
RobotAssist - a Platform for Human Robot Interaction Research

Nathan Kirchner1, Alen Alempijevic1,
Sonja Caraian1, Robert Fitch2, Daniel Hordern1, Gibson Hu1, Gavin Paul1

David Richards1, Surya P. N. Singh2 and Stephen Webb1

ARC Centre of Excellence for Autonomous Systems
1Mechatronics and Intelligent Systems Group

University of Technology, Sydney, NSW Australia
{n.kirchner, a.alempijevic, s.caraian, d.hordern, g.hu, g.paul, d.richards, s.webb}@cas.edu.au

2Australian Centre for Field Robotics (ACFR)
University of Sydney, NSW Australia

{rfitch, spns}@acfr.usyd.edu.au

Abstract

This paper presents RobotAssist, a robotic
platform designed for use in human robot
interaction research and for entry into
Robocup@Home competition. The core au-
tonomy of the system is implemented as a
component based software framework that
allows for integration of operating system
independent components, is designed to be
expandable and integrates several layers of
reasoning. The approaches taken to de-
velop the core capabilities of the platform
are described, namely: path planning in a
social context, Simultaneous Localisation and
Mapping (SLAM), human cue sensing and
perception, manipulatable object detection
and manipulation.

1 Introduction

The RobotAssist team consists of researchers from the
Australian Research Council Centre of Excellence for
Autonomous Systems (CAS) which is a collaboration
between the University of New South Wales, Univer-
sity of Sydney, and University of Technology, Sydney.
The centre has the overall goal to understand and de-
velop the fundamental robotics science enabling perva-
sive and ubiquitous application of autonomous systems
in broad areas of society. CAS researchers have par-
ticipated in the RoboCup Rescue and RoboCup Four-
Legged and Standard Platform leagues since 1999. The
RoboCup@Home league was formed with the aim of
motivating and supporting the development of tech-
nologies that will enable service and assistive robots
to become ubiquitous in society. The RoboCup@Home
league (http://www.ai.rug.nl/robocupathome/, cur-
rently the largest international annual competition
for autonomous service robots, uses a realistic non-
standardised home environment setting as the arena in
which to evaluate robots’ capabilities and performance

against a set of benchmark tests. The underlying do-
mains tested include: Human Robot Interaction (HRI)
and cooperation, navigation and mapping in dynamic
environments, computer vision and object recognition
under natural lighting conditions, object manipulation,
adaptive behaviours, behaviour integration and system
integration.

Domestic assistive robots are intended to work along-
side humans as aids. One of the research challenges is
how to combine autonomous operation with advanced
human robot interaction [Plger et al., 2008] [Stuck-
ler and Behnke, 2009] [Kawamura and Iskarous, 1994]
[Kawamura et al., 1996]. In 2010 CAS developed a
platform for HRI research (known as the RobotAssist
Platform) and a series of algorithms for human-robot
interaction. These were showcased during that year’s
RoboCup@Home league. At its core, such a robot needs
a sufficient understanding of the world in which it ex-
ists in order to facilitate deliberate and successful robot-
world interactions. The RobotAssist Platform builds
on the navigation, object recognition and planning ca-
pabilities we developed as part of our previous efforts
in rescue and standard platform leagues [Sheh et al.,
2009] and on the outcomes of our recent research on
the modes of interaction and communication between
humans and robots, identifying moving and stationary
humans, methods to improve the perception of human
behaviour, participating safely in environments that are
shared with humans and morphologies that involve close
physical cooperation between humans and robots, such
as shared handling and manipulation of objects.

This paper presents a component based framework
that allows for integration of operating system indepen-
dent components, which is designed to be expandable
and integrates several layers of reasoning, and the ap-
proaches taken to develop the core capabilities of the
platform. The breakdown of this paper is as follows: Sec-
tion 2 and 3 details the system hardware and software
infrastructure respectively. Section 4 describes our ap-
proach to path planning in a social context while our sys-



Figure 1: The RobotAssist Platform

tem’s Simultaneous Localisation and Mapping (SLAM)
component is discussed in Section 5. Section 6 details
our approach to human cue sensing and perception. Fol-
lowing this, Section 7 focuses on our work in manipu-
latable object detection and manipulation. Conclusions
and future work are discussed in Section 8.

2 Hardware

The RobotAssist platform, depicted in Fig. 1, is built
from readily available hardware and open source soft-
ware for ease of replication by other robotics groups. The
design choices during the development of the physical
platform where guided by the over-arching capabilities
that were deemed essential. Specifically, the platform
hardware was selected so that robot would be capable
of: mobility in typical office/home environments (cor-
ridors, doorways, flat surfaces, soft inclines, etc.), ma-
nipulation of typical objects (cups, bottles/cans, etc.)
and providing rich multi-modal sensing. A small sensor
footprint was essential, for weight and space constraints.
The following sub-sections detail the hardware devices
that constitute the RobotAssist platform and selection
rationale for each.

2.1 Actuation

In order the physically operate in and/or interact with
the world the platform needs actuation capabilities.
In particular, the capabilities of mobility, manipula-
tion and active sensing. For mobility we selected the
well developed and mature Segway RMP100 (http:
//rmp.segway.com/rmp-100/)for its: footprint, differ-
ential steering (enabling rotation on the spot), payload
capabilities, stability (with optional casters fitted), drive
speed, interface (CAN) and its API.
For manipulation we again opted to use a well

developed and mature device, an Exact Dynamics iArm
(http://www.exactdynamics.nl/site/?page=iarm).
The iArm was selected for its: of freedom (6DOF),
kinematic structure (anthropomorphic), its payload-
compliance ratio (the arm is specifically designed to be
used in human machine interaction), interface (CAN)
and its API.
Finally, the chest sensor mount of the RobotAssist

platform is articulated (1DOF - tilt) by a single Dy-
namixel RX-28 servo and the head (2DOF - pan+tilt)
by two Dynamixel RX-28 servos. The intention is to al-
low the sensor package to be moved quasi-independently
from the platform in order to facilitate active sensing.
The Dynamixels were selected for the torque rating and
interface (RS485).

2.2 Sensors

As is evident in Fig. 1, the RobotAssist platform is
instrumented with a number of sensors: two Laser
Rangefinders Hokuyo UTM-30LX, Point Grey Dragon-
fly2 Camera, xSens MTi Inertial Measurement Units
(IMU), SwissRanger SR4000 3D ToF Depth Cam-
era, two Rode NTG-2 Directional Microphones and a
Plantronics CS60 USB wireless headset GN9330.
The Hokuyo UTM-30LX is used as the primary map-

ping sensor and was selected primarily for its range
(30m) which is necessary for the targeted environments.
In addition the small footprint (approximately 100mm
x 100mm) and scan rate (40Hz) enable us to use the
UTM-30LX in two manners: 1) tilted down at 45◦ in
order to detected table tops during mapping (table legs
are often thin and reflective) and, 2) as a sweeping laser
(tilting in discrete increments and taking a scan at each)
in order to produce a dense 3D point cloud for use in
scene interpretation.
The Point Grey Dragonfly 2 Camera is used primarily

for face and object recognition tasks (using Haar, SURF,
SIFT, etc.). This camera was selected for its sufficient
resolution (greater than 640 by 480 @15Hz) and foot-
print (approximately 30mm x 80mm).
The xSens MTi IMU is used to determine changes in

yaw (odometery errors during yaw are typically signifi-
cant with the Segway) during locomotion, required by



both the mapping and localisation components. The
xSens MTi IMU was selected for the footprint (approx-
imately 30mm x 60mm) and proven performance on a
number of previous platforms [Sheh et al., 2009].
The SwissRange SR4000 produces high frequency

(5Hz) 3D point cloud scene representations as well as
an intensity image. The SR4000 was selected due to its:
scan rate (5Hz), field of view (176 x 144 pixels) and range
(approximately 6m).
Finally, the Rode NTG-2 Directional Microphones and

a Plantronics CS60 USB wireless headset GN9330, both
used to acquire audio streams from the world, were both
selected for their limited and well defined sensitivity re-
gions. There is a considerable amount of ambient noise
in real-world environments, thus a directed sensing ap-
proach to capturing audio is desirable.

3 Software Infrastructure

Future intelligent systems will need to be goal directed
and adaptive, able to program themselves automatically
by sensing and acting, and be able to accumulate knowl-
edge over their lifetime. Thus, our research goal is
to develop general purpose intelligent systems that can
learn and be taught to perform many different tasks au-
tonomously by interacting with their environment.
Drawing from our previous experience in large scale

systems design [Upcroft et al., 2007], our software is
built using a Component-Based Software Engineering
(CBSE) paradigm. This approach offers modularity,
software reuse, and flexibility in deployment applied to
a robotic application. CBSE means that algorithms for
perception, navigation and mapping are available as a
set of components. Components run asynchronously
and exchange information through communication. We
use ZeroCs Ice middleware (http://www.zeroc.com) ex-
tensively in our system for component interface defini-
tion, inter-component communication, component de-
ployment, location, activation services, etc. The multi
OS and multi programming language support of Ice was
crucial for the development of the robotic system, en-
abling rapid prototyping in MATLAB environments.
We use Orca (http://orca-robotics.sourceforge.

net/), an open source project that customises Ice to
robotic applications and provides an online repository
of reusable components. Thus the total number of com-
ponents that comprise our current system is less than
twenty.
In addition we utilise a Black Board system architec-

ture (Mica) for storing any asynchronous information
conveyed through human cues [Kadous and Sammut,
2004]. Specifically, a Mob (the primary data structure
used in Mica) is constructed describing the cue. The
Mob is then sent over TCP/IP to the Mica server, where
it is broadcasted to all subscribed components. This ar-

chitecture allows the system to have some form of con-
tinual awareness.
We use four layers of abstraction to reduce the com-

plexity of the problem; a Command layer and three lay-
ers of reasoning: Interaction, Planning and Actuation as
per Fig. 2.

3.1 Command Layer

The Command Layer interacts with the user via a num-
ber of input sensors and processed sensory outputs.
This layer implements software modules that are able to
recognise when a command has been issued to the robot,
distinguishes between speakers by comparing aspects of
their voices, and estimate the location of each speaker
relative to the robot. Sound signals are processed to re-
duce the levels of extraneous background noise and iso-
late the spoken commands of each speaker. In addition
to microphones a 3D camera (SwissRanger) is used to
acquire information on the immediate environment. In-
formation from the SwissRanger is used to sense when
a person is oriented towards the robot and estimate the
three dimensional position, direction and movement of a
speaker’s hands. The sensor information is processed to
determine the presence or absence of compound move-
ments, such as gestures indicating that the robot is to
follow the speaker, or whether a person is waving to try
to issue a command to the robot. Using the auditory in-
put together with user gestures and body language, ex-
tracted likelihood estimates are generated for each com-
mand within the command list and passed on to the
interactive layer.

Figure 2: Layers of Reasoning



3.2 Interactive Layer

The Interactive layer uses the contextual information
about the world state as well as the internal state of the
system when interpreting user commands. This layer
involves interpreting multiple, and perhaps conflicting,
command inputs in context (robot location, human loca-
tion, object location, etc.) and decision making (What
is being requested? How should it be completed? Is
it feasible?). The outputs of the Command Layer are
parsed and grouped to estimate their meaning though
Mica/Framescript [Kadous and Sammut, 2004]. This
layer determines that a person is attempting to issue a
command by evaluating the estimates from a predefined
list of possible commands encoded in Framescript. A re-
quest to confirm the chosen command is performed be-
fore the component writes data to the Mica Blackboard
as a Task to be acted on by the Behavioural layer. The
use of MICA/Framescript provides for a rich conversa-
tional interaction between human and robot.

3.3 Behavioural Layer

High level robotic languages overcome numerous defi-
ciencies of traditional programming languages in the con-
text of complex robotics problems [Wobcke et al., 1998].
These provide a layer of abstraction that allows for a va-
riety of programming styles from deliberative constructs
that resort to AI planning in order to achieve user goals,
through to scripted behaviours when time critical tasks
need to be completed. The Behavioural layer employs a
high level programming language based on a variant of
GOLOG on STRIPS (Stanford Research Institute Prob-
lem Solver) [Fikes and Nilsson, 1971]. This component
allows for scripted interactions where the required course
of action is clear a priori and for deliberative planning
where the course of action needs to be considered and
elaborated upon or when feedback from the environment
is particularly noisy. In this way we satisfy goals using
actions that are available by decomposing the task into a
series of atomic primitive actions. These series of actions
are then supplied to the Control and Perception Layer
for execution.

3.4 Control and Robot Perception Layer

The robot needs some understanding of the world in
which it is to interact; this layer focuses on deriving
such an understanding as well as enacting the supplied
actions. Specifically, this component covers building an
understanding of the world; (a) environment represen-
tation geometry and structure and schematic labelling
(kitchen, lounge, etc.), (b) self localisation of the robot
in the world (robot base pose, and the arm configura-
tion), (c) location of any humans in the world (pose,
heading), (d) objects in the environment (location, size,
weight and best grasping position). This layer also ad-

dresses actuation; path planning, platform drive control,
manipulation methodologies and algorithms required to
enact a command once it is understood.

4 Path Planning in a Social Context

Our vision for the path planning component of the sys-
tem is to produce motions that integrate naturally into
a human domestic environment. A simple way to opera-
tionalize this concept is to attempt to mimic human loco-
motion trajectories. Recent studies in analysing human
locomotion suggest that to move in a human-like man-
ner, a robot should follow paths with minimal change
in curvature so as to minimise jerk [Arechavaleta et al.,
2008; Todorov and Jordan, 1998]. Therefore, although
the platform has the capability to execute turns with
zero linear velocity, we wish to avoid this behaviour.
We model the robot as a non-holonomic, car-like system
and use a planner that preferentially seeks to minimise
change in curvature. In this section, we summarise the
algorithm used for planning and discuss its implementa-
tion, including a simple error recovery strategy.

4.1 Motion Planning

The algorithm used for motion planning is the well-
known Latombe Grid-Search algorithm [Barraquand and
Latombe, 1993; Latombe, 1991; C. et al., 2005]. Its name
unfortunately seems to imply a discrete search space, but
in fact the algorithm does search and represent points in
configuration space in continuous coordinates. For con-
venience, we summarise Latombe’s algorithm here.
The robot is modelled as a disc, and controlled by

linear and angular velocity commands. Obstacles in
the world are represented as a 2D discrete traversabil-
ity map. The planner accepts a start position and goal
position in global coordinates and returns a trajectory
represented as a sequence of velocity commands. Each
velocity command has an associated time interval. The
returned trajectory can thus be executed directly.
The planner builds a search tree in configuration

space. Its basic operation is to expand a search node
by applying a given velocity command for a fixed time
interval. The resulting configuration is computed via for-
ward integration. A fixed set of commands is available
for expansion. The planner operates by choosing a node
from the tree, expanding it, and adding child nodes to
the tree. The leaves of the tree (nodes that have not
yet been expanded) are stored in a priority queue. Af-
ter expansion, a node is removed from the queue. If
a node chosen for expansion is too ‘close’ to another
node in the tree, it is pruned. If the chosen node is
close to the goal, the algorithm terminates and returns
the root-to-leaf path. Proximity is determined using an
occupancy grid data structure that discretises the con-
figuration space (<2 × S1) into cells of uniform size. A



node is considered close to another node if it falls within
the same grid cell. Note that continuous coordinates are
maintained; the discretisation is used only for efficiently
computing proximity. Therefore, the resolution of the
grid determines the density of the search tree.

The planner is complete with respect to the resolution
of its proximity grid and the time interval of the path
set [Barraquand and Latombe, 1993]. In other words,
the planner is guaranteed to find a path as long as these
parameters are chosen sufficiently small. Because this
proof is not constructive, however, we do not have a
method for determining parameter values analytically.
We hand-tuned them empirically and found a reasonable
grid resolution of 0.2m×0.2m× π

8 rad and path set time
interval of 2 seconds. Our path set has angular velocities
chosen from {−π

4 ,− π
16 ,− π

32 , 0,
π
32 ,

π
16 ,

π
4 } and linear ve-

locities from {0.4m/s, 0.2m/s}. Our priority queue used
a cost function that combines minimum distance to goal
with minimum change in curvature.

Implementing this algorithm requires handling two
special cases. The planner moves the robot near the goal,
but an additional method is required to achieve a desired
distance tolerance. We implemented a PD controller for
this ‘end-game’ case. Secondly, we allow turning-in-place
only at the start position, when the robot is already sta-
tionary. To implement this, we add zero-linear-velocity
elements to the path set when expanding the root node.
The path is executed in open-loop fashion with fixed fre-
quency replanning. Because the robot is moving quite
slowly (under 0.35 m/s) we re-plan every 2 seconds (0.5
Hz).

4.2 Error Recovery

Our system is subject to uncertainty in control and sens-
ing. The result of sensing uncertainty is the presence of
errors in the traversability map. The result of control
uncertainty is that the robot’s actual trajectory differs
from its predicted trajectory. A source of this control un-
certainty is variation in mass distribution due to changes
in manipulator position or payload. Both of these factors
can lead to the robot moving closer to obstacles than de-
sired. The system must recover from both expected and
unexpected situations where it finds itself too close to an
obstacle.

The error detection and recovery problem is not the
focus of our current research, but to ensure a level of
safety and liveness we chose to implement a basic strat-
egy involving two components inspired by the state of the
art in autonomous systems [Urmson et al., 2008]. Our
goal was to avoid catastrophic failure where the plat-
form halts and does not attempt to recover. The first
component is a ‘panic’ system that continuously checks
raw range data. If an obstacle is too close, the system
reacts and stops the platform. The second component

attempts error recovery and rotates the robot in place
until a new plan is found by the planner. If the planner
continues to fail even with no obstacles immediately in
front of the robot, error recovery continues by command-
ing a small linear velocity. This random motion in free
space continues until a valid plan is available.

5 SLAM

Simultaneous localisation and mapping (SLAM) [?] is
the problem where a mobile robot needs to build a map
of its environments and simultaneously use the map to
locate itself. For RobotAssist, although it is operating in
a roughly known environment, some detailed position of
the obstacles (such as furniture) may not be available.
In the @home competition, each team is given limited
time to build the map either manually or autonomously.
We choose to build the map fully autonomously using
the laser sensors. One horizontal 2D laser mounted at
the bottom of the robot and one tilted 2D laser looking
at around 45◦ down/forward.

5.1 Pose-only SLAM from 2D laser

The 2D laser scan based map is built using only hori-
zontal laser scans. Here we adopt the popular pose-only
SLAM strategy where SLAM is divided up into two com-
ponents, front end and back end [?]. In front end SLAM,
the goal is to find relationships between robot poses. In
our model a robot pose corresponds to the time a laser
scan is taken. The relationship is calculated using It-
erative Closest Point (ICP) [?]. The algorithm is per-
formed on both consecutive scans as well as poses where
loop closure occurs. Since scanning can be done at 40Hz,
we need to become selective in choosing our scans. By
checking the odometery given by the wheel encoders, we
can set a threshold on how far the robot has moved or
rotated to determine when a robot pose should be added
to the map.

The most challenging part of this 2D SLAM is the
reliable detection of loop closure. One major problem
is that the two laser scans coming from different angles
cannot be matched easily even if they are scanning the
same environment. After extensive analysis and testing,
we decided to use a simple strategy to obtain loop clo-
sure information accurately and reliably. After finding
a point when potential loop closure could occur we de-
liberately ask the robot to perform a 360 degree turn on
the spot, this will make sure that at least a couple of
scans are generated from the similar position and will
guarantee that ICP will be able to get the correct rel-
ative poses. This method can be considered an active
SLAM implementation.

During back end SLAM for robot pose optimisation
we use a non-linear least squares approach [?]. Since



Figure 3: Pose-Only SLAM Map of CAS

the Jacobians involved are all sparse matrices, the op-
timisation problem can be transformed into the solving
of sparse linear equations, which can be performed effi-
ciently using sparse linear algebra. Here the C++ suite
sparse library is used. By optimising all our positions
and correlating the laser scans associated with these po-
sitions we can generate accurate occupancy grid maps.
The 2D SLAM algorithms has been tested extensively,

Fig. 3 is a map generated in this way for the CAS-UTS
area.

5.2 Obstacle detection using the top laser

Although the 2D horizontal laser can be used to generate
a good quality map, some obstacles such as tables may
not be detected (the horizontal laser can only detect the
legs of the table). Thus we use another laser looking
down/forward to help build a active traversable map.
The scans from this laser are translated onto a 2D plane
and correlated with an updated set of robot poses. By
fusing the the obstacles map with the SLAM map, a
traversable map is obtained Fig. 4.

6 Human Cues

Furthermore, we have developed algorithms for deter-
mining if the head/body position is oriented towards the
robot. Intensity images from the SwissRanger are used
for detecting the presence of a face while the range im-
age is used to determine the head pose, shown in Fig. 5.
Using this data with an anthropomorphic model we are
able to robustly detect the observed humans hands and,

through a priori gesture meaning knowledge, determine
the humans intention and/or decipher gestures, shown
in Fig. 6. Once the sensed data is interpreted and per-
ceived as human cue, the information is made available
to the system.

7 Manipulation

The capabilities of assistive robots, such as the Robo-
tAssist platform, can be greatly extended by incorporat-
ing an anthropomorphic manipulator. A manipulator
is a robotic actuator which can be controlled to per-
form tasks that include the grasping and manipulation
of objects/tools, and the safe transfer of objects between

Figure 4: Fused Traversable Map



Figure 6: Behavioural sequence where the human instantiates an interaction by waving while looking at the robot

Figure 5: Detecting the face and head pose

the robot and a human. The manipulator used on the
RobotAssist platform is the Exact Dynamics iArm6DOF
manipulator.

Manipulation tasks are challenging since they need to
be performed in close proximity with humans, through
complex, natural environments, which may be initially
unknown. Therefore, a mobile manipulator system must
have the following four integrated capabilities: sensing
and mapping of the surrounding environment which may
contain obstacles; detection of graspable objects; pose
selection to determine the joint configuration of the ma-
nipulator so that the end-effector of the manipulator (i.e.
the hand) can grasp the detected object; and collision-
free motion planning through the map to a selected pose
such that the manipulator can grasp the detected object.

7.1 Environment and Obstacle Detection

There are many techniques to generate a map of the
surface geometry for an environment. In the case of the
RobotAssist platform, two sensor-based methods have
been used. By slowly sweeping a 2D Hokuyo laser range
scanner, with a field-of-view of 270◦, through a desired
angle of rotation it is possible to generate a high reso-
lution point cloud map. An example map generated by
sweeping the laser ranger scanner is shown in Fig. 7.
The other alternative is to use the SwissRanger which

Figure 7: Sweeping the laser range scanner through 30◦

and the point cloud map (over 100k 3D points) that is
generated.

has a faster scan rate (10Hz) but has a narrower field-of-
view. In order to fuse the data from multiple scans into
a surface, an adaptive “distance field” map representa-
tion (volumetric technique) is used. Data fusion is based
on the technique proposed by [Curless and Levoy, 1996]

and improved by [Webb, 2008] for a real-time and online
implementation which is able to handle thin plates and
sharp features. The implementation includes a spatial
index over multiple signed distance fields implemented
as an octree of small 3D grids. This provides a sparse
representation to minimise memory usage and an index
for efficient updates. The output of the fusion process
is a mesh map where vertices (a point cloud) can be
rapidly queried for manipulator planning and collision
avoidance.

7.2 Object Detection

By using a combination of the SwissRanger and the cam-
era, which are both mounted on the head of RobotAssist,
it is possible to search for graspable objects in the envi-
ronment. The grasping primitives are used to describe
the size, position and orientation of a graspable object,
such that the end-effector of the manipulator can be ori-
entated correctly, and to ensure that the object can be
successful grasped. The first step of the object detec-
tion process is the object-background segmentation. To



achieve this, feature primitives are extracted from a cam-
era and geometric discriminators derived from 3D point
data generated by a SwissRanger depth camera. The
feature primitives are extracted from a modified SURF
implementation. Following this, orthogonal-axis planner
histograms and geometric discriminators enable target
objects to be robustly detected in, and segmented from,
cluttered environments. Fig. 8 shows RobotAssist per-
forming a search for a graspable object. Once identified
and isolated from the environment, the 3D point data
corresponding to the object is utilised to determine the
grasping primitives of the object.

7.3 Pose Selection

To successfully grasp an object, as shown in Fig. 9, a
manipulator pose that corresponds to an adequate grasp
primitive must be determined. An optimising pose se-
lection method has been found to be the most effective
way of combining the grasping task objectives, the colli-
sion avoidance checks, and the self-collision checks. The
developed approach uses an adaptation of the Pose Se-
lection using Levenberg-Marquardt (PSuLM) algorithm
[Webb, 2008] [Paul et al., 2009]. This generates a near
optimal solution by repeatedly applying the algorithm
to select a configuration that minimises a cost function.
Task constraint cost terms are devised to ensure that
the orientation and position of the end-effector will en-
able the object to be grasped. The cost function design
strategy can scale and normalise multiple task constraint
cost terms, a self-collision and joint-limit proximity cost
term, and an obstacle proximity cost term to create a
composite function suitable for use in non-linear optimi-
sation. PSuLM provides a path in configuration space
so the inverse kinematics problem does not need to be
solved.

7.4 Motion Planning

Finally, in order to move from the current manipula-
tor pose to the desired pose, motion planning for the
manipulator is required. Since an assistive mobile ma-
nipulator platform is expected to be working in close

a) b)

Figure 8: a) RobotAssist platform searching for gras-
pable objects. b) A single SwissRanger scan with the
graspable object (i.e. a can) detected and highlighted.

Figure 9: The model of the manipulator that is used
for pose selection, and the model of the graspable object
which has been detected.

proximity to humans, safe motions are vital. In this im-
plementation, the environment is assumed to be static in
the instant between when a map is generated and when
a motion is planned then executed. A safe motion re-
quires the manipulator only passes through known free
space. That is, for any motion: the manipulator must
never be in collision with the known obstacles in the
map, it must not enter space which is unknown, and it
must not self collide with any part of the RobotAssist
platform. A modified bi-directional Rapidly-exploring
Random Tree (RRT) is applied to this part of the plan-
ning. The RRT modification involves projecting the ran-
domly sampled configurations onto a constraint satisfy-
ing sub-space. The Levenberg-Marquardt algorithm is
once again utilised to minimise a dynamically generated
cost function. The manipulator will thus be safely ma-
noeuvred to the pose where the object in the natural
environment can be grasped.

8 Field Testing

As previously mentioned, the RobotAssist platform was
entered in the RoboCup@Home league of the 2010
RoboCup in Singapore. As this was our inaugural entry
into the @Home league, the practical realities of the task
requirements of the competitions were not fully known or
appreciated a priori. In such, this experience proved to
be an excellent testing ground for the RobotAssist plat-
form: the Hardware, Software Infrastructure and Core
Capabilities - each of which will now be discussed in turn.



8.1 Hardware

In general the selected hardware preformed as expected,
observations of note were made during the competition.
For instance, even though we were able to successfully
autonomously navigate through the typical home envi-
ronment presented in the competition, there were signifi-
cant challenges to mobility (narrow passages, doorways,
clutter, etc.) that resulted in slow traversal (the plat-
form expended a significant amount of time adjusting the
RMP100’s bearing). It was observed that platforms with
fewer holonomic constraints were able to transverse the
arena in less time as those platforms did not expend com-
paratively large amounts of time adjusting their bearing.
Another interesting observation of note was that most

teams elected to use low DOF (2-4 DOF) manipulators
and utilise the 3DOFs of their platform base to facilitate
manipulation. In practice however, it seemed that those
teams spent a considerable amount of time adjusting the
base pose and sensing, and then re-adjusting and re-
sensing, prior to manipulation. Where as our platform,
with the the redundancy that the 6DOF arm introduces,
was able to manipulate objects with considerably higher
success and in considerably less time.
The 1-DOF articulated chest sensor mount proved to

be of little value as a sweeping laser (the time taken
was too costly) but when angled down was of consid-
erable use finding furniture (tables, chairs and the like)
during mapping. The head articulation also proved valu-
able for base-independent active sensing. As previously
mentioned, re-orientating the RMP-100 incurred a sig-
nificant time cost where as searching utilising the DOFs
of the head was comparatively cheap.

8.2 Software Infrastructure

The usefulness of our component based software in-
frastructure was evident during the preparation lead-
ing up to each of the competition tasks. For exam-
ple, our component based infrastructure allowed us to
continue fundamentally re-arranging the operation (the
high level planning) of the robot, based on observa-
tions/performance, up until moments before our trials
began. Furthermore, the concurrent-access for multi-
developers that our infrastructure provides proved to be
highly beneficial as it allowed multiple team members to
concurrently conduct on-line development and testing of
different system components/capabilities on the single
shared platform.

8.3 Core Capabilities

The following observations of note were made of the core
capabilities during the competition. In general the ap-
proach to path planning was successful, however, it was
evident that the completion time of navigation is a sig-
nificant contributor to the overall success of robots in

the competition. SLAM needs to be robust to frequent
occurrences of dynamic objects such as people, moving
furniture and other robots. Any algorithms designed to
be human ‘aware’ must be able to discriminate between
the target human and the audience or capable of robustly
tracking the target human. Finally, manipulation that
incorporates the platform’s base DOFs as non-redundant
DOFs suffer in environments with limited access.

9 Conclusions

This paper presented a component based framework.
The framework: enables integration of operating system
independent components, is designed to be expandable
and integrates several layers of reasoning. Further, this
paper outlined the approaches taken to develop the core
capabilities of the platform, namely: path planning in a
social context, Simultaneous Localisation and Mapping
(SLAM), human cue sensing and perception and manip-
ulatable object detection and manipulation.
As demonstrated through our experiences during field

testing (detailed in the previous section), our platform,
with its component based system infrastructure, proved
to be flexible, effective and supportive of multi-developer
concurrent-access.
Future work will focus on developing a wider set of

core capabilities and adapting the system architecture to
more effective facilitate run-time component debugging
and monitoring.

Acknowledgments

This work is supported by the Australian Research
Council (ARC) Centre of Excellence programme, funded
by the ARC and the New South Wales (NSW) State
Government, and by RobotAssist and the University of
Technology, Sydney.

References

[Arechavaleta et al., 2008] G. Arechavaleta, J.-P. Lau-
mond, H. Hicheur, and A. Berthoz. An Optimality
Principle Governing Human Walking. IEEE Trans.
on Robotics, 24(1):5 –14, feb. 2008.

[Barraquand and Latombe, 1993] J. Barraquand and
J. C. Latombe. Nonholonomic multibody mobile
robots: Controllability and motion planning in the
presence of obstacles. Algorithmica, 10:121–155, 1993.

[C. et al., 2005] Howie C., K. M. Lynch, S. Hutchin-
son, G. A. Kantor, Wolfram B., L. E. Kavraki, and
S. Thrun. Principles of Robot Motion: Theory, Algo-
rithms, and Implementations. MIT Press, Cambridge,
MA, June 2005.

[Curless and Levoy, 1996] B. Curless and M. Levoy. A
Volumetric Method for Building Complex Models



from Range Images. In Computer graphics proceed-
ings, annual conference series, volume 2006, pages
303–312, New Orleans, 1996. Association for Comput-
ing Machinery SIGGRAPH.

[Fikes and Nilsson, 1971] R. E. Fikes and N. J. Nilsson.
Strips: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2(3-
4):189–208, 1971.

[Kadous and Sammut, 2004] M. W. Kadous and
C. Sammut. Mica: Pervasive middleware for learn-
ing, sharing and talking. In Proc. IEEE PerCOM
Workshops, pages 176–180, 2004.

[Kawamura and Iskarous, 1994] K. Kawamura and
M. Iskarous. Trends in service robots for the disabled
and the elderly. volume 3, pages 1647 –1654 vol.3,
sep. 1994.

[Kawamura et al., 1996] K. Kawamura, R.T. Pack,
M. Bishay, and M. Iskarous. Design philosophy for
service robots. Robotics and Autonomous Systems,
18(1-2):109 – 116, 1996.

[Latombe, 1991] J.C. Latombe. Robot Motion Planning.
Kluwer Academic Publishers, 1991.

[Paul et al., 2009] G. Paul, N. Kirchner, D. K. Liu, and
G. Dissanayake. An Effective Exploration Approach
to Simultaneous Mapping and Surface Material-type
Identification of Complex 3D Environments. Journal
of Field Robotics, Special Issue on Three-Dimensional
Mapping, 26(11-12 SI):915–933, 2009.

[Plger et al., 2008] P.-G. Plger, K. Pervlz, C. Mies,
P. Eyerich, M. Brenner, and B. Nebel. The DESIRE
service robotics initiative. 2008.

[Sheh et al., 2009] R. K. Sheh, A. Milstein, M. J.
McGill, R. Salleh, B. Hengst, and C. Sammut. Semi-
Autonomous Robots for RoboCup Rescue. In Proc.
ACRA-09, pages 1–10, 2009.

[Stuckler and Behnke, 2009] J. Stuckler and S. Behnke.
Integrating indoor mobility, object manipulation, and
intuitive interaction for domestic service tasks. pages
506 –513, dec. 2009.

[Todorov and Jordan, 1998] E. Todorov and M. I. Jor-
dan. Smoothness Maximization Along a Predefined
Path Accurately Predicts the Speed Profiles of Com-
plex Arm Movements. J Neurophysiol, 80(2):696–714,
1998.

[Upcroft et al., 2007] B. Upcroft, A. Makarenko,
M. Moser, A. Alempijevic, A. Donikian, W. Uther,
and R. Fitch. Empirical Evaluation of an Au-
tonomous Vehicle in an Urban Environment. JACIC,
4(12):1086–1107, 2007.

[Urmson et al., 2008] C. Urmson, J. Anhalt, D. Bag-
nell, C. R. Baker, R. Bittner, M. N. Clark, J. M.

Dolan, D. Duggins, T. Galatali, C. Geyer, M. Git-
tleman, S. Harbaugh, M. Hebert, T. M. Howard,
S. Kolski, A. Kelly, M. Likhachev, M. McNaughton,
N. Miller, K. Peterson, B. Pilnick, R. Rajkumar,
P. E. Rybski, B. Salesky, Y. Seo, S. Singh, J. Snider,
A. Stentz, W. Whittaker, Z. Wolkowicki, J. Ziglar,
H. Bae, T. Brown, D. Demitrish, B. Litkouhi, J. Nick-
olaou, V. Sadekar, W. Zhang, J. Struble, M. Taylor,
M. Darms, and D. Ferguson. Autonomous Driving in
Urban Environments: Boss and the Urban Challenge.
J. Field Robotics, 25(8):425–466, 2008.

[Webb, 2008] S. S. Webb. Belief Driven Autonomous
Manipulator Pose Selection for Less Controlled Envi-
ronments. PhD thesis, University of New South Wales
Australia, 2008.

[Wobcke et al., 1998] W. Wobcke, M. Pagnucco, and C.i
Zhang. Agents and Multi-Agent Systems Formalisms,
Methodologies, and Applications, Based on the AI’97
Workshops on Commonsense Reasoning, Intelligent
Agents, and Distributed Artificial Intelligence. 1441,
1998.


	2010000405-paper
	2010000080-cover
	www.araa.asn.au
	Australian Robotics & Automation Association Inc.


	2010000080-foreword
	www.araa.asn.au
	Australian Robotics & Automation Association Inc.
	Australian Robotics & Automation Association Inc.
	Australian Robotics & Automation Association Inc.





