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Coprime Factor Model Reduction for Discrete-time Uncertain Systems

Li Li

Abstract— This paper presents a contractive coprime factor
model reduction approach for discrete-time uncertain systems
of LFT form with norm bounded structured uncertainty. A
systematic approach is proposed for coprime factorizationand
contractive coprime factorization of the underlying uncertain
systems. The proposed coprime factor approach overcomes the
robust stability restriction on the underlying systems which is
required in the balanced truncation approach. The method is
based on the use of LMIs to construct the desired reduced
dimension uncertain system model.

I. I NTRODUCTION

This paper addresses the coprime factorization (CF) and
model reduction problems for discrete-time uncertain sys-
tems which are possiblyrobustly unstable. The uncertain
systems under consideration are described in terms of lin-
ear fractional transformations (LFTs) with structured norm
bounded uncertainty.

Model reduction has been an active research area in the
control society since 1960s. One of the most commonly
applied methods for stable linear time invariant (LTI) sys-
tems is the balanced truncation method [1] with guaranteed
error bounds [2], [3]. For unstable LTI systems, a coprime
factor approach [4] is proposed to avoid the stability issues.
Discrete-time related topics can be found, for example, in
[5] and the references therein.

Model reduction problems for uncertain systems have
attracted much attention in recent years; see, for example,
LFT systems [6], [7], [8], [9], [10], gain scheduling [11],
linear parameter-varying systems [12], linear time-varying
systems [13], nonlinear systems [14], linear parameter de-
pendent (LPD) systems [15], and related approximation,
truncation and simplification problems [16]. The balanced
truncation method forrobustly stableuncertain systems is
studied in [6], [7] within the LFT framework. Concerning
those uncertain systems which may berobustly unstable,
a coprime factorization based approach is proposed in [9],
which extends coprime factor approach [4] for LTI systems
to the underlying uncertain systems. However, no indication
is given in [9] on the contractiveness of the resulting coprime
factors. This motivates the question as to whether a contrac-
tive CF can be obtained for uncertain systems. Contractive
CF, as an alternative to normalized CF, has properties similar
to normalized CF. In the meanwhile, it enables us to take
advantage of linear matrix inequality (LMI) techniques, pro-
viding more flexibility to accommodate structure constraints
including topological structures and uncertainty structures,
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and thus can be effectively solved by available softwares.
Particularly for discrete-time uncertain systems, contractive
CF is motivated by the following two observations. Firstly,
for discrete-time LTI systems, applying balanced truncation
to normalized coprime factors of original systems would re-
sult in contractive coprime factors of reduced systems, rather
than normalized ones as in continuous cases. Therefore, it is
not necessary to consider normalized CF in the first place in
balanced truncation approaches. Secondly, in the presenceof
uncertainty, it is very difficult to obtain normalized coprime
factors for the underlying systems because the corresponding
Riccati equations are hard to solve and most probably leads
to infeasible solutions.

In this paper, the coprime factor model reduction problem
studied in [9] is revisited . The contribution of this paper,
compared to the results of [9], are two folds. Firstly, the full
column rank restriction on the B-matrix in [9] is eliminated
, providing a more general solution to constructing coprime
factorization for uncertain systems. Secondly, a systematic
approach to obtain the coprime factorization for the underly-
ing uncertain systems is presented based on the use of LMIs.
A sufficient and necessary condition to ensure the feasibility
of the derived LMI is also specified. Contractiveness is
subsequently accomplished by choosing a specific feedback
gain, which extends the similar LTI results to the uncer-
tain systems under consideration. This enables us to apply
balanced truncation [6] to the resulting contractive coprime
factors to obtain the reduced-order uncertain systems. It
is shown that the resulting reduced coprime factors are
contractive as well. Although in this paper only uncertain
systems are discussed, the results can be readily applied
to multidimensional systems by replacing the uncertainty
variables with frequency parameters.

Notation The notation is quite standard.Rm×n and Cm×n

denote the set of real and complex,m×n matrices, andHm

denotes the set of Hermitianm×m matrices. Letlm and
lm2 be the space of all the sequences and square summable
sequences inRm respectively. LetL (lm) denote the space of
all linear operators mapping fromlm to lm, andL (lm2 ) denote
the space of all linear bounded operators mapping fromlm2
to lm2 . The gain of an operator∆ in L (lm2 ) is given by‖∆‖=

sup
z∈lm2 ,z 6=0

‖∆z‖
‖z‖ , and the adjoint operator of∆ is denoted as∆∗ if

∆ is linear, and if∆ = ∆∗, ∆ < 0 means thatx∗∆x< 0 for any
x 6= 0 in Rm. M∗ is also used to denote the complex conjugate
transpose of a complex matrixM. FM(·)∗ and(·)∗MF denote
FMF∗ andF∗MF respectively for a Hermitian matrixM.



II. PROBLEM FORMULATION

We consider the uncertainty structure

∆c∆c∆c = {diag(δ1Ih1, · · · ,δkIhk) : δi ∈ L (l2),δi causal,‖δi‖ ≤ 1},

and the following uncertain system:

G∆ :







[

z
y

]

=

[

A B
C D

][

ξ
u

]

,

ξ = ∆z, ∆ ∈∆c∆c∆c,
(1)

where u(t) ∈ Rm is the control input, z(t) ∈ Rh is the
uncertainty output, y(t) ∈ Rl is the measured outputand
ξ(t) ∈ Rh is the uncertainty input; here h = h1 + · · ·+ hk.
Similar to the typical setting for one-dimensional discrete-
time uncertain systems, we defineδ1 = z−1, the time shift
operator, and otherδ ,

i s are regarded as uncertainties.

Let the nominal system be denoted byG=

[

A B
C D

]

. Then,

the uncertain system (1) is defined by an LFT representation
as follows. For any bounded linear operator∆ ∈ L (lh2) such
that I −A∆ is non-singular, define

Fu(G,∆) := D+C∆(I −A∆)−1B.

In what follows, robust stability, stabilizability and de-
tectability of the uncertain system (1) are defined.

Definition 1 (Robust Stability [9]):The uncertain system
(1) is said to berobustly stable, or equivalently,(A,∆c∆c∆c) is
said to berobustly stable, if (I −A∆)−1 exists inL (lh2) and
is causal, for all∆ ∈∆c∆c∆c.

Definition 2: The uncertain system (1) is said to bero-
bustly stabilizableif there exists a matrixF , such that
(A+ BF,∆c∆c∆c) is robustly stable. Similarly, the system (1) is
said to berobustly detectableif the dual of the system (1)
is robustly stabilizable.

The following lemma from [9] states a necessary and
sufficient condition for robust stability. This lemma is given
in terms of the positive commutant set corresponding to∆c∆c∆c

defined as

PΘPΘPΘ = {diag(Θ1, · · · ,Θk) : Θi ∈ Hhi ,Θi > 0}. (2)

Lemma 3: (see [9, Proposition 3 and Remark 4]) The
system (1) is robustly stable if and only if there existP∈PΘPΘPΘ,
such that

APA∗−P< 0. (3)

III. B ALANCED TRUNCATION

In this section we briefly review the balanced truncation
model reduction technique for the uncertain system (1)
presented in [6]. It is assumed in this section that the un-
certain system (1) is robustly stable. As in the LTI balanced
truncation approach [1], [2], [3], this assumption is essential
for the balanced truncation of the uncertain system (1), and
guarantees the existence of the solutions to certain Lyapunov
inequalities,

ASA∗−S+BB∗ < 0, (4)

A∗PA−P+C∗C < 0. (5)

Theorem 4:The following statements are equivalent:
(i) The uncertain system (1) is robustly stable.
(ii) The LMI (4) admits a solutionS∈PΘPΘPΘ.

(iii) The LMI (5) admits a solutionP∈PΘPΘPΘ.
Definition 5: An uncertain system of the form (1) is said

to be balancedif it has solutions to (4) and (5) which are
identical diagonal matrices.

We summarize the proposed model reduction algorithm as
follows.

Procedure 6 (Balanced Truncation):

1) Solve the LMIs (4) and (5) to obtainS =
diag(S1, · · · ,Sk) ∈PΘPΘPΘ,P = diag(P1, · · · ,Pk) ∈PΘPΘPΘ.

2) BalanceSi,Pi by constructing a state transformation
matrix Ti [3] such that

TiSiT
∗
i = (T−1

i )∗PiT
−1
i = Σi = diag(Σi,1,Σi,2)

= diag(γ1Ihi,1, ...,γdIhi,d ,γd+1Ihi,d+1, ...,γqIhi,q). (6)

Hereγ1 > ... > γd > γd+1 > ... > γq > 0 are eigenvalues
of (XY)1/2 with multiplicities v j , j = 1, ...,q respec-
tively; hi, j ≥ 0 satisfiesv j = ∑k

i=1hi, j , j = 1, ...,q and
hi = ∑q

j=1hi, j , i = 1, ...,k; Σi,1 = diag(γ1Ihi,1, ...,γdIhi,d),
Σi,2 = diag(γd+1Ihi,d+1, ...,γqIhi,q).

3) Write the transformed nominal system of (1) as

Ḡ =

[

Ā B̄
C̄ D

]

, (7)

where

Ā = TAT−1, B̄ = TB,

C̄ = CT−1, T = diag(T1, · · · ,Tk). (8)

The sub-matrices of∆ and Ḡ corresponding to the
matrix Σi,2, i = 1, ...,k in (6) are truncated to obtain

Gr =

[

Ār B̄r

C̄r D

]

, (9)

∆r = diag(δ1Ih̃1
, · · · ,δkIh̃k

), (10)

whereh̃i = ∑d
j=1hi, j , i = 1, ...,k.

4) Write the reduced dimension uncertain system asG r∆ =
Fu(Gr ,∆r).

Theorem 7:Consider the uncertain system (1) and sup-
pose that the reduced dimension uncertain systemG r∆ is
obtained as described in Procedure 6. ThenG r∆ is also
balanced and robustly stable. Furthermore,

sup
∆∈∆∆∆c

‖G∆ −G r∆‖ ≤ 2(γd+1 + · · ·+ γq). (11)

IV. CONTRACTIVE COPRIME FACTOR MODEL

REDUCTION FORUNCERTAIN SYSTEMS

As introduced in the last section, the balanced truncation
technique requires the underlying uncertain systems be ro-
bustly stable. For those uncertain systems which may be
robustly unstable, one of the common approaches is coprime
factorization approach. Coprime factorization of uncertain
systems is explored in [9] for discrete-time systems, [10]
for continuous-time system and [17] for parameter-dependent
systems, and a model reduction algorithm based on coprime



factorization is given in [9]. However, no indication is given
in [9], [17] on the contractiveness of the obtained coprime
factors. The balanced LQG truncation for uncertain systems
is presented in [18]. It is shown in [19], [20] that the
balanced LQG approach and coprime factor model reduction
approach lead to identical reduced models in the continuous-
time LTI cases. Inspired by these facts, in this section we
follow the ideas in [18] to construct a contractive coprime
factorization for uncertain systems of the form (1) and derive
the corresponding model reduction algorithm.

A. Coprime Factorization of Uncertain Systems

Suppose that the uncertain system (1) is robustly stabiliz-
able and robustly detectable, as stated in Def. 2. Consider
the following LQG control and filter Riccati inequalities for
the uncertain system (1),

A∗WA−W+C∗C

− (A∗WB+C∗D)(I +D∗D+B∗WB)−1(·)∗ < 0, (12)

AVA∗−V +BB∗

− (AVC∗ +BD∗)(I +DD∗+CVC∗)−1(·)∗ < 0, (13)

in the variablesW ∈PΘPΘPΘ,V ∈PΘPΘPΘ.
Note that the above Riccati inequalities have the same

form as those LQG control and filter Riccati equations in the
discrete-time LTI cases [21]; see also [22] for continuous-
time cases. In these references, it is shown that the solutions
to the LQG control and filter Riccati equations can be used
for coprime factorization of the underlying LTI systems. In
what follows, we will show that, similar to the LTI cases,
the solutions of (12) and (13) can also be used to construct
the coprime factors and contractive coprime factors of our
uncertain systems (1).

Definition 8: Given a pair of uncertain systemsM ∆ =
Fu(M,∆),N∆ = Fu(N,∆), ∆ ∈ ∆c∆c∆c, where M and N are
constant matrices,(M ∆,N∆) is said to be aright coprime
factorization (RCF) of G∆ (1) if the following conditions
hold.

1) M ∆ andN∆ are robustly stable.
2) For any fixed∆ ∈ ∆c∆c∆c, M ∆ is invertible in L (lm) and
M −1

∆ is casual.
3) For any fixed∆ ∈ ∆c∆c∆c, (M ∆,N∆) is right coprime, and
G∆ = N∆M

−1
∆ .

Furthermore, ifM ∗
∆M ∆ +N ∗

∆ N∆ ≤ I for all ∆ ∈ ∆c∆c∆c, we say
(M ∆,N∆) is a contractive RCF ofG∆ (1).

Theorem 9:An uncertain systemG∆ (1) is robustly sta-
bilizable if and only if there exist matrices̄P ∈ PΘPΘPΘ and
X ∈ Rm×h solving the following LMI:









−P̄ P̄A∗ +X∗B∗ X∗ P̄C∗ +X∗D∗

⋆ −P̄ 0h×m 0h×l

⋆ ⋆ −Im 0m×l

⋆ ⋆ ⋆ −Il









< 0. (14)

Furthermore, if(P̄,X) is a feasible solution to (14), then̄P−1

verifies (12).

Proof: (Only if part) Assume that the uncertain system
G∆ in (1) is robustly stabilizable. From Definition 2 and
Lemma 3, there exist matricesF andP1 ∈PΘPΘPΘ, such that

(A+BF)∗P1(A+BF)−P1 < 0.

Then we can apply Theorem 4 to show that there exists
P∈PΘPΘPΘ such that

(A+BF)∗P(A+BF)−P+

[

C+DF
F

]∗ [
C+DF

F

]

< 0.

(15)

DefineP̄ = P−1, X = FP̄. Left and right multiply both sides
of (15) with P̄, and we obtain

(AP̄+BX)∗P̄−1(AP̄+BX)−P̄+

[

CP̄+DX
X

]∗ [
CP̄+DX

X

]

< 0.

It is easy to derive (14) by Schur complement from the above
inequality.

(If part) Suppose that(P̄,X) is a feasible solution to (14).
Defining P = P̄−1,F = XP, it is easy to show that (14) is
equivalent to (15). ThereforeG∆ is robustly stabilizable.

Now we prove thatP̄−1 verifies (12). By Schur comple-
ment, (14) is equivalent to

−P̄+X∗X +(P̄C∗ +X∗D∗)(·)∗ +(P̄A∗ +X∗B∗)P̄−1(·)∗ < 0,

which is

−P̄+ P̄CC∗P̄+ P̄A∗P̄−1AP̄− (P̄C∗D+ P̄A∗P̄−1B)R−1(·)∗

+[X∗+(P̄C∗D+ P̄A∗P̄−1B)R−1]R(·)∗ < 0, (16)

whereR= I +D∗D+B∗P̄−1B.
Therefore, we have

P̄A∗P̄−1AP̄− P̄+ P̄CC∗P̄− (P̄C∗D+ P̄A∗P̄−1B)R−1(·)∗ < 0.

It is clear thatP̄−1 verifies (12).
Remark 10:The LMI (14) arises from the fact [23], [17]

that the solution of the LQG control inequality (12) is related
to a special state feedbackH2 problem, that is, finding a static
state feedback gainF, such that‖F l (GSF∆,F)‖H2

< γ with
a givenγ > 0, where

GSF∆ = Fu(GSF,∆), GSF =





A I B
0 0 I
C 0 D



 ;

hereF l (·, ·) denotes the lower LFT representation. The LMI
(14) is actually obtained by substitutingA,C in (5) with A+

BF,

[

C+DF
F

]

respectively, lettingP̄ = P−1, X = FP̄ and

then applying Schur complement.
Theorem 11:Given an uncertain systemG∆ (1) which is

robustly stabilizable and robustly detectable, suppose matri-
cesP̄∈PΘPΘPΘ andX ∈ Rm×h satisfy the LMI (14). Let

F = XP̄−1, (17)



and consider the following system

GF∆ =

[

N∆
M ∆

]

= Fu(GF ,∆), (18)

GF =





A+BF B
C+DF D

F Im



 . (19)

Then (M ∆,N∆) is an RCF of the uncertain systemG∆.
Proof: From the proof of Theorem 9, it is clear that

(14) is equivalent to (15). ThusF is robustly stabilizing.
Then invoke [9, Theorem 9] to complete the proof.

Remark 12:The coprime factorization presented in [9]
requires that the matrixB be of full column rank, such that
a robustly stabilizing feedback gain can be obtained. The
approach introduced in the above theorem removes such a
restriction, and provides a systematic way to construct the
coprime factors of the underlying uncertain systems. It is
shown in the next section that, by picking up a specific state-
feedback gain, this approach can be extended naturally to the
contractive coprime factorization for our uncertain systems.

B. Contractive Coprime Factorization of Uncertain Systems

In the LTI case (without uncertainty), when seeking model
reduction methods in the coprime factor description, we are
particularly interested in normalized coprime factorizations,
since robustness results on closed-loop stability are available.
However, it is difficult, if not impossible, to find normal-
ized coprime factorizations for the uncertain systems under
consideration. Thus, in this section, contractive coprime
factorizations are considered for uncertain systems of the
form (1). We remark here that similar contractiveness ideas
have been explored in [8], [24], [22], [10].

Theorem 13:Given a robustly stabilizable and detectable
uncertain systemG∆ (1), suppose there exist matricesP̄∈PΘPΘPΘ
andX ∈ Rm×h solving the LMI (14). Let

R= I +DD∗+B∗P̄−1B, (20)

Fc = −R−1(B∗P̄−1A+D∗C), (21)

and consider the following system,

G c
F∆ =

[

N c
∆
M c

∆

]

= Fu(G
c
F ,∆), (22)

Gc
F =







A+BFc BR− 1
2

C+DFc DR− 1
2

Fc R− 1
2






. (23)

Then(M c
∆ ,N c

∆ ) is a contractive RCF of the uncertain system
G∆.

Proof: Suppose the LMI (14) has a feasible solution
(P̄,X). From the proof of Theorem 9, (14) is equivalent
to (16). It is obvious thatP̄, Xc = FcP̄ also satisfy (16),
therefore satisfies the LMI (14). It follows from Theorem 11
that (M c

∆ ,N c
∆ ) is an RCF ofG∆. Note that here(M c

∆ ,N c
∆ )

are scaled byR− 1
2 .

To prove that(M c
∆ ,N c

∆ ) is contractive, that is‖G c
F∆‖ ≤ 1,

we show an equivalent claim that‖G c
F∆‖ < β for any β > 1.

By [25, Theorem 11.1], this claim is equivalent to findP∈PΘPΘPΘ
such that


·





∗
[

P 0
0 I

]







A+BFc BR− 1
2

(

C+DFc

Fc

)

(

DR− 1
2

R− 1
2

)






−

[

P 0
0 β2I

]

< 0,

(24)

which is
[

N 11 N 12

⋆ N 22

]

< 0, (25)

where

N 11 = (A+BFc)∗P(A+BFc)−P+(Fc)∗Fc

+(C+DFc)∗(C+DFc),

N 12 = [(A+BFc)∗PB+(C+DFc)∗D+(Fc)∗]R− 1
2 ,

N 22 = R− 1
2 (−β2R+ I +DD∗+B∗PB)R− 1

2 .

It is easy to verify thatP = P̄−1 satisfies (25). Indeed,
substitutingP= P̄−1 into (25), we haveN 12 = 0 andN 11 < 0
by the fact thatP̄, Xc = FcP̄ also satisfy the LMI (14) and
the fact that (14) is equivalent to (15); see proof of Theorem
11. Also,N 22 = −(β2−1)I < 0. Then (25) holds, and this
completes the proof.

Remark 14:The construction of contractive coprime fac-
tors for the underlying uncertain systems is discussed in
[8]. A two-step algorithm and an iteration algorithm are
suggested. However, the overall conditions are not jointly
convex in the decision variables, therefore there is no com-
putationally tractable method to ascertain its feasibility. It is
shown that Theorem 13 provides a tractable approach to the
design of contractive coprime factors based on the use of
LMIs. In the absence of uncertainty, the above results also
recover those in the discrete-time LTI cases [21].

C. Contractive Coprime Factor Model Reduction

With the contractive RCF (22) in place, the model reduc-
tion method in [9] can be applied to the resulting contractive
RCF. The only problem left is to compute the controllability
and observability Gramians of the contractive RCF (22), as
stated in the following theorem.

Theorem 15:Given that all the conditions in Theorem 13
are satisfied, the following statements hold.

(i) P̄−1 is a generalized observability Gramian for the
uncertain systemG c

F∆ (22).
(ii) The LMI

(A+BFc)S(A+BFc)∗−S+BR−1B∗ < 0 (26)

has a feasible solutionS∈ PΘPΘPΘ which is a generalized
controllability Gramian for the uncertain systemG c

F∆
(22).
Proof: (i) From the proof of Theorem 13,N 11 < 0 in

(25). This verifies thatP= P̄−1 is a generalized observability
Gramian for the uncertain systemG c

F∆ (22).
(ii) SinceG c

F∆ is robustly stable, invoking Theorem 4, it
is straightforward that the LMI (26) is feasible, andS is a
generalized controllability Gramian forG c

F∆.



The above theorem provides a numerical way to compute
generalized GramiansP = P̄−1 and S for the contractive
RCF (M c

∆ ,N c
∆ ) of the uncertain systemG∆. We are ready

to summarize the proposed coprime factor model reduction
algorithm as follows.

Procedure 16 (Coprime Factor Model Reduction):

1) Solve the LMI (14) to obtain̄P. DefineR as in (20),Fc

as in (21) andP = P̄−1;
2) Solve the LMI (26) to obtainS;
3) Apply Steps 2-4 in Procedure 6 to the uncertain system
G∆ (1) to obtain the reduced dimension uncertain system
asG r∆ = Fu(Gr ,∆r).

Assumption 17:The reduced systemG r∆ = Fu(Gr ,∆r)
obtained in Procedure 16 is well-posed.

The discussion on the conditions of the well-posedness of
the reduced system is beyond the scope of this paper. Here
we will only concentrate on the model reduction technique
for the uncertain systems. The reader can refer to [9] for
some resorts, for examplestrict casuality onδ1 × ·· · × δk,
guaranteeing a well-posed reduced system.

Theorem 18:Suppose that all the conditions in Theorem
13 are satisfied, and that the reduced dimension uncertain
systemG r∆ = Fu(Gr ,∆r), where Gr is defined in (9), is
obtained as described in Procedure 16. Under Assumption
17, consider the following system,

G c
rF ∆ =

[

N c
r∆
M c

r∆

]

= Fu(G
c
rF ,∆), (27)

Gc
rF =







Ār + B̄rFc
r B̄rR− 1

2

C̄r +DFc
r DR− 1

2

Fc
r R− 1

2






, (28)

where Fc
r = −R−1(B̄∗ΣĀ+ D∗C̄)P ∗, and P is the corre-

sponding truncation matrix in Procedure 16 defined asP =
diag(P1, · · · ,Pk), P i = [I h̃i

0]. Then the following statements
hold.

(i) (M c
r∆,N c

r∆) is a contractive RCF ofG r∆.
(ii)

sup
∆∈∆∆∆c

‖G c
F∆ −G

c
rF∆‖ ≤ 2(γd+1 + · · ·+ γq). (29)

Proof: It follows the proof of [9, Theorem 11,] that
(M c

r∆,N c
r∆) is an RCF ofG r∆ and the error bound (29) holds.

It only remains to prove that(M c
r∆,N c

r∆) is contractive.
For simplicity, here we only consider the case ofk = 1.

As described in Procedure 16, letT be the transformation
matrix to balanceP,S andP = [I 0] be the corresponding
truncation matrix. Then

TST∗ = (T−1)∗PT−1 = diag(Σ1,Σ2),

Ā = TAT−1 =

[

Ār Ā12

Ā21 Ā22

]

, B̄ = TB=

[

B̄r

B̄2

]

,

C̄ = CT−1 =
[

C̄r C̄2
]

. (30)

Define the following matrices, partitioned accordingly with
the partition in (30),

A = Ā+ B̄FcT−1 =

[

A11 A12

A21 A22

]

,B = B̄R− 1
2 =

[

B1

B2

]

,

C =

[

C̄+DFcT−1

FcT−1

]

=
[

C1 C2
]

, D =

[

DR− 1
2

R− 1
2

]

.

Note that, from the proof of Theorem 13, (24) holds for
P = P̄−1. Left- and right-multiply both sides of (24) with
diag((T−1)∗, I) and diag(T−1, I), and we have

(

·
)∗
[

Σ 0
0 I

][

A B

C D

]

−

[

Σ 0
0 β2I

]

< 0. (31)

Left- and right-multiply both sides of (31) with diag(P , I)
and diag(P ∗, I) to obtain

(

·
)∗
[

Σ1 0
0 I

][

A11 B1

C1 D

]

−

[

Σ1 0
0 β2I

]

< −
(

·
)∗

Σ2[A21 B2] < 0. (32)

It is easy to verify thatA11,B1,C1,D are the system matrices
of Gc

rF in (28). Therefore(M c
r∆,N c

r∆) is contractive; see the
proof of Theorem 13.

Remark 19:Note that solutions to the LMIs (14) and (26),
if they exist, are not unique. In the absence of uncertainty,
minimizing P̄−1 subject to (14) and minimizingS subject to
(26) could lead to a normalized coprime factor model reduc-
tion algorithm. A possible heuristic is to seek approximate
normalization in the presence of structured uncertainty, that
is, solve the following two semi-definite programs:

min trace(Z) with P̄∈PΘPΘPΘ

subject to (14) and
[

Z I
I P̄

]

> 0,
(33)

min trace(S) with S∈PΘPΘPΘ subject to (26). (34)

Also note that although the two conditions in (14) and (26)
are convex (separately), however, similar to the balanced
truncation in the LTI case, the computation of a solution of
the LMI constraints which leads to the best reduced model
introduces a non-convex problem.

V. EXAMPLE

Consider the same example in [9] with

A =













0.5034 0.1768 −0.2340 −0.1406 0.5814
0.0096 0.5498 −0.0362 −0.6744 2.2496
0.0337 0.2546 0.0984 −0.4051 1.3599
−0.2709 0.1470 0.3249 0.0484 0.6356
−0.0909 0.0491 0.1075 −0.1019 0.5681













,

B =













0.3306 0.1700
0.8951 0.3442
0.5487 0.2143
0.8748 0.8821
0.5217 0.4479













,

C =

[

3.0622 −0.9986 −0.7126 6.4339 −10.4291
3.0396 −0.9913 −0.7073 5.2369 −8.4887

]

,

∆ = diag(δ1I3,δ2I2).



Solving the LMI (14), we obtain

P = P̄−1

=











96.1453 −24.7774 −30.4131 0.0000 0.0000
−24.7774 7.5136 6.4620 0.0000 0.0000
−30.4131 6.4620 12.5545 0.0000 0.0000

0.0000 0.0000 0.0000 98.5330 −163.4846
0.0000 0.0000 0.0000 −163.4846 275.9870











,

Fc =

[

1.2027 −0.1404 −0.5680 0.8741 −2.2285
−0.0957 −0.2160 −0.2979 −1.0129 1.5355

]

.

We can then construct the contractive RCF as in (22), (23)
with

Mc
F =



























0.8847 0.0937 −0.4724 −0.0238 0.1057 0.1758 0.0555
1.0532 0.3498 −0.6471 −0.2406 0.7834 0.4883 0.0886
0.6731 0.1313 −0.2771 −0.1425 0.4662 0.2990 0.0560
0.6968 −0.1663 −0.4347 −0.0804 0.0406 0.4197 0.3764
0.4937 −0.1209 −0.3222 −0.0996 0.0933 0.2585 0.1829
3.0622 −0.9986 −0.7126 6.4339 −10.4291 0.0000 0.0000
3.0396 −0.9913 −0.7073 5.2369 −8.4887 0.0000 0.0000
1.2027 −0.1404 −0.5680 0.8741 −2.2285 0.5860 −0.1053
−0.0957 −0.2160 −0.2979 −1.0129 1.5355 −0.1053 0.5311



























.

Solving the LMI (26), we obtain

S=













0.0772 0.1973 0.1214 0.0000 0.0000
0.1973 0.5222 0.3203 0.0000 0.0000
0.1214 0.3203 0.1968 0.0000 0.0000
0.0000 0.0000 0.0000 0.5599 0.3169
0.0000 0.0000 0.0000 0.3169 0.1827













.

Then the balanced Gramian is

Σ1 = diag(0.8370,0.3146,0.0268),Σ2= diag(1.1436,0.8147).

Truncating the system matrices corresponding to the last
generalized Hankel singular value inΣ1, the reduced dimen-
sion uncertain system model is defined by

Ār =









0.3830 0.0865 −0.3771 0.7548
−0.1633 0.6255 −0.0157 0.1556
−0.6731 0.5150 0.3777 −0.2194
−0.3692 0.2832 0.0094 0.2388









,

B̄r =









1.0572 0.0349
−0.2642 −0.5105
−0.6643 −1.5790
0.9864 0.0412









,

C̄r =

[

−0.2745 −0.0669 −0.6423 −0.2425
−0.2725 −0.0664 −0.5228 −0.1973

]

,

∆r = diag(δ1I2,δ2I2).

and the error bound on the coprime factors is given by

sup
∆∈∆∆∆c

‖G c
F∆(s)−G c

rF∆(s)‖ ≤ 2×0.0268= 0.0536.

VI. CONCLUSIONS

The paper considers the problem of coprime factor model
reduction for a class of discrete-time uncertain systems
with structured norm bounded uncertainty. The proposed
method is applicable to the uncertain systems which may be
robustly unstable, overcoming the robust stability restriction
in the balanced truncation approach. A systematic approach
is presented to construct a contractive coprime factor for the
underlying uncertain system, based on the used of LMIs.
This enables the balanced truncation to be applied to the
contractive coprime factor to obtain the reduced uncertain
system.
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