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Abstract

This paper presents a bearing-only SLAM al-
gorithm that generates accurate and consistent
maps of large environments by joining a series
of small local maps. The local maps are built by
least squares optimization with a proper land-
mark initialization technique. The local maps
are then combined to build global map using It-
erated Sparse Local Submap Joining Filter (I-
SLSJF). The accuracy and consistency of the
proposed algorithm is evaluated using simula-
tion data sets. The algorithm is also tested
using the DLR-Spatial-Cognition data set and
the preprocessed Victoria Park data where the
range information is ignored. The global map
results are very similar to the result of full least
squares optimization starting with very accu-
rate initial values. As I-SLSJF is able to join
a given set of local maps and associated un-
certainties efficiently without any information
loss, these results demonstrate that focusing on
generating accurate local maps is a promising
direction for solving large-scale bearing-only
SLAM problems.

1 Introduction

Simultaneous localization and mapping (SLAM) is the
process by which a mobile robot can build a map of
the environment and, at the same time, use this map
to compute its location [Dissanayake et al., 2001]. The
main research work on SLAM has been focused on im-
proving computational efficiency while ensuring consis-
tent and accurate estimates for the map and robot poses
[Durrant-Whyte and Bailey, 2006]. There has also been
much research on issues such as data association, obser-
vation nonlinearity, and landmark parametrization and
initialization, all of which are vital in achieving a prac-
tical and robust SLAM implementation.

SLAM using range-bearing measurement to land-
marks has been well investigated by SLAM researchers.

One of the popular solutions in SLAM is extended
Kalman Filter (EKF) based approach, which has al-
ready been applied in indoor and outdoor, underwater,
and airborne system [Durrant-Whyte and Bailey, 2006].
The sensors for getting range-bearing information such
as laser scanners are more expensive compare to vision
sensors. However monocular vision sensors provide bear-
ing only measurement, where it is needed to overcome
landmark initialization problem [Bailey, 2003], [Kwok et
al., 2005].

Most of the researchers have used EKF approach to
solve the bearing-only SLAM problem. Unfortunately,
the EKF is ill-suited for the problem of bearing-only
SLAM because of the highly nonlinear measurement
model [Deans, 2002]. Several approaches have been pro-
posed to overcome this problem such as SPRT Based
Gaussian Sum Filter [Kwok et al., 2005], bundle ad-
justment [Deans, 2002],[Strasdat et al., 2010], iterated
Kalman filter [Trully et al., 2008], and total least squares
[Dogancay, 2005].

For range-bearing SLAM problems, map joining has
been introduced to reduce the computational complex-
ity of SLAM [Williams, 2001]. One of the map joining
methods that have been developed recently is Sparse Lo-
cal Submap Joining Filter (SLSJF) [Huang et al., 2008a]
which substantially reduces the computational cost of
the global map construction by exploiting the sparseness
of information matrix involved in the local map joining
process. SLSJF is further improved as Iterative SLSJF
(I-SLSJF) [Huang et al., 2008b] such that the consis-
tency of the global map is greatly improved.

This paper considers 2D bearing-only SLAM problem.
We demonstrate that large-scale bearing-only SLAM can
be achieved by first building small-scale bearing-only
SLAM map and then join the small maps together using
map joining algorithms originally developed for range-
bearing SLAM (such as I-SLSJF). A simple landmark
initialization technique together with the linearized least
squares approach is proposed to solve the small-scale
bearing-only SLAM problem for building small maps.



The use of map joining not only reduces the compu-
tational cost of the global map construction, but also
improves the reliability of the landmark initialization.

The paper is organized as follows. Section 2 discusses
some related work of this research. Section 3 presents
the building of small local maps, where the method for
landmarks initialization and linearized least squares ap-
proach is explained. The structure of I-SLSJF as a map
joining strategy is described in Section 4. Section 5 pro-
vides simulation and experiment results. Finally, Section
6 concludes the paper.

2 Related Work

In this section, some recent work on large-scale bearing-
only SLAM and their relation to the method proposed
in this paper are discussed.

2.1 Landmark initialization in
bearing-only SLAM

One of the challenges in bearing-only SLAM problem
is landmark initialization. Constrained initialization
has been introduced within EKF framework in [Bai-
ley, 2003]. In this work, the observations for not-yet-
initialized landmark are kept in the state vector to-
gether with the corresponding robot poses. A Gaussian
sum filter is introduced within EKF framework [Kwok
et al., 2005] to represent the inaccurate range infor-
mation of the landmarks. Recently, the inverse-depth
feature parametrization is demonstrated to be more ro-
bust than the traditional Euclidean parametrization es-
pecially for distant landmarks [Civera et al., 2008] but
sometimes the inverse-depth can become negative [Pars-
ley and Julier, 2008]. A unified framework is proposed
to overcome an inability to deal with the landmarks that
are effectively at infinite distance [Trawny and Roume-
liotis, 2006]. They presented a unified formulation ca-
pable of incorporating information from nearby and dis-
tant landmarks as well as those lying in the direction in
which the robot travels. Landmark initialization with
unknown data association has also been discussed by
some researcher [Deans, 2002] and [Costa et al., 2004].
The strategy for landmark initialization is to ignore the
landmarks if the angle of intersecting is small [Deans,
2002]. In most of the work listed above, EKF is used
in the estimation process and the algorithms were tested
using relatively small data sets.

In this paper, because we are using map joining ap-
proach, landmark initialization only needs to be per-
formed in the local map building process where accu-
mulated robot pose error is very small, this makes the
landmark initialization a lot easier. To guarantee the ac-
curacy of the landmark initialization, we check the angle
between two bearing observations. If the angle of inter-
secting is not large enough or the intersection point is

not in the positive direction of the bearings, we will wait
for the next observation to perform the landmark initial-
ization. From the simulation and experimental result it
is shown that this simple delayed landmark initializa-
tion strategy together with linearized least squares ap-
proach can produce good quality local maps in bearing-
only SLAM.

2.2 Linearized least squares for local map
building

Many researchers used EKF as a tool for solving bearing-
only SLAM problem. However, in bearing-only SLAM,
the highly nonlinear measurement model can cause seri-
ous problem for EKF SLAM. The potential inconsistency
of EKF SLAM with range-bearing information has been
reported in the recent years [Huang and Dissanayake,
2007],[Bailey et al., 2006]. It is clear that EKF SLAM
with bearing-only information can have even severe in-
consistency problems [Sola, 2010]. To overcome this non-
linearity problem iterated filter has been introduced by
[Trully et al., 2008]. In their paper, the iterated Kalman
filters (IKF) are proposed and combined with inverse-
depth parameterization. [Deans, 2002] and [Strasdat et
al., 2010] presented the comparison between EKF SLAM
and bundle adjustment and suggested the use of bundle
adjustment. It is claimed that the bundle adjustment
is robust enough to overcome the lack of range infor-
mation in the bearing-only SLAM problems. Dogancay
[Dogancay, 2005] introduced total least squares (TLS)
for bearing-only target localization. TLS estimation al-
gorithm is developed based on the method of orthogonal
vectors, and then constrained TLS algorithm also devel-
oped to improve estimation accuracy.

In this paper, because we are only building small local
maps using the bearing-only SLAM, we can afford to use
the more reliable least squares approach (bundle adjust-
ment) to build the bearing-only local maps. Moreover,
the sparseness of the information matrix further reduces
the computational cost of the local map building pro-
cess. For the least squares approach, a good initial value
is needed for the algorithm to converge to the global
minimum. A poor quality landmark initialization may
cause the state estimate to diverge or being trapped into
a local minimum, so it is important to keep the local
maps relative small such that the initialization error is
limited.

2.3 Map joining to solve large-scale SLAM
problem

Recently, some researchers have proposed map joining
to improve the efficiency of construction of large-scale
maps, mostly for SLAM using range and bearing data.
For example, EKF is applied in the map joining process
in [Williams, 2001]. The Atlas framework in [Bosse et



al., 2004] performed a high level optimization to adjust
the relative positions among the local maps. In [Huang
et al., 2008a], the extended information filter (EIF) is
used for fusing submaps and the information matrix as-
sociated with SLSJF is exactly sparse. Iterated-SLSJF
(I-SLSJF) is an improved version of SLSJF where the
consistency of the global map is further improved by oc-
casionally performing least squares optimization [Huang
et al., 2008b]. Another approach for map joining is to
build submaps that can share information and thus con-
ditionally independent. The map joining is carefully per-
formed to avoid the information reuse [Pinies and Tar-
dos, 2008].

This paper uses the I-SLSJF as map joining approach
for solving large-scale bearing-only SLAM mainly be-
cause (i) there is neither information loss nor informa-
tion reuse when I-SLSJF is applied to join local maps;
and (ii) the potential inconsistency of filter based map
joining algorithms is avoided in I-SLSJF. The simula-
tion and experimental results clearly demonstrate that
large-scale bearing-only SLAM can be solved by build-
ing small bearing-only maps and then joining the small
maps using I-SLSJF.

3 Building Small Local Maps

This section presents the process of the landmark initial-
ization and linearized least squares approach for small
local map building.

3.1 Bearing-only SLAM problem

There are two kinds of information available in bearing-
only SLAM. One is the bearing-only observations which
is related to the landmark position and the robot pose,
another is the odometry information which is related to
the two consecutive robot poses.

Suppose the robot pose i is denoted as

Xri = (xri , yri , φri) (1)

and the position of landmark f is denoted as

Xf = (xf , yf ) (2)

The odometry from pose i to pose i + 1, denoted as
Oi+1

i , can be regarded as a measurement of the relative
pose between pose i and pose i + 1 and is given by

Oi+1
i = fodo(Xri , Xri+1) + wi+1

i (3)

where wi+1
i is the odometry noise which is assumed to be

Gaussian with zero-mean and covariance matrix Ci+1
i .

The function fodo(Xri , Xri+1) is the relative pose be-

tween pose i and pose i + 1 and is given by

fodo(Xri , Xri+1)

=




(xri+1 − xri
) cos φri

+ (yri+1 − yri
) sin φri

−(xri+1 − xri
) sin φri

+ (yri+1 − yri
) cos φri

φri+1 − φri


 .

(4)
The bearing-only observation from pose i to landmark

f , denoted as θf
i , is a measurement of the bearing angle

from robot to the landmark and is given by

θf
i = fobs(Xri , Xf ) + wf

i . (5)

where wf
i is the observation noise which is assumed

to be Gaussian with zero-mean and variance Cf
i .

fobs(Xri
, Xf ) is the observation function given by

fobs(Xri
, Xf ) = atan2(yf − yri

, xf − xri
)− φri

. (6)

The bearing-only SLAM problem is to estimate the
landmark positions and the robot poses using the odom-
etry and bearing-only information given in (3) and (5).

3.2 Landmark initialization
In bearing-only landmark initialization, to determine the
landmark location, a single measurement is insufficient
to estimate the location of landmarks and at least two
bearing measurements from two different robot poses are
required [Bailey, 2003]. The intersection of two lines as
shown in Figure 1 is a calculated location of landmark.
The formula is given by [Bailey, 2003]

Xf = g(Xri , Xrj , θ
f
i , θf

j )

=




xri
sicj−xrj

sjci+(yrj
−yri

)cicj

sicj−sjci
yrj

sicj−yri
sjci+(xri

−xrj
)sisj

sicj−sjci


 (7)

where

si = sin(φri + θf
i ), ci = cos(φri + θf

i ),
sj = sin(φrj + θf

j ), cj = sin(φrj + θf
j ).

(8)

One of the problems for intersection method is that the
initialization is inaccurate when the angle of intersection
is not large enough [Bailey, 2003]. If the intersecting an-
gle is small, the obtained location of landmark may be
very far away from the real location. Another problem is
sometimes the intersection point is on the negative direc-
tion of the observation line meaning that a completely
wrong landmark location is calculated.

In this paper the first two observations are first used
to calculate the landmarks location. If the intersection
point is in the negative side of one of the two observa-
tion lines or the angle of intersecting is smaller than a
threshold, then the landmark will not be initialized un-
til the next observation is available. The landmark is
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Figure 1: Landmark initialization via the intersection of
two bearing measurements

calculated if the pair fulfills the criteria as desired. Basi-
cally, we are looking for an observation pair such that a
reliable landmark initialization can be obtained. So this
is a delayed initialization approach which is suitable for
least squares based bearing-only SLAM algorithm.

3.3 Linearized least squares method
The bearing-only SLAM problem can be formulated as
a nonlinear least squares problem. The variables X con-
tains all the robot poses and all the observed landmark
positions. The objective is to find X to minimize

(Z − F (X))T C−1(Z − F (X)) (9)

where Z is the vector containing all the relative odome-
try information Oi+1

i in (3) and all the bearing observa-
tions θf

i in (5), F (X) is a function of state vector X that
relating X to Z expressed by fodo in (4) and fobs in (6),
C is the covariance matrix of the measurement error in
vector Z which can be obtained by matrices Ci+1

i in (3)
and Cf

i in (5). Since C is a block diagonal matrix, C−1

is also a block diagonal matrix that can be constructed
by (Ci+1

i )−1 and (Cf
i )−1.

Once an initial value of X is obtained, the least
squares problem can be solved by Gauss-Newton iter-
ation or more robustly by Levenberg-Marquardt algo-
rithm. Since the associated Jacobian and the matrix
C−1 are both sparse, sparse linear equation solver can
be used to keep both the memory requirement and the
computational cost small.

For both Gauss-Newton iteration and Levenberg-
Marquardt algorithm, a relatively accurate initial value
of the state vector is needed to guarantee the algorithm

converge to the global minimum. Since we only use least
squares to build local maps, the initial value obtained
from accumulating odometry (for robot poses) and the
landmark initialization (for landmark positions) are ac-
curate enough.

4 Map Joining

This section presents the structure of I-SLSJF 1 [Huang
et al., 2008b] and explains how to use it in large-scale
bearing-only SLAM.

4.1 The input and output of I-SLSJF
The input to the I-SLSJF is a sequence of local maps
constructed by some SLAM algorithm. A local map is
denoted by

(X̂L, IL) (10)

where X̂L (the superscript ‘L’ stands for the local map)
is an estimate of the state vector

XL = (XL
r , XL

1 , · · · , XL
n ) (11)

and IL is the associated information matrix (the inverse
of the covariance matrix). The state vector XL contains
the robot final pose XL

r (the subscript ‘r’ stands for the
robot) and all the local landmark positions XL

1 , · · · , XL
n ,

as typically generated by conventional EKF SLAM. The
coordinate system of a local map is defined by the robot
pose when the building of the local map is started, i.e.
the robot starts at the coordinate origin of the local map.

It is assumed that the robot starts to build local map
k + 1 as soon as it finishes local map k. Therefore the
robot end pose of local map k (defined as the global
position of the last robot pose when building local map
k) is the same as the robot start pose of local map k + 1
(Figure 2).

The output of I-SLSJF is a global map. The global
map state vector contains all the landmark positions and
all the robot end poses of the local maps (see Figure 2).
The global map result is given in the form of a global
state estimate XG, an information vector iG and an in-
formation matrix IG.

There are two important features of I-SLSJF that
worth mentioning. One is that the information matrix
involved is exactly sparse which make the algorithm very
efficient. Another is that an optimization step is per-
formed whenever necessary such that the linearization
error is reduced and the consistency is maintained.

4.2 Apply I-SLSJF to bearing-only SLAM
In order to apply I-SLSJF to large-scale bearing-only
SLAM, the local maps built by the bearing-only SLAM
algorithm need to be transferred into the correct form.

1The MATLAB code of I-SLSJF is available on
OpenSLAM website: http://openslam.org/
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Figure 2: Structure of I-SLSJF: small ellipses indicate
the landmarks and robot poses involved in the local
maps. The final global map state vector contains the
locations of all the shaded objects.

That is, a state vector and the corresponding information
matrix that involve all the local landmarks and the final
robot pose. Since our small bearing-only local maps are
generated using least squares based algorithm, the state
vector of each local map contains all the robot poses
but only the last pose is needed. The required state
vector can be easily obtained by simply removing the
other poses. The required information matrix can be
computed through Schur complement.

5 Simulation and Experiment Results

Simulation and experimental results are used to demon-
strate the accuracy and consistency of the proposed
bearing-only SLAM algorithm.

5.1 Simulation results
The simulation environment contains nearly uniformly
distributed features. The robot starts from the bottom-
left corner of the square and performs two loops and
then finishes at the top-right corner (Figure 3). The
range-bearing sensor is assumed to have a range limit of
6 meters with a field of view of 180 degrees and we ignore
the range information when implementing the bearing-
only SLAM algorithms. In this data set, there are 256
robot poses, 75 observed landmarks and 1283 bearing
measurements.

Figure 3 shows the linearized least squares result when
ground truth of the landmark positions and robot poses
are used as the initial value. This can be argued as the

best result one can get and will be used to evaluate our
map joining result. In Figure 3, all the robot poses and
all the landmarks in the map are shown. The red stars
are the ground truth of landmark positions and the black
circles represent the estimated landmark positions using
the linearized least squares approach. The red crosses
are the ground truth of the robot poses and the cyan
squares are the estimated robot poses.

It is worth mentioning that when applying the land-
mark initialization strategy for the whole data and use
the result as the initial value, neither the Gauss-Newton
iteration nor the Levenberg-Marquardt algorithm can
converge to the correct solution. This is probably be-
cause of the large accumulated odometry error in the
long trajectory. On the other hand, when building small
local maps where the trajectory is short, the linearized
least square algorithm using the landmark initialization
as initial value works fine for both Gauss-Newton itera-
tion and Levenberg-Marquardt algorithm.
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Figure 3: The best bearing-only map one can achieve
using simulation data together with the 2σ uncertainty
ellipses. The result is obtained by performing linearized
least squares optimization with ground truth as initial
value. Since the data contains noises, the global mini-
mum is not exactly the same as ground truth.

We perform the local map building and map joining
using I-SLSJF. Figure 4 shows the first local map we
obtained and Figure 5 is the map joining result of joining
all the 5 local maps. To evaluate the accuracy of the
map joining approach, we overlap the map joining result
with the “optimal” least squares result of the single map
(with ground truth as initial value) in Figure 6. The
blue crosses represent for landmark and green diamond
represent for robot pose from the map joining using I-
SLSJF. The black circle is representing the landmark and
red star representing the corresponding robot poses from
the single map result. From the result it is shown that I-



SLSJF can produce very similar result as that of the best
possible solution using the bearing-only information.
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Figure 4: The result of local map 1 for simulation data
set. The blue crosses are the estimate of landmark po-
sitions and the red ellipses show the corresponding 2σ
uncertainty. The green diamond shows the estimated
position of the final robot pose in the local map and the
black ellipse shows the corresponding 2σ uncertainty.

−5 0 5 10 15 20 25
−5

0

5

10

15

20

25

X(m)

Y
(m

)

Figure 5: The result for the map joining of 5 local maps
using simulation data set. The blue cross represent for
landmark estimate and green diamonds represent the es-
timates of the robot end poses of the 5 local maps.

5.2 Consistency analysis

Figure 7 shows the robot pose estimation error and 2σ
bounds for the map joining result. Since there are 5 local
maps, the output of I-SLSJF only contains 5 poses that
corresponding to the robot end poses in each local map.
It is clear from Figure 7 that the estimate of the 5 robot
poses is consistent.

To have a proper check on the consistency of the
map joining results, we run the simulation experiments
5 times each with a different random seeds for the odom-
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Figure 6: The overlap result between the map joining us-
ing I-SLSJF (Figure 5) and the “best” single map (Fig-
ure 3) using simulation data. The blue cross represents
for landmark and green diamond represents for robot
pose from the result of I-SLSJF. The black circle and
red star represent the results from the single map result.
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Figure 7: The robot pose estimation error and 2σ bound
of the map joining result.

etry and observation noises. Then we compute the Nor-
malized Estimation Error Squared (NEES) using the re-
sulting state estimate error and the information matrix
as in

NEES = (XG −Xtrue
G )T IG(XG −Xtrue

G ) (12)

where XG is the global state estimate and Xtrue
G is the

corresponding ground truth. IG is the sparse informa-
tion matrix which is part of the output of I-SLSJF.

The NEES result is summarized in Table 1. The av-
erage NEES is 99.08 while the 95% confidence gate is
198.15. Thus the estimate of the proposed map joining
algorithm is consistent.

5.3 DLR-Spatial-Cognition data set
The DLR-Spatial-Cognition data set is collected
using a robot equipped with a camera. This



Table 1: NEES Test on Global Maps

Run NEES 95% confidence gate
(state dimension: 167)

1 102.71 198.15
2 100.94 198.15
3 104.24 198.15
4 89.07 198.15
5 98.45 198.15

average 99.08 198.15

data is available at http://www.sfbtr8.spatial-
cognition.de/insidedataassociation/ data.html. The
robot moved around in the building with artificial
landmarks (white/black circles) placed on the ground.
The image data has been preprocessed and the relative
positions of the observed landmarks with respect to the
observation point are provided. In this data set, there
are 3297 robot poses, 539 landmarks and 14163 mea-
surements. To test our bearing-only SLAM algorithm,
the bearing information is calculated from the relative
position data provided in the data set. All the range
information is ignored.

To get the best possible map that we can compare
with, we use all the odometry and range-bearing infor-
mation to perform a full least squares and obtain the
robot poses and landmark positions. This is then used
as the initial value for the full least squares using the
bearing-only information and odometry information to
build a single bearing-only SLAM map. We believe this
is the best bearing-only SLAM result one can get. Fig-
ure 8 shows this best possible bearing-only SLAM result
one can achieve using DLR data set.
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Figure 8: The best bearing-only SLAM result one can
achieve using DLR data set (full least squares with
range-bearing SLAM result as initial value).

The data is then divided into nine groups and used to
build nine local maps. Figure 9 shows the result for local

map 1 and Figure 10 is the map joining for the nine local
maps. In Figure 9 and Figure 10 the blue dot represents
landmarks and the green diamond represents the robot
poses. Figure 11 shows the overlap of the map joining
result and the best single map result for DLR data set.
From Figure 11, it can be seen that the proposed ap-
proach can produce almost the same result as the best
achievable result.

The data is then divided into 18 groups and used to
build 18 local maps and joined together using I-SLSJF.
Figure 12 and Figure 13 show the map joining result
and the overlapping with the best single map. From
Figure 12, it can be seen that using larger number of
local maps may produce low quality global map due to
the information loss in the local map building process. In
fact, when the size of local maps is small, the observation
information of some landmarks has been lost because it
is impossible to get good initialization of the landmarks.
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Figure 9: The first bearing-only local map using DLR
data set. The blue dot represent for landmark and green
diamond represent for robot pose.
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Figure 10: The result of map joining of 9 bearing-only lo-
cal maps using DLR data set. The blue dot represent for
landmark and green diamond represent for robot poses.



Figure 11: The overlap result between the map joining
of 9 local map using I-SLSJF (Figure 10) and the best
single map (Figure 8) for DLR data set. The blue dot
represent for landmark and green diamond represent for
robot pose for map joining using I-SLSJF. The black
circle is representing the landmark in single map result.
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Figure 12: The map joining result of joining 18 small
bearing-only local maps using DLR data set. The blue
dot represent for landmark and green diamond represent
for robot poses.

5.4 Victoria Park data set

The proposed bearing only I-SLSJF was also applied to
the popular Victoria Park data set [Guivant and Nebot,
2001] where again all the range information is removed.
The preprocessed data available at OpenSLAM (within
the project 2D I-SLSJF) is used where the data associ-
ation is given. Although the original data is not col-
lected through camera, we want to demonstrate that
the algorithm we proposed can be applied to this pop-
ular data set. In this data set, there are 6898 robot
poses, 257 landmarks and 45379 measurement. Figure
14 shows the best result one can achieve. Namely, a full
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Figure 13: The overlap result between the map joining
of 18 local maps using I-SLSJF and the best single map.
The blue dot represent for landmark and green diamond
represent for robot pose for map joining using I-SLSJF.
The black circle is representing the landmark in single
map result.

least squares using bearing-only information with range-
bearing SLAM result as initial value. All the robot poses
and all the landmarks are shown in the map. Figure 15
shows the map joining result by joining 18 bearing-only
local maps using our approach. Figure 16 shows the over-
lap between the map joining result (Figure 15) and the
best single map (Figure 14). The blue dot represent for
landmark and green diamond represent for robot pose for
map joining result. The black circle is representing the
landmark in single map result. From Figure 16, it can
be seen that the proposed approach can produce good
quality result.
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Figure 14: The best bearing-only result one can achieve
using Victoria Park data set (full least squares using
bearing only information with result from range and
bearing SLAM as initial value).
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Figure 15: The result of joining 18 bearing-only local
maps for Victoria Park data set. The blue dot represent
for the landmark and green diamond represent for the
robot poses.

6 Conclusion

In this paper, we demonstrate that I-SLSJF can be suc-
cessfully applied to large-scale bearing-only SLAM prob-
lems. Basically, we separate the large-scale bearing-only
SLAM problem into two parts: (i) building small local
maps using linearized least squares based bearing-only
SLAM algorithms, and (ii) applying I-SLSJF to join the
small local maps together to form the global map. Ex-
tensive testing using simulation data, the Victoria Park
data set, and the DLR-Spatial-Cognition data set show
that the proposed approach can generate almost the
same result as that obtained by full least squares with
very accurate initial values for robot poses and landmark
positions.

Thanks to the map joining approach, the landmark
initialization only needs to be performed in local map
building process where robot pose accumulated error is
limited. The proposed simple landmark initialization ap-
proach combining with least squares optimization can
reliably generate good quality local maps. Unlike many
other bearing-only SLAM techniques where EKF is used
as a tool to solve SLAM problem, we proposed least
squares for local map building and I-SLSJF for map join-
ing. Both least squares and I-SLSJF are optimization
based approach which can avoid the potential consis-
tency issue involved in most of the filter based SLAM
techniques.

In this work, there is some information loss especially
when the size of the local maps is too small. The reason
is that some landmarks cannot be properly initialized
due to the lack of enough bearing observations from dif-
ferent angles. Also, our focus is on the accuracy and
consistency of the bearing-only SLAM where data asso-
ciation is assumed. Although data association is still a
major topic in SLAM problems, we assume that data

Figure 16: The overlap result between the map joining
using I-SLSJF (Figure 15) and single map (Figure 14) for
Victoria data set. The blue dot represent for landmark
and green diamond represent for robot pose for map join-
ing using I-SLSJF. The black circle is representing the
landmark in the single map result.

association can be solved through another method (such
as using feature descriptors like SIFT [Lowe, 2004]).

We believe that building reliable bearing-only local
maps and using map joining to construct global map is
a promising direction for completely solving large-scale
bearing-only SLAM problems. We are currently extend-
ing the proposed approach to monocular SLAM in real
3D scenarios [Zhao et al., 2010]. In the future, we are
planning to develop the robot trajectory planning strate-
gies such that it can perform the bearing-only SLAM
more reliably and more efficiently.
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