of the figure of speech particularly in informal settings (i.e.,
online user-generated text) increases the importance of computational methods
that can process hyperbolic text

• The observation that hyperbole has been understudied compared to other figures
of speech particularly within the field of NLP compared to metaphor, sarcasm and
irony

• Given the predominantly connotative nature of hyperbole and the ability for hyper-
bole to be used to express both a positive and negative sentiment, understanding
hyperbole is important for affective computing applications (i.e., sentiment analy-
sis)

• Findings from Part I showed that hyperbolic usage of health concepts often went
undetected by text classifiers trained to identify figurative usage of health concepts
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3.2.1 Hyperbole

Hyperbole is one of the many common figures of speech used for figuration as well as
metaphor, simile, irony, sarcasm and several others. As mentioned in Section 1.2, the
exact definition of the figurative devices and the classification of figurative utterances
has been the source of debate for centuries. With respect to hyperbole, some scholars
have treated hyperbole as a sub-type of metaphor or a sub-type of irony rather than
treating hyperbole as a unique figure of speech [26, 114, 185, 212, 238]. However, the
author shares the view that hyperbole is in fact a unique figure of speech that displays
characteristics that are not shared by any other figure of speech and it should be treated
separately from other figures of speech [24, 26].

The definition of hyperbole from this point of view is that the figure of hyperbole is
defined by an intentionally excessive contrast between utterance meaning and reality
along a semantic scale to convey an evaluation (i.e., ‘this computer takes like 500 years
to load a web page’, ‘his room is the size of a shopping mall’, ‘she put the team on her
back and carried them to a win’) [24, 26, 33, 133, 145]. By deliberately expressing this
contrast an author of a hyperbolic utterance is conveying a positive or negative evaluation
of the state of affairs that they have embellished. In the previously provided examples,
the computer is frustratingly slow to load a web page, the bedroom is disappointingly
small and her contribution was impressive. The connotative nature of hyperbole and
the potential for complex and varied expression of sentiment heighten the importance of
understanding hyperbole for computing applications that interpret the affective content
in text (i.e., sentiment analysis).

The overwhelming majority of hyperbolic expressions are connotative, which is a
key feature of hyperbole that differentiates it from a plain metaphor or simile [26, 33].
Metaphor and simile for example, may be expressed without evaluative intent but
rather with the intent to improve understanding [26] (e.g, ‘these chips taste like spicy
chicken’, ‘a whippet is like a small greyhound’). A hyperbolic simile is one in which
the likeness is obviously exaggerated to convey an evaluation (‘these chips taste like
heaven’, ‘a whippet runs like the wind’). The use of hyperbole to convey both positive and
negative evaluations differentiates it from ironic language. A key feature of irony is the
communication of negative disassociative evaluations, whilst similar evaluations can be
achieved via hyperbole, hyperbole is used to convey positive evaluations [26].

Despite these differences, these figures also share similarities and frequently co-
occur, fueling the debate over the respective definition and boundaries between the
figures. A corpus study found that hyperbole was found in 80% of all examples where
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figures of speech were found to co-occur and was found to be the second most frequently
occurring figure of speech [106]. Other studies have also noted the high prevalence of
hyperbole, particularly in informal settings [26, 133, 145]. One such informal setting is
the internet, with the New York Times proclaiming a ‘death by internet hyperbole’ [14]
and the Guardian arguing that ‘Exaggeration is the official language of the internet’ [21]
regarding the amount of hyperbole in online content.

However, despite the commonness of hyperbole and the frequent co-occurrence with
other figures of speech, hyperbole has received little attention relative to other figures
of speech [24, 26, 165, 193]. Most relevant to this thesis is the observation that the
computational study of hyperbole has been overlooked compared to computational studies
on other figures of speech [3, 101, 222].

There are several resources for the computational study of irony, sarcasm, metaphor
and simile. Including annotated datasets for the study of irony on Reddit [233] and
Twitter [11, 100]. Several Twitter datasets have been created via hashtag supervision
(i.e., ‘#sarcasm’, ‘#not’ to indicate presence of sarcasm) for the study of sarcasm [1, 12, 16,
119] as well as several resources for the study of metaphor and simile [48, 58, 69, 179,
205].

Comparatively there are few resources to study the phenomenon of hyperbole. The
first work to introduce the computational task of detecting hyperbole and prove the
feasibility of the task on a small dataset consisting of 700 simple idiomatic hyperboles
was recently published [222]. An extension to this foundation work is a study of hyperbole
in Mandarin Chinese, formed by compiling hyperbole from websites and research papers,
resulting in a dataset of idiomatic hyperbole [101]. See [3] for a comprehensive survey of
available resources for the computational study of figurative language.

3.2.2 Hyperbole Types

For this study on hyperbole the focus is on three key types of hyperbole, the extreme case
formulation (ECF), quantitative hyperbole and qualitative hyperbole, see Table 3.1.

Extreme case formulations (ECF) are semantic formulations that invoke extreme
descriptions of events or objects [174, 236]. ECFs are not limited to a singular gram-
matical pattern or word class and as such can be formulated in a myriad of ways [236].
However, a typical example of an ECF is a sentence containing an extreme description
via an adjective (entire, absolute, infinite, etc.), adverb ( never, always, etc.), quantifier
(none, all, etc.) or indefinite pronoun ( nobody, everybody, etc.) [49, 150], see Table 3.1 for
examples.
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Type Example
ECF Her smile is absolutely perfect

All you ever do is complain
He seems to have infinite excuses
Everybody knows the answer already

Quantitative I am so hungry I could eat a million pizzas
It is like 1000 degrees today
That skirt probably costs a billion dollars
I slept for like a millisecond last night

Qualitative My stomach is on fire
This song is heaven
He is a cancer to your life
She just talks so much garbage

Table 3.1: Hyperbole Types

Type indicates type of hyperbole. Example contains an example hyperbolic utterance,
emphasis indicates key term associated with hyperbole type

The many functions of ECFs in communication have been well covered in the lit-
erature [49, 150, 174, 236]. Ranging from strengthening claims in order to pre-empt
challenges (e.g., ‘you have to buy it, it’s brand new’) [174], stating the morals of actions by
virtue of commonness (e.g., ‘it’s fine, everyone does it’) [174] and intentional non-literal
descriptions in evaluative statements (e.g., ‘the worst sandwich ever’) [236].

A rich source of hyperbolic expressions in the non-literal and intentionally use of
ECFs [26, 133, 145, 150, 236]. An analysis of conversations from the British National
Corpus, revealed that the semantic concepts of absoluteness (absolute, complete, entire,
pure, etc.), non-existence (never, nobody, nothing, null, etc.) and universality (all, always,
every, universal, etc.) were the most (15.7%), equal second most (10.7%) and the fourth
most (6.1%) common semantic categories for hyperbole [145]. Although not explicitly
identified as ECFs in their analysis, the hyperboles related to these concepts are ECFs as
they provide maximal or minimal descriptions to the objects or events to which they are
describing (e.g., the entire country was angry, you sit around all day doing nothing).
In a corpus analysis of everyday conversation, extreme adjectives and adverbs such as
infinitely, endless and everywhere were regularly used in hyperbolic expressions, again
likely to be ECFs [133].

Quantitative hyperboles align with the objective-gradational dimension of hyperbole
as defined in prior research on hyperbole [145]. The distinguishing feature of qualitative
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Dataset Source Size Annotations
HyperTwitK Twitter 6,150 Manual
HyperTwitR Twitter 3,750 Manual
HyperProbe Manual 4,990 Manual
HMC2019 Twitter 19,558 Manual

Table 3.2: Overview of Dataset Contributions in this Thesis

hyperbole is the exaggeration of an obvious magnitude or magnitude to an extreme
degree (e.g., ‘she says a million words a minutes’, ‘today has gone for like 100 hours
already’), see Table 3.1 for more examples. These hyperboles differ from ECFs in terms
of the magnitude of contrast. In ECFs the contrast is via a maximal description whereas
in a quantitative hyperbole the contrast is not maximal (e.g, ‘this year has felt like an
eternity’ vs. ‘this year has felt like a decade’). Corpus studies have shown that numerical
expressions related to quantity and accumulation are rich sources of hyperbole [133, 145].
Specifically, quantity words such as ‘dozens’, ‘hundreds’ and ‘millions’ and those relating
to mass (i.e., masses, tons, loads, etc.,) were found to be prone to hyperbolic usage [133].
In a study of the British National Corpus (BNC), the semantic concept of time measure
(i.e., months, hours, weeks, etc.) had the most occurrences of hyperbole of those categories
related to numerical expressions [145].

Qualitative hyperboles align with the subjective-emotional dimension of hyperbole
[145]. The distinguishing feature of qualitative hyperbole is a subjective evaluation made
to an extreme degree (i.e., ‘that play was cancer’, ‘those fries are cooked byGod himself ’),
see Table 3.5 for more examples. A common method for constructing a qualitative
hyperbole is through analogy via a simile or metaphor. The author takes the view that
a hyperbolic metaphor or simile is one in which the analogy is patently absurd and
predominantly for evaluative purposes rather than descriptive (‘these chips taste like
spicy chicken’ vs. ‘these chips taste like heaven’). Corpus studies show that qualitative
hyperboles often provided negative evaluations [145]. Concepts such as frightfulness (21%
of all evaluative hyperboles), physical loss (20%), sorrow and pain (17%), violence and
destruction (12%) were common sources of negative hyperbolic evaluations. Qualitative
hyperbole are often surrounded by loose language, requiring more context and reasoning
to interpret, often involving complicated imagined realities [150] (e.g. ‘I would rather
be french kissed by a rattlesnake’). Qualitative hyperboles are an interesting point
of focus due to their difference in form to ECFs and Quantitative hyperboles and their
co-occurrence with other figures of speech such as simile and metaphor.
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ID Corpus Text

1
Hyperbole I know this place like the back of my hand
Paraphrase I know this place well
Minimal Units Your baby is already hairy like the back of my hand.

2
Hyperbole Love you to the moon and back.
Paraphrase Love you so much.
Minimal Units The missions successfully went to the moon and back.

3
Hyperbole Man your compassion is greater than space.
Paraphrase Man your compassion is huge.
Minimal Units Spacetime is more complicated than space.

4
Hyperbole I went into the shop and we cleared the shelves out.
Paraphrase I went into the shop and we bought a lot of things.
Minimal Units At the restaurant they cleared the shelves out and put in

some old tables.

5
Hyperbole By the time Alf finishes that story, his beard will be three

inches longer.
Paraphrase By the time And finishes his story, a lot of time will have

passed.
Minimal Units In a few months, his beard will be three inches longer.

6
Hyperbole Marriage is the grave of love.
Paraphrase Marriage is the end of love.
Minimal Units I have gone to visit the grave of a friend.

Table 3.3: HYPO examples

Hyperbole Corpus contains utterances deemed hyperbolic during annotation. Para-
phrase Corpus contains a non-hyperbolic paraphrase of the original hyperbolic ut-
terance. Minimal Units Corpus contains literal utterances that contain the tokens
considered to hyperbolic in the original hyperbolic utterance in a non-hyperbolic context.

3.3 HYPO

The HYPO dataset [222] is a collection of utterances that are annotated for the presence
of hyperbole. The utterances are a mix of manually composed examples and those sourced
from various online sources ranging from news headlines, television scripts, love letters
and advertisements.

Crowd workers were employed to provide annotations for the HYPO dataset. The
workers were instructed to complete six tasks for each utterance. The first task was to
ascertain whether the crowd workers thought the utterance was hyperbolic, resulting
in a binary variable. For those utterances deemed to be hyperbolic, the crowd workers
were then instructed to highlight the specific tokens they deemed to be hyperbolic. Then
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the crowd workers were asked to further annotate the utterance by composing a literal
paraphrase of the original hyperbole. Workers were also asked to indicate the type of
hyperbole (i.e., quantitative or qualitative, creative or conventional).

The binary indicator variable from the first task was used to filter the data resulting
in 709 hyperbolic utterances. This collection of sentences was denoted as the Hyperbole
Corpus by the authors. A second corpus of data was created using the hyperbolic tokens
as identified by the crowd workers. The utterances in this corpus were constructed by
filtering the WaCKy corpus1 for sentences that contained tokens identified as hyperbolic
in a non-hyperbolic context. This was denoted as the Minimal Units Corpus by the
authors. The non-hyperbolic paraphrase also made up another corpus, the Paraphrase
Corpus. The construction of the dataset in this way meant that each hyperbolic utterance
in the Hyperbole Corpus had two non-hyperbolic counterparts from the Paraphrase and
Minimal Units corpora respectively, see Table 3.3.

3.4 HyperTwit

The HyperTwit dataset is an annotated collection of online user-generated texts from
social media platform Twitter2, consisting of approximately 10k Tweets annotated for
presence of hyperbole, There are several motivations that inform the data collection and
annotation for HyperTwit. Specifically;

• How prevalent is hyperbole on Twitter?

• How is hyperbole expressed on Twitter and what are the intended meanings of
hyperbole on Twitter?

• How diverse, in terms of usage and intention, is hyperbole on Twitter?

• Can hyperbole expressed on Twitter be automatically detected?

3.4.1 Data Collection

Data is collected via two sampling strategies:

i. Random Sampling: randomly sample Tweets using the Twitter API3

1https://wacky.sslmit.unibo.it/doku.php
2https://twitter.com/
3https://developer.twitter.com/en/docs
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ii. Keyword Sampling: query the Twitter API to return Tweets containing pre-
defined keywords

For random sampling, the author randomly samples Tweets during February-March
2021. Random sampling allows us to estimate the prevalence and usage of hyperbole on
Twitter over time, whilst keyword sampling allows us to compare the hyperbolic use of
particular words on Twitter to prior findings from different communicative forms.

For the keyword sampling strategy, a list of 127 keywords motivated by prior research
on hyperbole is compiled [145], see Table 3.4. The Twitter API is queried to return Tweets
that mention these keywords during September 2020-March 2021.

After collecting Tweets from the Twitter API tweets are automatically filtered based
on the following exclusion criteria:

• Exclude Tweets with any Twitter meta-characters (@, #, urls)

• Exclude Retweets, Quote and Reply Tweets

• Exclude Tweets with less than 4 words

• Exclude non-English Tweets

The motivation for this strict exclusion criteria is to reduce the complexity of collected
Tweets and minimise signatures of the Twitter platform in the dataset. In addition to
the Twitter-specific nature of meta-characters, tweets containing them are also ignored
because they introduce extra context that may be required to correctly interpret the
tweet (i.e., knowledge of a particular user and their Twitter activity in an @mention,
knowledge of the event/topic/phenomenon represented by a particular # or the resource
given by a URL). The motivation to exclude retweets and quote tweets is to help remove
duplicates. Exclusion of reply tweets is due to the extra context needed to correctly
interpret a tweet (i.e., the initial tweet being replied to by the reply tweet). Tweets with
less than five words are also removed because tweets of this length can be vague and
ambiguous (e.g., ‘...No. the opposite.’, ‘tbz no air’).

Manual filtering is also performed according to the following exclusion criteria:

• Exclude vague tweets

• Exclude multi-lingual tweets
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Figure 3.1: Example Data

Original is the source Tweet. Interpretation is a literal interpretation of the Tweet.

Vague tweets and incomprehensible tweets are considered unwanted noise and are
removed from the data (e.g., ‘meat machinery victim battery audience complete’). A multi-
lingual tweet may still be tagged as an English language tweet by Twitter therefore
not excluded during the automatic filtering process (e.g., ‘Pedazo final de Little Fires
Everywhere’).

Upon completion of filtering 125 Tweets per day are randomly sampled for 30 days
from those collected via random sampling, this subset of the data is referred to as
HyperTwitR containing 3,750 Tweets. Also, 50 Tweets are randomly sampled per
keyword from those collected via keyword sampling, this subset of the data is referred to
as HyperTwitK containing 6,150 Tweets.

3.4.2 Annotation and Inter-Annotator Agreement Study

The annotation process follows that of Troiano [222]. Firstly the presence of hyperbole
within a tweet is marked by the assignment of a binary label for that tweet. Then, for
each hyperbolic Tweet, X , the annotators manually compose a literal interpretation of
that tweet, Y , see Figure 3.1. The instructions for annotators are to perform minimal
edits to X to remove the hyperbolic excess and capture the intended meaning of the
utterance as understood by the annotator.

The agreement and similarity between annotators is examined when following the
previously defined annotation task. Given the design of the task there are two aspects of
annotation that are of interest. The inter-annotator agreement regarding the decision
to annotate a tweet as hyperbolic or not, and the similarity of literal interpretations
between annotators. A random sample of 200 tweets are collected to be annotated by
three individuals familiar with the study.

Firstly, the agreement between annotators regarding the decision to label a tweet as
hyperbolic or not is probed. Krippendorff ’s Æ[8, 107]4 is used to measure the agreement

4This metric is in the range of [-1,1] with -1 indicating disagreement, 0 indicating no consensus and 1
indicating complete agreement.
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Semantic Concept Type Word List
Complete/Absolute ECF absolute, complete, entire, pure, whole
Non-existence/Nullity ECF impossible, never, no, nobody, nowhere
Perfection ECF perfect, flawless
Time Period ECF endless, eternal, infinite
Universality ECF all, always, every, everybody, everyone, every-

where
Veracity ECF definite, exact, undeniable
Quantity Words Quantitative zero, one, two, three, four, five, six, seven,

eight, nine, ten, hundred, thousand, million,
billion, trillion, load, heap stack, pile

Time Period Quantitative hour, day, week, month, year, decade, century
Dimensions Quantitative small, big, slow, fast, thin, thick, heavy, light,

height, weight, tall, length, large, high
Measure Quantitative feet/foot, inch, metre, mile
Badness/Evil Qualitative bad, corrupt, evil, fraud, wicked
Chaos/Disorder Qualitative chaos, confusion, disorder, garbage, riot
Deadly/Hell Qualitative dead, hell, misery, murder, nightmare
Frightfulness Qualitative alarm, fear, panic, scared, shock
Physical loss Qualitative anxiety, autism, blind, deaf, insomnia
Pungency/Shrill Qualitative bitter, pierce, sharp, spicy, toxic
Sorrow/Pain Qualitative cancer, fever, headache, pain, sad, suffer
Violence/Destruction Qualitative attack, explode, fight, rape, ruin, wreck
Life/Heaven Qualitative dream, heaven, paradise, utopia, vital
Splendour/Beauty Qualitative attract, beauty, charm, grace, handsome
Magnificence Qualitative amaze, good, great, ideal, impress

Table 3.4: Hyperbole term list

Semantic Concept is the semantic concept as defined by Mora [145]. Type refers to
the type of hyperbole as defined by Mora [145]. Word List is a list of the keywords in

keyword list.
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Type Tweet
ECF depending on people leads you nowhere

Academic failures are worse than all other types of heartbreaks
they ate that concert up fr their vocals BEYOND FLAWLESS
Being a student in 2020 is legit fucking impossible. At least it can’t
get any worse

Quantitative Cozy Levels On A Million
Looks like it’s gonna have to be a thousand-cups-of-coffee day
if my laptop could take less than 500 years to load a photo that
would be NEAT
Wait its October already? How the hell did April last ten years and
September ten minutes this year?

Qualitative Nigeria is a time bomb waiting to explode
This referee needs to retire immediately. Legally blind. ..Pathetic.
Bruh if anyone ever told me that they would buy my art I would
drop dead on the spot
Working in the cryptocurrency world is like working for a drug
addict with bipolar disorder.

Table 3.5: Hyperbole Types - HyperTwit

Type indicates type of hyperbole as classified by [145]. Example contains tweet text,
emphasis indicates key term associated with hyperbole type, emphasis indicates

hyperbolic tokens

for this task . Analysis showed an Æ of 0.595 indicating moderate agreement between
annotators on what constitutes a hyperbolic tweet. Troaino et al. Observed Agreement
(Ao) was to measure inter-annotator agreement in another study of hyperbole [222],
they calculate an Ao of 0.802, by comparison in this study an Ao of 0.816 is calculated.
In another study of hyperbole annotation, Cohen’s ∑ is used in their agreement study
of hyperbole annotations, a Cohen’s ∑ of 0.62 is calculated in that study. An average
Cohen’s ∑ of 0.638 between all possible pairings of annotators is computed for this inter-
annotator agreement study. The inter-annotator agreement study on a random sample of
HyperTwit data indicates similar levels of agreement to those achieved in other studies
related to hyperbole.

To gain an understanding of the similarity of hyperbole interpretations an exam-
ination of the differences between the original hyperbolic tweet, X , and the literal
interpretation, Y , provided by the different annotators is undertaken. An assessment of
interpretation similarity is approximated by computing the semantic similarity between
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Figure 3.2: Annotator Interpretation Similarity Distributions

Distributions of cosine similarity words removed and added by different annotator pairs
when interpreting a hyperbolic tweet.

the tokens removed and added during interpretations. For this analysis two separate
bags-of-words R and A, see eq. 3.1 and eq. 3.2 are considered. The simplediff5 library
is used to compute these bags-of-words. This library provides an algorithm that uses a
dynamic programming approach to compute the set difference and set intersections for
strings of text.

Non-contextual dense word representations are used to represent the linguistic
content in these bags of words. Due to the comparison occurring between tokens removed
from, and added to, highly similar contexts by different annotators. Contextual word
representations would encode information from the context of the original tweet biasing
this similarity metric due to the highly similar context (i.e. higher similarity scores).

R = X ›Y(3.1)

5https://github.com/paulgb/simplediff
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A =Y › X(3.2)

(3.3) SIMR(x, y)=
exR · eyR

||exR ||£ ||eyR ||

(3.4) SIMA(x, y)=
exA · eyA

||exA||£ ||eyA||

Each bag-of-words is represented via the averaged GloVe6 [166] embeddings for each
word in the bag denoted by eR and eA. The cosine similarity is computed between eR
for all hyperbolic tweets across all possible annotator pairs, likewise for eA, similar to
analysis in [78]. These metrics are denoted by SIMR and SIMA, see eqs 3.3 and 3.4,
where exR and eyR are the averaged GloVe representations of the tokens in the removed
bags-of-words for annotator x and annotator y respectively, and exA and eyA are the
averaged GloVe representations of the tokens in the added bags-of-words for annotator x
and annotator y respectively.

High semantic similarity is observed between all annotator pairings for eR with mean
SIMR of 0.895, 0.837 and 0.835 respectively. This suggests that when annotators agree
that a tweet is hyperbolic they identify similar tokens as contributing to the hyperbole.
However, when it comes to the added tokens the semantic similarity is considerably
lower with mean SIMA of 0.733, 0.662 and 0.704 for eA between all annotator pairs
respectively. This suggests that interpretation of a hyperbole is more open-ended task
then the hyperbole identification task, an intuitive result.

Kruskal-Wallis significance testing is performed on SIMR and SIMA between all
annotator pairs. Finding no significant difference7 between the cosine similarity for
removed words between all the different annotator pairs, mean SIMR of 0.895, 0.837 and
0.835 respectively. It also observed that there is no significant difference8 for similarity of
added words between all annotator pairs SIMA of 0.733, 0.662 and 0.704 for eA between
all annotator pairs respectively. The outcome of the significance tests show consistency
across different annotator pairs.

6https://radimrehurek.com/gensim/
7p= 0.79
8p= 0.68
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3.5 Hyperbole on Twitter

This section details an exploratory analysis of the HyperTwit dataset to gain insight
into the phenomenon of hyperbole. Specifically, answers to the following questions are
sought;

• How prevalent is hyperbole on Twitter?

• How is hyperbole expressed on Twitter and what are the intended meanings of the
hyperbolic expressions?

• How diverse, in terms of usage and intention, is hyperbole on Twitter?

3.5.1 Hyperbole Prevalence

HyperTwit consists of 9,900 labelled Tweets, of which 2,892 (29.2%) are hyperbolic. It
is observed that 14.8% of Tweets in HyperTwitR are hyperbolic, whilst 39.0% of Tweets
in HyperTwitK are hyperbolic. The prevalence of hyperbole in HYPO is not analysed
given that the data collection procedure forbids such an analysis, see 3.3.

To get an idea of the prevalence of hyperbole on Twitter a comparison of the observed
frequency of hyperbole in HyperTwitR is made against the observed frequency of
hyperbole in the corpus study by [145]. In their study of conversational text the authors
found 343 hyperbolic units amongst 52,208 words (0.007) of conversational text, in
HyperTwitR 555 hyperbolic units are identified amongst 55,909 words (0.010) of Twitter
text. A ¬2 test is performed and statistically significant difference9 in the observed
amount of hyperbole between the two datasets is observed.

This suggests that Twitter text may be more hyperbolic than general conversational
text. The author was unable to compare hyperbole prevalence with several prior studies
on hyperbole for various reasons. Both HYPO [222] and the data in [101] use determin-
istic sampling and do not attempt to provide an estimate of the prevalence of hyperbole.
In contrast, [133, 145] focus on the hyperbolicity of particular hyperbolic phrases, not
the prevalence of hyperbole in general.

Another point of inquiry is the variation in hyperbole prevalence over time. A Sharipo-
Wilk test is performed to see if the daily proportions of hyperbole in HyperTwitR follow
a normal distribution. The results10 show that the daily proportions of hyperbole follow

9¬2 = 36.53, p < 0.0001
10p= 0.848
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Figure 3.3: Daily Proportion of Hyperbole

. KDE plot of daily hyperbole proportions in HyperTwitR

a normal distribution with strong statistical significance. This indicates a steady daily
prevalence of hyperbole on Twitter, see Figure 3.3.

3.5.2 Word Hyperbolicity

In this section an investigation into the hyperbolic usage of words in HyperTwit is
undertaken. To gain an understanding of the hyperbolicity of different words an ex-
amination of the differences between the original hyperbolic Tweet, X , and the literal
interpretation, Y , provided by the different annotators, see Figure 3.1. For this analysis
two separate bags-of-words R and K see eq. 3.1 and eq. 3.5 are considered. All words in
Tweets are stemmed using the Snowball stemmer11 before computing the bags-of-words.
It is assumed here that a word was removed from a Tweet during the annotation because
it contributed to the hyperbolic nature of that Tweet given the annotation instructions,
see Section 3.4.2. Therefore, an estimation of the probability of removal can be used as
an approximation of the hyperbolicity of that word. To measure the hyperbolicity of a
word an estimate of the probability of removing a word from a Tweet is calculated by eq.

11https://www.nltk.org/
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3.6, where ri is the count of times word i was removed, Æ is a smoothing parameter12

and f i is the raw frequency count of word i across the dataset. This method of computing
probabilities (i.e. Laplace Smoothing) has shown to be effective common when dealing
with word counts in various NLP applications [30, 95, 131, 225]

S = X \Y(3.5)

P(R|wi)=
ri+Æ

f i+Æ2
(3.6)

Several words with high removal probabilities are identified in both subsets of
HyperTwit indicating words that are prone to hyperbole on Twitter. In Tables 3.6 and 3.7,
the Top 15 keywords by removal proportion in both subsets of HyperTwit are provided.
The high removal proportion of these terms is notable, particularly in HyperTwitK ,
Table 3.7. The valence, arousal and dominance (VAD) scores of words with high removal
probability are computed by using a lexicon [144] to gain insight into the affect of these
words. From the VAD scores it can be observed that all words contain extreme values
(x< .25 and x> .75) in at least one of these affect dimensions except heavy, steam and
cure, with both heavy and cure being close to extreme. With respect to valence, 6 and 7
of the words with extreme valence are negative in tables 3.6 and 3.7. This suggests a
preference for negative hyperbolic expressions on Twitter. The extreme values of arousal
in both Tables lean towards the active/stimulated dimension. With respect to dominance
the extreme values are split between strong/weak and lean towards weak in Table 3.7.
Whilst words with extreme dominance values lean towards the strong end of the scale
in Table 3.6. These extreme values in the affect dimensions aligns with findings in
hyperbole research that the overwhelming majority of hyperbole found in various corpus
studies indicated strong sentiment, see Section 3.2.

3.5.3 Common Intentions

This section introduces an empirical analysis of the annotations to gain insight into
the words commonly used in literal interpretations of hyperbole. For this analysis the
bag-of-words A, see eq 3.2 , is considered. It is assumed here that words added to a
non-hyperbolic interpretation capture the intended meaning of the hyperbole given the
annotaion instructions, see Section 3.4.2. Stopwords are removed before computing the

12Æ = 0.1
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Word P(R|w) V A D
planet 0.981 0.698 0.404 0.832
heaven 0.976 0.896 0.385 0.600
deadass 0.976 - - -
saddest 0.969 0.651 0.529 0.917
demon 0.969 0.037 0.908 0.509
heavy 0.969 0.250 0.454 0.600
absolute 0.922 0.526 0.510 0.827
insane 0.880 0.062 0.670 0.265
bomb 0.788 0.167 0.912 0.750
earth 0.744 0.750 0.225 0.614
toxic 0.744 0.008 0.885 0.492
trash 0.738 0.163 0.541 0.154
worst 0.723 0.062 0.704 0.225
perfect 0.711 0.980 0.471 0.870
brain 0.689 0.667 0.441 0.823

Table 3.6: Top 15 words by Removal Probability - HyperTwitR
Word is the removed word. P(R|w) is the estimated removal probability. V is the

valence. A is the arousal. D is the dominance. Extreme values of V,A,D are in boldface.

Word P(R|w) V A D
insane 0.986 0.062 0.670 0.265
ascend 0.969 0.830 0.620 0.812
retard 0.969 0.194 0.347 0.222
explode 0.969 0.277 0.885 0.773
slap 0.969 0.100 0.804 0.518
disease 0.969 0.041 0.539 0.333
dumpster 0.969 0.229 0.418 0.101
steam 0.969 0.469 0.413 0.421
toxic 0.929 0.008 0.885 0.492
everywhere 0.9 - - -
cure 0.866 0.719 0.377 0.623
nowhere 0.861 - - -
absolute 0.858 0.526 0.510 0.827
garbage 0.849 0.188 0.510 0.192
pure 0.849 0.811 0.306 0.652

Table 3.7: Top 15 words by Removal Probability - HyperTwitK
Word is the removed word. P(R|w) is the estimated removal probability. f i is the raw
frequency of word. V is the valence. A is the arousal. D is the dominance. Extreme

values of V,A,D are in boldface.
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Word f i V A D
great 38 0.958 0.665 0.810
often 28 - - -
bad 27 0.125 0.625 0.373
many 24 - - -
good 22 0.938 0.368 0.534
much 20 - - -
frustrate 19 0.100 0.809 0.243
very 18 - - -
annoy 17 0.094 0.765 0.286
not 16 - - -
too 15 - - -
thing 15 0.449 0.222 0.26
people 14 0.604 0.400 0.500
terrible 13 0.061 0.849 0.604
hard 10 0.302 0.708 0.616

Table 3.8: Top 15 words Added to Literal Interpretations - HyperTwitR
Word is the word added to a literal interpretation. f i is the raw frequency count of the

times added to a literal interpretation. V is the valence. A is the arousal. D is the
dominance. Extreme values of V,A,D are in boldface.

raw frequency counts of words in all A, and show the top 15 most frequently added
words in Table 3.9 and Table 3.8, the VAD scores for all words in these tables are
also provided. Notably, there are several words in Tables 3.9 and 3.8 respectively that
have no VAD score associated with them. These words have very little affect signal
and are associated with specifying quantities (e.g., many, much, too, very, often and
few). The words with VAD scores (good, bad, great, frustrate, annoy and terrible) show
extreme values of valence suggesting that the common intention of hyperbole is to
express strong sentiment. The extreme values of valence in the majority these words
suggests that the common intention of hyperbole is to express a strong sentiment. This
is intuitive and aligns with the theory of hyperbole as contrast to convey and evaluation
[24, 26, 101, 145, 222]. This also shows the importance of accurate interpretation of
hyperbole for Sentiment Analysis. Interestingly, 12 words are shared between the top
15 most frequently added words between both HyperTwitK and HyperTwitR subsets.
This is a contrast to only 2 shared words in between the subsets in Tables 3.6 and 3.9
containing words with high hyperbolicity. This suggests that there is less diversity in
the intentions of hyperbole than there is in the expression of hyperbole.
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Word f i V A D
many 127 - - -
good 123 0.938 0.368 0.534
terrible 97 0.061 0.849 0.604
frustrate 92 0.100 0.809 0.243
great 87 0.958 0.665 0.810
bad 85 0.125 0.625 0.373
not 74 - - -
too 73 - - -
very 71 - - -
much 59 - - -
long 49 0.541 0.353 0.543
annoy 45 0.094 0.765 0.286
often 43 - - -
few 37 - - -
amaze 35 0.896 0.843 0.783

Table 3.9: Top 15 words Added to Literal Interpretations - HyperTwitK
Word is the word added to a literal interpretation. V is the valence. A is the arousal. D

is the dominance. Extreme values of V,A,D are in boldface.

Hyperbolic Tweet Interpretation
should be strike 3 but the umpire is
blind

should be strike 3 but the umpiremissed
it

seem like the real thing but i was so
blind

seem like the real thing but i was so
naive

im deaf & blind to the [expletive] im unaffected by the lies
about to make a blind man see the
light in a few seconds

about to reveal something in a few sec-
onds

Table 3.10: Hyperbolic Expressions of ‘blind’

Hyperbolic Tweet is the original Tweet. Interpretation is the literal interpretation
created during annotation. Various intended meanings are observed for hyperbolic

expressions containing the word ‘blind’.
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Hyperbolic Tweet Interpretation
This app is so toxic haha This app is so nasty haha
You ever finally let go of a toxic person
and gain so much clarity

You ever finally let go of a nasty person
and gain so much clarity

Leaving a toxic relationship is so painful
but so necessary

Leaving a nasty relationship is so
painful but so necessary

Table 3.11: Hyperbolic Expressions of ‘toxic’

Hyperbolic Tweet is the original Tweet. Interpretation is the literal interpretation
created during annotation. A singular intended meaning for hyperbolic expressions
containing the word ‘toxic’ is observed.

Figure 3.4: Hyperbole Cluster Summary Heatmap

Rows represent the keyword removed from a hyperbolic Tweet. Columns represent
different clusters (Noise cluster contains unique/novel hyperboles. hyp-1 is the largest
non-noise cluster. hyp-2 is the second largest non-noise cluster. hyp-3 is the third largest
non-noise cluster). Values represent the proportion of examples belonging to a cluster for

all hypoerbolic examples of that keyword.
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3.5.4 Diversity of Hyperbole

In this section an exploration of the diversity of hyperbolic expression in HyperTwit is
undertaken. For example, the word blind appears in various hyperbolic expressions in
HyperTwit with different intended meanings, see Table 3.10 in Appendix. Conversely,
limited variation in hyperbolic expressions using the word toxic can be observed, see
Table 3.11.

To probe the diversity of hyperbole expression manual clustering is performed based
on both the hyperbolic expression and intended meaning. Keywords with high hyperbol-
icity from HyperTwitKEY were selected and for each keyword hyperbolic tweets where
the keyword was removed were manually clustered. Similar examples are defined as
those in which both the hyperbolic expression and the intended meaning are similar,
see Tables 3.10 and 3.11 in Appendix. A summary of the manually identified hyperbole
clusters are presented in Figure 3.4.

From this summary it can be seen that for a number of keywords, more than 75% of
examples belong to a single hyperbole cluster (i.e., everybody, flawless, garbage, nobody,
perfect, riot, toxic). This is explained by users parroting the same hyperbolic expres-
sions for these keywords in similar contexts with similar interpretations (i.e., toxic ->
nasty/unkind, riot -> angry/annoyed).

Several keywords are identified where at least a third of the examples belonged to
the noisy cluster with no similar examples (i.e, absolute, always, blind, eternity, forever,
heaven, impossible, infinite, thousand). Suggesting novel or complex hyperbolic uses of
that particular keyword. Such as in elaborate hyperbole (It is statistically impossible
to have a bad day if you start it listening to Pretty U by Seventeen), unique adjective
or adverbial phrases (i.e., started an infinite hate train) as well as the combination
of multiple hyperbolic expressions (i.e., the connect in my stat class is absolute dooki
im boutta kms).

Keywords with several hyperbole clusters of considerable size can be observed (i.e.,
absolute, blind, everywhere, fever, heavy, pure, thousand, wreck.) Indicating various
established hyperbolic uses for those keywords (e.g., this show is a train wreck -> this
show is terrible , i am an emotional wreck -> i am upset, i want you to wreck me
-> i really want you). A manual cluster analysis of hyperbole identified considerable
diversity in hyperbole usage on Twitter. This has implications for the automated detection
of hyperbole, with the ability to deal with novel hyperbole a key requirement.
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3.6 HyperProbe

The HyperProbe suite consists of synthetic test sentences generated to probe the
behaviour of hyperbole detection models. The suite is created to expose the models
to the three key types of hyperbole[145]; Extreme Case Formulations, Qualitative
Hyperbole and Quantitative Hyperbole. The creation of the test sentences can be
described by a general procedure consisting of four main steps;

i. Word List Creation

• Creation of word lists that will feature in the generated test sentences

ii. Sentence Template Creation

• Creation of sentence templates

iii. Test Sentence Generation

• Generation of test cases using CheckList[191]13 from the sentence templates
and seed word lists

iv. Manual Annotation and Assessment

• Assessment of semantics and grammar of generated test sentences

• Annotation of generated test sentences

This general procedure is followed for the generation of the majority of test sentences
contained in HyperProbe. However, in some exceptional cases this procedure produced
poor results and different strategies for test generation were required.

3.6.1 Extreme Case Formulation Tests

Extreme Case Formulations are an important type of hyperbole that function unlike
other expressions of hyperbole, see Section 3.2 for a discussion on ECFs. The ability to
detect and interpret ECFs is a fundamental requirement for a hyperbole detection and
interpretation model. To design test sentences to directly probe this ability, ECF words
from Table 3.4 in Section 3.4 are grouped by part-of-speech category to form seed word
lists. Grouping these words by part-of-speech categories results in four main categories
(adjectives, adverbs, determiners and indefinite pronouns), for which tests are designed
specific to each category.

13https://github.com/marcotcr/checklist
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Test Name Test Sentences Hyperbole Proportion
ECF-Adjectives 73 0.520
ECF-Adverbs 39 0.590
ECF-Determiners 42 0.452
ECF-Indefinite Pronouns 27 0.556
Qual-Adjectives 306 0.284
Quant-Dimensions 43 0.488
Quant-Time Period 811 0.667
Quant-Time Period Quantities 108 0.555
Quant-Intrinsic Quantities 3460 0.476

Table 3.12: HyperProbe Test Statistics.

Test Name is the name of test, Test Sentences is the number of sentences in test,
Hyperbole Proportion the proportion of sentences in the test that are hyperbolic.

3.6.1.1 Adjectives

A set of test sentences is designed to answer the following question; can a model identify
the hyperbolic and non-hyperbolic usage of adjectives in extreme case formulations? The
use of adjectives in hyperbolic ECFs was observed in HyperTwit ( i.e., ‘words are flowing
out like endless rain in to a paper cup’, ‘It is impossible to dislike Russell Wilson’, ‘my
entire life is just that one joke that goes over everyones head’). From the list of ECF
terms in Table 3.4 the following adjectives make up the seed list: absolute, complete,
definite, endless, entire, eternal, exact, flawless, impossible, infinite, invariable, invincible,
perfect, pure, unconditional, undeniable, whole. Two sentence templates are designed for
generation of test sentences incorporating these adjectives, see Table 3.13. All adjectives
({JJ}) are drawn from the ECF adjective list previously defined in this section. Verbs
({VB}) are drawn from a user-defined verb seed list that contains simple linking verbs
only (i.e., is, was). Likewise, the determiners ({DT}) are also drawn from a user-defined
list containing simple determiners (i.e., the, a, an, this etc.). Note that regardless of test,
{MASK} tokens are always infilled by a pre-trained language model, CheckList uses
RoBERTa. Test sentences are then manually assessed to reject nonsensical sentences
generated by CheckList and to annotate valid sentences, see Section 3.4.2 for details.
Upon completion of assessment and annotation there were 73 test sentences, 38 (52%) of
which were labelled as hyperbolic, see Tables 3.12 and 3.13.
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Template Example
{DT}{MASK}{MASK}{VB}{JJ} the dishonest words are endless
{DT}{JJ}{MASK}{VB}{MASK} the endless combinations are daunting

Table 3.13: ECF Adjectives Test Sentence Templates

Template shows templates as provided to CheckList, Example is an example sentence
generated by CheckList.

Template Example
{DT}{MASK}{MASK}{RB}{VBa} the code was never cracked
{DT}{MASK}{MASK}{RB}{MASK} the good times always roll
{DT}{MASK}{VBl}{RB}{MASK} the dog was never silent
{DT}{MASK}{MASK}{VBl}{RB} the drug problem is everywhere

Table 3.14: ECF Adverbs Test Sentence Templates

Template shows templates as provided to CheckList, Example is an example sentence
generated by CheckList.

3.6.1.2 Adverbs

A set of test sentences is designed to answer following question; can a model identify the
hyperbolic and non-hyperbolic usage of adverbs in extreme case formulations? The use
of an adverb to express a hyperbolic extreme case formulation was frequently observed
in HyperTwit (i.e., ‘Being a decent human being has gotten me nowhere’, ‘All I see is
fake love everywhere’). From the list of ECF terms in Table 3.4 the following adverbs
seed list is compiled: always, everywhere, never, nowhere. Four sentence templates are
created to incorporate these adverbs into a sentence, see Table 3.14. All adverbs ({RB})
are drawn from the ECF adverb list previously defined in this section. Linking verbs
and action verbs are introduced into the sentence templates for adverb testing. Linking
verbs ({VBL}) are drawn from a user-defined verb seed list that contains simple linking
verbs only (i.e., is, was). Whilst, action verbs ({VBa}) are drawn from a user-defined
verb seed list that contains various action verbs only (i.e., burning, falling, flying, etc.).
Determiners ({DT}) are also drawn from a user-defined list containing simple determiners
(i.e., the, a, an, this etc.). Upon completion of generation, assessment and annotation
there were 39 test sentences, 19 (45%) of which were labelled as hyperbolic, see Tables
3.12 and 3.14.
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Template Example
{DT}{MASK}{MASK}{DT}{MASK} The moral of every story
{DT}{MASK}{MASK}{IN}{MASK} all comments may be removed
{DT}{MASK}{VB}{MASK}{MASK} every person will be disappointed

Table 3.15: ECF Determiners Test Sentence Templates

Template shows templates as provided to CheckList, Example is an example sentence
generated by CheckList.

3.6.1.3 Determiners

A set of test sentences is designed to answer the following question; can a model identify
the hyperbolic and non-hyperbolic usage of determiners in extreme case formulations?
Extreme determiners were commonly observed in hyperbolic expressions in HyperTwit
(i.e., ‘My dorm so damn far from every fucking thing’, ‘he says SO MANY WORDS
containing NO INFORMATION’ ). From the list of ECF terms in Table 3.4 the following
determiner seed list was created: all, no, every. Three sentence templates are created
to incorporate these particular determiners into a sentence, see Table 3.15. Two seed
word lists are defined for determiners, one containing generic determiners ({DT}) (i.e.,
the, a, an, this etc.) and one containing the determiners of interest ({DT}) (i.e., all, no,
every). Verbs ({VB}) are drawn from a user-defined verb seed list that contains simple
linking verbs only (i.e., is, was). A manually defined list is defined from which to draw
prepositions ({IN}) (i.e., in, on, at, etc.). Upon completion of generation, assessment and
annotation there were 42 test sentences, 23 (59%) of which were labelled as hyperbolic,
see Tables 3.12 and 3.15.

3.6.1.4 Indefinite Pronouns

A set of test sentences is designed to answer the following question; can a model identify
the hyperbolic and non-hyperbolic usage of indefinite pronouns in extreme case formula-
tions? The usage of indefinite pronouns to express hyperbolic extreme case formulations
was frequently observed in HyperTwit (i.e.,‘ i can guarantee nobody gives a single shit
about ur zodiac sign’, ‘Everybody got an attitude this morning ! Ok I respect it’). From
the list of ECF terms in Table 3.4 the following indefinite pronoun seed list is compiled:
everyone, everybody, nobody, no one. Two sentence templates are created to incorporate
these indefinite pronouns into a sentence, see Table 3.16. Indefinite pronouns ({PRON})
are drawn from the ECF seed list (i.e., everyone, everybody, no one, nobody). Determiners
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Template Example
{DT}{MASK}{MASK}{MASK}{PRON} The child answers to nobody
{PRON}{IN}{DT}{MASK}{VB}{MASK} everybody in the house is bored

Table 3.16: ECF Indefinite Pronouns Test

Template shows templates as provided to CheckList, Example is an example sentence
generated by CheckList.

({DT}) are also drawn form a user-defined list containing simple determiners (i.e., the,
a, an, this etc.). Verbs ({VB}) are drawn from a user-defined verb seed list that contains
simple linking verbs only (i.e., is, was). A list from which to draw prepositions ({IN})
(i.e., in, on, at, etc.) is manually defined. Upon completion of generation, assessment and
annotation there were 27 test sentences, 15 (55%) of which were labelled as hyperbolic,
see Tables 3.12 and 3.16.

3.6.2 Qualitative Hyperbole Tests

Qualitative hyperboles are an important type of hyperbole that are defined by an in-
tentionally excessive qualitative contrast, (see Section 3.2 for a further discussion on
qualitative hyperbole). The ability to detect and interpret qualitative hyperbole is a
fundamental requirement of a hyperbole detection and interpretation model. Qualitative
terms from Table 3.4 in Section 3.4 were used to form seed word lists for generating tests
for qualitative hyperbole. Unlike ECFs, the qualitative terms in Table 3.4 predominantly
function as adjectives. Given this observation only a single adjectives test is implemented
for qualitative hyperbole.

The rationale behind these tests is to design sentences that allow us to answer
the following question; can a model identify the hyperbolic and non-hyperbolic usage
of adjectives? The use of extreme adjectives to provide exaggerated descriptions was
a common and varied method of expressing hyperbole in HyperTwit (i.e., ‘Dawg this
ballpark is so garbage’, ‘Dating legit be a headache’, ‘Kyrie Irving is fucking cancer
lmao’). From the list of qualitative terms in Table 3.4 list containing 54 adjectives
is compiled. Six sentence templates are defined to incorporate the adjectives into a
sentence, see Table 3.17. All adjectives ({JJ}) are drawn from the qualitative adjective
list previously defined in this section. Verbs ({VB}) are drawn from a user-defined verb
seed list that contains simple linking verbs only (i.e., is, was). Likewise, the determiners
({DT}) are also drawn form a user-defined list containing simple determiners (i.e., the,
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Template Example
{DT}{MASK}{MASK}{VB}{MASK}{JJ} an idea that is very wicked
{DT}{MASK}{VB}{JJ} The argument is confusing
{DT}{MASK}{VB}{MASK}{JJ} The wine is very bitter
{DT}{MASK}{MASK}{VB}{JJ} the oil residue is toxic
{DT}{JJ}{MASK}{VB}{MASK} A great story was completed
{DT}{JJ}{MASK}{VB}{MASK}{MASK} The shocking speech was poorly pre-

pared

Table 3.17: Qualitative Adjectives Test Sentence Templates

Template shows templates as provided to CheckList, Example is an example sentence
generated by CheckList.

a, an, this etc.). Upon completion of assessment and annotation there were 306 test
sentences, 87 (28%) of which were labelled as hyperbolic, see Tables 3.12 and 3.17.

3.6.3 Quantitative Hyperbole Tests

The understatement or overstatement of quantitative values could be considered the
prototypical example of hyperbole given the trivial identification and interpretation of
the hyperbole (i.e., ‘im so hungry i could eat 1000 pizzas’), (see Section 3.2 for futher
discussion on quantitative hyperbole). Accurate detection and interpretation of quantita-
tive hyperbole is a required capability for computational models that process hyperbole.
The process for generating test sentences varied compared to that of the other tests in
HyperProbe. A key reason for this was the difficulty in generating sufficiently varied test
sentences when following the general four step procedure for test generation. Specifically,
the range of topics covered by the test sentences generated via CheckList was limited to
financial and business topics (i.e., dollars, units, stocks, etc.,).

3.6.3.1 Quantitative Comparisons

A set of test sentences are designed to address the following question; can a model iden-
tify plausible and non-plausible comparisons of objects along quantitative dimensions?.
Note, that this test does not specifically target hyperbolicity but rather plausibility of
object comparisons. An understatement or overstatement of quantitative values was an
identified pattern of hyperbole expression in HyperTwit, (see Section 3.5).

From the list of terms in Table 3.4 list containing all words relating to quantitative
dimensions (i.e., big, small, light, heavy, thin, thick, etc.) is compiled. In addition to
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Template Example
{MASK}{MASK} is as {JJ} as {MASK}
{MASK}

her eyes are as blue as the ocean

{MASK}{MASK} is {JJR} than
{MASK}{MASK}

that building is taller than I thought

Table 3.18: Quantitative Dimensions Test Sentence Templates

Template shows templates as provided to CheckList, Example is an example sentence
generated by CheckList.

this, the comparative form of each word is used (i.e., bigger, smaller, lighter, etc.). Two
sentence templates are designed to incorporate these words into a sentence, see Table
3.18. These two sentence templates are more specific than the templates defined for
other tests with several fixed natural language words and phrases (i.e., ’is a’, ’than’).
All adjectives ({JJ}{JJR}) are drawn from the adjective list previously defined in this
section. Upon completion of assessment and annotation there were 43 test sentences, 21
(48%) of which were labelled as hyperbolic, see Tables 3.12 and 3.18.

3.6.3.2 Time Periods

A set of test sentences is designed to answer the following question; can a model identify
hyperbolic expressions of time periods?. The overstatement and understatement of time
periods was a pattern of hyperbole expression observed in HyperTwit (i.e., ‘4 years of
Trump has seemed like 40 years of hell.’, ‘This past 12 hours has been one of the longer
decades of my life’ ‘I only been at work for 30mins and it feel like I been here for hours’).
The design of these test sentences differs from the four step procedure for sentence
generation followed in Section 3.6.1 and 3.6.2.

A list of terms relating to time periods from Table 3.4 is established (i.e., hour, day,
week, today, yesterday, etc.), from which all {NN} in the following sentence templates are
drawn from. Also, a list of proper nouns relating to time periods (i.e., Monday, Tuesday,
January, February, etc.), from which all {PROPN} in the sentence templates are drawn
from. An additional list of comparative adjectives ({JJR}) is created containing only less
and more to create test sentences comparing the length of different time periods. Four
sentence templates are created see Table 3.19. The generation of test sentences for these
sentence templates is based on all combinations of words in both the {NN}, {PROPN}
and {JJR} lists. This results in 811 test sentences, 541 (67%) of which were considered to
be hyperbolic, (i.e., an understatement or overstatement of the length of time in a time
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Template Example
that {NN} lasted a {NN} that day lasted a month
{PROPN} lasted a {NN} December lasted a year
that {NN} lasted {JJR} than a {NN} that day lasted less than a month
{PROPN} lasted {JJR} than a {NN} December lasted more than a year

Table 3.19: Quantitative Time Periods Test Sentence Templates

Template shows templates as provided to CheckList, Example is an example sentence
generated by CheckList.

periods).
To further probe the understanding of time periods four additional sentence templates

are created, see Table 3.20. Cardinal numbers are introduced in these templates to
generate test sentences that specify quantities of time periods. Numeric {CDN } and alpha
{CDA} cardinal numbers are used to generate test sentences. Constraints are employed
to avoid an excessive number of test sentences when these generating sentences using
these templates:

i. Constraint on Time Period Pairs: All templates contain two time periods, the
first of which is filled with all time periods in the {NN} and {PROPN}, the second
time period is only filled with next smallest time period by duration (i.e., minutes
and seconds, hours and minutes, days and hours, etc.). This avoids redundant test
sentences that are already covered by the 811 test sentences previously generated
for time periods.

ii. Constraint on Cardinal Numbers: The choice of cardinal numbers is limited by
the orders of magnitude that bound the equality comparison between the two time
periods. (e.g. 1 hour = 60 minutes : that hour lasted {JJR} than 10/100/ten/one
hundred minutes, 1 week = 7 days: that week lasted {JJR} than 1/10/one/ten
day(s))

This process resulted in 108 sentences, of which 60 (55%) were considered to be
hyperbolic. A hyperbolic test sentence in the context of this test is one in which the
comparison of time periods is excessive (e.g., that day lasted more than a week).

3.6.3.3 Intrinsic Values

A set of test sentences is designed to answer the following question; can a model identify
plausible and non-plausible ranges of quantitative values?. A common expression of
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Template Example
that {NN} lasted {JJR} than a {CDN}
{NN}

that month lasted more than 100 days

that {NN} lasted lasted {JJR} than a
{CDA} {NN}

that month lasted less than one hundred
days

{PROPN} lasted {JJR} than a {CDN}
{NN}

May lasted more than 100 days

{PROPN} lasted lasted {JJR} than a
{CDA} {NN}

April lasted less than one hundred days

Table 3.20: Quantitative Time Periods (Numeric) Test Sentence Templates

Template shows templates as provided to CheckList, Example is an example sentence
generated by CheckList.

hyperbole is the overstatement or understatement of quantitative values (i.e., ‘is the
chargers team doctor still that dude with like a billion pending lawsuits?’, ‘I enter 10
billion giveaways and end up winning absolutely NOTHING’). Understanding the valid
distribution of values for objects along various quantitative dimensions is a desired
behaviour of a hyperbole detection and interpretation model. To test this capability data
is leveraged from research that looks at constructing quantitative distributions of objects
via large scale internet crawling and data processing [51]. The authors evaluate a subset
of their data across 4 quantitative dimensions (currency, length, mass and speed) via
crowd-sourcing and this evaluations are transformed into simple sentences.

The original template for the question posed to the crowd workers was as follows;
‘Does the {MEASUREMENT of a/an {OBJECT fall within the range of {NUMBER
{UNIT?’. Four sentence are created templates to represent the questions and answers in
a single test sentence that alings with other sentences in HyperProbe, see Table 3.21.
The first step in the transformation process is to extract the necessary data values from
the original data (i.e., {MEASUREMENT, {OBJECT, {NUMBER, {UNIT). This process
is straightforward except for the extraction of {NUMBER due to the need to get the
minimum value and maximum value from this number. Once extracted these values are
used to infill the templates for both the minimum and maximum value of the specified
range in {NUMBER, see 3.22. The accepted answer is a majority vote of all answers
provided by the crowd workers. If the accepted answer is that the value does not fall
within a reasonable range for that object along that quantitative dimension then this can
be labelled as a hyperbole. After transformation of 3458 sentences, 1646 (47%) of were
considered to be hyperbolic (i.e., an understatement or overstatement of the intrinsic
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Dimension Template
Currency That {OBJECT cost {NUMBER {UNIT to buy
Length That {OBJECT is {NUMBER {UNIT long
Mass That {OBJECT weighs {NUMBER {UNIT
Speed That {OBJECT is travelling {NUMBER {UNIT

Table 3.21: DoQ-Intrinsic Sentence Templates

Dimension Quantitative dimension, Template shows transformation template from
DoQ.

Dimension Example Label
Speed That motorcycle is travelling one hundred kilometers an

hour
0

Speed That motorcycle is travelling one thousand kilometers an
hour

1

Mass That lizard weighs one hundred kilograms 0
Mass That lizard weighs one thousand kilograms 1
Length That kitchen is one centimeter long 1
Length That kitchen is ten meters long 0
Currency That footwear costs ten dollars to buy 0
Currency That footwear costs ten million dollars to buy 1

Table 3.22: DoQ-Intrinsic Test Sentence Example

Dimension Quantitative dimension, Example is an example sentence generated by
CheckList.

value of an object along a quantitative dimension).

3.7 Conclusion

This chapter provides the background and motivation for the computational study of
hyperbole and how it fits within the broader thesis topic of computational understanding
of figurative language. Key points discussed include:

• Hyperbole is one of the most common figures of speech, particularly in informal
situations, heightening the importance of understanding the phenomenon on social
media

• Hyperbole has received considerably less attention in both the linguistics and NLP
communities relative to metaphor and irony. Hyperbole is relatively misunderstood
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as are the best approaches for the computational study of the figure.

The introduction of both HyperTwit and HyperProbe, which provide more bench-
marks for evaluating the ability of NLP systems to accurately detect hyperbolic ex-
pressions. This contribution satisfies research objective i), as these annotated datasets
allow for the Assessment of the capabilities of existing NLP methods in detecting and
interpreting hyperbole on social media and idiomatic forms of hyperbole

A significantly greater prevalence of hyperbole was observed on Twitter compared to
that found in corpus studies on hyperbole in different communicative forms (i.e., conver-
sational English). Hyperbole was commonly used on Twitter to convey strong sentiment,
which highlights the importance of understanding hyperbole for computational tasks
concerned with identifying affective content in text (i.e., sentiment analysis).

A detailed look at the diversity of hyperbolic expression on Twitter identified examples
of hyperbolic expressions that were simply parroted by different Twitter users but
also a number of novel, elaborate and specific hyperbole. This finding indicated that
adapting to novel hyperbole expressions is a key challenge in computational analysis
and understanding of hyperbole.

These observations provided evidence for research question i) and satisfied research
objective ii), specifically the findings provided quantitative evidence of how figurative
language occurs on social media in the context of hyperbolic expressions.
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4
TOWARDS COMPUTATIONAL HYPERBOLE DETECTION

4.1 Introduction

This chapter details efforts to develop models for the computational detection of hyper-
bolic language, with a focus on online user-generated content (i.e. Twitter posts). The
content in this chapter addresses the research questions and aims of this thesis, (see
Sections 1.3 and 1.4), in the following ways:

i. The evaluation of several existing models for hyperbole detection to assess the
adequacy of existing NLP models on the detection of figurative language on social
media. (Research Question ii, Research Objective ii)

ii. The proposal and empirical evaluation of several new models for hyperbole detec-
tion seeks to provide answers on how to improve the computational detection of
figurative language on social media. (Research Question iii, Research Objective iii)

iii. Detailed error analysis that focuses on the explainability of model decisions seeks
to identify how models for the detection of figurative language can be improved
further (Research Question iii, Research Objective iii)

iv. Cross-domain experiments provide insights on how the expression of hyperbole
differs on social media in comparison to the occurrence of figurative language in
traditional forms of communication (Research Question i, Research Objective i)

The chapter is structured as follows:
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• Section 4.2 provides the motivation for models that can detect hyperbole in online
content, a review of literature on figurative language and hyperbole detection is
covered also covered.

• Section 4.3 details the implementation of various baseline methods for hyperbole
detection. The proposals, and implementation details, for two novel approaches for
hyperbole detection are also introduced for the first time in this thesis.

• Section 4.4 outlines several experiments that test the accuracy of models trained
and evaluated in various settings (i.e., in-domain, out-of-domain). The results and
of these experiments are also presented in this section.

• Section 4.5 concludes the content in this chapter.

4.2 Motivation and Methods for Hyperbole Detection

4.2.1 Motivation for Hyperbole Detection

The computational detection of hyperbolic content in text has many benefits for vari-
ous tasks in Information Retrieval (IR) and Natural Language Understanding (NLU)
[3, 101, 222]. Such as better understanding and generation of hyperbolic expression
leading to better experiences with chat-bots [222], to improved sentiment analysis and
recommender systems that rely on social media [3]. The importance of hyperbole, and
other figures of speech, in health communication, see Part I, heightens the importance of
computational methods that can detect hyperbole. Further, a key finding from Chapter 2
in this thesis was that hyperbolic expressions of health concepts remained a challenge
for both the existing and proposed text classification models.

The prevalence of hyperbole in online content also motivates the importance of
methods that can automatically detect hyperbole. As shown in Chapter 3, over a 30-day
period an average of 15% of Twitter posts collected for HyperTwit contained hyperbolic
content. This hyperbolic content was often difficult to interpret and contained strong
sentiment bearing opinion. A holistic understanding of discourse on Twitter requires
accurate interpretations of hyperbole and the computational detection of hyperbolic
content is a stepping stone to achieving this.

The task of detecting the presence of hyperbolic content in a short fragment of text
has been posed as a supervised binary sequence classification task [101, 222], similar to
other approaches for the detection of other figures of speech [3, 90]. A lack of datasets on
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hyperbole and few efforts to study the computational detection of hyperbole has resulted
in a gap in the literature on computational understanding of figurative language, see
Chapter 3.

4.2.2 Methods for Figurative Language Detection

Methods for the detection of hyperbole have seen similar approaches to the detection of
other figures of speech. The most common approach to the detection of figurative language
follows the traditional NLP pipeline approach to text classification in a supervised
setting. Generally, features are manually engineered based on the linguistic markers
of a particular phenomenon (i.e., irony) then combined with general representations of
textual content common to many NLP approaches [3, 11, 92, 222].

4.2.2.1 Feature Engineering

The feature generation step of the traditional figurative language classification pipeline
has been the central focus of many methodologies for figurative language detection [3, 89].
The features in this stage are often motivated by findings from cognitive linguistics on the
mechanisms and cues humans use to identify the particular phenomenon (i.e., metaphor)
of interest. As a result, this step of the traditional pipeline approach has seen more
variation than most other steps in the pipeline approach.

A feature often used in these pipelines is based on exploiting the presence of linguistic
patterns that are common to the figure of speech of interest. The presence of particular
sarcasm patterns have been introduced as features in sarcasm detection pipelines. Such
as the appearance of a positive verb within the context of a negative situation [192],
beginning a phrase with an interjection [16], an interjection followed by "I" [2] or an
interjection followed by an intensifier [3]. The presence of words with opposite sentiment
within a sentence is a pattern that has been exploited for irony detection [99]. The
presence of hyperbolic markers have been used in model pipelines for the detection of
sarcasm and irony. Such as the appearance of intensifiers, punctuation, interjections,
and contiguous sequences of words with strong sentiment content [10, 16, 25, 224]

Incongruity is an important feature in some figures of speech and as such has been
used as a feature in various figurative language detection pipelines [3, 91, 246]. The
maximum semantic distance between pairs of words in a sentence and the minimum
semantic distance of word-pairs in a sentence have been used to represent the semantic
incongruity for detecting humorous figures of speech [246]. The incongruity of sentiment
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has also been used as a feature, particularly for irony and sarcasm and has been rep-
resented as a feature in various ways [91, 141]: a frequency count of consecutive word
pairs with opposite polarity, the frequency counts of words with positive and negative
polarity or the length of longest sequence of words with contiguous polarity or lack of
polarity.

Unexpectedness and ambiguity are two features often used in various pipelines
for figurative language detection [11, 127, 189, 222]. Unexpectedness has been used
for hyperbole detection by computation of the pairwise cosine similarity between the
representations of all word pairs in a sentence [222]. The use of semantic relatedness
between words in a sentence was used a measure of contextual imbalance for detection
of ironic social media posts [188]. Various features were computed that indicate the
number of possible senses of words within a sentence as a measure of ambiguity for
irony detection [11]. Homophones and homographs are examples of ambiguous language
usage [39, 223]. The annotation of these phenomena and the training of Naive Bayes
and SVMs to detect these linguistic phenomena are key contributions of a work focusing
on the detection of humorous figures of speech [226].

Features to represent sentiment have played a key role in many approaches to
figurative language detection [3]. Frequency counts of the positive and negative words
in a piece of text is a common feature in many models [1, 3, 91, 119, 122, 222]. These
polarity of individual words has been computed by looking up sentiment lexicons such as
SentiWordNet[9], Linguistic Inquiry and Word Count (LIWC) [219], General Inquirer
[216], WordNet-affect [214] and several others. In addition to using lexicons to represent
sentiment, the prediction of sentiment signals using various classification frameworks
for figurative language detection has also been explored. Such as the use of CNNs
trained on existing corpora to detect the signals of sentiment (i.e. positive, neutral,
negative), emotion (i.e., anger, disgust, sadness, fear, joy, surprise) and personality type
(i.e., openness, conscientiousness, extraversion, agreeableness, and neuroticism) within
text for sarcasm detection [175]. More specific features have been computed for sentiment
such as sentiment conflict and sentiment transitions for humour detection [122]. This
work looks at the sentiment of various elementary discourse units found using a discourse
parser [53] and how that sentiment changes between various discourse units throughout
a short text. The idea of sentiment conflict is similar to idea of sentiment incongruity,
which has been a key feature in methods for sarcasm detection [1, 3, 89, 91].
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4.2.2.2 Word Representations

The type of general purpose representations used in models for detecting figurative
language are more generic. Many approaches rely on the bag-of-words model using
various n-gram sizes and weighting methods to generate sparse representations of
linguistic content [52, 54, 59, 121, 159].

Pre-trained dense word representations have been utilised for various figurative
language detection models. A number of features that look at the pairwise similarities
between the pre-trained dense representations of words for sarcasm detection showed the
value of such word representations for sarcasm detection [93]. The authors experiments
with various methods for computing dense word representations such as GloVe[166],
word2vec[138] and Dependency-based representations[115]. Pre-trained representations,
Doc2Vec [112], were shown to be effective detecting satirical news in larger text se-
quences [184]. Pre-trained dense word representations have also been used as features
for hyperbole detection [101, 222], see Section for more details. Researchers have ex-
perimented with computing their own dense word representations for their particular
task rather than using general pre-trained representations. Random initialisation and
training of dense word representations using LSTMs was explored for irony detection
[242], this approach was used by the best performing method on an irony detection task
at Semeval [227].

Large scale pre-trained language models have been successful across a wide variety
of NLP tasks [125, 194] and have seen similar success in the detection of figurative
language [13]. The combination of representations computed by BERT with features
engineered to capture various linguistic phenomena (e.g., unexpectedness, abstractness,
objectivity, etc.) was shown to be successful for hyperbole detection [101]. A model for the
detection of metaphorical verbs was proposed that utilised representations computed by
BERT [211]. A hierarchical model based on BERT was proposed to detect sarcasm given a
pair of short texts (i.e. context and response) [213]. Probing experiments on the ability for
BERT to differentiate the between plausible sentences and non-plausible metaphorical
sentences showed that BERT was able to distinguish between these sentences and assign
plausibility ratings similar to human annotations [163].

4.2.2.3 Learning Algorithms

A vast array of learning algorithms have been used in frameworks for figurative language
detection with varying degrees of success. A common approach in the traditional pipeline
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approaches to figurative language detection involved testing the pipeline with various
learning algorithms for classification and choosing the best performing for the particular
task. Support Vector Machines (SVM), Decision Trees (DT), K-nearest Neighbour (KNN),
Naive Bayes, Logistic Regression, Latent Dirichlet Allocation (LDA) have commonly
been tested as classifiers in many approaches for detection of various figures of speech
[3, 12, 84, 89, 92, 141, 222]. The best performing learning algorithm is often dependent
on the particular pipeline, dataset and figure of speech for which the task is focused on.

Approaches to hyperbole detection based on deep learning models have been also de-
veloped for figurative language detection such as irony detection [81], sarcasm detection
[59] and metaphor detection [241]. Related to the detection of hyperbole, incorporation of
deep learning models into an architecture for detecting hyperbole in Mandarin Chinese
was shown to provide improvements in accuracy [101]. The authors also found that it
was unclear if the hand-crafted features of Troiano [222] were actually effective when
combined with deep learning architectures.

The addition of deep learning algorithms into figurative language detection frame-
works has seen improvements to performance over the use of traditional learners. The
detection of metaphor at the sequence level was proposed using both CNNs and LSTMs
[241] whilst an approach to the detection of metaphor at the token-level utilising LSTM
and CRF was proposed [177]. These approaches showed improvements over existing
methodologies for the respective tasks and showed the utility of deep learning algorithms
for metaphor detection. Similar to approached the metaphor detection, sarcasm detection
has seen various approaches that rely on deep learning algorithms for classification. The
detection of self-deprecating sarcasm employed LSTMs, a model based on CNNs was used
for the detection of general sarcasm on Twitter, the combination of CNN+LSTM+fully
connected neural network layers was highly successful at detecting sarcasm on Twitter.
A comparison of various frameworks for hyperbole detection compared CNN, LSTM to
traditional learning algorithms (i.e. LR, SVM, KNN, NB, DT, LDA) showed that the
deep learning algorithms were able to outperform the traditional learners on detecting
hyperbole in Mandarin chinese [101].
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Figure 4.1: LR+QQ Model Diagram

The LR+QQ model contains a GloVe encoder, feature extractor module and linear
classification head.

4.3 Methodology

4.3.1 Baselines

In this section several baseline models for hyperbole detection alongside implementation
details are described.

In the foundational work on computational hyperbole detection an NLP pipeline style
approach was proposed [222], (see Figure 4.1). The authors introduce a several manu-
ally engineered features motivated by cognitive linguistics research on the approaches
humans use for detecting and understanding hyperbolic language.

The authors consider unexpectedness to be an important aspect of hyperbole and
intend to measure this in a sentence by representing each word in an utterance by
its non-contextual word representation (GloVe[166] and Word2Vec [138]) and compute
the pairwise cosine similarity between the representations of all word pairs in the
utterance. To measure the degree to which a word evokes mental imagery, denoted
imageability, the authors turn to the MRC psycholinguistic database [36, 239] to compute
an imageability score for all words in a sentence and then average these scores to get
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Figure 4.2: BERT+QQ Model Diagram

The BERT+QQ model contains a BERT encoder, feature extractor module and linear
classification head.

an imageability score. To represent polarity, the authors use the TextBlob1 toolkit to
compute the sentiment for each word in a sentence then average all words in a sentence
to compute a final polarity score. Also using in-built functionally of TextBlob, the authors
compute whether a sentence represents a subjective or objective stance and refer to this
as the polarity score. Lastly, the authors use the VADER2 toolkit to quantify the intensity
of the emotion within a sentence and refer to this as the emotional intensity score. These
features are concatenated together and denoted as Qualitative and Quantitative (QQ)
by the authors. A number of learning algorithms are used at the classification layer of
their pipeline in experiments conducted on hyperbole detection such as Support Vector
Machine, Nearest Neighbour, Decision Trees, Logistic Regression, Naive Bayes and
Latent Dirichlet Allocation. With Logistic Regression and Naive Bayes proving to be the
best choice for the classification layer as shown in their experiments. Two versions of
this NLP pipeline are used as baselines in this chapter; LR+QQ refers to the pipeline

1https://textblob.readthedocs.io/en/dev/#
2https://github.com/cjhutto/vaderSentiment
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with Logistic Regression at the classification layer and NB+QQ refers to the pipeline
with Naive Bayes at the classification layer.

The NLP pipeline, particularly the manually engineered features, were utilised in a
work on hyperbole detection in Mandarin Chinese [101]. These features were adjusted to
compensate for language differences and incorporated into a deep learning framework.
A pre-trained language model (i.e., BERT) is used as an encoder with this encoded
representation combined with the QQ features and fed to a classification layer, (see
Figure 4.2). This model is referred to as BERT+QQ in the remainder of the chapter, (see
4.2). A vanilla BERT baseline is included in experiments and referred to as BERT in the
remainder of this chapter.

4.3.2 Affective Signals for Hyperbole Detection

Sentiment and affective signals have been an important feature in many approaches to
the detection of figurative language, see Section 4.2.Findings from both Chapters 2 and
3 motivate the importance of affective signals in hyperbolic expressions. Particularly the
observation that the affective content of words commonly used in hyperbolic expressions
was contained strong affect, see Tables 3.6 and 3.7. From these tables it can be seen that
words with high hyperbolicity (i.e., words prone to hyperbolic usage) also had extreme
values in one or more of the affective dimensions of valence, arousal and dominance.
A hypothesis here is that effective incorporation of affective signals into a hyperbole
detection model would improve the ability of that model to accurately detect hyperbolic
utterances.

For the calculation of affective signals, techniques are leveraged from research that
introduced an annotated dataset, 4dEmotionsInTwitter3, of tweets labeled for the
strength of arousal, valence, dominance and surprise in individual tweets [240]. The
authors train Support Vector Machines to predict the strength of the signal for each
of the four affective dimensions, based on the implementation of [7], showing that the
affective content of a Tweet can be predicted4. These regressors were trained following a
traditional NLP pipeline approach.

The feature engineering step of this pipeline consisted of various hand crafted lin-
guistic features. The authors computed the average, minimum and maximum GloVe
representation for all words in a Tweet for their general purpose dense representations.
In addition to the dense representations, the authors also combined sparse representa-

3http://140.203.155.26/mixedemotions/ datasets/4dEmotionInTweets.tar.gz
4The results for surprise were poor so that dimension was excluded
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tions in the form of frequency counts of all 1-gram to 4-grams in a Tweet. A number of
hand-crafted features were also concatenated to these representations. Including the
proportion of capitalised tokens and the proportion of words that being with a capital
letter. The authors also computed average, min and max difference vectors based on the
cosine similarity between all words in a Tweet and a GloVe representation of various
emotions (i.e., the GloVe representation of the word "fear"). All these features were
concatenated together and a Support Vector Machine was used as the final regression
layer to predict the affective signal for each dimension [7].

The predictions for the valence, arousal and dominance produced by these regressors
are used as affective signals for models in various configurations. Three models are
introduced that incorporate affective signals into the modeling framework at various
stages of the respective frameworks. BERT+3dEmo and BERT+3dEmoAS are both
sequence classification models but differ in the way that the affective signals are incorpo-
rated. In BERT+3dEmo, the affective signals are concatenated with the output of the
dense word representations produced by the encoder. However, in BERT+3dEmoAS, the
affective signals are introduced as special tokens in the original text sequence and this
information is encoded in the dense representations. BERT+3dEmoMT is a multi-task
classification framework where the affective signals are used as soft-targets with the
model being trained to distill knowledge form the affective signals. Further descriptions
of these three models will be covered in the following sections.

4.3.2.1 BERT+3dEmo

BERT+3dEmo is based on the traditional approach seen in many figurative language
detection frameworks. In this approach the features are computed separately and com-
bined just before the learning algorithm, a classification layer, in this case. BERT is used
as an encoder to compute dense word representations of the Tweet content. The affective
signals are concatenated and passed through a dense layer before being concatenated
with the BERT representations then passed to a final classification layer, see Figure 4.3.

Formally, the logits for an individual Tweet are calculated according to

(4.1) ŷ=æ(eiWY +aiWZ +bY )

where ei is the dense representation of tweet i computed by BERT [43], ai is the affective
signals of Tweet i as computed by the pre-trained regressors,WY ,WZ an bY are learnable
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Figure 4.3: BERT+3dEmo

Model contains a BERT encoder, a dense layer and a a linear classification head. Signals
from the pre-trained regressors a feed into a dense layer in this model configuration.

Figure 4.4: BERT+3dEmoMT

Model contains a BERT encoder, a linear classification head and multiple linear
regressions heads. The aim is to distill knowledge from regressors pre-trained to detect

the affective content in tweets.

parameters. The model is optimized via a cross-entropy loss calculated by

(4.2) Lc =° 1
N

NX

i=1

h
yi log( ŷi)+ (1° yi) log(1° ŷi)

i
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4.3.2.2 BERT+3dEmoMT

Knowledge distillation is effective method for training models where the outputs of one
model are the prediction targets of another model, often described as teacher-student
relationship [31, 65, 172]. In BERT+3dEmoMT, the pre-trained regressors are given
the role of teaching the student model to identify affective signals. This affective signal
prediction is treated as an auxiliary task, as the main task of the model is still the binary
classification of whether or not a sequence of text is hyperbolic, see Figure 4.4.

The main task of interest is the binary classification of whether a Tweet contains
hyperbolic content or not. The goal of the auxiliary regression task is to predict values
for the three affective dimensions of valence, arousal and dominance. Given that there
are no annotations for valence, arousal and dominance in HyperTwit the is aim to
distill knowledge from models pre-trained to predict the valence, arousal and dominance
in tweets. The predictions for the valence, arousal and dominance produced by the
regressors are used as soft targets for this model, see the pre-trained regressors (V, A, D)
in Figure 4.4.

Formally, the logits for an individual Tweet are calculated according to

(4.3) ŷ=æ(eiWY +bY )

where ei is the dense representation of tweet i computed by BERT [43], WY and bY are
learnable parameters. The three regression heads are also linear and the outputs of each
head are calculated in a similar way (i.e., V̂ = eiWV +bV , Â = eiWA+bA, D̂ = eiWD+bD

). The model is optimized via a multi-task loss calculated by

(4.4) L =Lc+∏Lr

(4.5) Lr =
1
N

NX

i=0

h
(Vi ±Ai ±Di° V̂i ± Âi ± D̂i)2

i

where Lc is the cross entropy loss, see eq 4.2, and Lr is the mean-squared error between
the values predicted by the pre-trained regressors (i.e., V , A, D ) and the values predicted
by the model (i.e., V̂ , Â, D̂), ∏ is a parameter to weight the importance of the auxiliary
regression task.

4.3.2.3 BERT+3dEmoAS

BERT+3dEmoAS, is based on an early feature fusion approach that augments the
original text sequence with special tokens that represent information [215, 248]. In this
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Figure 4.5: BERT+3dEmoAS

Model contains a BERT encoder, a linear classification head and multiple linear
regressions heads. The affective signals generated from pre-trained regressors are

incorporated into model via auxiliary sentence.

model, an auxiliary sentence is generated using special tokens to represent the affective
signals as predicted by the pre-trained regressors, (see Figure 4.5). Given that the values
for the affective dimensions are continuous values5, values are placed into 5 equal width
bins and 15 special tokens are assigned for each bin for each affective dimension. These
special tokens are randomly initialized and updated during model training. The auxiliary
sentence is a pseudo-sentence constructed by simply concatenating the special tokens
that correspond with the valence, arousal and dominance signal as computed by the
pre-trained regressors (i.e., ‘[LOW0] [HIGH1] [NORMAL2]’). The auxiliary sentence is
appended to the original input sentence and separated via the special [SEP] BERT token.

Formally, the logits for an individual Tweet are calculated according to

(4.6) ŷ=æ(eiWY +bY )

where ei is the dense representation of tweet i computed by BERT [43], WY and bY

are learnable parameters. The model is optimized via a cross entropy loss similar to
BERT+3dEmo. It is important to note there that the representations of the the special
tokens that make up the auxiliary tokens are being updated based on the cross-entropy
loss.

5[0,1]
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4.3.3 Privileged Information for Hyperbole Detection

Learning Under Privileged Information(LUPI) is a paradigm in machine learning that
follows a teacher-student model where a teacher model provides information during
training time to assist the student model [110, 162]. An important aspect of learning
under this paradigm is the concept of privilege with respect to the information used
during training. This information is considered privileged because it is only available at
training time and not available at time of inference.

The source and type of privileged information (PI) is application dependent. In order
to improve the detection of food in images, researchers provide a text list of ingredients
in the food in the image as PI alongside various image features [136]. To improve the
automated aesthetic ratings of image quality, researchers provide human ratings, (e.g.,
depth of field), as PI [202].

The proposal to use literal paraphrases of hyperbole as a source of PI is a novel
approach hyperbole detection and one of the methodologies introduced in this chapter.
It is hypothesised that this extra information will explicitly teach a model where the
excessive contrast is within a hyperbole (e.g., ‘his room is the size of a shopping mall’
! ‘his room is very big’) as opposed to exploiting unrealted linguistic patterns.

The motivation for incorporating PI in the form of literal paraphrase of hyperbole
is based on the prior observations for research on hyperbole from both a cognitive and
computational linguistics point of view. Hyperbole, as defined, consists of an exces-
sive exaggeration along a semantic scale. In the process of identifying hyperbole the
identification of the semantic scale is an important step as is evaluating the plausi-
bility of the contrast along that scale [24]. The literal paraphrases of hyperboles as
provided in HYPO, HyperTwit and HyperProbe contain information on the semantic
scale and an attenuation of the contrast to within a plausible range. Take for exam-
ple the hyperbole and paraphrase pair (‘my bedroom is the size of a postage stamp’,
‘my bedroom is too small’), see Figure 4.6. This literal paraphrase attenuates the implau-
sible claim of a bedroom being the size of a postage stamp to the plausible statement that
the bedroom is too small. Another along the same semantic scale is given where the hyper-
bole (That bedroom is the size of a whole county) is attenuated with a literal paraphrase
(‘that bedroom is so big’) that preserves the semantic scale. Another set of examples is
also provided in that figure, however along a different semantic scale. Additionally, prior
experiments on hyperbole detection revealed that models trained on hyperbole and the
literal meaning pairs (i.e., this meal tastes like cancer, this meal tastes bad) performed
better at hyperbole detection compared to models trained differently, see [222] for full
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Figure 4.6: Diagram of Hyperbole and Literal Paraphrase Examples

This diagram shows hyperbolic expressions and literal paraphrases in terms of a
contrast along a semantic scale. The visualisation of the semantic scale in this diagram
is analogous to the visualisation of the number line. Hyperbolic expressions are to the
extreme left or right of the semantic scale (red line) whilst plausible and non-hyperbolic

contrasts are towards the center of the semantic scale (black line). The process of
literally paraphrasing a hyperbole attenuates the contrast back to within the plausible

range of the semantic scale.

details.

The key motivation for the treatment of literal paraphrases as privileged information
is to explicitly teach a model when a word or phrase is being used in an excessive manner.
Additionally, the literal paraphrase provides semantic information about the intention of
the utterance. It is hypothesised that these literal paraphrases can be used to ground
hyperbolic expressions to the intended literal meaning, as this intended meaning is
often arrived at via common sense reasoning and world knowledge that is not completely
encoded in the words contained in the utterance. Many recent research efforts in the NLP
community have identified that commonsense reasoning and world knowledge is not well
encoded into existing NLP models based on distributional semantics [17, 55, 181, 217].

The incorporation of the literal paraphrases is considered at both the dataset and
model level. This is achieved at the dataset level by simply appending the literal para-
phrases to the datasets and considering them to be non-hyperbolic samples. Two models
are proposed, BERT+PIR and BERT+PIS, to incorporate these literal paraphrases via
triplet-loss.
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(4.7) L = 1
n

nX

i=1

h
|| f (xai )° f (xpi )||

2
2° || f (xai )° f (xni )||

2
2+m

i

Triplet loss has been used in various computer vision algorithms [47, 196]. The
idea behind the triplet loss is to force an encoder f (x) that maps x to a feature space
Rd, to ensure small distances between all objects of the same class, whilst ensuring
distances between pairs of objects from different classes is large [196], see eq. 4.7. Where
xai , x

p
i and xni represent an anchor, positive and negative sample respectively, m is the

margin enforced between positive and negative pairs and n is the number of objects. A
canonical example of triplet loss usage is in facial recognition problems, where an anchor
and a positive would be images of the same face but under different conditions (e.g.,
viewing angle, lighting, etc.) and the negative image would be of a different face entirely
[72]. Following on from this canonical example the idea here is to use a triplet loss to
differentiate between hyperbolic and literal language. By specifying a hyperbole as an
anchor, a different hyperbole as positive and a manually composed literal paraphrase
(i.e., privileged information) as a negative, then idea of hyperbolicity can be explicitly
enforced on the representation space via the triplet loss.

4.3.3.1 BERT+PIR

BERT+PIR is a multi-task classification model similar to BERT+3dEmoMT . A sam-
pling module is used to populate triplets for each tweet in the dataset. A pre-trained
BERT model is used to encode dense representations for each tweet with these rep-
resentations being passed to a linear classification layer. The representations of all
three tweets (i.e., anchor, positive and negative) as computed by BERT are used in the
computation of the triplet loss.

The methodology used for sampling is an important aspect of approaches that use
contrastive losses, such as triplet loss [243, 247]. For BERT+PIR the triplet sampling
algorithm involves sampling based on label and the knowledge of hyperbole and literal
paraphrase pair relations, see Algorithm 1 and see Table 4.1 for examples. This algorithm
traverses through all text objects in the data setting each tweet as the anchor tweet. It
is important to note here that a text object contains text, label, and either a hyperbole
or interpretation of the text. The decision to assign positive and negative examples for
each anchor depends on the label of the anchor. If the anchor is a hyperbole then a
randomly sampled hyperbole is selected as a positive example. The negative example is
then set to be the literal paraphrase of the positive, it is important to note that this literal
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Figure 4.7: BERT+PI

Model contains a BERT encoder, a triplet sampler and a linear classification head.

Figure 4.8: Triplet Sampling Example

The key idea is ensuring that the distance (i.e. D(A, P)) between an anchor (A) and a
positive (P) example is less than the distance (i.e. D(A, N)) between an anchor (A) and a

negative (N) example. Note: * indicates privileged information example.
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paraphrase is an annotation artifact and as such the source of privileged information
for this model. This sampling strategy ensures that optimization of the triplet loss
forces a hyperbole to be closer to another hyperbole than its literal paraphrase in the
representation space, (see Figure 4.8). If the anchor is not a hyperbole then a randomly
sampled literal paraphrase is set as the positive example, again it is important to note
here that these literal paraphrases are annotation artifacts thus privileged information.
The negative examples is then set to be the hyperbole of the positive. The motivation
here is to enforce the model to consider a non-hyperbolic text and a literal paraphrase to
be closer in the representation space than the non-hyperbolic text and a hyperbole.

Formally, the logits for an individual Tweet are calculated according to

(4.8) ŷ=æ(eaiW+b)

where eai is the dense representation of anchor example i computed by BERT, W and b
are learnable parameters. The model is optimized via a multi-task loss calculated by

(4.9) L =Lc+∏Lt

where Lc is the cross entropy loss, see eq 4.2, and Lt is a triplet loss that is calculated
between the BERT encoded representations of anchor, positive and negative examples,
(see eq. 4.10). In this triplet loss D is the cosine distance, (see eq. 4.11), and m is a
hyperparamater indicating the margin. ∏ is a parameter to weight the importance of the
auxiliary regressions task.

(4.10) Lt =
1
Ns

NX

i=1

sX

j=1

h
max(D(eai , e

p
i j)°D(eai , e

n
i j)+m,0)

i

(4.11) D(X ,Y )= 1° X ·Y
||X ||£ ||Y ||

4.3.3.2 BERT+PIS

BERT+PIS differs to BERT+PIR only by way of sampling algorithm, specifically, the
inclusion of sampling based on the semantic similarity of examples rather than random
sampling, see Algorithm 2. This sampling algorithm contains similar sampling logic
to that of BERT+PIR with respect to the relationships between anchor, positive and
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Algorithm 1 Semi-Random Triplet Sampling
Require: D = [t0, t1, ..., tn]
Require: s 2Z+ . Sampling Factor

H√ t8t 2D | t.label == 1 . t.label contains annotated label for t
P √ t8t 2D | t.label == 2 . N consists of literal paraphrases (i.e., PI)
S√;
for i = 0, i < |D|, i++ do

a√Di
T √;
for j = 0, j < s, j++ do

if a.label == 1 then
p√ sample(H) . sample(X ) draws a random sample from X
if p == a then

p√ sample(P)
end if
n√ p.par . t.par is a literal paraphrase of t

else if a.label == 0 then
p√ sample(P)
if n == a then

p√ sample(N)
end if
n√ p.hyp . t.hyp is a hyperbolic expression of t

end if
T.insert([a, p,n])

end for
S.insert(T)

end for
return S

Triplet
Label

Text Label

Anchor This video gave me eye cancer H
Positive I have a mountain of work to do. H
Negative I have a lot of work to do.* NH
Anchor His excuse was not good enough. NH
Positive My bedroom is too small.* NH
Negative My bedroom is the size of a postage stamp H

Table 4.1: Semi-Random Triplet Sample Examples

Triplet Label indicates the label of tweet within the sampled triplet. Text contains text
(*indicates privileged information). Label indicates the label with respect to the overall

hyperbole detection task (H = Hyperbole, NH= Non-hyperbole).
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Algorithm 2 Similarity Triplet Sampling
Require: D = [x0,x1, ...,xn]
Require: Sentence Encoder f (x)
Require: s 2Z+

E√ f (x)8t 2D . Encode all examples
Xn£n √ pairwiseCosineSimilarity(E) . Similarity matrix
S√;
for i = 0, i < |D|, i++ do

a√D[i]
T √;
ids√ argsort(X [i][:]) . Sort ids of examples by most similar to anchor
j√ len(ids) °1
if t.label == 1 then

while j > 0 and len(T)< s do
c√D[ids[ j]] . Get most similar example as a candidate sample
if c.label == 1 then . Candidate must share same label with anchor

p√ c
n√ p.interp
T.insert([a, p,n])

end if
j√ j°1

end while
else if t.label == 0 then

while j > 0 and len(T)< s do
c√D[ids[ j]]
if c.label == 2 then

p√ c
n√ p.hyp
T.insert([a, p,n])

end if
j√ j°1

end while
end if
S.insert(T)

end for
return S
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Triplet
Label

Text Label

Anchor When the boy broke his toy he cried a sea of tears. H
Positive The small child was drowning in her tears. H
Negative The small child was crying a lot.* NH
Anchor I was very sad for having to leave my home. NH
Positive His sister will be very angry when she hears that.* NH
Negative His sister will hit the roof when she hears that H

Table 4.2: Similarity Triplet Sample Examples

Hyperparameter Values Optimal
Dropout 0.1, 0.2, 0.3 0.1
Learning Rate 1e-04, 1e-05, 1e-06 1e-04
∏ 0.25, 0.5, 1 0.25
Freeze embeddings True, False False
Frozen Transformer layers 0, 9, 10, 11, 12 10
Encoder BERT, RoBERTa, BERTweet BERT

Table 4.3: Hyperparameter search

Hyperparameter indicates the hyperparameter. Values indicates the different values
used in the hyperparameter search. Optimal indicates the optimal parameter choice on

average across the different models. Note: Not all parameters are necessary for all
models (e.g., ∏ is only required for multi-task models (i.e., BERT+3dEmoMT ,

BERT+PIR , BERT+PIS.

negative tweets and their respective classes. However, the positive example of a hyper-
bole anchor example is now chosen based on the similarity between these examples
in BERT representation space using cosine distance. Likewise, a positive example of a
non-hyperbolic anchor is also chosen based on the similarity of the examples in BERT
representation space. From Tables 4.1 and 4.2 the different output of these two sam-
pling algorithms is shown, most notably the relationship between anchor and positive
examples.

4.4 Experiments and Results

Several experiments are designed to test the ability of models to detect hyperbole in
multiple settings. Firstly, detecting hyperbole within the same domain to assess the
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ability of a model to adapt to different hyperbolic expressions from a similar domain,
(see Section 4.4.1). Detecting hyperbole from a different domain to which the model was
trained on is also explored (see Section 4.4.2), the observations from Chapter 3 showed
that hyperbolic expression varied between domains. These experiments are designed
to provide insight on how much of an impact this has on hyperbole detection models.
Lastly the ability of models to detect minimal synthetic examples of common forms of
hyperbolic expressions on HyperProbe are examined (see Section 4.4.3).

4.4.1 In-Domain Hyperbole Detection

The first set of experiments seeks to answer the following question ‘How accurately can
a model detect hyperbole? Given that it was trained on hyperbole from the same domain?’
In particular, the focus is on two domains, online user-generated content and a generic
domain. The HyperTwit dataset, (see Chapter 3), is used as a source of hyperbole in
the domain of online user-generated content. The HYPO dataset, see Chapter 3, is used
as a source of hyperbole in a generic domain (i.e., idiomatic hyperbole).

The datasets are split into train:dev:test partitions in a 80:10:10 ratio and a hyper-
parameter search is conducted on the held out development set for numerous hyper-
parameters including dropout, learning rate, ∏, whether to freeze or train the encoder
embeddings, which transformer layers to freeze in the encoder and encoder type, see Ta-
ble 4.3. Validation accuracy is the criterion for choosing hyper-parameters across 3 runs
per hyper-parameter configuration on the held-out development partitions containing
approximately 600 and 140 examples for HyperTwit and HYPO respectively. Various
configurations of freezing transformer layers and embeddings was also conducted during
hyperparameter search due to the performance impacts of these decisions on downstream
tasks [104, 113, 137]. The method for encoding examples into word representations is
experimented with in the hyperparameter search using RoBERTa6 [124]. BERTweet7

[149] and BERT. Once optimal hyperparameters have been chosen, all models are trained
for 6 epochs on the training set and the loss is monitored on the development set via an
early stopping criteria to identify optimal model checkpoints. Three runs are conducted
for each model and training dataset configuration to account for model variance.

Results of in-domain experiments for hyperbole detection show that models that
incorporate privileged information outperform, with respect to F1 score, baseline models
in both domains, see Tables 4.4 and 4.5. This is most clear on the experiments for

6https://huggingface.co/roberta-base
7https://huggingface.co/cardiffnlp/twitter-roberta-base
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Model F1 Precision Recall
LR+QQ 0.710(-) 0.679(-) 0.745(-)
NB+QQ 0.693(-) 0.689(-) 0.696(-)
BERT 0.709(0.064) 0.711(0.077) 0.735(0.177)
BERT+QQ 0.671(0.086) 0.650(0.147) 0.765(0.246)
BERT+PIS 0.768(0.009) 0.739(0.051) 0.804(0.051)
BERT+PIR 0.781(0.012) 0.754(0.053) 0.814(0.039)
BERT+3dEmo 0.730(0.041) 0.785(0.033) 0.690(0.095)
BERT+3dEmoMT 0.733(0.033) 0.697(0.103) 0.797(0.124)
BERT+3dEmoAS 0.626(0.021) 0.485(0.004) 0.886(0.099)

Table 4.4: Results from In-Domain Experiments - HYPO

Model F1 Precision Recall
LR+QQ 0.583(-) 0.638(-) 0.537(-)
NB+QQ 0.579(-) 0.490(-) 0.706(-)
BERT 0.733(0.012) 0.718(0.055) 0.755(0.057)
BERT+QQ 0.732(0.014) 0.730(0.049) 0.736(0.034)
BERT+PIS 0.746(0.017) 0.769(0.010) 0.725(0.037)
BERT+PIR 0.745(0.018) 0.754(0.021) 0.736(0.046)
BERT+3dEmo 0.725(0.008) 0.758(0.120) 0.714(0.088)
BERT+3dEmoMT 0.434(0.381) 0.565(0.492) 0.362(0.329)
BERT+3dEmoAS 0.0 (0.0) 0.0 (0.0) 0.0(0.0)

Table 4.5: Results from In-Domain Experiments - HyperTwitK

the domain of idiomatic hyperbole where a +0.71 (10%) increase in F1 is observed
for BERT+PIR over the best performing baseline (LR+QQ). A much smaller, +0.014,
increase in F1 is observed for BERT+PIS over the best performing baseline (BERT) for
hyperbole in the domain of Twitter.

The highlighted text outputs generated by LIME[190] are provided, see Figures
4.9 and 4.10. There are two dimensions of information translated by this highlighting
method from LIME. The colour indicates the class, blue highlights indicating the negative
class (i.e., non-hyperbolic) and orange indicating the positive class (i.e., hyperbole). The
intensity of the colours represents the extent to which that word contributes to the
prediction made by a model. A dull highlight indicating a small contribution to predicting
that particular class whilst a strong highlighting indicates a strong contribution to
predicting that particular class. Figure 4.9 contains examples that indicate that the
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Figure 4.9: Model Explanation Comparisons - HYPO

LIME Word Weightings indicate the importance of a word for classification, orange
highlights indicate hyperbolic words, blue highlights indicate non-hyperbolic words.
P(h) is the prediction probability that a sentence was hyperbolic, red indicates the

wrong class (assuming a .5 decision threshold).

Figure 4.10: Model Explanation Comparisons - HYPO

increase in precision for BERT+PIR seen in Table 4.4 is a result of a better contextual
understanding of hyperbole-prone ECF terms. The first two examples in particular
highlight the understanding of the word brainless in both a hyperbolic and non-hyperbolic
context that are correctly classified by BERT+PIR but incorrectly classified by baseline
BERT.

It is interesting to note here that the addition of the QQ features does not result in a
significant improvement in F1 score for either domain. With respect to prior research, the
work that introduced the QQ features found that they did improve hyperbole detection
accuracy when added as features to their detection pipeline [222] whilst, follow up
research found that the results of incorporating QQ features were mixed [101]. The
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Type F1 Precision Recall
ECF 0.720(0.226) 0.791(0.253) 0.681(0.237)
Quant 0.522(0.399) 0.550(0.433) 0.541(0.427)
Qual 0.484(0.372) 0.544(0.422) 0.485(0.404)

Table 4.6: Keyword Results by Hyperbole Type on HyperTwitk
Type indicates the type of hyperbole. F1, Precision and Recall indicates the mean

and standard deviation for all keywords of that type.

results from the in-domain hyperbole detection experiments show that the QQ features
have a either a negligible or detrimental impact on the detection of hyperbole. A decrease
in average F1 of 0.38 on HYPO and an average decrease of 0.001 in F1 on HyperTwitK .

In Table 4.6 the mean F1, precision and recall scores for keywords grouped by
hyperbole type on HyperTwitk are provided, see Table ?? for details on hyperbole types.
High standard deviations in F1, precision and recall scores across the keywords for
all types can be observed. It is hypothesized that this result relates to observations
on hyperbole diversity presented in Chapter 3. Specifically, the observation that many
hyperboles using particular keywords (i.e., ‘everybody’, ‘garbage’, ‘toxic’ etc.) are simply
parroted by different users on Twitter and would be easy to detect resulting in high
F1 for those particular keywords. It was also observed that hyperboles using particular
keywords (i.e., ‘blind’, ‘heaven’, etc.) contained many novel hyperbolic expressions that
would be harder to detect resulting in lower F1 for those particular keywords.

The highest mean F1 for keywords are associated with ECF hyperboles (i.e., ‘always’,
‘never’, ‘absolute’, ‘everybody’ etc.) suggesting that ECFs are a relatively simple type of
hyperbole to identify, see Table 4.6. However, there are also many tweets in both subsets
that contain ECFs that seem reasonable as a factual statement labelled as hyperbole
(e.g., ‘The only regret I have about offline tekken is never making a regional top 8’, ‘That
was the quickest I’ve ever seen a 2-0 lead blown’).

Results from Table 4.6 indicate that quantitative hyperboles (i.e., ‘hour’, ‘zero’, ‘stacks’,
‘piles’ etc.) are harder to identify than ECF hyperboles. Several errors are identified that
indicate an inability to identify hyperbole expressed via excessive quantitative concepts
(i.e., duration) in Arabic numerals (‘Either responds in .00000000001 seconds or in 84
years with zero in-between’, ‘day 10393920829: i still don’t understand why jughead faked
his own death’). There are also examples where likely factual or reasonable statements
about quantitative concepts (i.e, duration) are incorrectly labeled as hyperbolic (‘Lakers
are 48 minutes away from their 1st ring in a decade’, ‘Omg ive been on Twitter for ten
years wow. i think i deserve a blue tick’).
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Qualitative hyperboles (i.e., ‘corrupt’, ‘amazing’, ‘dead’, ‘pain’, etc.) are also a difficult
type of hyperbole to classify in HyperTwit, see Table 4.6. A hypothesis here is that qual-
itative hyperboles are hardest to identify, (i.e., low recall), because there is a difference
in the way they are often expressed compared to the quantitative and ECF hyperbole.
With quantitative and ECF hyperbole the semantic concept, along which the excessive
magnitude is exaggerated, is scalar and obvious (i.e., time period, measure, quantity,
universality, nullity, veracity etc.). Conversely, in qualitative hyperbole the semantic
concept is often not scalar and unclear (‘To make a tasty tequila sunrise. just whisk a
teaspoon of bitter stout with green paint.’, ‘Only fans is a cancer to the west...Already
in stage 2.’). These examples require more complex reasoning and world knowledge to
identify if the utterance contains an excessive contrast with reality.

Results indicate that there is limited scope for further improvement to the modelling
of affect signals and their incorporation into hyperbole detection models. Despite the
improvements of BERT+3dEmoMT, there are hyperbolic tweets that are expressed
without strong affective language, which BERT+3dEmoMT fails to detect (‘mexico is
calling my name rn’, ‘my parents want me to watch the superbowl what dimension
did i just land in’). This observation, and others made in this discussion, suggest that
the limited improvements are not a technical issue (i.e., ineffective incorporation of
signals), but a reflection of the relationship between affect and hyperbole. It is the lack
of reasoning and world knowledge that results in poor detection of hyperbole, not the
inability of the models to utilise the affective signals.

With respect to the incorporation of privileged information in BERT+PI models.
Despite achieving the best F1 on both datasets, the improvement is diminished for
hyperbole in the Twitter domain compared to the idiomatic domain. A hypothesis for this
is that the HYPO datasets is better suited to this given the trio of corpora (hyperbole,
paraphrase and minimal units) aligns well with the triplet sampling and triplet loss
used in the model. Particularly, the sentences in the minimal units corpus contain the
hyperbolic units in a non-hyperbolic context (‘The missions successfully went to the
moon and back’, ‘Love you to the moon and back’) providing hyperbolic words and
phrases in a non-hyperbolic context. There is no parallel to the minimal units corpus in
HyperTwit, however the keyword sampling strategy was designed to address this in
the sense that many tweets were collected that mention hyperbole prone words in both
a hyperbolic and non-hyperbolic context. However, this did not address cases when the
hyperbolic tokens were not just the keywords used for sampling.
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4.4.2 Cross-Domain Hyperbole Detection

A second set of experiments were designed to probe ‘how well can a model detect hyper-
bole? Given that it was trained on hyperbole from a different domain?’. These experiments
also provide an insight into the differences in hyperbolic expression between the two
domains. The hypothesis being tested here is that a hyperbole detection model trained to
recognise hyperbole on the Twitter domain (i.e HyperTwitK ) would be able to achieve
similar accuracy when evaluated on the idiomatic domain (i.e. HYPO) and vice versa. If
this holds, then the assumption is that the expression of hyperbole between the two do-
mains is similar. For these experiments model checkpoints from in-domain experiments
are used (see Section 4.4.1). There are two settings for cross-domain experiments, using
models trained on the Twitter domain to detect hyperbole in the domain of idiomatic
hyperbole (i.e., HYPO test set), and using models trained on idiomatic domain to detect
hyperbole in the Twitter domain (i.e., HyperTwitK test set).

Results from the cross-domain experiments are shown in Tables 4.7 and 4.8. The first
observation is that models trained on Twitter domain and evaluated on idiomatic domain
perform worse than models trained and evaluated on the domain of idiomatic hyperbole.
Maximum scores of 0.619,0.673,0.634, for F1, precision and recall when cross-trained
(see, Table 4.7 ), compared to max scores of 0.781, 0.785, 0.886 when trained in-domain
(see, Table ??). This is despite the HyperTwitK dataset being more than five times the
size of the HYPO dataset.

The same observation can be made when the models are trained on the idiomatic
domain achieve poor results when evaluated on the Twitter domain. Maximum scores
of 0.550, 0.403, 0.944 for F1, precision and recall when cross-trained (see, Table 4.8 ),
compared to max scores of 0.746, 0.769, 0.755 for in-domain experiments (see, Table ??).

It is important to note here that these results cannot be attributed entirely to a
difference in expression of hyperbole between the two domains. The problem of dimin-
ishing accuracy of NLP models when trained and evaluated across different domains
is a well known problem, the study of this problem is referred to Domain Adaptation,
(see [32, 118, 182] for further details). However, this result is enough to state that hyper-
bolic expression varies between the two domains, drawing conclusions about how these
differences are manifested in the actual hyperbolic expression can not be drawn from
this result. Additionally, The gains in metrics for BERT+PI models observed from the
results on in-domain experiments were not observed in these experiments.
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Model F1 Precision Recall
LR+QQ 0.519(-) 0.578(-) 0.471(-)
NB+QQ 0.520(-) 0.613(-) 0.451(-)
BERT 0.616(0.030) 0.604(0.070) 0.634(0.039)
BERT+QQ 0.619(0.015) 0.632(0.037) 0.608 (0.010)
BERT+PIS 0.611(0.019) 0.673(0.018) 0.562( 0.044)
BERT+PIR 0.576(0.047) 0.643(0.070) 0.523 (0.035)
BERT+3dEmo 0.616(0.072) 0.66(0.066) 0.608 (0.182)
BERT+3dEmoMT 0.303(0.280) 0.465(0.404) 0.235 (0.236)
BERT+3dEmoAS 0.0 (-) 0.0 (-) 0.0 (-)

Table 4.7: Cross-Domain Results - Idiomatic Hyperbole Evaluation

Trained on Twitter hyperbole (i.e. HyperTwitK ), evaluated on idiomatic hyperbole (i.e.
HYPO).

Model F1 Precision Recall
LR+QQ 0.551(-) 0.402(-) 0.876(-)
NB+QQ 0.529(-) 0.380(-) 0.870(-)
BERT 0.525(0.028) 0.377(0.009) 0.880(0.135)
BERT+QQ 0.496(0.073) 0.358(0.022) 0.838(0.261)
BERT+PIS 0.550(0.014) 0.388(0.016) 0.944(0.029)
BERT+PIR 0.539(0.009) 0.377(0.006) 0.943(0.043)
BERT+3dEmo 0.545(0.011) 0.403(0.018) 0.847(0.094)
BERT+3dEmoMT 0.538(0.005) 0.380(0.015) 0.929(0.064)
BERT+3dEmoAS 0.513(0.021) 0.357(0.006) 0.914(0.094)

Table 4.8: Cross-Domain Results - Twitter Hyperbole Evaluation

Trained on idiomatic hyperbole (i.e. HYPO), evaluated on Twitter hyperbole (i.e.
HyperTwitK ).

104



4.4. EXPERIMENTS AND RESULTS

4.4.3 HyperProbe Experiments

Experiments to probe the ability of hyperbole detection models to accurately detect mini-
mal hyperbolic expressions are undertaken on the HyperProbe dataset, (see Chapter
3). It is important to note that no models are trained on any of the examples in Hyper-
Probe, rather, they are treated as test sets only. The models used for evaluation are the
same model checkpoints used for both in-domain and cross-domain experiments, that is,
models trained on the HYPO train set. Results are presented in 5 sections, covering the
ECF, qualitative hyperbole, quantitative dimensions, time periods and intrinsic quantity
tests.

4.4.3.1 Results - ECF

The mean and standard deviation of all runs for various metrics on the ECF tests from
HyperProbe is presented in Table 4.9. From this table it can be observed that models
that incorporate affective signals and models that incorporate privileged information
provide considerable improvements in detecting ECF hyperbole compared to the baseline
models. These models are also considerably more stable with standard deviations in
F1 for baseline models (BERT based), (0.337, 0.340), much higher than the models
introduced by the author, (0.014,0.011,0.081,0.022,0.058).

From the explanations provided by LIME, see Figure 4.11, it can be observed that the
inclusion of privileged information into BERT+PIS has resulted in a better contextual
understanding of ECF keywords. Also, BERT+PIS understands that ECF keywords
(i.e., absolute, never, nobody, everybody) are being used in non-hyperbolic sentences and
correctly classifies these sentences non-hyperbolic. Conversely, the LR+QQ baseline
does not appear to understand that ECF keywords are being used in non-hyperbolic
sentences and incorrectly classifies the sentences as hyperbolic. The decision to classify
these sentences as hyperbolic is strongly driven by the ECF keywords alone according to
the LIME explanations, see Figure 4.11.

4.4.3.2 Results - Qualitative Hyperbole

The mean and standard deviation of all runs for various metrics on the test sentences
designed to probe qualitative hyperbole from HyperProbe are shown in Table 4.10.
From this table it can be observed that all models struggle to detect qualitative hyperbolic
expressions, BERT+PIR achieves the highest F1 of only 0.527 with a sub-0.5 precision of
0.486. It is observed that many models display large standard deviations for recall, (i.e.,
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Model F1 Precision Recall
LR+QQ 0.678(-) 0.747(-) 0.621(-)
NB+QQ 0.523(-) 0.690(-) 0.421(-)
BERT 0.490(0.340) 0.751(0.158) 0.516(0.453)
BERT+QQ 0.540(0.337) 0.721(0.184) 0.632(0.484)
BERT+PIS 0.701(0.014) 0.756(0.033) 0.656(0.047)
BERT+PIR 0.688(0.011) 0.706(0.057) 0.677(0.070)
BERT+3dEmo 0.656(0.081) 0.814(0.119) 0.576(0.152)
BERT+3dEmoMT 0.737(0.022) 0.700(0.104) 0.800(0.107)
BERT+3dEmoAS 0.650(0.058) 0.510(0.024) 0.902(0.144)

Table 4.9: HyperProbe Results. Extreme Case Formulations

Figure 4.11: LIME Explanations - HyperProbe (ECFs)

Model F1 Precision Recall
LR+QQ 0.407(-) 0.333(-) 0.522(-)
NB+QQ 0.336(-) 0.400(-) 0.290(-)
BERT 0.278(0.275) 0.240(0.209) 0.401(0.497)
BERT+QQ 0.352(0.307) 0.255(0.227) 0.599(0.529)
BERT+PIS 0.518(0.072) 0.496(0.054) 0.551(0.119)
BERT+PIR† 0.527(0.030) 0.486(0.054) 0.590(0.089)
BERT+3dEmo 0.445(0.172) 0.480(0.062) 0.454(0.244)
BERT+3dEmoMT 0.509(0.066) 0.416(0.081) 0.691(0.146)
BERT+3dEmoAS 0.481(0.028) 0.325(0.012) 0.932(0.117)

Table 4.10: HyperProbe Results (Qualitative Hyperbole)
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Figure 4.12: LIME Explanations - HyperProbe (Qualitative Hyperbole)

Figure 4.13: LIME Explanations - HyperProbe (Qualitative Hyperbole)
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Figure 4.14: LIME Explanations - HyperProbe (Qualitative Hyperbole)

0.529, 0.497, 0.244), suggesting that some of these runs are degenerating to outputting
all positive class or all negative class predictions. However, the variances are at least
stable in BERT+PIR , allowing for a deeper dive into the performance of this model to
gain insight into the detection of qualitative hyperbole.

Despite the sub-0.5 precision, worse than a random classifier, analysis of the predic-
tions of BERT+PIR reveals some patterns in the decisions made by the model. With
respect to correct decisions examples are identified where the model appears to under-
stand when a word is used in a hyperbolic vs a non-hyperbolic context, see Figure 4.12.
The model, whilst scoring a precision worse than random, appears to display patterns
in decision making that do not appear to be random. Observing figures 4.13 and 4.14
evidence of the model displaying non-random decisions can be found. Particularly in
these figures it can be seen that the model wrongly predicts sentences that contain com-
mon nouns (e.g., man, woman, guy) as being hyperbolic and gives a strong importance to
those particular nouns for that classification decision. The hypothesis for these errors
is that in the training set of HYPO there are several idiomatic hyperbolic expressions
that use these common nouns (’the old man is a dinosaur’, ‘It’s time to stop living like a
dead man’, ‘Manners make the man’, ‘she has become an iceberg of a woman’, ‘she was
an unattainable woman’).

Another common, albeit general, error was the classification of benign evaluative
sentences as hyperbolic, see Figure 4.14. These errors are difficult to explain as they
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Model F1 Precision Recall
LR+QQ 0.615(-) 0.500(-) 0.800(-)
NB+QQ 0.565(-) 0.500(-) 0.650(-)
BERT 0.576(0.048) 0.463(0.001) 0.775(0.177)
BERT+QQ 0.552(0.183) 0.470(0.073) 0.733(0.379)
BERT+PIS 0.590(0.088) 0.492(0.048) 0.750(0.200)
BERT+PIR† 0.615(0.005) 0.503(0.025) 0.800(0.087)
BERT+3dEmo 0.539(0.096) 0.485(0.015) 0.633(0.208)
BERT+3dEmoMT 0.608(0.040) 0.496(0.008) 0.800(0.150
BERT+3dEmoAS 0.571(0.068) 0.464(0.006) 0.767(0.225)

Table 4.11: Hyperprobe Results. Quantitative Dimensions

appear trivial to a human reader but it is hypothesised that perhaps there is just too
little context for the model to make a correct decision. Whatever the reason for these
particular decisions, it is clear that the qualitative tests serve as a challenging benchmark
for hyperbole detection models.

4.4.3.3 Results - Quantitative Hyperbole

The mean and standard deviation of all runs for various metrics on the test sentences
designed to probe quantitative hyperbole from HyperProbe are provided in Table 4.11.
From this table it can be observed that all models display a similar pattern of high
recall (0.633 to 0.800) and low precision (0.463 to 0.503). Suggesting that false positives
are a problem and the models are aggressive in the sense that they favour hyperbolic
predictions over non-hyperbolic predictions.

From analysis of LIME explanations one particular decision pattern can be identified
as the source of many false positives. When a determiner, particularly a possessive,
appears as the first word in the following sentence template, {MASK}{MASK} is as {JJ} as
{MASK}{MASK}, the model predicts a hyperbole, seemingly irrespective of the hyperbolic
nature of the comparison begin made, see Figure 4.15. From the word highlights in the
figure it can be noted that there is a strong influence towards a hyperbolic classification
for the first word of a sentence when it is a possessive (i.e., he, she, her, their, my,
etc.) and the words and phrases ‘is’, ‘as’, ‘is as’ and ‘as a’. This contributes to the low
precision because of the many literal statements in the test dataset for this particular
sentence template. A hypothesis for this error is that the literal paraphrases of hyperbolic
expressions that take this form remove many tokens from the original sentence. (i.e., ‘He’s
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Figure 4.15: LIME Explanations - HyperProbe (Quantative Dimensions)

as mad as a hippo with a hernia’ -> ‘He’s very mad’). This could potentially contribute
to the increased importance of particular words and phrases (i.e., ‘is as’ and ‘as a’) being
considered hyperbolic because they were removed from the original sentence. It is also
noted, that this sentence is a particularly common form of hyperbolic expression in the
training data (i.e., ‘There lived a man as big as a barge’ ‘He has as many debts as a dog
has fleas’, ‘He’s as mad as a hippo with a hernia’. ‘you look as white as a ghost’).

4.4.3.4 Results - Time Periods

The mean and standard deviation of all runs for various metrics on Time Period tests
from HyperProbe are provided in Table 4.13. These test sentences were designed to
probe the understanding of the length of time periods and comparisons between them. It
can be observed from this table that most models perform very poorly. It is clear from
these results that the models do not understand the plausible ranges of duration for
periods of time. A peculiar result here is that BERT+3dEmoAS achieves relatively good
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Model F1 Precision Recall
LR+QQ 0.343(-) 0.400(-) 0.300(-)
NB+QQ 0.194(-) 0.273(-) 0.150(-)
BERT 0.273(0.457) 0.431(0.374) 0.336(0.575)
BERT+QQ 0.443(0.407) 0.454(0.393) 0.475(0.502)
BERT+PIS 0.228(0.283) 0.697(0.153) 0.183(0.258)
BERT+PIR† 0.589(0.127) 0.673(0.038) 0.556(0.230)
BERT+3dEmo 0.327(0.360) 0.455(0.394) 0.301(0.386)
BERT+3dEmoMT 0.438(0.296) 0.697(0.046) 0.410(0.393)
BERT+3dEmoAS 0.768(0.053) 0.680(0.017) 0.896(0.157)

Table 4.12: HyperProbe Results. Time Periods

Model F1 Precision Recall
LR+QQ 0(-) 0(-) 0(-)
NB+QQ 0(-) 0(-) 0(-)
BERT 0.354(0.317) 0.309(0.269) 0.425(0.405)
BERT+QQ 0.418(0.358) 0.457(0.050) 0.593(0.524)
BERT+PIS 0.301(0.284) 0.365(0.097) 0.366(0.474)
BERT+PIR† 0.369(0.215) 0.400(0.086) 0.395(0.331)
BERT+3dEmo 0.270(0.311) 0.279(0.254) 0.309(0.418)
BERT+3dEmoMT 0.381(0.272) 0.548(0.149) 0.462(0.454)
BERT+3dEmoAS 0.623(0.031) 0.485(0.018) 0.877(0.114)

Table 4.13: HyperProbe Results. Intrinsic Quantities

F1, precision and recall scores despite degenerating to the all-negative classifier in other
results.

4.4.3.5 Results - Intrinsic Quantities

The mean and standard deviation of all runs for various metrics on Intrinsic quantities
tests from HyperProbe are provided in Table 4.13. These test sentences were designed
to probe the understanding of quantitative attributes of objects. It can be observed from
this table that most models perform very poorly on this test, similar to the time period
test. It is clear from these results that the models have not learnt an understanding of
the intrinsic quantitative values of objects.
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4.5 Conclusion

The content in this chapter focused on the task of computational hyperbole detection
and provided numerous contributions to the research questions and objectives of this
thesis. A number of baseline models for hyperbole detection as well as various model
configurations proposed by the author were evaluated under various experiment settings
throughout this chapter. The results of these evaluations are summarised in two heat
map visualisations, See Figures 4.16 and 4.17. Model configurations are represented
along the y-axis with naming conventions following those as presented throughout
the chapter. However, subscripts can not be represented via plotting library and are
altered (i.e. BERT+PIR ! BERT+PI-r). The following naming conventions are used for
experiment settings:

• hypo = HYPO (Section 4.4.1)

• hyperT = HyperTwit (Section 4.4.1)

• ecf = Extreme Case Formulation Tests (Section 4.4.3)

• qual = Qualitative Hyperbole (Section 4.4.3)

• dims = Qunatitative Dimensions (Section 4.4.3)

• time = Time Periods (Section 4.4.3)

• quant = Intrinsic Quantities (Section4.4.3)

• hypo-hyperT = HYPO on HyperTwit (Section 4.4.2)

• hyperT-hypo = HyperTwit on Hypo (Section 4.4.2)

Figure 4.16 provides a visualisation of all models and and all experiment settings as
evaluated in this chapter. This particular heatmap visualises the rankings for each model
across each experiment setting from highest mean F1 to lowest mean F1. From this figure
it can be observed that BERT+PIR ranks among the top 3 models, in terms of mean
F1, in 6 of the 9 different experimental settings under which all models were evaluated
in this chapter. The model is also the top ranked model under 3 experimental settings.
From this overview it is clear that this model is the best performing model on average
across the different experimental settings. The next best model under this analysis is
the BERT+PIS which is among the top 3 ranked models across 5 of the 9 different
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Figure 4.16: Model-Experiment Rankings (F1)

This heatmap visualises the ranking (mean F1 in descending order) of each model for
each experiment setting as evaluated in this chapter. Models are represented along the y
axis, experiment settings are represent along the x-axis (experiment settings refer to the

individual evaluations for in-domain, cross-domain and hyper-probe experiments).
BERT+PIR ranks in the top 3 models for mean F1 in 6 out of 9 experiment settings.

experiment settings. This model performs relatively poorly on the Time Period and
Intrinsic Quantities experiment settings in HyperProbe. This suggests that this model
is particular poor at dealing with quantities with respect to hyperbole. The top 2 model
configurations across all experiment settings involve the incorporation of privileged
information as proposed in Section 4.3. This showcases the utility of incorporating
privileged information into a hyperbole detection model.

Figure 4.17 provides a visualisation of of the relative difficulty of the various experi-
ment settings as introduced and evaluated in this chapter. There are some clear patterns
in this visualisation that give a good indication of the difficulty of an experimental
setting. The HYPO and HyperTwit datasets as well as the ECF tests in HyperProbe
are the easiest experiment settings. With most models achieving a mean F1 in the top
3 of all experiment settings. BERT+3dEmoMT and BERT+3dEmoAS on HyperTwit
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Figure 4.17: Experiment-Model Rankings (F1)

This heatmap visualises the relative difficulty (mean F1 in descending order) of the
various experimental settings for all models as evaluated in this chapter. This diagram
reveals that the HYPO dataset is the easiest model (i.e. highest F1 for that model) for 6

of the 9 models and is in the top 3 for all models, suggesting that it is the easiest
experimental setting. Conversely, the Intrinsic Quantity test (quant) is the hardest

experimental setting.

being outliers. This visualisation also indicates that the HYPO dataset appears to be
the simplest dataset, which is intuitive given the idiomatic nature of the hyperboles in
the dataset. Conversely, the Intrinsic Quantities, Time Period and Qualitative tests in
HyperProbe are challenging datasets for most models.

These two figures help to summarise a number of key findings from the experiments
and results in this chapter:

• Models that incorporate privileged information are the best performing models
across a variety of experiment settings

• The models that incorporate affective signals are inconsistent across the various
experiment settings
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• The HYPO dataset is the easiest dataset across the models suggesting the relative
ease of detecting idiomatic hyperbole

• The Intrinsic Quantities and Time Period tests in HyperProbe are relatively
challenging datasets. Suggesting that models have a poor understanding of the
range of plausible quantities required to understand if an extreme contrast is being
expressed.

• The Qualitative test in HyperProbe is also challenging for most models. This
suggests the models do not understand the hyperbolic use of adjectives when
describing objects.

The evaluation of existing methods for hyperbole detection indicated that hyperbolic
language on social media is a challenging phenomena. It was observed that hyperbole on
Twitter was harder to accurately detect compared to idiomatic hyperbole suggesting more
complex expression of hyperbole on Twitter. This finding partially answers research
question i) and satisfies research objective ii) regarding how hyperbole expressed on
Twitter is different from idiomatic hyperbolic expressions. This finding also provides
evidence towards research question ii) and research objective ii) by showing that existing
NLP approaches to hyperbole detection result in poor accuracy, especially with respect to
hyperbolic expressions as expressed on Twitter.

The proposal and evaluation of models that incorporate affective signals through
a variety of mechanisms and models that incorporate literal paraphrases as a type of
privileged information provided an insight into how hyperbole detection models could
be improved. Specifically, it was observed that the incorporation of literal paraphrases
resulted in considerable improvements over baseline hyperbole detection models par-
ticularly on idiomatic hyperbole. This finding contributes to research objective iii) by
developing and evaluating machine learning algorithms on the task of hyperbole detection.

A detailed error analysis identified that the promising results could be contributed
to improvements in the detection of ECF hyperbole. The contrast in this type of hyper-
bole is generally encoded in a small number of tokens so the incorporation of literal
paraphrases provides the necessary context to train a model. However, more complex
types of hyperbole require significant editing during the process of paraphrasing and do
not provide adequate context for detection. Identifying better annotation strategies for
complex hyperbole is an important area of future research. The findings from this error
analysis address research question iii) by providing insight on how models for hyperbole
detection can be improved moving forward

115





C
H

A
P

T
E

R

5
TOWARDS COMPUTATIONAL HYPERBOLE

INTERPRETATION

5.1 Introduction

This chapter poses automatic hyperbole interpretation as a paraphrasing task and
evaluates baseline models that attempt to address this problem. The content in this
chapter addresses the research questions and aims of this thesis, (see Sections 1.3 and
1.4), in the following ways;

i. The evaluation of various paraphrasing models for hyperbole interpretation to
assess the ability of existing NLP models to interpret the intentions of hyperbolic
expressions on social media. (Research Question ii, Research Objective ii)

ii. Detailed error analysis of model interpretations seeks to identify areas of further
research for improving interpretation of hyperbole (Research Question iii, Research
Objective iii)

The chapter is structured as follows:

• Section 5.2 motivates the task of hyperbole interpretation, a review of literature of
NLP approaches to similar problems are also covered.

• Section 5.3 details the implementation of various baseline methods for hyperbole
interpretation.
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Figure 5.1: Example Data

Original is the source text. Interpretation is a literal interpretation of the source.
Removed is a binary sequence aligned with original, a value of 1 indicates that the

word at the corresponding position was removed during interpretation.

• Section 5.4 describes the design of experiments to probe the similarity, fluency, se-
mantic meaning and hyperbolicity of interpretations generated by various models.

• Section 5.5 presents the results of these experiments.

• Section 5.6 details a manual error analysis of automatically generated paraphrases.

• Section 5.7 concludes the chapter.

5.2 Natural Language Generation and Figurative
Language

Hyperbole is an understudied figure of speech despite high prevalence and frequent
co-occurrence with other figures of speech, see Chapters 3 and 4 for further details.
Particularly, the computational study of hyperbole has been overlooked compared to
computational studies on other figures of speech. Approaches to hyperbole detection, and
general figurative language detection, were reviewed in Chapter 3.

Natural Language Generation (NLG) tasks relating to figurative language are scarce,
more-so than Text Analytics approaches to figurative language (i.e., figurative language
detection). The generation of figurative utterances is the most common NLG task related
to figurative language. The approaches to figurative language generation are focused on
sarcasm and metaphor generation, similar to to the predominance of these two figures
as a focus of figurative language detection research.

Approaches to sarcasm generation focus on the reversal, or flipping, of sentiment and
semantic or sentiment incongruity [27, 89, 142, 153]. A rule-based sarcasm generator
was proposed that relied on eight different hand-crafted rules to generate a sarcastic
utterance from a non-sarcastic input [89]. Several of these rules are based on the
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flipping of sentiment, such as computing the sentiment of the input and generating
output that is of opposite sentiment or computing the sentiment of a verb in the input
and generating a situation with opposite sentiment as part of the output. To address
incongruity, randomness is used to generate reasons and responses that are incongruous
with the user input. The generation of outputs in this approach were based on regular
expressions rather than statistical or neural language generation. A recent approach
to sarcasm generation use neural NLG techniques to generate sarcastic utterances
that rated higher than those generated by humans in manual evaluations [27]. This
framework focused on sentiment reversal and semantic incongruity. The valence of an
input sentence was reversed by replacing evaluative words with lexical antonyms (‘this
is great’ ! ‘this is bad’). A language model for commonsense (COMET[19]) was used to
generate scenarios based on the input and a pre-trained language model [124] computed
the incongruity between the generated scenarios and the input. The most incongruous
scenario was then appended to the valence reversed input.

Systems for the generation of metaphor and simile have been proposed ranging
from rule-based systems to those based on statistical and neural language generation
techniques. [28, 221, 229, 250? ]. A recent proposal for metaphor generation was via con-
trolled NLG using a pre-trained language model for sequence generation (BART) [116? ].
This approach involved training a model on parallel pairs of literal and metaphorical
sentences with a modification to the decoding objective to favour metaphorical replace-
ments of verbs rather literal replacements. The modification of the decoding objective
in a seq2seq model is a popular method for controlled text generation which will we
cover later in this section [80, 128, 252]. A framework to embellish natural language
via the injection of automatically generated similes was recently proposed [250]. This
framework first predicts where a simile should be inserted into the original sentence,
using BERT and a linear classification over the token sequence, then generating a simile
that fits within the context of the predicted location for insertion. Experimental results
show promising results for the feasibility of simile generation in context but further
research required to refine the generation.

A common theme amongst the generation methods proposed for the various figures of
speech is the iterative improvements to a few key heuristics particular to that figure of
speech. Sarcasm generation methods focus heavily on the sentiment flipping operation
and the contextual incongruity or metaphor models that focus on the transition of verbs
from literal to metaphorical that. A focus on these heuristics has been empirically shown
to produce reasonable or even state-of-the-art when dealing with a particular figure of

119



CHAPTER 5. TOWARDS COMPUTATIONAL HYPERBOLE INTERPRETATION

speech but lack generalising to to other figures. Specifically, the flipping of sentiment is a
unique feature of sarcasm and models that focus on this heuristic are not applicable to
hyperbole, metaphor, simile or other figures of speech.

The most relevant NLG research to the content in this chapter, however is the
automated interpretation of figurative language rather than the generation. Much like
the generation of figurative language this task has been formulated as a mono-lingual
machine translation task (i.e., paraphrase generation) [18, 164, 203, 206].

The task of sarcasm interpretation has been formulated as a mono-lingual machine
translation task [164]. The authors create a parallel dataset of 3000 sarcastic tweets
with literal interpretations as produced by crowd-workers. A methodology is proposed
by the authors that targets the sentiment flipping heuristic common to the sarcasm
generation methodologies. Sentiment words are encoded according to a sentiment cluster
and fed into a statistical machine translation algorithm that is trained to translate
between opposing sentiment clusters. A de-clustering process then replaces the cluster
label with a sentiment bearing word (‘i just love mondays #sarcasm’ ! ‘i just hate
mondays’). Experimental results showed that the proposed approach generated better
interpretations of sarcasm than statistical and neural machine translation baselines,
showcasing the potential for automated sarcasm interpretation.

Metaphor interpretation as a paraphrasing task has been limited to the translation of
metaphorical verbs into literal verbs. One such work introduces an annotated dataset and
proposes a metaphor interpretation model that estimates the probability of a replacement
verb (i.e. the interpretation) co-occurring with other words in the context of the original
text sequence. The dataset is a subset of the British National Corpus that is annotated
for metaphor using the Metaphor Identification Procedure (MIP) [67] guidelines. The
proposed model takes a sentence with a singular metaphorical verb within a literal
context as input then generates and ranks a list of possible candidate replacement verbs.
Hypernym relations from WordNet are used to filter candidate verb translations based
on the overlap in shared concepts (i.e., hypernyms) between the metaphorical verb and
the possible paraphrases. The remaining candidate translations are then ranked based
on selectional association measure as defined by Resnik [186], the top ranked candidate
is then selected as the literal interpretation.

Style Transfer is another mono-lingual machine task related to the work presented in
this chapter with many different transfer tasks, associated datasets and models proposed.
Such as the transfer of texts from informal to formal English [183], the transfer of texts
in to Shakespearean style [244] and the transfer of product reviews from positive to
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negative amongst several others [117]. Several of the figurative language frameworks
outlined are based on style transfer architectures or share many similarities. However,
the most related to the work in this chapter is a style method for neutralizing subjective
bias in Wikipedia1 text which is utilised during experiments undertaken in this chapter
[178]. The author hypothesises that this task is similar to the neutralizing hyperbolic
expression due to the attenuation of

The literal interpretation of hyperbole requires rich knowledge about the physical
and non-physical world and an ability to reason with that knowledge, a long-standing
goal in NLP research [19, 194]. Take for example the following hyperbolic expressions
and possible literal interpretations;

• ‘i would cut off all my limbs just to hear robert pattinson talk to me in a southern
accent’ ! ‘i want to hear robert pattinson talk to me in a southern accent’

• ‘Sorry your password must contain the entire alphabet. your left foot. a theme song to
a television show. and the blood of your enemies’! ‘These password requirements
are excessive’

A reader understands that ‘cut off all my limbs’ is used to express desire in this context
because of our familiarity with this kind of exaggeration in daily informal language. The
second example an example of complex and novel hyperbolic expression; as a reader we
understand this as a hyperbole that is expressing dissatisfaction at overly complicated
password requirements by our knowledge and experience with passwords. Automatically
generating hyperbole interpretations is an important task given prevalence of hyperbole
and the complex and varied intentions of hyperbolic expression. Additionally, the promis-
ing results of models that incorporated literal interpretations as privileged information,
see Chapter 4, heightens the importance of automated literal interpretation. Manual
composing literal interpretations is a labour intensive task, the automated generation of
literal interpretations will allow for scaling up hyperbole detection.

5.3 Methodology

5.3.1 Hyperbole Interpretation

The formulation of the hyperbole interpretation task expands on hyperbole detection
task. Let X be a short source text (i.e., tweet or sentence) and Y be a literal interpretation

1https://www.wikipedia.org/
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of X , see Figure 5.1. Also let Xr be a sequence of binary values of length w, where w
is the number of words in X . The values of Xr are computed by d(X ,Y ), where d is a
function that identifies words that are in X but not in Y (i.e., words removed from the
hyperbolic text during literal interpretation) 2. Given that Y is a literal interpretation of
X , it follows that any words removed from X can be considered as contributing to the
hyperbolic nature of X . Given this data the interpretation of hyperbole can be considered
as a mono-lingual translation task with source sequence X and target sequence Y .

5.3.2 Baselines and Models

Two naive baselines are used to provide context for the automatic evaluation metrics
and to gain insight into the process of paraphrasing a hyperbole as performed by expert
annotators. The Delete baseline simply deletes the tokens that were removed during
the literal paraphrase. Formally, XOR(Xr) is used to mask the original sequence X ,
see Figure 5.1. This baseline preserves the non-hyperbolic content in the source text
however, will often result in incomplete sentences. The Delete can provide insight into
the amount of non-hyperbolic content preserved during the paraphrasing process. The
Copy baseline simply copies the original source text X with no modifications and can
provide a point of reference during evaluation.

A machine translation model is used to perform a round-trip-translation to generate
a generic paraphrase (RTT)[148]. This model is based on a transformer architecture
[228] and employs ensembled back-translation for data augmentation. Data for training
consisted of various large parallel corpora (i.e. Newscrawl, CommonCrawl3) with an-
other stage of fine-tuning performed on smaller domain specific corpora. Strong results
were observed across four language directions (English ! German, German ! English,
English ! Russian, Russian ! English), showing significant improvements over other
automated translation systems and human translations. The motivation for using this
model is to understand the similarities between a generic paraphrase and literal para-
phrase of a hyperbole. Specifically, is the hyperbolicity removed in a generic paraphrase?.
Further, does this depend on type of hyperbolic expression?.

Modular is a state-of-the-art model for style transfer, designed to detect and remove
subjective bias fromWikipedia articles [178]. A two-step model that consists of a detection
and edit modules. The detection module consists of a sequence tagger that utilises
BERT combined with handcrafted bias features, see Figure 5.2, that is trained to detect

2https://github.com/paulgb/simplediff
3https://commoncrawl.org/
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Figure 5.2: Diagram of Tagging Module from Modular

Tagging module consists of BERT as encoder, handcrafted bias-features and a linear
classification layer.

Figure 5.3: Diagram of Modular

Modular consists of a tagger for controlling language generation, encoder-decoder for
sequence generation and a join embedding mechanism.
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tokens that display subjective bias. The edit module consists of a sequence to sequence
architecture designed with a BiLSTM encoder and an LSTM decoder. The edit modules is
trained on Wikipedia articles that are flagged for subjective bias and the edited version
where the subjective bias has been removed by human editors to address the subjective
bias complaints. The key aspect of this model is the combination of these two modules
where both models are pre-trained individually and then jointly fine tuned. In this
joint fine-tuning operation the output of the detection modules is used to control the
edit module, see Figure 5.3. The motivation for using this model is to understand the
similarities between the automatic neutralisation of subjective bias and the hyperbole
interpretation task. Specifically, is the hyperbolicity removed when subjective bias is
neutralised?.

A hyperbole is often used to convey an excessive evaluation which is an extreme
form of subjective bias. Examples of subjective bias from Wikipedia articles provided
in the original paper by the authors were hyperboles (e.g., ‘Go is the deepest game in
the world’. The neutralizing of subjective bias and the interpretation of hyperbole are
similar tasks: both are minimal translations (i.e., minimal edits) that target similar
semantic content (i.e., evaluative/emotive content) with a similar goal (i.e., a reduction
evaluative/emotive). However, the threshold for editing the evaluative/emotive content
and the level of attenuation are different between the tasks. The neutralisation of
subjective bias has a low threshold for evaluative/emotive content, whereas the threshold
for removing hyperbole is towards the extreme end. The reduction operation when
neutralising subjective bias is more extreme because all emotive/evaluative content must
be removed, whereas the neutralisation of hyperbolic content is more of an attenuation
operation that reduces the extreme contrast.

5.4 Experiments

Experiments are conducted to establish capabilities and limitations for the computa-
tional literal paraphrasing of hyperbole in online user-generated content. Details of
evaluation metrics, baseline models, experimental setup and results of the experiments
are provided. The specific mono-lingual machine translation task here is to generate a
literal paraphrase of a hyperbolic source text. The original hyperbolic tweet, X , is treated
as the source sequence and the literal paraphrase created by the annotators, Y , as the
target sequence.

A combination of automated metrics and manual assessment are used to evaluate the
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generated literal paraphrases. Despite the well documented weaknesses of automated
metrics in evaluating the performance of machine translation systems, [132, 237], several
of these metrics still provide insight given the specific nature of the problem addressed
here. Recent research has argued for a reduction in the usage and reliance on BLEU
[157] and TER [210] for evaluating machine translation systems [132]. However, both
of these metrics are used for evaluation because the hyperbole paraphrasing task is a
constrained translation problem where only minimal edits (i.e., perhaps deletion of a
single word) may be all that is required to interpret a hyperbole. Both of these n-gram
based metrics are good indicators of the amount of changes at the token level between
sequences. The SacreBLEU implementation is used to calculate BLEU scores [176] 4.
An author implementation of Translation Edit Rate (TER) [210] relying on simplediff 5

to compute the edits between the generated literal paraphrase and the expert human
literal paraphrase is used for TER. The SIMR and SIMA metrics are also reported.
These metrics are based on semantic similarity between sentences computed using
cosine similarity and word representations. These two metrics can be considered as
variations of other semantic similarity metrics for machine translation [126, 237], see
Section 3.4.2 for further details and motivations on these metrics.

For manual assessment of the generated interpretations, the Fluency, Meaning
and Hyperbolicity metrics are introduced. Fluency is measured on a Likert scale 6.
Specifically, ‘Is Ŷ is more readable than Y ’, where Ŷ is the generated interpretation
and Y is a ground truth interpretation. Meaning is an evaluation on the amount of
meaning preserved between the generated output and input text. A Likert scale7 is used
to measure meaning. Specifically, ‘Does Ŷ mean the same as Y ’. Hyperbolicity is a
comparison of the hyperbolic nature of a pair of texts. Hyperbolicity is measured on a
Likert scale.8 Specifically, ‘Is Ŷ is less hyperbolic than X ’. The manual assessment was
performed by one of the authors and was blind with respect to the model responsible for
generated interpretation (i.e. Ŷ ).

Tweets from HyperTwit that were identified as hyperbolic during annotations, 2087
in total, were used for experiments. This data was split into training, development
and test sets containing approximately 1669, 313 and 105 tweets respectively. The pre-
trained implementation of the RTT model was used, this implementation is provided

4https://github.com/mjpost/sacrebleu
5https://github.com/paulgb/simplediff
6[-2,2] from Strongly Disagree to Strongly Agree
7[-2,2] from Strongly Disagree to Strongly Agree
8[-2,2] from Strongly Disagree to Strongly Agree
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Model BLEU (") TER (#) SIMR (") SIMA (")
Copy 50.542 0.312 - -
Delete 63.891 (2.251) 0.157 - -
RTT 24.658 (1.575) 0.453 (0.011) 0.839 (0.007) 0.779 (0.029)
ModularWNC 41.768 (2.816) 0.358 (0.026) 0.788 (0.015) 0.743 (0.070)
ModularHT 48.070 (3.104) 0.275 (0.089)) 0.912 (0.006) 0.785 (0.068)
ConcurrentHT 36.909 (2.596) 0.391 (0.030) 0.752 (0.049) 0.718 (0.026)

Table 5.1: Paraphrase Experiment Results

Results from experiments on automated paraphrasing of hyperbole. Results are the
mean and standard deviations across multiple random dataset splits.

Model Fluency Meaning Hyperbolicity
Copy - - -
Delete -0.580(0.835) -0.240(1.079) 1.840(0.581)
RTT -0.039(0.631) 0.549(0.832) -0.804(0.849)
ModularWNC -0.300(0.543) 0.600(0.571) -0.680(1.039)
ModularHT -0.360(0.663) 0.380(0.901) 0.360(1.467)
ConcurrentHT -0.600(0.728) 0.400(0.808) -0.940(0.586)

Table 5.2: Paraphrase Experiment Results - Manual Evaluation

Manual evaluation results from experiments on the interpretation of hyperboles in
HyperTwit.

by the FAIRSEQ [156] 9 Python library. German is used as the pivot language and
the model was run with standard parameters. For the ModularWNC model, the code
and model checkpoint provided on the GitHub page10 associated with the publication
was used. For the ConcurrentHT model, the Pointer Seq2Seq implementation was
used with a learning rate of 0.0003, debias weight of 1.3, BERT as encoder and BERT
embeddings. The decoder was pre-trained for 10 epochs on 35k unlabelled tweets on
the same keywords as used in HyperTwit and the model with best performance on the
development set was retained. The ConcurrentHT model was trained for 20 epochs and
the model with best performance as evaluated on the development set was retained. The
trained ConcurrentHT version described above was used as checkpoint for the joint
training of ModularHT model, aligning with the instructions from the original paper.

9https://ai.facebook.com/tools/fairseq/
10https://github.com/rpryzant/neutralizing-bias
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5.5 Results

The results of the experiments are shown in Tables 5.1 and 5.2. The naive Delete
baseline achieves the best BLEU and TER. This result suggests that the deletion of
hyperbolic tokens is a common edit operation performed by annotators when interpreting
a hyperbole. The interpretations of ModularHT are the most semantically similar with
the ground truth interpretations, SIMR and SIMA of 0.912 and 0.785 respectively.

With respect to manual assessment metrics a Kruskal-Wallis test is performed for
each metric revealing that there is a statistically significant difference between all
models for Fluency11, Hyperbolicity12 and Meaning.

For Fluency it can be seen that overall the generated interpretations are relatively
fluent with the exception of ConcurrentHT which is surprisingly worse than Delete.
The interpretations of RTT are adequate generic paraphrases, notably achieving the
highest fluency with a mean of °0.039 (i.e., barely less fluent than the ground truth
interpretation on average). However, the Hyperbolicity of RTT is poor with a mean of
°0.804 indicating the the hyperbolicity of the original tweet was not removed, on average,
in the paraphrases generated by RTT. This suggests generating literal interpretations
via generic paraphrase is an inadequate strategy with respect to the hyperbolicity of the
interpretations.

ModularHT and Delete are the only two models to achieve positive Hyperbolicity
of, 0.360 and 1.840 respectively. This indicates that on average the interpretations of
ModularHT andDelete are less hyperbolic then the original hyperbolic tweets. However,
these two models differ considerably in Meaning and Fluency. Particularly, Delete is the
only model with a negative mean Meaning, indicating that the hyperbolic tokens are on
average important to the intended meaning of the hyperbolic utterance. This is intuitive
because some hyperboles must be interpreted to maintain the intended meaning and
simply can not be deleted (e.g., This video gave me eye cancer ! This video gave me).

The other important result to observe here is the statistically significant (p< 0.01)13

difference in Hyperbolicity between ModularWNC and ModularHT . This result sug-
gests that automatically neutralizing subjective bias and interpreting hyperbole are
considerably different tasks, despite similarities mentioned in Section 5.3.2.

11p< 0.01
12p< 0.01
13Mann-Whitney U test
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Original Tweet(X ) Ground Truth Interpretation (Y ) Generated Interpretation (Ŷ )

you are like an electron and i am like
a proton and they say that opposites at-
tract

we should be together you are like opposite

istg if anyone says that i look like her
your obviously blind asf

istg if anyone says that i look like her
you are wrong asf

istg if anyone says that i look like her
your obviously asf

old nollywood shaped an entire genera-
tion

old nollywood was influential old nollywood is a good terrible

this choreo looks impossible im this choreo looks very difficult im this choreo looks terrible
kamala harris has the exact face as
norma bates

kamala harris has a similar face as
norma bates

kamala harris has a face

malcovichs partner is my ideal person-
ality

malcovichs partner is a great person-
ality

malcovichs partner is a good

my mama dont like you and she likes
everyone

my mama dont like you and she likes
most

my mama dont like you and she likes

whole 2nd verse on jaded is biblical whole 2nd verse on jaded is great whole 2nd verse on jaded is terrible
bts is garbage whta the fuck is this
song

bts is terrible so is this song bts is terrible whtahta

going from 8 hour shift directly to 3
hour class is my stupidest idea why do
i keep doing this

going from 8 hour shift directly to 3
hour class is my stupid idea why do i
keep doing this

going from 8 hour shift directly to 3
hour class is a stupid

why do i always feel this way why do i often feel this way why do i feel this way this way
this debate already feels like a be-
nadryl nightmare

this debate already boring and frus-
trating

this debate already feels like a ben

Table 5.3: Paraphrase Errors 1
Original Tweet (X) is the original tweet. Ground Truth Interpretation (Y ) is the literal interpretation provide by annotator.
Generated Interpretation (Ŷ ) is the tweet generated by ModularHT . Emphasis indicates words not in the original tweet.

Original Tweet(X ) Ground Truth Interpretation (Y ) Generated Interpretation (Ŷ )

every family have their own secrets ei-
ther good or bad

many families have their own secrets
either good or bad

every family have their own secrets <ei-
ther good or bad>

i feel like an old person even when i
walk i hurt from literally everywhere c

i feel like an old person even when i
walk i hurt

i feel like an old person even when i
walk i hurt <from literally everywhere
c>

if u love batman more than spiderman
you have no taste just saying

spiderman is better than batman if u love batman more than spiderman
you have no taste <just saying>

my real life hasnt started yet the real
me is still asleep so thats why my life
is such garbage

my life is so terrible my real life hasnt started yet the real
me is still asleep so thats why my life
is <such garbage>

the damn fly was more personable than
the pile of shit he was on

he was not very personable the damn fly was more personable than
the pile <of shit> he was on on

the fbi has officially declared me hand-
some sorry

i am handsome sorry the fbi has officially declared me hand-
some <sorry>

we wont have to listen to trump blath-
ering about voting fraud it will feel like
america again

we wont have to listen to trump blath-
ering about voting fraud it will feel so
good

we wont have to listen to trump blath-
ering about voting fraud it will feel like
america

hogan hitting that 180 real quick on his
response to covid dude is a bum and al-
ways will be

hogan changing his mind real quick
on his response to covid dude is hope-
less

hogan hitting that 180 real quick on his
response to covid dude is a bum <and
always will be>

jen rubin decided to dress up like a
heartless gremlin 29 days early for
some reason

jen rubin decided to dress up 29 days
early for some reason

jen rubin decided to dress up like a
heartless gremlin 29 days early

Table 5.4: Paraphrase Errors 2
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Hyperbole Type ModularHT ModularWNC RTT
ECF 0.448(1.503) -0.666(0.916) -0.640(1.113)
Qualitative 0.444(1.423) -0.666(1.188) -0.882(0.485)
Quantitative -0.125(1.553) -0.750(1.164) -1.125(0.353)

Table 5.5: Hyperbolicity, Hyperbole Type and Model

Hyperbolicity scores across hyperbole types and models

5.6 Error Analysis

An error analysis is undertaken to identify avenues for future research. The paraphrases
generated by theModularHT model are the focus of this analysis as that model performs
the best with respect to adequately paraphrasing hyperbole without lacking fluency or
meaning.

A particular error observed was paraphrases in which the hyperbolicity of a tweet
was reduced, but the intended meaning was distorted (‘this choreo looks impossible
im’ ! ‘this choreo looks terrible’), see Table 5.3. Another error is the reduction in some
of the evaluative content from the original tweet but not enough to reduce the overall
hyperbolic nature of the tweet, see Table 5.4. This error was often the case in tweets with
long hyperbolic phrases or multiple hyperboles (the damn fly was more personable
than the pile of shit he was on ! the damn fly was more personable than the pile <of
shit> he was on).

During manual assessment it was observed that paraphrases generated byModularHT

appeared to be less effective at reducing the hyperbolicity in long and complex hyper-
bolic expressions, see Tables (5.3 and 5.4). However, an insignificant positive Pearson
correlation, 0.086, was observed between the ratio of hyperbolic tokens in a tweet and
the hyperbolicity rating provided during manual assessment. This suggests that the
length of the hyperbole alone is not indicative of the difficulty in generating an adequate
interpretation.

With respect to the different types of hyperbole, Quantitative hyperboles are the
most significant source of error. Pairwise correlation analysis between ModularHT

vs. ModularWNC and ModularHT vs. RTT found a positive correlations between the
hyperbolicity scores and the type of hyperbole14, see Table 5.5. From this table it can be
observed that the hyperbolicity is similar between ECFs and Qualitative hyperboles and
considerably better than the hyperbolicity for Quantitative hyperboles across the model

14r = 0.94 and r = 0.99 respectively
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pairs.

5.7 Conclusion

This chapter poses automatic hyperbole interpretation as a paraphrasing task as well
as introduces and evaluates baseline models for this problem. Several contributions
towards the research questions and aims of this thesis have resulted from the work in
this chapter.

The evaluation of various paraphrasing models for hyperbole interpretation showed
that the automatic generation of literal interpretations is a challenging task and fruitful
avenue for further research. It was observed that generic paraphrases do not adequately
interpret the hyperbolic content present in an expression. Further, models trained for
neutralizing of subjective bias do not adequately remove hyperbolic content. These
findings contribute to research question ii) and research objective ii), specifically by
showing that various models for style-transfer and generic paraphrases do not adequately
interpret the excessive contrast inherit in a hyperbolic expression.

A detailed error analysis found that models often defaulted to simple heuristic of
simply deleting the hyperbolic content and not interpreting the intend meaning of
that content. Another error identified was the generation of text that did not correctly
interpret the hyperbole or was nonsensical in some cases. Findings from the error
analysis addressed research question iii) and research objective iii) by identifying areas
of further research for improving interpretation of hyperbole.
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6
DISCUSSION AND CONCLUSION

6.1 Introduction

This chapter concludes the thesis by restating the thesis statement, explicitly states the
answers to the research questions and provides evidence of contributions to research
objectives. Finally, a discussion on potential directions for future research that have
emerged from the findings presented within the thesis will close out this chapter and the
document.

6.2 Thesis Statement

Accurate computational detection of figurative language on social media is a complex task
that requires modification of existing and creation of new datasets and methodologies.

6.3 Research Questions

This section will restate the key research questions, see Section 1.3, addressed in this
thesis as well as summarising the answers to these questions as revealed throughout
the body of this thesis.
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6.3.1 Research Question i)

How does figurative language occur on social media and how does this differ in compari-
son to the occurrence of figurative language in traditional forms of communication?

A number of findings from this thesis provide answers to this research question:

i. Figurative language occurs frequently on social media in the context of symptom
and disease words, importantly it was observed that some symptom and disease
words were more likely to be used in a figurative sense than in a literal sense (see
Chapter 2).

ii. A significantly greater prevalence of hyperbole was observed on Twitter compared
to that found in corpus studies of hyperbole in different communicative forms (i.e.,
conversational English), (see Chapter 3).

iii. Hyperbole was commonly used on Twitter to express sentiment on a broad range
of topics, often in a complex manner that went beyond simple comprehension on
the linguistic contents of the expressions (see Chapter 3).

iv. With respect to the diversity of hyperbole expressions on Twitter, some hyperbolic
expression were simply parroted by different Twitter users but also a number
of novel, elaborate and specific hyperbole were expressed by Twitter users (see
Chapter 3).

These findings indicate that figurative language, particularly hyperbole, is common
and complex linguistic phenomena on social media. Computationally understanding
figurative language is an important task to fully understand discourse on social media
and important research area.

6.3.2 Research Question ii)

How adequate are current resources (i.e., datasets, models) for the accurate detection and
interpretation of figurative utterances found on social media?

A number of findings from this thesis provide answers to this research question:

i. The majority of false positive errors observed when evaluating a text classifier
trained to classify health mentions on Twitter were a result of figurative expres-
sions of disease and symptom words (see Chapter 2).
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ii. Both idiomatic hyperbole and hyperbole expressed on Twitter were difficult to
detect using a variety of text classifiers, suggesting that current NLPmethodologies
were inadequate for the task (see Chapter 4).

iii. Generic paraphrases do not adequately interpret the hyperbolic content present in
an expression indicating difficulty in understanding the intentions of hyperbole
(see Chapter 5).

iv. Models trained for neutralizing subjectively biased content do not adequately
remove hyperbolic content indicating difficulty in understanding the intentions of
hyperbole (see Chapter 5).

These findings strengthen the key claim in the thesis statement that figuratively
language is a complex phenomena and requires new resources and methodologies for
accurate understanding.

6.3.3 Research Question iii)

How can the computational detection and interpretation of figurative utterances be
improved?

A number of findings from this thesis provide answers to this research question:

i. Experiments provided evidence that better incorporation of sentiment signals could
improve the detection of figurative mentions within the context of text classifiers
for symptom and disease words (see Chapter 2).

ii. Analysis showed that hyperbolic expressions of symptom and disease words for
the purpose of exaggerating the opinion of an author, not to actually express that
existence of a disease or symptom were wrongly classified. Better handling of hy-
perbolic expression is a key focus for improving figurative language understanding
(see Chapter 2).

iii. The incorporation of literal paraphrases into text classification model resulted in
considerable improvements over baseline classifiers trained to classify hyperbolic
expression (see Chapter 4).

iv. Evaluation revealed that better annotation strategies for complex hyperbole is an
important area of future research (see Chapter 4).

135



CHAPTER 6. DISCUSSION AND CONCLUSION

These findings strengthen the key claim in the thesis statement, that figuratively
language is a complex phenomena, and provides solutions that improve understanding.

6.4 Research Objectives

This section will detail how the thesis satisfies the three research objectives described in
Section 1.4.

6.4.1 Research Objective i)

Creation of annotated datasets that allow for the study of figurative language on social
media.

A number of contributions are made to this research objective throughout the thesis:

i. The collection, annotation and exploratory analysis of HMC2019 provides a re-
source for the study of figurative language in the context of symptom and disease
words on Twitter (see Chapter 2).

ii. The data collection, annotation and exploratory data analysis of HyperTwit pro-
vided a resource the study of hyperbole as expressed on Twitter (see Chapter
3).

iii. The generation and annotation of HyperProbe provide a benchmark for be-
havioural testing of hyperbole detection models (see Chapter 3).

6.4.2 Research Objective ii)

Produce quantitative evidence of the phenomenon of figurative language on social me-
dia and how the phenomenon impacts the predictive performance of existing NLP text
classification models.

A number of contributions are made to this research objective throughout the thesis:

i. Exploratory data analysis produced quantitative evidence of the presence of fig-
urative language usage of symptom and disease words on Twitter (see Chapter
2).

ii. Experiments provided evidence that traditional text classifiers trained for detecting
health events misunderstood figurative expressions of symptom and disease words
as actual health events (see Chapter 2).
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iii. Manual error analysis provided evidence that hyperbolic expressions of symptom
and disease words were particularly challenging expression for text classifiers to
understand (see Chapter 2).

iv. Experiments provided evidence that both idiomatic hyperbole and hyperbole ex-
pressed on Twitter were difficult to detect using a variety of NLP text classifiers,
suggesting that current NLP methodologies were inadequate for the task (see
Chapter 4).

v. Manual evaluation provided evidence that generic paraphrases do not adequately
interpret the hyperbolic content present in an expression, indicating difficulty in
understanding the intentions of hyperbole. This manual evaluation also showed
that models trained for neutralizing subjectively biased content do not adequately
remove hyperbolic content indicating difficulty in understanding the intentions of
hyperbole (see Chapter 5).

6.4.3 Research Objective iii)

Develop and evaluate machine learning algorithms for the task of figurative language
understanding on social media.

A number of contributions are made to this research objective throughout the thesis:

i. The proposal, implementation and evaluation of various text classification models
for the figurative expression of symptom and disease words satisfied this particular
research objective (see Chapter 2).

ii. The proposal, implementation and evaluation of models that incorporate affec-
tive signals through a variety of mechanisms and models that incorporate literal
paraphrases as a type of privileged information satisfied this particular research
objective (see Chapter 4).

iii. The proposal, implementation and evaluation of various mono-lingual machine
translation approaches to understand how individuals interpret hyperbole and to
automatically generate hyperbole interpretations (see Chapter 5).
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6.5 Future Directions

It is clear from this thesis that the computational understanding of figurative language
remains a challenging problem for NLP. Several fruitful directions for further research
on the computational understanding of figurative language have emerged from this
thesis.

6.5.1 Hyperbole

Hyperbolic expressions were a key focus in this thesis with several findings suggesting
that continued focus on these expressions is required to achieve adequate understanding.
The difficulty in detecting hyperbolic usage of symptom and disease words by various
NLP models for text classification (see Chapter 2). Similar difficulties were observed
when attempting to detect idiomatic hyperbole and hyperbole expressed on Twitter (see
Chapter 3).

6.5.1.1 Compound Hyperbole

A key observation made throughout the thesis was the inability to deal with complex
hyperbolic expressions, (see Sections 4.4 and 5.6). Particularly, when using literal para-
phrases to help ground hyperbolic expressions to literal intentions. The literal paraphras-
ing of compound hyperbole was too destructive which was detrimental to approaches
that used the paraphrase to teach a model the intentions of hyperbole.

Consider the following hyperbolic expression ‘this policy will plunge the country
into a chaos’. This expression can be considered a compound hyperbole because the
hyperbolicity of the expression is contained in multiple phrases in the expression. The
use of the verb ‘plunge’ in the verb phrase ‘policy will plunge the country into a chaos’,
and the noun ‘chaos’ in the preposition ‘into a chaos’.

Consider an example literal paraphrase of this hyperbole, (‘this policy will plunge
the country into a chaos’ ! ‘this policy is a bad idea’). This literal paraphrase is quite
destructive, an example of a better paraphrase would be to replace the verb ‘plunge’ with
‘put’, and the noun ‘chaos’ with the noun phrase ‘bad situation’ (i.e. ‘this policy will put
the country into a bad situation’). This paraphrase maintains the syntactic structure
of the original expression and removes the hyperbolicity of both ‘plunge’ and ‘chaos’ in
the sentence, whilst maintaining the syntactic structure and the immediate contexts in
which the two hyperbolic tokens occur.
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A hypothesis for the success of hyperbole detection on simple hyperbolic expressions
was due to the minimal differences between the original and the paraphrase (e.g. ‘what
an absolute idiot’ ! ‘what an idiot’). Careful and methodical annotation of compound
hyperbole that focuses on syntax preservation whilst neutralizing hyperbole is likely to
be a fruitful research direction. Several research questions are of interest:

• What is the relationship between the edit operations needed to interpret a hyper-
bole and the difficulty of classification?

• Can syntax-preserving literal paraphrases of compound hyperboles improve the
hyperbole detection on these expressions?

6.5.1.2 Quantitative Hyperbole

Quantitative hyperbole is an important type of hyperbole that posed challenges to
hyperbole detection and interpretation models (see Chapters 4 and 5). Findings indicated
that NLP models did not understand excessive contrasts along various quantitative
dimensions (e.g, time, size, currency, etc.). Research questions of interest for this topic:

• How to encode temporal knowledge into NLP models to better understand excessive
contrasts along temporal scales?

• How to encode knowledge of intrinsic quantities of objects (e.g., height, weight,
length, etc) into NLP models to better understand excessive contrasts along these
scales?

6.5.1.3 Automated Interpretation of Hyperbole

Initial work on the automated interpretation of hyperbole was conducted in this thesis
(see Chapter 5). Findings revealed a challenging task for existing approaches to similar
tasks in mono-lingual machine translation.

Automatic generation of hyperbole interpretations would be beneficial for hyperbole
detection models that rely on interpretations (see Section 4.3. Manual generation of
these interpretation is a labour intensive annotation task that can introduce unwanted
biases from human annotators. The automated generation of interpretations would
also be helpful for the comprehension of these expressions and downstream tasks (i.e.
aspect-based sentiment analysis).
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6.5.1.4 Hyperbole and Sentiment Analysis

Hyperbolic expressions and intentions are laden with sentiment, however the sentiment
being expressed is not always stated obviously (see Chapter 3. A deeper exploration of
the relationship between hyperbolic expressions and sentiment analysis is a fruitful
direction of research.

Consider the sentiment conveyed in the hyperbolic expression ‘my bedroom is the
size of a postage stamp’. A negative opinion regarding the size of the bedroom is being
expressed by comparison to the size of postage stamp, a ridiculous and excessive compar-
ison. This expression is an example of hyperbole used to convey sentiment without the
use of strong sentiment bearing words that requires world knowledge and reasoning to
understand the intended sentiment of the expression. The task of identifying the polarity
of sentiment expressed, the target of that sentiment and the aspect in such hyperbolic
expressions is a fruitful avenue for further investigation.

Potential research questions that are fruitful for further research:

• Can NLP models for sentiment analysis accurately predict the sentiment expressed
in hyperbolic expressions?

• Can NLP models for aspect-based sentiment analysis accurately identify the senti-
ment, target and the aspect in hyperbolic expressions?

6.5.2 Metaphor and Sarcasm

Hyperbolic expressions are an important figure of speech in social media and received
significant attention throughout the thesis (see Chapter 3). Hyperbole has a high rate
of co-occurrence with other types of figurative language, see Section 3.2. Therefore,
more accurate understanding of hyperbolic expressions will likely result in a ‘trickle-
down’ effect where benefits could be seen for the understanding of several other types of
figurative language.

Probing this ‘trickle-down’ effect is a potential future direction of research. Research
questions that follow up on this topic could be:

• Does the inclusion of literal interpretations help in the detection of other figurative
devices (e.g. metaphor, sarcasm)?

• Are figurative expressions that employ multiple figurative devices (e.g. hyperbole
and metaphor, hyperbole and sarcasm) more complicated than expressions that
employ single figurative devices?
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