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Abstract—Teaching multivariable control usually involves a
certain level of mathematical sophistication and hence requires
some labaratorial exemplification of the material given in formal
lectures. This paper reports on a hands-on approach to multi-
variable control education via the implementation of a model
predictive controller on a two-input, two output coupled drive
apparatus. This scaled-down system represents many industrial
processes while provides an excellent set-up for demonstrating the
cross-coupled effects in multi-input multi-output systems. Here, a
model predictive controller (MPC) is developed and implemented
on the basis of a constrained optimization problem to show
control performance via the belt tension and velocity outputs,
demonstrate the decoupling capability, and also illustrate such
issues as control input saturation, the selection of operating point,
reference inputs, and system robustness to external disturbance
and varying parameters. The implementation is based on Labview
and MATLAB Model Predictive Control Toolbox.

Index Terms—Multivariable control, Optimization, Nonlinear-
ity, Model predictive Control, Coupled drives.

I. INTRODUCTION

Multi-input multi-output (MIMO) systems remain an impor-
tant topic in control engineering education. To complement the
theoretical aspects and rigorous treatments in MIMO control,
it is essential to provide students with some laboratorial
demonstration and practical work. This paper reports on the de-
velopment of a model predictive controller for a two-input two-
output coupled drive apparatus for that purpose [1]. Regulation
of both the belt tension and speed of a coupled drive system
is commonly encountered in many continuous automation
processes in industries such as textile manufacturing, paper
making, strip metal and wire manufacturing, plastic films,
food packaging and production line. Coupled drive systems
exhibit intercoupling effects that are typical in multivariable
control whereby advanced techniques have been applied to
deal with a number of outputs at the same time, e.g., fuel-
injection quantity, pressure, and timing waste cut and energy
economy (http://machinedesign.com/article/pumping-new-life-
into-mobile-machines-0605). In our laboratory a coupled drive
model (www.control-systems-principles.co.uk) is employed for
the laboratory teaching of control engineering subjects. As
pointed in [1], teaching of multivariable systems is a dedicated
effort requiring a balance of complex, abstract elaboration and
hands-on experience as the topics may in part incur a perceived
jump in mathematical sophistication required of students and
the uneasy fit with prior learned classical control material [1].

In the control development for coupled drive systems,
the commonly-used approach is first to decouple the MIMO
process into two SISO processes with a pre-compensator and
then to design SISO controllers for each decoupled subsystem
(see, e.g., [2], [3], [4] [5]). To guarantee offset free tracking,
integral control is recommended for each single loop. Although
decoupling a multi-loop integral controller is easy to be imple-
mented, it is not an optimal approach for the control of multi-
variable processes and tends to degrade their stability. In this
paper model predictive control (MPC) is proposed in the design
and implementation for the coupled drive system. MPC has
been used in industry for more than 30 years, and has become
an industry standard due to its intrinsic capability for dealing
with constraints associated in multivariable systems. The main
idea of MPC is to choose the control action by repeatedly
solving on-line an optimization problem. This is aimed at
minimizing a performance criterion over a future horizon,
possibly subject to constraints on the manipulated inputs and
outputs, where the future behavior is computed according to a
model of the plant (http://www.pacontrol.com/MPC.html). As
an optimal control approach, MPC has more advantages than
classical multi-loop PID controller. For example, by selecting
a proper weighting function, it has the potential of saving fuel
of mobile vehicles.

In the literature, coupled drive systems are often treated
as linear multivariable system. However, coupled drives in
practice are quite often subject to nonlinear characteristics. In
this laboratorial study, a linear MPC controller is designed
for a linearized model around some selected operating point.
The designed MPC controller is thus only valid in a certain
operation range. When the operating point changes, the closed-
loop system performance may deteriorate. From our obser-
vation, for the control of coupled drives, the most difficult
part for students’ design is the handling of nonlinearity-
related issues in the system, such as, control input saturation,
validation of operating point range, and model variation under
different operational conditions. Students need assistance in the
control design when some reference input values are chosen
beyond the normal operating range. To theoretically explain all
nonlinear effects involved, it may require more time allocation
and effort with material that may be quite abstract and difficult
at the undergraduate level. For example, in order to explain the
nonlinear steady state conditions for multi-loop integral control



[6] [7], some nonlinear control knowledge is needed beyond
the knowledge of undergraduate students.

By using MPC control of the typical nonlinear multivariable
system, this paper attempts to help students to understand
fundamental concepts of abstract multivariable control for
nonlinear processes. It presents an experiment-based approach
to assist the learning of the advanced control theory, to show
the decoupling capability of multivariable optimal control,
and to facilitate students in designing their own multi-loop
controllers.

This paper is organized as follows. Section II will briefly
introduce the coupled drive system and followed by the mod-
eling of the system. Section III presents the basic knowledge
of MPC with an implementation guide. All the experimental
results and discussion are provided in Section IV. A conclusion
is drawn in Section V.

II. MODELING OF THE COUPLED DRIVES SYSTEM

Fig. 1. Coupled Drives System

Figure 1 shows a coupled drive system. The parameters of
this system are listed as follows:

• θ1,2 Motor 1,2angular position (rad)
• θ3 Jockey pulley angular position (rad)
• I1,2 Motor 1,2 inertia ( kg m2)
• I3 Jockey pulley inertia ( kg m2)
• m Jockey pulley mass ( kg)
• k Belt stiffness (Nm−1)
• k0 Jockey spring stiffness (Nm−1)
• b1,2 Motor friction (kg Ns−1)
• b3 Pulley friction (angular Nms−1 )
• bm Pulley friction (translate Ns−1 )
The standard system has two drive motors which operate

in cooperation to control simultaneously the tension and the
speed of a continuous flexible belt and that goes round pulleys
on the drive motor shafts with a jockey pulley. The jockey
pulley is mounted on a swinging arm that is supported by a
spring. In the manufacture of textiles, paper, wire, and plastic
films, regulation of the tension and speed outputs of coupled
drive systems are often needed.

From the existing literature, the dynamics of the system can
be derived by using the Lagrange equations, and the initial
values of the parameters of the model can be approximately
estimated by using step and impulse responses.

The system’s Lagrangian is written as L = T − V, where
the kinetic energy is
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Based on Lagrange equations, system dynamics can be
derived as (see www.control-systems-principles.co.uk):

M z̈ + B ż + k z = U,

where
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The transfer function of the system can be obtained as:(
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The control approach commonly recommended to the stu-
dents for the control of the coupled drive system is multi-loop
integral control. The main strategy for this control scheme is to
transfer the 2I2O system to two scalar systems by decoupling
the control of Tension and Jockey speed. See Figure 2, a pre-
compensator K(s) is constructed to decouple the system:

P(s)K(s)
r1(s)

r2(s)

W(s)

X(s)

Fig. 2. Decoupling compensator.

Where
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)
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Then, (
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)
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)
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.

The parameters can be approximately identified by using step
and/or impulse response analysis.



III. MODEL PREDICTIVE CONTROL

Consider a nonlinear state space model of the form:{
ẋ(k) = f(x(k), u(k)),
y(k) = h(x(k), u(k)),

where f(·, ·) is Lipschitz continuous functions, twice dif-
ferentiable, originated by differential equations representing
system dynamics, and have the equilibrium points at the origin
f(0, 0) = 0.

The control and state inequality constraints are deduced
from their physical limits of the form u(k) ∈ U , x(k) ∈ X ,
where U is a convex, compact subset of Rm and X a convex,
closed subset of Rn, each set containing the origin in its
interior. The control objective is to steer the state to the
equilibrium point.

For the MPC problem, an online optimization problem is
formed and solved at every time step using the initial values of
state and control vectors x(k− 1) and u(k− 1). The objective
function is defined by [8]

J(x, u|x(k−1), u(k−1)) =
k+N∑
i=k

�(x(i), u(i))+F (x(k+N)).

The terminal time k+N is referred to as a receding horizon
or rolling horizon. Function F (x(k − 1)) is the terminal cost
function. A terminal constraint set of the form x(k + N) ∈
Xf ⊂ X can be imposed for guaranteeing stability.

Once the constrained optimization problem of minimizing
J(x, u|x(k−1), u(k−1)) subject to the equality constraints of
the state space model and the inequality constraints of control
and state vector, as well as terminal constraints is solved, the
optimizing control sequence {u(k), u(k + 1), ..., u(k + N)} is
yielded. The first control vector u(k) in this sequence is
applied to the system (at time k). As N is finite, the minimum
of J(x, u|x(k − 1), u(k − 1)) exists if f(·), �(.) and F (·) are
continuous, U compact, and X and Xf closed.

For LTI systems, quadratic objective functions w.r.t. state,
control and control increment vectors are normally considered.
Predictive horizon for plant output vectors and control horizon
for control input vectors are also normally selected when
internal delays are taken into considerations. Due to linearity,
different set-points are allowable, and the variables will take
their non-zero steady states (or set-point) as references in the
objective function. The objective function has a quadratic form
of

J(x, u|x(k − 1), u(k − 1)) =
Ny∑
i=0

[y(k + i) − r]T Wy [y(k + i) − r]

+
Nu∑
i=0

[u(k + i) − uss]
T Wu [u(k + i) − uss]

+
Nu∑
i=0

Δu(k + i)T WΔuΔu(k + i),

where W∗ are diagonal weighting matrices. The predictive
(output) horizon is Ny, the control horizon is Nu.

With linear systems, it is more convenient to substitute
the equality constraint of state space model directly into

the objective function to result in the problem of quadratic
programming for the minimizing sequence vector of input
and/or input increment elements. This is the standardized
MPC formulation for LTI systems that is available in Matlab
MPC toolbox. The solution can be found using the mpcmove
function in Matlab.

FuturePast

y(k)

target

u(k+l)

ŷ(k+1/k)

k k+1 k+2 k+p

Prediction horizon

Control horizon

Fig. 3. MPC control

In our demonstration, the model predictive controller pre-
dicts and optimizes the future behaviour based on a dynamic
model of the process. At each control interval, the MPC
algorithm calculates an open loop sequence of the manipulated
variables in such a way to optimize the future behaviour of
the plant. The first value in this optimal sequence is injected
into the plant. Figure 3 shows the state of a MPC system
that has been operating for many sampling instants. Integer k
represents the current instant. The latest measured output, yk,
and previous measurements, yk−1, yk−2,..., are known.

To calculate its next move uk, the controller operates in two
phases:

1. Estimation and prediction: In order to make an intelligent
move, the controller needs to know the current state and any
internal variables that influence the future trend. To accomplish
estimation and prediction, the controller uses all past and
current measurements and the models.

2. Optimization: Values of setpoints, measured disturbances,
and constraints are specified over a finite horizon of future
sampling instants, k + 1, k + 2,· · ·, k + p, where p is the
prediction horizon. The controller computes m moves u k,
uk+1, ... uk+m−1, where m is the control horizon. The moves
are the solution of a constrained optimization problem:

min
Δuk···Δuk+m−1

(
p∑

l=1

||ŷk+l/k − rk+l||2Γy
l

+
m∑

l=1

||Δuk+l−1||2Γu
l
),

where,

• ŷk+l/k is the predicted values of y at time k + l based on
information available at time k.

• p is prediction horizon which sets the number of control
intervals over which the controller predicts its outputs
when computing controller moves.

• m is control horizon which sets the number of moves
computed. It must not exceed the prediction horizon. If
less than the prediction horizon, the final computed move
fills the remainder of the prediction horizon.



• Δuk = uk − uk−1.
• ||x||2Γ = xT Γx.
• Γy

l and Γu
l are weighting matrices for predicted errors and

control moves (Γy
l > 0 and Γu

l ≥ 0).

For implementation in Labview and Matlab environment,
the MPC object is formulated with the mpc( ) function with
an initial state created for the MPC object:

MPC Obj CDS = mpc(Model CDS, T s, Py, Pc,
Weights, InputSpecs, OutputSpecs);
xmpc = mpcstate(MPC Obj CDS);
where the predictive horizon and control horizon are de-

clared in Py and Pc.
With the output and reference vectors declared as y and ref

respectively, the manipulated input vector u is obtained from
the following iteration using a for loop:
for t=0:round(Tstop/Ts)

y=C*x;
u=mpcmove(MPC Obj CDS,xmpc,y,ref);
x=A*x+B*u;

end
where Tstop is the user-defined maximum time scale.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

The proposed model predictive control algorithm was im-
plemented by using Labview and Matlab Model Predictive
Control Toolbox. The model structure has been given in
Section 2 with given numerical values of parameters given
that can be found at www.control-systems-principles.co.uk.
Here the parameter set is used as initial values for the model
coefficients, and trial-and-error will be applied to fine tune
these coefficients around a particular operating point. We
will show later the control performance in dependence on
the operating point due to the nonlinear characteristics of
the system. The best model around a particularly-selected
operating point (r1 = 3V and r2 = 3V ) is presented as
follows:[ 1

0.4s+1
1

0.4s+1−205600
(s2+11s+150) (s2+1.6s+800)

205600
(s2+11s+150) (s2+1.6s+800)

]
.

The control results corresponding to this model are given in
Figures 4 and 5 under different control input rate constraints.
We also generated an external disturbance around t = 50
seconds as shown in Figure 4. The system can still perform
fast tracking the reference input under such a big disturbance.
It should be mentioned that the decoupling compensator has
not been constructed explicitly in the MPC controller. This
is to demonstrate that the Model Predictive Controller itself
can handle (i) the coupling effect based on model predicted
dynamics, and furthermore, (ii) the saturation effect by simply
imposing constraints on the input voltages.

We need to emphasize that the reference inputs for angular
velocity and belt tension are 3V and 3V (r1 = 3V and
r2 = 3V ) respectively. When the reference input is changed,
the operating point will change. The control performance may
degrade and the system even becomes unstable. Figures 6, 7,
and 8 show the performance under different reference values. It
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Fig. 4. Best performance with rate constraint
[−0.5V/Sample,−0.5V/Sample] and reference inputs as r1 = 3V , and
r2 = 3V .
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Fig. 5. Best performance with rate constraint
[−0.1V/Sample,−0.1V/Sample] and reference inputs as r1 = 3V , and
r2 = 3V .

can be seen that the best control performance achieved is under
the reference input r1 = 1 − 3V and r2 = 2 − 3V . For small
reference inputs (e.g. r1 = 0V and r2 = 0V ), the closed-loop
system is unstable. For some reference inputs (e.g. r1 = 3V
and r2 = 4V ), the transient performance of the closed-loop
system degrades. This indicates that the identified model is
only valid in a certain operating range, and the coupled drive
system certainly exhibits nonlinear behaviors. This would be a
practical example to show that real systems, strictly speaking,
are nonlinear in nature.

The MPC is actually an integral control scheme. For a mul-
tivariable nonlinear system, it is not always possible to build an
integral controller in some operating range of the system. If it
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Fig. 6. Tracking performance with rate constraints
[−0.5V/Sample,−0.5V/Sample] and reference inputs as
r1 = 0, 1, 2, 3, 4, 5V , and r2 = 3V .
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Fig. 7. Tracking performance with rate constraints
[−0.5V/Sample,−0.5V/Sample] and reference inputs as r1 = 0V , and
r2 = 0, 1, 2, 3, 4, 5V .

is impossible to track a given reference signal by a centralized
integral controller, so is it by a decentralized integral controller.
Therefore, it may be helpful for the instructors to identify the
range of reference signals to assist students with their design
of a multi-loop integral controller for model predictive control
of coupled drive systems.

Control saturation is another practical issue in engineer-
ing practice. For a control input, the commonly-encountered
constraint is saturation as all the input variables have phys-
ical limitations. For the coupled drive system in our lab-
oratory, the two voltage inputs of the motors are limited
from −5V to +5V . In order to ensure the safety of the
system, at the initial stage, we can select a rate constraint
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Fig. 8. Tracking performance with rate constraints
[−0.5V/Sample,−0.5V/Sample] and reference inputs as r1 = 2V , and
r2 = 0, 1, 2, 3, 4, 5V .
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Fig. 9. Tracking performance with rate constraints
[−0.1V/Sample,−0.1V/Sample] and reference inputs as r1 = 2V , and
r2 = 0, 1, 2, 3, 4, 5V .

for the input voltages as well. In this study, the rate con-
straint is selected as [−0.1V/Sample,−0.1V/Sample] and
[−0.5V/Sample,−0.5V/Sample]. From experimental results
(in comparison of Figures 9 and 10 with Figure 8), we can
see that [−0.5V/Sample,−0.5V/Sample] is better. With this
rate constraint, the control performance is not affected and the
safety of the system can also be improved as well.

We also investigated another important issue for discrete
time control systems, i.e. controller update rate. In real-world
applications, students may confuse between the sampling rate
of the sensor and the controller update rate in the feedback
system. In this example, we try to use experiments to show
the importance of selecting a correct controller update rate.
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Fig. 10. Tracking performance with rate constraints
[−0.1V/Sample,−0.1V/Sample] and reference inputs as r1 = 3V , and
r2 = 0, 1, 2, 3, 4, 5V .
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Fig. 11. Tracking performance with rate constraints
[−0.1V/Sample,−0.1V/Sample] and reference inputs as r1 = 3V , and
r2 = 0, 1, 2, 3, 4, 5V ; controller update rate fc = 5Hz.

For this MPC system, the controller update rate is selected as
fc = 1.25Hz. The sampling rate of angular velocity sensor and
belt tension sensor are fs = 5Hz. In Figure 11, we show the
bad effect when we select fc = fs = 5Hz for the controller
update rate, as quite often by mistake. Figure 11 shows that the
tracking becomes slower even under well-chosen references
r1 = 3V and r2 = 3V . However, if we select a slower
controller update rate (e.g. fc = 0.5Hz), the closed loop
system may become unstable. This is a good example to show
the importance of controller update rate selection.

V. CONCLUSION

This paper has presented some laboratory demonstrations
for the design and implementation of a model predictive con-
troller for a multivariable process that is typically-encountered
in industrial manufacturing and automation, the coupled drive
system. The effort is motivated by enhancement of undergrad-
uate control education quality. From the general formulation
of model predictive control for nonlinear systems, we showed
the controller development including some implementation
instruction for the coupled drive apparatus. Based on ex-
perimental results, the effectiveness of this optimal control
approach is verified for a multi-input multi-output system in
general. Furthermore, illustrative explanations are included for
several identified issues in relevance to automation and control
practice and education. It is expected that this work can serve
to inspire interests in control engineering and to facilitate,
motivate the teaching and learning of control-related subjects.
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