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Abstract

In an axial-flow pump unit with conventional stator and diffuser,
often considerable energy is still present in the swirl (rotation) of
the liquid leaving the stator. This energy will eventually be lost
from the pump system. In this experimental investigation a new
design, combining the stator and diffuser together into a single
component, was tested for its effectiveness in recovering this
energy and thereby improving the performance of an industry-
sized single-stage axial-flow pump unit, Measurements of static
pressure rise along the new stator-diftfuser and of the swirl angle
of the fluid leaving the pump uvnit indicate that the new design
performs better than the conventional one, as a component.
However, efficiency of the whole pump unit is in general slightly
reduced with the new design. A number of factors were identified
as contributing to this performance degradation. Most notable are
the poor matching of the fluid’s and vanes’ angles at the
component’s inlet and the sudden expansion of the flow
geometry at the component’s outlet. It is thus expected that when
these factors have been adequately addressed, the new design
should improve the pump’s overall performance.

Introduction

The putpose of this paper is to report on the performance of the
new stator-diffuser designed for the axial flow pump. The new
design- was assessed by comparing standard performance
characteristics of the conventional pump configuration with
available manufaciurer’s curves. During this standard pump
performance testing, measurements of tive residual swirl at the
outlet of the pump, as well as the hydraulic grade line (HGL)
along the pump, were taken in order to provide in-depth
information on the kinetic energy recovery process through each
of the pump components.

Firstly, a general description of the test rig will be given, along
with a comparison of the conventional stator and the new stafor-
diffuser. Discussion of the flow paths for each unit will be
followed by a description of the test methodology. Tt will be
shown that the quality of the impeller and stator blade finish has
a significant influence on the overall pump perfermance,

The new design will then be critically assessed based on results
obtained during performance testing and measurement of HGL
and residual swirl. Tt will be shown that the new design performs
better than the conventional one, as a component, even though
overall pump performance is reduced. Tssues with the new design
will be identified and ways of resolving them will be discussed.

In general it will be shown that the new stator-diffiser meets its
design objective.

Experimental Facllity and Methods

The experiments were conducted on a horizontal, closed-cireuit,
axial flow pump test rig located in the Hydraulics Laboratory at
the University of Technology, Sydney. The tested pump is an
industrial size (410mm pipe diameter), single stage unit, designed

by Mr Flugh Nelson [3] according to the work of OBrien and
Folsom [4] and originally manufactured in Australia by Ornel
Pumps. The pump was lested in two configurations: with
conventional stator and conical diffuser; and with the new stator-
diffuser. Both configurations were tested with 5 and 6 blade
impellers, whose blade foil sections and detailed geometry are
not included here for reasons of space, but are readily available
from the authors. Figure 1 shows diagrammatically the rig set up
with the conventional pump design and figure 2 shows a
photograph of this test rig.
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Figure 1. Laboratory test rig set up diageam.

Figure 2. Photograph of the laboratory test rig.

Water is conducted from the inlet pipe with no pre-swirl to the
impeller via the inlet guide vanes {note the straightener with PVC
tubes in figure I). In the conventional design, upon leaving the
impeller the flow enters the 8-vane stator which is supposed fo
restore the flow to the axial direction. The stator is followed by a
conical diffuser which reduces the velocity (kinelic energy) of the
moving fluid and at the same time increases its static pressure
(pressure energy) by increasing the cross-sectional area. In the
new design which is investigated in this paper, the stator and
diffuser are combined info a single unit as shown in figure 3.
Unlike the conventional design, the new stator-diffuser has a bell
shape.



Figure 3. Pump assembly with (at [cil) conventional stater and conical
diffuser and {at right) the new stator-diffuscr,

This new stator-diffuser was designed by Mr Hugh Nelson and
donated to the University by Orbit Pumps (current ntanufacturer
of the Ornel pumps) in 1999, The design was patented in 1982
by Mr Nelson, who deseribes in his patent documentation the
flow paths through the old and new designs of the stators.

In the conventional design of the stator, in the form of a straight
cylindrical bowl with eight vanes, flow enfering the stator is
redirected into the axial direction by the curved blades, The
trailing edge of the blades is positioned ncarly parallel to the
axial direction, and it guides the flow to the outlet of the stator.
Mr Nelson claims that this configuration unforfunately introduces
reverse flow between blades on the discharge side of the stator.
This internal recirculation contributes to cavitation [2, 3] and
swirling in the flow entering the diffuser, making the kinetic
energy recovery process less efficient,

The new stator-diffuser has a bell shaped bow! and hub with
eight vanes. The axis of the passage between adjacent blades is
rectilinear and also divergent at a diffusion angle which varies
between 2° and 8°, According to Shepherd [7), this is the best
diffusion angle to provide efficient conversion of kinetic into
pressure energy. After this conversion has taken place at the
upstream section of the blades, the flow is deflected into the axial
direction. Henee minimal swirling should be present in the flow
leaving the new stator-diffuser.

The new design was assessed by comparing the standard
performance  characteristics of the conventional pump
configuration with available manufacturer’s curves. During
standard pump performance testing, measurements were taken of
the residual swirl in the flow at the outlet of the pump, as well as
the hydraulic grade tine (HGL) along the pump, o provide in-
depth information on the kinetic energy recovery process through
each of the pump components,

Flow rate was calculated from velocity measurements taken with
a water manometer and a single Pitot-static probe at various
radial positions across the pipe, at a location where the flow is
purely in the axial direction. Selection of the radial positions was
based on the requirements of ISO3966.

A mercury manometer was used to measure differential pressure
across the pump (pump head) and also to take static pressure
readings for HGL. To obfain HGL across the pump, differential
pressures were measured belween pump suction and each tapping
point located along the pump assembly.

Residuat swirl in the flow at the outlet of the pump was measured
with a pressurised water manometer and a Fechheimer probe,
manufaciured according to a description given in Parmigiani et
al. [6). The probe was installed at 1.5D downstream from the
diffuser’s exit. Readings were taken at each performance dufy
point at three radial positions,

Results and Discussion

Pump performance testing was conducted in accordance with the
requirements of AS2417-2001. During all tests, the pump was
operated at 1465rpm, the speed for which the manufacturer’s
curves were originally published. Results obtained during
performance testing, for five and six blade impellers with the
conventional stator and conical diffuser, were in good agreement

with the manufacturer's published curves. The results obtained
during the previous two studies [5, 1] conducted on this test rig
with the 5 blade impeller, did not show consistency with the
manufacturer’s data. It is believed that the sudden improvement
in results from recent testing can be ascribed to the cleaning of
caleium deposits from the impeHer and to the full refurbishment
of the stator.

Comparison of the results obtained during performance testing
with five and six blade impellers and the new stator-ditfuser
against the manufacturer’s published curves showed that the new
stator-diffuser slightly wnderperforms. However it is inferesting
fo observe that during a test performed with the 6 blade impeller
and the new stator-diffuser, the unit outperformed the standard
stator by about 2%. This could be due to measurement error or to
the fact that this was conducted on a freshly painted stator-
diffuser, Figure 4 shows this test’s results, where manufacturer’s
data are shown as continuous lines while test resulls as scattered
points connected by line segments.
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Figure 4. Pump performance curve for 6 blade impeller and stator-
diffuser against manufacturer’s curve.

It can also be observed froin figure 4 that as flow rate is reduced
beyond the best efficiency point (BEP), larger losses occur with
the new unit. Pump head is about T lower at beginning of stall.
Such losses were not detected during testing of the 6 blade
impeller with the standard stator. This is believed to be due
mainly to (2} the poor matching of the impeller blade exit angles
with the stator blade inlet angles, causing shock losses at the
stator’s entrance, and (b) the sudden expansion of the flow
geometry at the new unit’s outlei, causing large exit loss, Another
possible cause is the poor quality finish of the stator-diffuser
casting resulting in high skin friction losses and a negative effect
on overall pump performance, Stepanoff [8] claims that axial
flow pumps are very sensitive to the quality of blade finish.

During performance testing, the hydraulic grade line (HGL)
throughout the pump assembly was measured in order to evaluate
static head rise across each pump component. Graphs of HGL
data for the 5 blade impeller with standard stator, as well as with
the new stator-diftuser, are shown in figures 5 and 6 respectively.




Results are plotted for varions flow rafes expressed as a
percentage of the best efficiency point (BEP) flow.
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Figure 5. HGL through the pump with 5-blade impeller, standard stator
and conical diffuser (n=1465rpm).

From figures 5 and 6, it can be observed that, as flow rate is
reduced down to BEP, a larger portion of pressure energy is
recovered by the new stator-diffuser compared with the existing
design. At BEP, there is very little difference in performance
between the two. Beyond BEP, the encrgy recovery process
through the standard design is better than for the new one. All
this is consistent with the discussion above. Tt should also be
noted the standard design has greater Iength and most of the
pressure is recovered by the diffuser and not by the stator vanes.

Also, head rise through the impeller is smaller for the new design
compared with the original design. This is believed to be due to
poor matching of the impeller blade exit angles with the stator
inlet vane angles, and the poor quality finish of the stator vanes,
causing high ‘entrance losses’, as discussed above, Therefore it is
recommended that other sefs of readings be taken after polishing
the stator-diffuser vanes.

From figure 6 it can be observed that HGL for the new stator-
diffuser reflects the shape of the component very well. A
significant portion of kinetic energy is recovered by the front
(vaned) section of the stator-diffuser, with some drop in pressure
in the outlet section at exit of the stator-diffuser. Although
pressure is recovered further in the discharge pipe (up to the
discharge tapping point), for the 6 blade impeller (at BED), the
drop is equal to nearly [0% of the total head rise across the
pump. This is caused by a step expansion in the geometry at the
outlet of the stator-diffuser, which contributes to the generation
of eddies as shown on figure 7. This flow pattern is verified by
the results obtained from residual swirl measurements described
below.
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Figure 6. HGL through the pump with 5-blade impeller and new stator-
diffuser (n=1465rpm).
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Figure 7. Theoretical flow through the diffuser and new stator-diffuser,

Figure 8 shows results of the residual swirl measurements for the
5 blade impeller with standard stator and conical diffuser, and
figure 9 shows readings taken for the 5 blade impeller and the
new stator-diffuser, Data at BEP are marked in black.

Comparing figures 8 and 9, it can be observed that for the
conventional pump design swirl is larger at locations further from
the pipe centre. On the other hand, for the new design switling
angle does not change significantly with depth (depth here is
distance from the pipe wall). Although the averages can still be
seen o follow the same trend as for the conventional design, it
can be observed that the angles arc smaller. Therefore it can be
concluded that the new design is more effective in recovering the
swirl, and can thus be said to meet its design objective.

Also comparing figures § and 9 shows that results obtained for
the new design are a lot more scaitered. This is due to eddies
created in the step expansion in the geometry at the outlet of the
stator-diffuser as shown on figure 7.




Swirling Angle Measurement - 5 Blade Impetler & Standard Stator
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Figure 8. Fecheimer probe data for 5-blade impeller with standard stator
and conical diffuser (n=1465rpmy). Data at BEP are marked in black.
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Figure 9. Fecheimer probe data for 5-blade impeller with new stator-
diffuser {n=1465pm).

Further research should be undertaken in order to improve this
new design of the stator-diffuser, especially in the area of
interference between impeller blades and stator inlet, It would be
optimal to install a Fechheimer probe at the inlet to the stator-
diffuser to check how well the angle of the fluid leaving the
impeller matches the stator infet angle, Additionally, another set
of tests should be conducted on this new part after removing all
casting defects,

Conclusions

Although comparison of the pump efticiency curves for the new
stator-diffuser and the existing design showed that the new
design is sligitly less efficient (about 2%), some interesting
characteristics were found during evaluation of the swirling angle

and HGL data. In comparing HGL data for the two designs, it
was found that as flow rate is reduced the stator-diffuser recovers
significantly more pressure energy up to the best efficiency point
(BEP); however, beyond BEP, it worsens.

Furthermore, evaluation of the swirling angle data for the new
stator with the 5-blade impeller confirmed that the angle
systematically reduces vp to BEP where it reaches a value of
about 1° to 2°, Once the pump performance moves away from
BEP, flow begins to swirl again. Conversely, the swirling angle
in the conventional design increased proportionally throughout
the entirs performance curve. Based on the above it can be
concluded that the new stator-diffuser meets its design objectives,
However, overall performance is not optimal.

To improve the whole pump’s performance, the new stator-
diffuser should be modified to provide better guidance to the
fluid leaving the vaned section at the outlet, as suggested on
figure 10. Further investigation should also be conducted so as to
improve the matching of flow angles at the unit’s inlet.
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