
Citation: Pearce, A.; Zhang, J.A.; Xu,

R. A Combined mmWave Tracking

and Classification Framework Using

a Camera for Labeling and

Supervised Learning. Sensors 2022,

22, 8859. https://doi.org/

10.3390/s22228859

Academic Editors: Wei Yi and

Xiansheng Guo

Received: 26 September 2022

Accepted: 12 November 2022

Published: 16 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Combined mmWave Tracking and Classification Framework
Using a Camera for Labeling and Supervised Learning
Andre Pearce * , J. Andrew Zhang and Richard Xu

Global Big Data Technologies Center, School of Electrical and Data Engineering,
University of Technology Sydney, Sydney 2007, Australia
* Correspondence: andre.pearce@student.uts.edu.au

Abstract: Millimeter wave (mmWave) radar poses prosperous opportunities surrounding multiple-
object tracking and sensing as a unified system. One of the most challenging aspects of exploiting
sensing opportunities with mmWave radar is the labeling of mmWave data so that, in turn,
a respective model can be designed to achieve the desired tracking and sensing goals. The
labeling of mmWave datasets usually involves a domain expert manually associating radar frames
with key events of interest. This is a laborious means of labeling mmWave data. This paper
presents a framework for training a mmWave radar with a camera as a means of labeling the
data and supervising the radar model. The methodology presented in this paper is compared
and assessed against existing frameworks that aim to achieve a similar goal. The practicality of
the proposed framework is demonstrated through experimentation in varying environmental
conditions. The proposed framework is applied to design a mmWave multi-object tracking system
that is additionally capable of classifying individual human motion patterns, such as running,
walking, and falling. The experimental findings demonstrate a reliably trained radar model
that uses a camera for labeling and supervision that can consistently produce high classification
accuracy across environments beyond those in which the model was trained against. The research
presented in this paper provides a foundation for future research in unified tracking and sensing
systems by alleviating the labeling and training challenges associated with designing a mmWave
classification model.

Keywords: mmWave; sensing; fusion; automated labeling

1. Introduction

The process of training millimeter wave (mmWave) sensors to solve classification
problems is rapidly becoming more popular and proving to be a promising direction in
radar sensing research. Some of the most promising techniques that are being pursued
in this field of research include deep-learning-based approaches. However, successfully
using a deep-learning-based approach typically requires an abundant set of training data
to adequately teach a model the relevant features that can be relied on for classification.
Constructing a large and meaningful dataset requires a domain expert to spend time
appropriately labeling the raw data collected from the sensor. This process can be quite
troublesome, specifically when dealing with mmWave raw data, which is notoriously
difficult to correctly intuitively label.

To solve this challenge, one potential direction is through information fusion—more
specifically, the fusion of mmWave radar and camera. As a result, it is important to un-
derstand the processes involved in general information fusion with respect to mmWave
radar and camera. Information fusion with mmWave radar and camera refers to the combi-
nation of the two independent streams of data so that they are presented and interpreted
in a unified perspective [1]. There are a number of different variables that are involved
in achieving this fused state of information. In an attempt to break down the varying
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components involved in information fusion [2], the following high-level characteristics
should be considered:

• System architecture.
• Fusion depth.
• Fusion process.
• Fusion algorithm.

The system architecture of mmWave radar and camera fusion focuses on the high-
level structure that the fusion process operates on. In a review article presented by [2], the
authors identified three major fusion structures that are commonly abstracted in related
literature. These three types of fusion system architectures, along with their respective
benefits and limitations, are depicted in Table 1.

Table 1. Types of mmWave radar and camera fusion system architectures.

Architecture Type Description Benefits & Limitations

Centralized

This refers to an architecture where the individual
raw data of both the camera and mmWave radar is
obtained independently and converged in a central
processor for processing.

Benefits : Low information loss, original data
preserved, simple structure, and a high
processing rate.
Limitations: Independent sensor units, large
communication bandwidth required, high computing
power needed by a centralized unit, and a single
point of failure.

Distributed

This refers to an approach where each the radar and
camera process their own data independently and
send the post-processed data to a central fusion unit
to then perform fusion on the post-processed data.

Benefits: Reducing the transmission time, reduced
pressure on the fusion center, higher reliability
resistance, and low communication bandwidth.
Limitations: Data collection units also require the
capability of processing the data, and the central
processor is operating on post-processed data
resulting in reduced flexibility.

Hybrid

The hybrid fusion approach refers to an architecture
where some sensors follow the centralized
approach, as defined above, and others follow the
distributed approach, also as defined above.
Measurements from all sensors are combined into a
hybrid measurement, which in turn, is used to
update the final data.

Benefits: Advantages of both centralized and
distributed are retained as well as flexibility in
satisfying varying requirements.
Limitations: Complex data structures, increased
computational and communication load, and high
design requirements.

The three types of fusion architectures presented in Table 1 ultimately describe the
major architecture types found in the existing research. The rationale responsible for
deciding which architecture type to implement over the others fundamentally stems from
the run-time requirements that a given solution must meet. The next characteristic that
can be used to describe mmWave radar and camera information fusion is the depth of the
fusion that is performed.

The authors of [3,4] termed this characteristic as the level of fusion. This simply
refers to the point in which the mmWave data is fused with the camera data, starting
from the primitive point in which raw data is collected and stemming until a point where
fusion might take place only once several layers of processing have already taken place
independently for both/either the radar and/or the camera.

The authors of [3,4] abstracted these depths of fusion into three progressive levels.
These levels are further described in Table 2.
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Table 2. Types of mmWave radar and camera-fusion depths.

Fusion Depth Description

Low level
This class of fusion depth is best considered to be at the data level. It refers to
a level of fusion that takes the raw data from each sensor to form a synthetic
dataset illustrating a raw fused state, ready to be further processed.

Medium level
This refers to a class of fusion that takes place once several primitive features
have been derived for each sensor independently and are fused to form a
feature super set.

High level

This fusion level is considered an advanced form of fusion. Fusion at this
level takes place once independent outcomes have been derived for each
sensor, and the fused result is an expression of the combined sensor
specific outcomes.

The fusion process is another aspect that can differentiate the fusion that takes place
for mmWave radar and a camera. The fusion process ultimately refers to the basis upon
which the actual fusion of the two sensors takes place. There are a number of different
approaches that can serve as the means to perform fusion. One method explored and
demonstrated by the authors of [5] attempts to spatially fuse the mmWave radar and
camera. This process refers to the mmWave radar and camera each recording data in their
own coordinate system. Following this, each of the sensor’s coordinate systems should
be transformed into a world coordinate system that closely depicts the three-dimensional
coordinate system via which we perceive the world.

Another fusion process that is closely related to spatial fusion—and perhaps neces-
sary for spatial fusion to take place—is fusion through sensor calibration. There are a
number of varying techniques presented for calibrating mmWave and camera sensors,
such as the work presented by the authors of [6–9]. Lastly, the most simple process in
which the basis of fusion can take place is temporally. Regardless of the basis in which
the fusion takes place, an appropriate correlation and association algorithm needs to be
designed and implemented.

The research discussed in this paper presents a framework for automated labeling
of mmWave radar data using information fusion theory with a camera. The research and
methodologies that we propose in this paper are novel in three major respects. First, the
generalized automated labeling framework that we present is one of the first proposed in
the context of mmWave, where an attempt has been made to abstract the specific teacher
and student objectives from the framework. Secondly, the framework that we present is
also one of the first of its kind to encompass the complete processing chain for training
a standalone mmWave radar classification model using a camera as a teacher. Lastly, the
example implementation of the framework that we present demonstrates a novel adaption
for the correlation and fusion of camera and radar data. These primary contributions that
we present are further explained in the following:

• The radar training with a camera labeling framework that we present is generalized
by definition as it is not specific to a given classification problem in either the radar or
camera domain. The agnostic nature of the framework we propose is the first of its
kind (that we are aware of) in the context of mmWave radar. Existing approaches are
either specific to the task of object detection or specific to the classification problem
that the given authors are attempting to solve.

• The framework that we present in Section 2.1 is the first of its kind that includes a
suggested approach towards all stages in the processing chain involved in achieving a
radar classifier. Existing approaches usually have a focus on presenting a framework
that only shows a means for labeling camera data, usually specific to the task at hand,
and applying it to either raw or pre-processed radar data. Our framework also satisfies
that objective but takes the labeled data further and demonstrates how this labeled
radar data can be used in a teacher-and-student-based approach to form a standalone
radar classifier.
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• To demonstrate the feasibility of the framework proposed, we also demonstrate a
practical implementation of our proposed framework. In our example implementation,
we demonstrate how a pre-trained camera classifier can be used to label raw mmWave
data for human activity recognition in conjunction with performing mmWave multiple-
object tracking. The correlation technique that we devised and utilized is unique and
a looser form of the calibration that takes place between the camera and radar. This
removes the need for tight coupling between raw radar points and points in the
vision domain.

The remainder of this paper will be structured as follows. First, we will continue to
explore the related literature to gain a deeper understanding of the existing frameworks
that solve similar problems. Secondly, we will discuss the problem space that we aim
to propose a viable solution for. Thirdly, the proposed approach will be introduced, and
the methodology surrounding our efforts will be detailed and rationalized. Fourthly,
using the methodology we present, an implementation of the proposed framework will
be discussed to ultimately serve as a demonstration of the practicality of the framework.
Lastly, we will discuss the outcome of utilizing the framework we present with respect to
the aforementioned example implementation.

1.1. Review of Related Literature

As new deep-learning-based sensing research is being released for mmWave radar,
difficulties associated with the labeling of mmWave data are increasingly being identified.
As a result, different labeling strategies have been presented in recent literature, ultimately
demonstrating the feasibility of using another sensor, such as cameras, to label datasets
collected by radar.

One of the earlier pieces of research that demonstrated a fusion-based approach with
radar and a camera to classify objects is the work presented by the authors of [10]. The
authors of [10] deconstructed the problem into a two-stage approach. The first stage
involves recording the data and performing a typical Kalman-filter-based approach to
identify objects in the field of view of the radar. The last stage involves taking the points of
interest identified in the radar data and projecting those points onto the same plane as the
camera. The purpose of this is to highlight points of interest that a deep classification can
be performed on.

Another more recent piece of literature that demonstrates an approach to the fusion
of mmWave radar and camera is the work presented by [11]. The approach discussed by
the authors of [11] is largely similar to the technique presented in [10]. The authors of [11]
proposed a method that jointly uses radar and camera to detect objects. Similar to [10], the
initial object detection is performed by filtering the mmWave radar data. Following this,
the mmWave data is projected onto the image plane through coordinate translation via
camera calibration. Finally, using this combined state, machine learning is used to identify
and track the objects in the field of view.

Some more recent works, presented by the authors of [12], produced a labeled
Frequency-Modulated Continuous-Wave (FMCW) dataset with correlated inertial mea-
surement unit measurements and corresponding camera frames. The labeling strategy
proposed by the authors of [12] ultimately relies on time synchronization between the three
sensors. After temporally aligning the sensors, the authors required spatial calibration
between the radar and camera in order to match the detected objects. The technique used
in [12] to spatial calibrate the radar and camera involves introducing an object that is both
distinctly identifiable in vision and reflective in the radar domain. This object is used to
induce a strong reflective point in the radar’s heatmap, which can ultimately be used as a
reference point for the corresponding space in the camera’s domain.

The work of [12] leads to an interesting question regarding the techniques available to
calibrate a mmWave radar with camera sensors. A review presented by [13] breaks this
question down into three overarching components that encompass sensor calibration in the
context of radar and vision fusion as presented in modern literature:
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• Coordinate calibration—the alignment of individual points in the radar with objects
in camera’s field of view. This initial stage of calibration can be seen implemented in
three varying mechanisms within the works presented by [14–16].

• Radar point filtering—where noise and undesirable data is acknowledged and fil-
tered from the radar data. The work of [17] presents an approach that demonstrates
calibration involving the filtering of undesired data points based on speed and
angular velocity.

• Error calibration—refers to the processes implemented to overcome errors in the cali-
brated data. There are many methods that have been devised to attempt to overcome
calibration error. One approach presented by [18] demonstrates an Extended Kalman
Filter that is used to model the measurement errors present in the independent sensors.

The authors of [19,20] proposed two similar approaches that demonstrated object
detection through the fusion of radar and camera. Both of the techniques demonstrated
an Artificial Neural Network (ANN), where the inputs are pre-processed radar data and
raw camera data. The primary difference between the two techniques is that the authors
of [19] pre-processed the radar data to produce range-azimuth images as an input for the
ANN, while the authors of [20] pre-processed the radar data to form 2D point-cloud data
and utilized this as the input into the ANN.

Lastly, an approach presented by the authors of [21] demonstrated an auto-labeling
framework, achieving a similar goal to what we present in our paper but through different
means. The approach presented by [21] uses an active learning system based on a Convolu-
tional Neural Network (CNN). Although the technique presented by [21] demonstrated
promising results, it is important to note that the technique requires human input to manu-
ally label ambiguous data. The framework that we present in this paper demonstrates an
approach that requires no human interaction for the labeling of radar frames.

2. Materials and Methods

The purpose of this section is to explore the methodology behind the framework that
we present in our research and demonstrates its practicality. As such, this section of the
paper has been divided into two parts. The first part, Section 2.1, details the framework
itself, including the stages and components involved. The second part, Section 2.2, takes
the framework presented in Section 2.1 and demonstrates how it can be practically applied
to a problem.

2.1. Radar Training with Camera Labeling and a Supervision Methodology

This section of the paper describes and illustrates a generalized methodology for
labeling radar data and training a standalone radar model using a camera as the ground
truth for the radar model. The purpose of this methodology is to provide a framework
for others to follow when attempting to extend camera-based models into a radar-based
model. The methodology described in this section is practically applied and demonstrated
in Section 2.2 of this paper.

2.1.1. Problem Space

Raw radar data is notoriously difficult to intuitively interpret without applying pre-
processing techniques to extract the desired information. Furthermore, the labeling of raw
radar data can be a difficult and tedious task even for a domain expert. This is usually due
to the large dataset sizes that are involved. As a result of this labeling difficulty, training a
model that utilizes radar data to classify complex events also becomes a difficult task.

This problem is typically addressed in the existing literature by reducing the dataset
size of the radar data or by restricting the potential of the classifier being trained to only
a small set of classification types. Although this may alleviate the problem, there are
negative implications to the potential of the designed radar model. Therefore, there is
an evident need to devise a solution to simplify the labeling approach for radar data
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that, in turn, can be utilized to train a classifier without impacting the constraints of the
designed model.

Camera classification networks are a well-defined and researched domain. As seen
in Section 1.1 of this paper, there are many existing models available that demonstrate
successful classification capabilities for a variety of complex movements. The methodology
proposed in this paper uses a camera as a means of addressing the labeling challenge with
raw radar data and the inherit training difficulty of standalone models/classifier networks.
Attempting to ultimately use vision data to label and act as the ground truth for radar data
presents two major challenges that need to be considered.

First, vision data is inherently a snapshot of a horizontal and elevation domain at a
given point in time. In other words, the perspective of two dimensional data is typically
considered to be still/static in nature. Radar data, on the other hand, is typically a perspec-
tive of a range/distance and relative angle or of an inferred horizontal plane. Additionally,
radar data in this domain is also typically collected on moving/dynamic objects. This
domain-alignment issue, between camera and radar data, ultimately poses as a challenge
around the correlation of static objects present in vision data with moving objects present
in the radar data.

The second major challenge identified is also a correlation problem by nature,
presenting itself when operating in an environment where multiple objects are simulta-
neously present and/or moving in the field of view. This scenario ultimately surfaces
the challenge of correctly associating multiple objects in the vision data with the same
objects in the radar data.

2.1.2. Proposed Approach

This section depicts the proposed solution methodology to the previously discussed
problem space. The methodology proposed in this paper should be interpreted as a
framework that can be applied to a given camera classification model so that radar can
achieve an ideally equally performing standalone classification network.

The proposed approach can be conceptually considered in the following three stages:

• Data collection.
• Correlation and labeling.
• Radar training.

Figure 1 illustrates the generalized processing chain that is involved throughout the
aforementioned three high-level stages. The data collection stage is an abstraction in
the framework that is responsible for collecting data independently from the radar and
camera. The data collected from each of the different sensors is then under-taken through
the appropriate pre-processing and normalization methods depending on the particular
application that this framework is being applied to. The desired output state, for the radar
data, is a sequence of radar data frames across the time domain. At this stage, the camera
data should be in a state that is consumable by the camera classifier network that is being
applied to train the radar with.

After successful data collection and the appropriate transformations, the pre-processed
camera data should then be applied to the camera classifier that is being implemented
to train the radar. The expectation of the camera classifier is to perform the respective
classifications against the camera data so that a sequence of camera frames with labeled
classifications can be obtained. The domain in which these camera frames are obtained can
be considered abstract for the definition of this methodology as this is dependent on the
particular application.
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Figure 1. Processing chain for the proposed radar training with camera labeling and
supervision methodology.

An important part of the proposed methodology is the correlation approach to syn-
chronize the camera and radar data. The time associated with the sample taken for the
camera data is used as a reference so that the radar data can be extrapolated in order to
synchronize with time relative to the camera. Figure 2 demonstrates the time bias that is
present between the radar and camera samples.
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Figure 2. Radar and camera time-alignment bias.

Assuming two consecutive radar time stamps are expressed as Sr(n− 2) and Sr(n− 1),
the next sample predicted by the radar can be expressed as S f (n). Using the position and
velocity components of the radar data, Sr(n− 1) and S f (n) can be linearly interpolated
to estimate the radar sample at the correlating camera data point Se(n). This process
ultimately satisfies Equation (1).

k =
∆Se(n)

∆t
(1)

Once both radar and camera data has been correlated using the above approach, a
labeled set of radar frames can be formed based on the correlation that was achieved. The
labeled set of frames Fl(n) can then be subjected to training for classification of the desired
feature sets encoded in the radar and camera data.

The classification network applied to the labeled radar data can be an abstracted
problem in the context of the framework proposed in this paper. The proposed approach
ultimately abstracts the design challenges associated with fusing and labeling the radar
data with camera classifiers. As a result, a generic model can be applied and trained against
the labeled radar frames, based on the original camera classification network that was
selected. The next section of this paper demonstrates a practical implementation of the
generalized methodology illustrated.

2.2. System Design and Implementation

This section demonstrates an implementation of the labeling and supervision
framework presented in the previous section. As mentioned in Section 2.1, the frame-
work provides a means to training radar using labeled camera frames. As such, the
design and implementation discussed in this section demonstrates the framework’s
suitability by applying it to train a mmWave tracking system to classify human move-
ment patterns.

Figure 3 illustrates the overall system design that implements the framework that is
discussed in Section 2.1 and illustrated in Figure 1. The system design presented contains
three high-level processing pipelines:

• Radar Pipeline.
• Camera Pipeline.
• Fused Pipeline.

The remainder of this section will continue to break down the system design with
respect to each of the pipelines illustrated in Figure 3.
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Figure 3. Radar-tracking system design with a human-movement-pattern classifier trained with
camera-labeled frames.

2.2.1. Radar Pipeline

The radar pipeline is associated with the processing required to prepare the radar data
for fusion with the camera frames. As seen in Figure 3, it is expected that the radar pipeline
can achieve object detection and tracking. Figure 4 further extends the high-level aspects of
the radar pipeline presented in Figure 3.

Figure 4. Radar-processing pipeline design.
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The radar-processing pipeline has been broken down into four different sub-modules.
The Radar Data Collection module is responsible for collecting the raw analog-to-digital
converter (ADC) data from the radar. The ADC used was the integrated ADC on the
Texas Instruments IWR6843 mmWave radar, configured to operate at a resolution of 16 bits.
The ADC was set to sample at 10 mega-samples per second (Msps), collecting a total of
256 samples per chirp cycle. The raw radar data is then processed to perform two fast
Fourier transformations (FFT), the range FFT followed by the Doppler FFT. These transfor-
mations are necessary so that the respective range-Doppler heatmaps can be generated for
each radar frame. An example range-Doppler heatmap can be seen in Figure 5.

Figure 5. Generated radar range-Doppler heatmap example.

The second module of the radar-processing pipeline is the Constant False Alarm Rate
(CFAR) stage, which is ultimately responsible for implementing a CFAR filter for performing
object detection on the range-Doppler heatmaps. It is important to note the decision to
operate with range-Doppler heatmaps as this decision was made primarily for the later
radar classifications that will be discussed.

Following the object detection in the range-Doppler heatmaps, the data is further pro-
cessed to be illustrated as point-cloud data so that traditional radar point cloud clustering
and tracking can take place using density-based spatial clustering of applications with
noise (DBSCAN) and a Kalman filter. The radar hardware architecture used in this system
was a Texas Instruments IWR6843 mmWave radar with a DCA1000EVM for capturing the
raw ADC data of the radar.

2.2.2. Camera Pipeline

The camera pipeline is responsible for preparing and labeling the camera frames for
fusion with the radar range-Doppler heatmaps. The data that is recorded from the camera
must first be processed for object detection and each object coordinate that is mapped in
the field of view. Following this, the appropriate movement classifications can be made
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and associated with objects in the field of view of the camera. Figure 6 illustrates a granular
perspective of the stages involved in the camera processing pipeline.

Figure 6. Camera processing pipeline design.

As illustrated in Figure 6, object detection is the first task that is performed in the
camera processing pipeline. In order to realize camera object detection, a Faster Region-
Based Convolutional Neural Network (Faster R-CNN) is implemented. The structure
implemented can be seen in Figure 7 and is based on the research presented in [22].

Figure 7. Faster R-CNN model design as used for camera object detection.

The generalized loss function adopted for camera object detection follows the multi-
task loss in Fast R-CNN [23]. The loss equation is expressed as follows:
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L({pi}, {ti}) =
1

Ncls
∑

i
Lcls(pi, p∗i ) (2)

+λ
1

Nreg
∑

i
p∗i Lreg(ti, t∗i ) (3)

where i refers to the index of an anchor (noting the definition of an anchor as per [22]), pi is
the predicted probability of anchor i being a detected object, p∗i is the ground truth label for
the given anchor i (derived as per Equation (4)), ti is the coordinate vector associated with
the bounding box of the predicted anchor i, and t∗i is the ground truth of the bounding box
coordinate vector associated with anchor i that is an object.

The ground truth label p∗i , for a given anchor i, is binary in value and follows the
below expression:

p∗i =

{
1, anchor i is positive
0, otherwise

(4)

Furthermore, the terms Lcls and Lreg refer to the loss functions for the classifier and
regressor, respectively, illustrated in Figure 7. Ncls and Nreg are the normalization of these
two terms. The loss function used for the classifier is as follows:

Lcls(pi, p∗i ) = −
1
N

N

∑
i

pi log(pi) + (1− pi) log(1− pi) (5)

The loss function used for the regressor is as follows:

Lreg(ti, t∗i ) = smoothL1(ti, t∗i ) (6)

where the smoothL1 function is defined as per [23].
After object detection has been performed, the classification model is then applied to

the cropped detected objects. The purpose of the classification model in this implementation
is to:

• Formulate a 2D skeleton for each detected object in the field of view.
• Classify the human activity that is occurring using the 2D skeleton.

In order to achieve this, each of the detected objects is run through AlphaPose [24] to
generate the respective 2D skeleton for the detected object. The result of the AlphaPose
system is then passed as an image to a CNN that has been pre-trained to classify poses that
are associated with:

• Walking.
• Running.
• Falling.

The pre-trained model is ensured to have an accuracy greater than 92%. The accuracy
of this classifier network is important, as it will ultimately be built into the mmWave
classification network during the fusion pipeline. In parallel with the classification of the
detected objects, their location in the field of view is also jointly estimated using camera
calibration. This ultimately results in each detected object j having a respective given
coordinate (Xjk, Yjk) for each camera frame k, where X is used to denote the horizontal
coordinate and Y is used to represent the estimated range of the object (as opposed to
height). Finally, a Kalman filter is applied to more accurately predict the detected object’s
true location whilst being tracked in the field of view.

2.2.3. Fused Pipeline

The fusion pipeline is then finally responsible for associating the tracked objects in the
radar domain with the tracked and classified objects in the camera domain. As mentioned
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in Section 2.1 of this paper, before fusing the two domains, a time bias between the domain
samples needs to be accommodated. In our implementation, this is achieved by granulating
the radar samples so that positional estimates are calculated between radar samples. These
positional estimates are deduced so that they correspond with the sampling rate of the
camera system.

The association and correlation of the detected objects is then made so that the tracked
objects in the camera domain can be related to the tracked objects in the radar domain.
This correlation is made using the deltas of the velocity and acceleration between the
respective predicted locations of the camera and radar tracking algorithms. For both
the camera and radar, the displacement vector is used for correlation using Pearson’s
Correlation Coefficient. This approach consequently removes any detected objects that
are not commonly identified across domains, ultimately taking care of the scenario where
one sensor picks up an object that the other does not. The displacement vectors, for both
camera and radar, are expressed in Equations (7) and (8), respectively.

~CPl = [cpn − cpn−1, cpn−1 − cpn−2, · · · , cp2 − cp1] (7)

~RPm = [rpn − rpn−1, rpn−1 − rpn−2, · · · , rp2 − rp1] (8)

where ~CPl and ~RPm are the displacement vectors for the camera and radar, respectively,
each for a given camera detected object l and radar-detected object m. For the given detected
object, the delta between all camera positional estimates cp in a sliding sample window n is
calculated. The same is applied to the given detected radar object and its radar positional
estimates rp in the sliding sample window n.

Using the displacement vectors for camera and radar in Equations (7) and (8), the
Pearson Correlation Coefficient is calculated for each pair of detected objects in both the
camera and radar domains as seen in Equation (9).

rlm =
n ∑ ~CPl ~RPm − (∑ ~CPl)(∑ ~RPm)√

[n ∑ ~CP
2
l − (∑ ~CPl)2][n ∑ ~RP

2
m − (∑ ~RPm)2]

(9)

where r is computed for all combinations of l and m. The absolute Pearson Correlation
Coefficient |rlm| is taken, and the maximal l and m combination is deemed to be the correctly
correlated pair.

After correlation of the radar and camera domains, we ultimately have a labeled
dataset that we can use to train a model for classification in the radar domain. The structure
of the model used for classification of the radar data is a CNN with the input shape
pertaining to clustered point-cloud data for a single detected object.

3. Results

The system described in Section 2.2 was experimentally tested in varying environ-
mental conditions to prove its performance. The first task was to collect the necessary
dataset that can be used to train the radar. The dataset compiled needs to jointly have
both camera and radar samples so that the respective data fusion can take place. This
cannot be collected independently.

A dataset containing 1000 images was collected across four different sessions, where
each session had a different external environment. Two of the sessions were recorded
indoors, and the other two were in an outdoor setting. In all recorded sessions, we ensured
that we recorded situations that included:

• No targets in the field of view.
• A single target in the field of view.
• Multiple targets in the field of view.

Additionally, the four types of activities were distributed along the 1000 images as
per Table 3. The frequency in which these activities took place is not a factor of the 1000
images taken. This is due to the fact that one or more activities could be present several
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times in a single image. This is a result of the potential for multiple objects to be detected
and independently processed in a single frame.

Table 3. Distribution of activities in the recorded dataset.

Activity Distribution

Running 26.69%

Walking 25.02%

Falling 23.34%

Unknown 24.95%

The total dataset and inner classifications were equally shuffled to prevent a bias of
randomization between classification types. The shuffled dataset was then divided into
training, validation, and testing subsets. The first 60% of the equally randomized recorded
dataset was reserved exclusively for the training of the camera classifier and, subsequently,
the radar classifier. The next 20% was then used for validation of the trained models,
allowing us to further refine the classifiers using the validation dataset. Lastly, once the
best performance was obtained, the classifiers were tested against the final reserved 20% of
the dataset.

The accuracy results of our final trained radar system are presented in Figure 8. The
camera-trained radar classifier is compared with the accuracy of the trained standalone
camera system and the manually labeled radar classifier in varying environmental setups.
To clarify, each of the aforementioned systems is further described as:

• Camera-Trained Radar Classifier: A radar classifier trained using camera-labeled
data via the framework proposed in this paper.

• Trained Standalone Camera System: A camera classifier that is used to label the
frames for the camera trained standalone radar classifier.

• Manually Labeled Radar Classifier: A radar classifier, of the same design as the
camera trained standalone radar classifier that was trained using manually labeled
radar data.

In Figure 8, the radar classifier that was trained using camera-labeled data produced
an outcome similar—and, in some circumstances, more superior—to that of the standalone
camera classifier. In most “normal” scenarios, the radar classifier performed largely identi-
cal to the camera classifier. However, there are two environmental changes that should be
noted as outliers.

Figure 8. Camera-trained radar system accuracy in contrast to a trained standalone camera system.
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The first is objects that are distant. In the scenario where the camera-trained radar
classifier was attempted with targets at a distance greater than six meters, the accuracy of
the model was 7.66% less, compared to the camera classifier. On further analysis of the
results, it appears that this is likely due to the fact that the point-cloud data per cluster
(i.e., detected object) is much leaner compared with objects that are within 6 m of the radar.
The leaner point-cloud data results in a lack of distinguishing features between activities in
the radar domain. This challenge could potentially be overcome through some additional
design considerations with the chirp of the radar.

The second outlier that is worth noting is the experiment performed in an indoor room
with low levels of light. As expected, the camera-trained radar classifier was not impacted
by the lighting conditions and, as a result, demonstrates an accuracy that is 56.84% higher
than the standalone camera classifier in the same lighting conditions.

Given that the radar was trained using camera-labeled data, the best network we
could theoretically achieve with the radar is one that is of equal performance to the teacher
network (the standalone camera system). The exceptions to this are any sensor specific
characteristics that might inhibit the performance of a given sensor, such as ambient
lighting in the context of the camera. This particular regard was evident in the second
outlier identified, where the camera-trained radar network performed better than the
standalone camera network, simply due to ambient lighting.

Whilst acknowledging the aforementioned outliers, it is evident that the camera-
trained radar system performed with a high degree of similarity to the standalone camera
system. The trained similarity between the two systems is summarized in Table 4, where
a ↓ implies an inferior similarity and an ↑ implies a superior similarity, with respect to
the trained radar system. The high degree of similarity between the teacher network (the
standalone camera system) and the student network (the camera-trained radar system)
demonstrates the suitability of the proposed generalized framework toward training a
radar model with camera-labeled data.

Table 4. Accuracy similarity between the standalone camera system and camera-trained radar system.

Environment Trained Similarity

Normal lighting indoors 97.69% ↓

Outdoors with distant objects 92.34% ↓

Outdoors with near objects 99.55% ↑

Low level lighting indoors 43.16% ↑

In order to better understand the theoretical potential of the radar classifier, the camera-
trained radar classifier was compared against a manually labeled radar classifier. The
purpose of this comparison scheme was to demonstrate the potential of the implemented
radar classifier. The significance of this experiment is to, first, highlight the capability that
could potentially be expected with the design of the radar classifier and, secondly, to gain
an understanding of the pre-encoded errors that the camera-trained radar classifier incurs
as a result of labeling errors in the camera domain.

Figure 9 illustrates the accuracy of the manually labeled trained radar system in
contrast to the camera-trained radar system. Figure 9 highlights the theoretical potential that
the radar classifier can achieve when trained with a manually labeled dataset. Assuming
that the manually labeled dataset is not incorrectly labeled, it is expected that training
the radar system with a manually labeled dataset will yield higher results than a camera-
trained radar system. This is ultimately due to the fact that a camera-trained radar classifier
will incur labeling errors associated with the camera classifier.
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Figure 9. The manually labeled trained radar system accuracy in contrast to the camera-trained
radar system.

This hypothesis is ultimately supported by the results presented in Figure 9. It can
be seen that the camera-trained radar system does not meet the same performance as the
manually labeled radar system. Despite the theoretical potential of the radar classifier,
the performance of the camera-trained radar system implemented using the proposed
framework was, on average, 96.52% as good as the camera classifier, as seen in Table 4,
when negating the outperforming low-level lighting environment.

4. Conclusions

The research presented in this paper demonstrated a framework for developing a
classifier for mmWave radars using a camera as a teacher for the mmWave radar student
network. The example implementation, presented in Section 2.2, showed how the frame-
work can be implemented to achieve a radar classifier that is as accurate as the teacher
camera classifier. This performance was demonstrated without compromising the beneficial
characteristics of the radar, such as the non-sensitivity to illumination.

The proposed camera-trained method achieved a level of performance that ap-
proached the manually labeled radar system, particularly in cases where the camera
could generate accurate recognition performance. Hence, using the proposed framework
can provide a significant decrease in the amount of manual labeling needed for radar
data. The performance of the camera-trained method was degraded where camera’s
recognition was limited. This was specifically seen in the results presented for the “Out-
doors with distant objects” environment. In order to further the research presented in
this paper, additional camera-based labeling networks should be analyzed, through the
methodology presented in Section 2.1, for their ability to train an equally performing
radar network.

Furthermore, it would be of interest in future research to conduct radar classifier
design optimizations and compare the network performance across a variety of different
radar hardware. Performing such an experiment will allow us to better understand the
impact of intrinsic radar characteristics, such as the ADC sampling rate and maximum
resolution, on the generalized performance of the proposed framework.

The framework presented in Section 2.1 should be considered as a foundation to
designing mmWave classifiers. Adopting the framework presented in this paper can
help researchers to alleviate the burden associated with the labeling of mmWave data.
This labeling challenge usually results in researchers under-collecting an adequate set
of training data to design an mmWave classifier. In this scenario, due to the limited
training dataset collected, the classification network being designed may not reach its
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full potential, simply as a result of being deprived of training data. Hence, the framework
that we present may assist future research by providing a model that researchers can
follow to remove the need for the manual labeling of data when designing a classifier
for mmWave radar.
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The following abbreviations are used in this manuscript:

ADC Analog-to-Digital Converter
ANN Artificial Neural Network
CFAR Constant False Alarm Rate
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FMCW Frequency-Modulated Continuous-Wave
mmWave Millimeter Wave
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