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Urinary tract infections (UTIs) are established when a uropathogenic microbe enters the uri-

nary tract, avoids the immune system, and initiates colonization and infection that damages

the host [1–3]. They are among the most common bacterial infections with many resulting in

antimicrobial resistance (AMR)-related deaths [4]. A study over 10 years, following 700,000

community-acquired UTIs, found that uropathogenic Escherichia coli (UPEC) was the causa-

tive agent in 70% of cases, with Klebsiella pneumoniae and Proteus mirabilis in 10% and 5% of

cases, respectively [5]. Estimations have suggested that at least 150 million people experience a

UTI annually [6]. Certain groups are disproportionately at risk, with the majority (approxi-

mately 60%) of women experiencing at least one UTI in their lifetime [7–9]. Recurrent UTIs

(rUTIs) are also prevalent: With up to 25% of patients experience another infection in months

after apparently successful antimicrobial treatment, partly due to the rise of antibiotic-resistant

UTI pathogens [5,10]. It is not yet clear how rUTIs are so persistent, but key to understanding

this may be in the specific bacterial lifestyles and infection cycles, where bacterial filamentation

and L-form formation have been suggested to play important roles [11,12]. While L-form for-

mation may be an important reservoir for persistent UTIs, it is outside the scope of this text, as

in this Pearls, we focus on what is known about bacterial filamentation and reversal in a blad-

der environment.

The UPEC morphology cycle

UPEC displays a distinct pathogenesis cycle in a bladder environment (Fig 1) [13,14]. These

rod-shaped bacteria use cell surface fibers to adhere to superficial umbrella bladder epithelial

cells (BECs), before invading the cytoplasm [15], where they develop as biofilm-like intracellu-

lar bacterial communities (IBCs) comprising many bacteria that appear as coccoid shapes

organized in condensed bacterial clusters [16,17]. Further development of IBCs can result in

their occupancy of most of the infected cell, eventually resulting in its rupture and dispersal of

the bacteria. The dispersal stage involves at least two types of bacterial differentiation, where a

subset of cells become rod shaped and motile, and others will stop dividing and grow into

highly elongated bacterial filaments. The full picture of molecular cues regulating bacterial dif-

ferentiation in UTI is currently unknown. Here we will consider the UPEC filamentation pro-

cess, referred to as infection-related filamentation (IRF), as a remarkable example of bacterial

differentiation and its possible functions in UTI. The regulation of IRF has partly been attrib-

uted to the cell division regulating gene sulA. sulA has been suggested to play a role in filamen-

tation as early result indicated that a UTI89ΔsulA strain was unable to filament in a murine

model [2]. Another possible contributor to the regulation of filamentation is innate immune

system itself as in mice lacking the TRL4 receptor is filamentation not observed [2,18,19].

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010950 December 1, 2022 1 / 6

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Abell-King C, Costas A, Duggin IG,
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It is understood, however, that IRF is likely to take place due to environmental pressures

experienced in the bladder, e.g., innate immune effectors and weakly acidic urine [18,20,21]. It

is currently not clear how urine is regulating the elongation response as filamentation is initi-

ated inside the epithelial cells, but it has been observed that both urine composition and acidity

is essential for UPEC filamentation in in vitro infection models [21]. Long filaments, up to sev-

eral hundreds of micrometers in length, have been observed both in vivo and in vitro [2,20].

While UPEC has the most studied infection cycle, filamentation has also been observed for

other UTI-associated pathogens, such as K. pneumoniae and Pseudomonas aeruginosa during

bladder infections in murine models [22–28]. Although the morphology cycle during infection

has been described, some key questions remain, including how do morphology transitions

occur and what is their purpose?

Is filamentation a bacterial dispersal strategy during UTIs?

Bacterial filamentation occurs when advanced IBCs or biofilms of UPEC are exposed to weakly

acidic urine [20,21,29]. Interestingly, a synthetic urine of the same pH failed to trigger filamen-

tation in the cell culture model of infection, and the exact urine components and UPEC

response pathways responsible are still unknown. Additional host factors might also play direct

or indirect roles, as filamentation was not detected in mice lacking the TLR-4 receptor that

triggers an immune response to gram-negative bacteria [2]. Filamentation is believed to
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Fig 1. Simplified schematic of the UPEC morphology cycle during UTIs. (1) Rod-shaped bacteria adhere to BECs. (2) Invasion via endocytosis. (3) Rods

undergo shape changes to a cocci-like form and densely cluster together in biofilm-like IBCs. In a second step, a subpopulation of the bacteria reinitiate growth,

without dividing, to become filamentous. The exact molecular ques regulating this are unknown, but the cell division protein DamX is essential for

filamentation [38]. (4) The growth of IBCs and filaments overwhelms the bladder cell, which ruptures whereby UPEC of various morphologies are expelled. (5)

Exfoliated filaments (A) can continue to elongate to 100s of micrometers (B) before the cell division machinery is “switched on” and reversal is initiated (C).

DamX also has a function during reversal (filament division); DamX tagged with a fluorescent protein forms stable rings at division sites along the filaments

[31,38]. Daughter cells are pinched off from the mother filament at an increasing rate during the early stages of reversal, which would allow reinitiation of the

infection cycle by invasion of noninfected bladder cells (1). BECAU : AnabbreviationlisthasbeencompiledforthoseusedinFig1:Pleaseverifythatallentriesarecorrect:, bladder epithelial cell; IBC, intracellular bacterial community; UPEC, uropathogenic

Escherichia coli; UTI, urinary tract infection.

https://doi.org/10.1371/journal.ppat.1010950.g001
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function at least in part as an innate defense mechanism against the human immune system

[2]. It is believed that both their size and shape inhibit uptake by macrophages; however, this is

not yet resolved as early experiments using plastic particles showed that shape rather than size

was a determinant for uptake, as “non-rod”-shaped objects were less likely to be phagocytosed

[30]. There have also been multiple reports that filaments from in vivo models are resistant

against internalization and thus killing by phagocytes [2,18,28].

But could filamentation also be a means for efficient dispersal? Filaments still form in

UPEC biofilms in response to urine even in the absence of host cells [29]. Furthermore, fila-

ments have been seen to extend 100s of micrometers from human BECs during in vitro model

infections [21]. After dispersal, filaments have been observed to elongate at a high rate, 1.8 μm

min−1, translating to half a “rod-length” per minute (assuming average rods are 3.5 μm), with

an average of 0.55 μm min−1, enabling growth of more than 100 μm before initiating reversal

back to rods [31]. As a result of the accumulated extra body mass, filaments may have an

increased adhesion capacity to host cells and an improved ability to resist the liquid shear

forces in the bladder [2,20]. These observations suggest that filamentation could be a deliberate

action by UPEC to disperse from the IBC and extend out to reach neighboring cells to maxi-

mize infection propagation.

On dispersal, filaments will experience a rapid change of environment, which appears to

trigger a coordinated reversal (division) to form rods. As daughter cells pinch off from the

mother filaments, they divide at faster rates than typically observed for normal E. coli binary

fission in standard laboratory growth conditions (e.g., 37˚C in LB) [31,32]. The current under-

standing is that filaments cannot invade further BECs but must first revert into many rods,

which can individually restart the infection cycle by infecting thus far uninfected epithelial

cells, making reversal a crucial part of the bacterial morphology cycle during UTIs [33].

Reversal of filaments back to rods: Not regulated as binary fission

during vegetative growth?

Binary fission in E. coli is an extensively studied process mediated by a multiprotein complex

organized by the essential division protein, FtsZ, a homolog of the eukaryotic cytoskeletal pro-

tein tubulin [34]. During vegetative growth, FtsZ is the first protein to arrive at the division

site forming a “proto-ring” around the midcell, with helper proteins including FtsA and ZipA

that help anchor it to the inner membrane [35]. There are 12 essential divisome protein

recruited to the midcell, forming a structure known as “the divisome” [36]. Divisome matura-

tion is finalized with the arrival of FtsN, which initiates constriction of the cell envelope [37].

The complexity of the essential functions of the divisome provides many potential avenues for

regulation.

The regulation of division during IRF is less well understood. It is believed that filament

reversal only occurs outside the epithelial cells, as no observation has been reported to support

that this process takes place intracellularly. In in vitro infection systems, multiple divisions

occur at high temporal rates during reversal (with generation times down towards 10 minutes;

[31]), as such one wonders about the state of the cell division machinery during filamentation

and the onset of reversal. It is tempting to imagine that parts, if not the whole machinery,

could be assembled at multiple locations along the filament body ready to get into action.

Unlike binary fission, where the maturation and stabilization of FtsZ polymers into a Z-

ring regulates cell division, FtsZ in filaments forms transient Z-rings, assembling and disas-

sembling multiple times at multiple locations [31]. The formation and dynamics of these tran-

sient Z-rings suggest another level of regulation specific to filamentation and reversal. This

regulation is currently believed to be provided by DamX through an unknown mechanism
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[31,38]. During its function in inhibiting division during IRF, DamX remains dispersed

throughout the inner membrane; then, during reversal, it condenses into stable rings that

always result in a division event [31]. DamX belongs to a group of cell division proteins that

are targeted to septal peptidoglycan by a highly conserved sporulation-related repeat domain,

or SPOR domain [39]. Interestingly, while deletion of damX in nonpathogenic model labora-

tory E. coli strains (e.g., K-12) shows no apparent phenotypes, a deletion of the same gene in

the model UPEC strain, UTI89, shows an elongation phenotype reflecting a defect in cell divi-

sion [31], highlighting the importance of the use of pathogenicAU : PerPLOSstyle; italicsshouldnotbeusedforemphasisofwords:Hence; pleasenotethatpathogenicinthesentenceInterestingly;whiledeletionofdamXinnonpathogenicmodellaboratoryE:coli:::hasbeenchangedtoregulartext:model strains.

Concluding remarks

Bacterial cell division has been intensely studied for over 20 years, but recent advances in infec-

tion models show how relatively little we know about this process in a disease setting. The

dynamic molecular shifts occurring in filamentation and their divergence from the character-

istic cell division seen in vegetative growth demonstrate an essential role of SPOR domain pro-

teins in regulating filamentation and its reversal. While filament division appears to be

performed by the same machinery as in binary fission, the regulation appears to differ in key

aspects and warrants further study. Apart from UPEC, other bacteria also undergo filamenta-

tion in various infectious and environmental settings, but the molecular regulation for this

behavior is not well understood [24–27]. Our hope is that in vitro cell culture models or micro-

fluidic “lab-on-a-chip” models will allow new insights into the regulation of cell division and

morphology of pathogenic model strains in UTIs and other prevalent AMR-related infections,

generating new knowledge that will inform the development future therapies.
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