
"© {He, Li and Wang, Xianzhi and Wang, Dingxian and Zou, Haoyuan and Yin, Hongzhi and Xu, Guandong},
| ACM} {2023}. This is the author's version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in WSDM '23: Proceedings of the Sixteenth
ACM International Conference on Web Search and Data Mining
https://doi.org/10.1145/3539597.3570451

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Simplifying Graph-based Collaborative Filtering for
Recommendation
Anonymous Author(s)∗∗

ABSTRACT
Graph Convolutional Networks (GCNs) are a popular type of ma-
chine learning models that use multiple layers of convolutional
aggregation operations and non-linear activations to represent data.
Recent studies apply GCNs to Collaborative Filtering (CF)-based
recommender systems (RSs) by modeling user-item interactions
as a bipartite graph and achieve superior performance. However,
these models face difficulty in training with non-linear activations
on large graphs. Besides, most GCN-based models could not model
deeper layers due to the over-smoothing effect with the graph con-
volution operation. In this paper, we improve the GCN-based CF
models from two aspects. First, we remove non-linearities to en-
hance recommendation performance, which is consistent with the
theories in simple graph convolutional networks. Second, we obtain
the initialization of the embedding for each node in the graph by
computing the network embedding on the condensed graph, which
alleviates the over smoothing problem in graph convolution aggre-
gation operation with sparse interaction data. The proposed model
is a linear model that is easy to train, scalable to large datasets,
and shown to yield better efficiency and effectiveness on four real
datasets.

CCS CONCEPTS
• Information systems→ Data mining.

KEYWORDS
Collaborative Filtering, Recommendation, Embedding Propagation,
Graph Convolutional Network

ACM Reference Format:
Anonymous Author(s). 2023. Simplifying Graph-based Collaborative Filter-
ing for Recommendation. In Proceedings of ACM Conference (Conference’17).
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Recommendation systems conduct personalized information to as-
sist users in finding information of their interests and alleviate
information overload. Collaborative filtering (CF) represents the
techniques that learn user/item embeddings from their historical
interactions and has been widely applied in various domains, such
as online shopping and social media. Since the interactions can nat-
urally be modeled as graphs, recent studies have leveraged Graph

Ranking
Loss

Ranking
Loss

Linear
Transformation

Nonlinearity

Layer 1

Layer 2

Layer 𝑵

Feature
Propagation

Linear
Transformation

Nonlinearity

Feature
Propagation

𝑒𝑖
(𝑁)

𝑒𝑢
1 𝑒𝑖

1𝑒𝑢
(𝑁)

Remove Linear Transformation and Nonlinearity

Layer 1

𝐺𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐺𝐶𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑑

partition

Figure 1: Illustrations of training of standard GCN (left) and
SGCF (right). Standard GCN needs to recurrently perform
N-layers message passing to get the final embeddings for
training with a large-scale graph structure 𝐺𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 . At the
same time, SGCF only has one layer with a condensed graph
𝐺𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑑 and removes other operations like self-connection,
feature transformation, and nonlinear activation, largely
improving training efficiency and helping real deployment.

Convolutional Networks (GCNs) to learn node representations.
GCN-based models can exploit higher-order connectivity between
users and items and have achieved impressive recommendation
performance. PinSage and M2GRL are examples of successful ap-
plications of GCNs in industrial applications.

Despite the promising performance, existing GCN-based CFmod-
els are becoming more sophisticated than ever, aiming to capture
higher-order collaborative signals. Such complicated models are dif-
ficult to train with large graphs and bring efficiency and scalability
challenges, which hinder their adoption in broad applications.

Moreover, it can be time-consuming for CF to train GCN-based
models through message passing (i.e., neighborhood aggregation)
on large graphs; and simplifications done by LightGCN [13] and
SGC [34] do not helpmuch. Until now, how to improve the efficiency
of GCN models while retaining their effectiveness on recommenda-
tion is still an open problem.

We address the necessity of feature transformation and nonlin-
ear activation in GCN-based recommendation, aiming to accelerate
GCNs in propagation on large-scale datasets. Given that GCN-based
CF models are burdensome with many operations unjustified, we
derive the simplest linear model that could precede GCNs. To this

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

end, we reduce the excess complexity of GCNs by repeatedly re-
moving the non-linearities between GCN layers and collapsing the
resulting function into a single linear transformation. Specifically,
we devise a graph partition-based algorithm to generate a model
that is easy to implement, train and aggregate the multi-layer node
information efficiently on large graphs. We empirically show that
the final linear model exhibits comparable or superior performance
to GCNs on various tasks while being more computationally effi-
cient and fitting significantly fewer parameters. We illustrate the
above idea using a toy example in Figure 1.

We make the following contributions in this paper:

• We empirically reduce the excessive complexity of GCNs
by repeatedly removing the nonlinearities between GCN
layers and collapsing the resulting function into a single
linear transformation.

• We propose SGCF, which largely simplifies the model de-
sign by including only the most essential components in
GCN for more efficient recommendations. We offer an ef-
fective partition technique for reducing the scale of input
graph structure to avoid infinite layers of explicit message
passing for efficient recommendations.

• Our extensive experiments on four benchmark datasets
show that SGCF achieves significant improvements over
state-of-the-art GCN-based CF model. Notably, SGCF at-
tains up to 10% improvement in NDCG@20 and more than
10x speed-up in training over our baselines on the Amazon-
Books dataset. Due to anonymous requirements, the code
link is invisible until paper acceptance.

2 PRELIMINARIES
Following SemiGCN [19], We define a graph as G=< V, E >, where
V denotes the set of nodes and E denotes the edge 𝑒𝑖 𝑗between node
𝑖 and node 𝑗 . We use A to denote the adjacency matrix—𝑎𝑖 𝑗 = 1
if an edge exists from node 𝑖 to node 𝑗 ; and 𝑎𝑖 𝑗 = 0 otherwise. To
ease Illustration, we use A = [𝑖 |𝑎𝑖 𝑗 = 1] to denote the one-hop set
of nodes, Ã = �̃�−

1
2A�̃�−

1
2 the normalized adjacency matrix with

added self loops, where �̃� is the degree matrix of Ã. Ã = A + I𝑁
is the adjacency matrix of the graph with added self-connections,
where I is the identity matrix.

2.1 Graph Convolutional Networks
For each node 𝑣 ∈ V , we use 𝑒0

𝑖
to denote the node initial em-

bedding, which is usually the feature vector 𝑥𝑖 of node i, in which
𝑒0 = 𝑥𝑖 . In a graph G, the main idea of GCNs is to stack 𝐿 steps
in a recursive message passing or feature propagation operation
to learn node embedding [17]. Specifically, for each node 𝑖 at the
step, it is computed recursively with following three steps: feature
propagation, feature transformation and non-linear transition.

Feature propagation For each node 𝑖 , the feature aggregation
operation aggregate the embeddings from graph neighbors N𝑖 and
its own embedding 𝑒𝑘

𝑖
at previous layer 𝑙 . As the focus of this work

is not to design more sophisticated feature aggregation function,
we follow the widely used feature aggregation function proposed in
Kipf et al. [19], which is empirically effective and has been adopted

by many GCN variants:

H
(𝑘+1)

= D̃−1/2ÃD̃−1/2H𝑘 (1)

where the features H at 𝑘-th layer, feature propagation output H
layer can be regarded as the Laplacian smoothing on the features
at previous layer.

Feature transformation and nonlinear transition After the
local smoothing, a GCN layer is identical to a standard multi-layer
perceptron (MLP). Each layer is associated with learned weight
W(𝑘) , and the smoothed hidden feature representations are trans-
formed linearly. Finally, a nonlinear activation function such as
ReLU(.) = max(0, ·) is applied pointwisely before outputting feature
representation H(𝑘). In totally, the representation updating rule of
the 𝑘-th layer is:

H(𝑘) ← ReLU
(
H
(𝑘)

W(𝑘)
)

(2)

The pointwise nonlinear transformation of the𝑘-th layer is followed
by the feature propagation of the (𝑘 + 1)-th layer.

2.2 Graph Convolutional based
Recommendation

In a recommender system, there are two sets of entities: a user set U
with M users and an item set I with N items. As implicit feedback is
the most common form inmany recommender systems, we focus on
implicit feedback based CF in this work, and it is easy to extend the
proposed model for rating prediction in CF. Users show ratings to
the items with a rating matrix R ∈ R𝑀×𝑁 , with 𝑟𝑢𝑖=1 denotes user
𝑢 likes item i, otherwise it equals 0. The rating matrix is a key to the
success of recommendation performance. With the huge success of
GCNs, researchers attempted to formulate recommendation as a
user-item bipartite graph, and adapted GCNs for recommendation.
NGCF [32] are specifically designed under the CF settings. Given
ratings of users to items, the user-item bipartite graph is denoted
as G=<U∪ I,A>, with A is constructed from the rating matrix R as:

A =

[
R 0𝑁×𝑀

0𝑀×𝑁 RT

]
(3)

Let E ∈ R(𝑀+𝑁)×𝐷 denote the free embedding matrix of users and
items. By feeding the free embedding matrix E into GCNs with
bipartite graph G, i.e., ∀𝑖 ∈ U ∪I, ℎ0

𝑖
= 𝑒𝑖 . Then, GCNs iteratrively

perform with embedding propagation step in Eq.(1) and nonlinear
transformation with Eq.(2), each user’s or item’s embeddings can
be updated in the iterative process. Therefore, the final embedding
H𝑘 explicitly injects the up to K-th order collective connections
between users and items. All the parameters can be learned in an
end-to-end framework.

2.3 Graph Partition Technique
A naive approach for the initialization of network embedding is by
random, which assigns random numbers in R for the initial embed-
ding of each node in the graph. However, this approach disregards
the structure of the input graph, rendering it unsuitable for network
embedding. Inspired by the graph partition base algorithm, we aim
to describe the sketch of the input graph G = < V, E > using the
partitioning of G, which are then processed as the initial embedding
of each node inV . A partitioning P of G dividesV into 𝑘 disjoint

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Simplifying Graph-based Collaborative Filtering for Recommendation

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

subsets, denoted by P=V1,V2, . . . ,V𝑘 , where 𝑘 is a user defined
number. Given a node 𝑣 ∈ V , letV ′ ∈ P be the partition where 𝑣
resides, denoted by 𝑝 (𝑣) = V ′. We call the neighbors in the same
partition are internal nodes, while the others are external nodes.
Moreover, a node 𝑣 ∈ V is a border node of G, if 𝑣 has at least one
neighbor 𝑛 ∈ 𝑁 (𝑣) whose partition is different from the one of 𝑣 ,
namely 𝑝 (𝑣) ≠ 𝑝 (𝑛). LetV𝑏 be the set of border nodes of G. The
border sub-graph G𝑏 with respect to P is the induced sub-graph of
G constructed onV𝑏 .

3 METHOD
3.1 Overall Structure of Our Model
In this part, we propose Simple Graph Convolutional Collaborative
Filtering with graph partition techniques which is a general GCN-
based CF model for recommendation. The overall architecture of
SGCF is shown in Figure 2. SGCF advances current GCN-based
model with two characteristics: (a) At each layer of the feature
propagation step, we use a simplified linear embedding propagation
without any nonlinear activation and linear transformations; (b) for
accelerating the network embedding and improve the performance
of the algorithms on both effectiveness and efficiency, we propose
a graph resizing technique to recursively partition a graph into
several small-sized sub-graphs to capture the internal and external
structural information of nodes, and then compute the network
embedding with low-order propagation process in a condensed
graph.

3.2 Simplified Embedding Propagation
In traditional MLP’s, deeper layers allow for more expressive fea-
tures because they allow for feature hierarchies, such as features
in the second layer building on top of features in the first layer. In
GCNs, the layers have another important function: in each layer the
hidden representations are averaged among neighbors that are one
hop away. This implies that after 𝑘-layers a node obtains feature
information from all nodes that are 𝑘-hops away in the graph. This
effect is similar to convolutional neural networks, where depth
increases the receptive field of internal features [8]. Although con-
volutional networks can benefit substantially from the increased
depth [15], typically MLPs obtain little benefit beyond 3 or 4 layers.

We hypothesize that the non-linearity between GCN layers is
not critical - but that the majority of the benefit arises from the local
averaging. We therefore remove the nonlinear transition functions
between each layer.

Given the user-item bipartite graph as formulated in Eq.(3), let
E ∈ R(𝑀+𝑁)×𝐷 denote the free embeddings of users and items,
with the first𝑀 rows of the matrix, i.e., E1:𝑀 is the user embedding
sub-matrix, and E𝑀+1:𝑀+𝑁 is the item embedding sub-matrix. Then,
our model takes the embedding matrix as input:

E0 = E (4)

which resembles the embedding based models in CF. Notably, differ-
ent fromGCN based tasks with node features as fixed input data, the
embedding matrix is unknown and needs to be trained our model.
Following the theoretical elegance with graph spectral connections
and empirical competing results of SGC, at each iteration step 𝑘 + 1,
we assume the embedding E𝑘+1 is a nonlinear aggregation of the

embedding matrix E𝑘 at the previous layer 𝑘 as:

E𝑘+1 = SE𝑘W𝑘 (5)

where S = D̃−1/2ÃD̃−1/2 denotes the normalized adjacency matrix
with added self loop, W𝑘 is the nonlinear transformation. Further,
Eq.(5) with matrix form is equivalent to modeling each user 𝑢’s and
each item 𝑖’s update embedding as:[

E𝑘+1
]
𝑢
= e𝑘+1𝑢 =

1
𝑑𝑢

e𝑘𝑢 +
∑︁
𝑗 ∈𝑅𝑢

1
𝑑 𝑗 × 𝑑𝑢

e𝑘𝑗

 W𝑘 (6)

[
E𝑘+1

]
𝑖
= e𝑘+1𝑖 =

1
𝑑𝑖
e𝑘𝑖 +

∑︁
𝑢∈𝑅𝑖

1
𝑑𝑖 × 𝑑𝑢

e𝑘𝑢

 W𝑘 (7)

which 𝑑𝑖 (𝑑𝑢) is the diagonal degree of item 𝑖 (user 𝑢) in the user-
item bipartite graph G. 𝑅𝑢 (and 𝑅𝑖) is neighbors of node user or
item in graph G.

3.3 Model Prediction with Condensed Graph
With a predefined depth 𝐾 , the nonlinear embedding propagation
would stop at the 𝐾-th layer with output of the embedding matrix
E𝐾 . For each user (item), 𝑒𝐾𝑢 (𝑒𝐾𝑖) captures the up to 𝐾-th order
bipartite graph similarity. Then, many embedding based recom-
mendation models would predict the preference 𝑦𝑢𝑖 as the inner
product between user and item latent vectors as:

𝑦𝑢𝑖 =< e𝐾𝑢 , e
𝐾
𝑖 > (8)

which <,> denotes the vector inner product operation.
Most existing GCN based variants, as well as GCN based recom-

mendation models, achieve the best performance with 𝐾=2 [9]. The
overall trend for these GCN variants is that: (1) the performance
increases as 𝐾 increases from 0 to 1, (2) and drops quickly as 𝐾
continues to increase. In fact, most recommended scenarios have
large-scale input networks and the user-item graph will become
more complicated. It will cause each node 𝑒𝑢 or 𝑒𝑖 has multiple
neighbor hops (𝐾 >= 2). However, as 𝑘 increases from 0 to 𝐾 , the
node embeddings at deeper layers tend to be over smoothed, i.e.,
they are more similar with less distinctive information. Meanwhile,
stacking multiple layers of message passing likely introduces unin-
formative, noisy, or ambiguous relationships, which could largely
affect the training efficiency and effectiveness. This problem not
only exists in GCNs, but is much more severe in CF with very sparse
user behavior data for model learning. To alleviate the problem,
we utilize the graph partition techniques to reduce the scale of the
input network and construct the condensed graph.

To construct the condensed graph G𝑐=(V𝑐 , E𝑐), we first obtain a
partitioning P of G, denoted by P = {V1,V2, . . . ,V𝑘 } where k is a
user-defined number. The goal of graph partition is (𝑘, 𝜎)-balanced
where 0 < 𝜎 < 1, and it satisfies the constraint:

max
1≤𝑖≤𝑘

|V𝑖 | ≤ (1 + 𝜎)
[
|V|
𝑘

⌉
(9)

and minimizes the size of edge-cut as:⋃
1≤𝑖, 𝑗≤𝑘

{
(𝑣,𝑢) ∈ E | 𝑣 ∈ V𝑖 , 𝑢 ∈ V𝑗

}
(10)

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Weighted Sum
Input Graph

Normalized Sum

Neighbor of 𝒖𝟏(𝒍 = 𝟏)

Normalized Sum

Neighbor of 𝒊𝟏(𝒍 = 𝟏)

𝑒𝑢1
1 𝑒𝑢1

0 𝑒𝑖1
1𝑒𝑖1

0

ෝ𝒚𝒖𝒊

𝑒𝑖1
𝑙 𝑒𝑖2

𝑙 𝑒𝑖3
𝑙

𝑒𝑢1
𝑙 𝑒𝑢2

𝑙 𝑒𝑢3
𝑙

Graph Partition Process

𝑢1
𝑖1

𝑖2

𝑖3

𝑢2

𝑢3

𝑢4

𝑖1 𝑖2 𝑖3 𝑢1 𝑢2 𝑢3

Figure 2: The overall architecture of our proposed mode. The graph process illustrates the procedure of embedding propagation
with different hop. The partition algorithm works in several iterations with different hops 𝑘 (left bottom). In each iteration the
updating of the embedding of each node can be achieved in a 𝑘-layer computing framework. The final condensed graph feed
into our simplified GCF model.

However, the (𝑘, 𝜎)-balanced graph partition is a NP-hard prob-
lem [2]. To deal with this issue, we are motivated by the GPA al-
gorithm [20] for graph partitioning, which has adopted in practice
and costs a running time complexity 𝑂 (|V + |E| + 𝑘𝑙𝑜𝑔𝑘 |). Based
on P, we construct the condensed graph G𝑐 of G by creating an
condensed node 𝑣𝑎 for each sub-graph V ′ ∈ P and connecting
two condensed nodes 𝑣𝑎 and 𝑢𝑎 with an condensed edge (𝑣𝑎, 𝑢𝑎)
of a weight 𝑤 (𝑣𝑎, 𝑢𝑎). Then, the number of condensed nodes in
G𝑐 is 𝑘 , i.e., the number of partitions of G. Besides, the number of
condensed edges of G𝑐 is bounded by the size of edge cut.

One crucial issue remaining is how to decide 𝑘 . On one hand, if
𝑘 is small, then one condensed node would be pertinent to a lot of
nodes in the input graph G. As such, the initial embedding of each
node in G inherited from the corresponding abstract node would
lose the power of effectiveness. On the other hand, if 𝑘 is large, then
the condensed graph G𝑐 would be large too. Therefore, it would be
highly expensive to compute the network embedding on G𝑐 , which
increase the overall cost of the initialization phase. To reach a good
balance, we set 𝑘 = ⌈

√︁
|V|⌉, which is a sufficiently large number

but much smaller than |V|, that works well in practise.
In addition, to compute the condensed graph embedding of G𝑐 ,

a naive approach is to let the initial embedding of each node 𝑣
equal the embedding of the corresponding condensed node 𝑐 (𝑣).

However, this approach would suffer from the issue where the
nodes pertinent to the same condensed node have the same initial
embeddings, rendering this method ineffective. For addressing this
issue, we utilize a iterative approach where each node update its
own embedding based on the embeddings of its neighbors until the
convergence is reached. This means specifically, in each iteration,
each node 𝑣 ∈ V first aggregates the embeddings of 𝑣 ’s neighbors,
which results in the average embedding 𝑒𝑎𝑣𝑔 (𝑣). Then, we update 𝑣 ’s
embeddings as the aggregation of 𝑒𝑎𝑣𝑔 and its own embedding 𝑒𝑖𝑣 .
The reason is that the embedding of each node should be close to its
neighbors in the graph. Moreover, Algorithm 1 shows the procedure
of embedding propagation. Consider a graph G=< V, E >, the
condensed graph G𝑐 of G, and the network embedding 𝑒𝑐 of G𝑐 .

Based on the above condensed input graph, we argue that: in-
stead of directly utilizing the original user-item bipartite network,
we perform the preference learningwith condensed graph as:𝑦𝑢𝑖 =<
e𝑘𝑢 , e𝑘𝑖 >. We hypothesize that it is easier to optimize the condensed
rating, and the condensed graph learning could help to alleviate the
over smoothing effect with deeper layers. Based on the condensed

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Simplifying Graph-based Collaborative Filtering for Recommendation

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Algorithm 1: Condensed Graph Propagate
Data: Input graph G =< V, E >, the embeddings 𝑒𝑐 of G𝑐

condensed graph, and the threshold 𝛿
Result: The set 𝑒𝑖 of initial embedding of each node 𝑣 ∈ V

1 initialization: Let 𝑒𝑖 (𝑣) = 𝑒𝑐 ((𝑐𝑣)) for each node 𝑣 ∈ V;
while △ > 𝛿 do

2 for each node 𝑣 ∈ V do
3 Let 𝑒𝑎𝑣𝑔 (𝑣)= 1

|𝑁 (𝑣) |
∑
𝑢∈𝑁 (𝑣) 𝑒𝑖 (𝑢) Compute

𝑒 ′
𝑖
(𝑣) = 1

2
(
𝑒𝑖 (𝑣) + 𝑒𝑎𝑣𝑔 (𝑣)

)
4 end
5 Let △ = 1

|𝑉 |
∑
𝑣∈𝑉

𝑒 ′
𝑖
(𝑣) − 𝑒𝑖 (𝑣)

 ;
6 For each node 𝑣 ∈ V , let 𝑒𝑖 (𝑣) = 𝑒 ′𝑖 (𝑣)
7 end
8 return 𝑒𝑖

preference prediction in above, we have:

𝑦𝑢𝑖 = 𝑦
𝑘−1
𝑢𝑖 + < e𝑘𝑢 , e

𝑘
𝑖 >

= 𝑦𝑘−2𝑢𝑖 + < e𝑘−1𝑢 , e𝑘−1𝑖 > + < e𝑘𝑢 , e
𝑘
𝑖 >

= 𝑦0𝑢𝑖+ < e1𝑢 , e
1
𝑖 > + . . . + < e𝑘𝑢 , e

𝑘
𝑖 >

=< e0𝑢
e1𝑢 . . . e𝑘𝑢 , e0𝑖

 e1𝑖 ∥ . . . ∥e𝑘𝑖 > .

(11)

The above equation is equivalent to concatenate embedding of
each layer to form the final embedding of each node. This is quite
reasonable as each node’s sub-graph varies, and recording each
layer’s representation to form the final embedding of each node is
more informative.

3.4 Model Learning
The trainable parameters of our model are only the embeddings of
the first-order layer, such asW = E(0) . In other words, the model
complexity is same as the standard matrix factorization (MF). We
adopt the ranking based loss function in Bayesian Personalized
Ranking (BPR) [28], which a pairwise loss that encourages the
prediction of an observed entry to be higher than its unobserved
counterparts:

min
W

𝐿(R, R̂) =
𝑀∑︁
𝑎=1

∑︁
(𝑖, 𝑗) ∈𝐷𝑎

− ln(𝑠 (𝑟𝑎𝑖 − 𝑟𝑎𝑗)) + _ ∥W∥2 (12)

where _ controls the 𝐿2 regularization strength. We employ the
Adam SGD [18] optimizer and use it in a mini-batch manner. We are
aware of other advanced negative sampling strategies which might
improve the SGCF training, such as the hard negative sampling [27]
and adversarial sampling [5]. We leave this extension in the future
since it is not the focus of this work. Note that we do not intro-
duce dropout mechanisms, which are commonly used in GCNs and
NGCF. The reason is that we do not have feature transformation
weight matrices in SGCF, thus enforcing 𝐿2 regularization on the
embedding layer is sufficient to prevent over fitting. This show-
cases SGCF’s advantages of being simple — it is easier to train and
tune than NGCF which additionally requires to tune two dropout
ratios, such as node dropout and message dropout, and normalize
the embedding of each layer to unit length. Moreover, there is one

crucial issue remaining in the network embedding learning on the
condensed graph G𝑐 which is the configuration of hyperparameters
in the random walk based algorithm, i.e., the number of random
walks and the length of a random walk. To cope with this issue, we
utilize a pre-processing phase which trains a regression model that
takes into account both the hyperparameters and the statistics of
the condensed graphs. As such, given an condensed graph G𝑐 , we
are able to infer from the model the suitable hyperparameters for
G𝑐 with a slight cost, as explained shortly.

3.5 Model Analysis
Detailed Analysis of Model Based on the prediction function in
Eq.(11), we observe that SGCF is not a deep neural network but a
wide linear model. The linearization has several advantages: First,
as SGCF is built on the recent progress of SGC, it is theoretically
connected as a low pass filter of graph on the spectral domain [34].
Second, with the linear embedding propagation and partition graph
learning, SGCF is much easier to train compared to nonlinear GCN
based models. Last but not least, we obtain the initialization of the
embedding for each node in the graph by computing the network
embedding on the condensed graph, which is much smaller than
the input graph, and then propagating the embedding among the
nodes in the input graph. Instead, we could resort to stochastic
gradient descent for model learning. Therefore, SGCF is much more
time efficient compared to classical GCN based models.
Connections with Existing Work We compare the key char-
acteristics of our proposed model with three closely related GCN
based recommendation models: PinSage [24], NGCF, and LightGCN.
NGCF and LightGCN are both the first few attempts that also use
a residual prediction function by taking each user (item)’s embed-
ding as a concatenation of all layers’ embeddings. However, the
authors simply use this “trick” without any detailed explanation.
We empirically show the reason why taking the output of the last
layer embedding fails for CF, and show using residual prediction
is equivalent to concatenate all the layer’s embeddings as the final
embedding of each node in the user-item bipartite graph. For Pin-
Sage, it has a lower time complexity compared to its deep learning
based counterparts (e.g., NGCF) as this model designed a sampling
technique in feature aggregation process.

4 EXPERIMENTS
We first compare SGCF with various state-of-the-art CF methods to
demonstrate its effectiveness and high efficiency. We also perform
detailed parameter studies to justify the rationality and effectiveness
of the design choice of SGCF.

4.1 Experimental Setup
4.1.1 Datasets. We utilize four publicly available datasets, includ-
ing Yelp2018, Amazon-Books, Gowalla 1, and MovieLens to conduct
our experiments, as many recent GCN-based CF models [3, 10, 11,
13, 29, 32, 33, 35] are evaluated on these four datasets. We closely
follow these GCN-based CF studies and use the same data split as
them. Table 1 shows the statistics of the used datasets.

1http://www.gowalla.com/

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

• Yelp2018: This dataset is adopted from the 2018 edition
of the Yelp challenge. Where in, the local businesses like
restaurants and bars are viewed as the items. We use the
same 10-core setting in order to ensure data quality.

• Amazon-Books: Amazon-books is a widely used dataset
for product recommendation [12].We select Amazon-Books
from the collection. Similarly, we use the 10-core setting to
ensure that each user and item have at least ten interactions.

• Gowalla: is a location-based social networking website
where users share their locations by checking-in. The friend-
ship network is undirected and was collected using their
public API, and consists of 196,591 nodes and 950,327 edges.

• MovieLens: The MovieLens dataset is obtained from the
MovieLens 10MData 2. We assume a user has an interaction
with a movie if the user gives it a rating of 4 or 5.

4.1.2 Baselines. In total, we compare SGCF with three types of the
stat-of-the-art models, coveringMF-basedmethods, metric learning-
based approaches and GCN-based models.

• MF-based methods: MF-BPR [22] a pairwise method that
exploits different types of feedback with an extended sam-
pling method. ENMF [23]) an Efficient Adaptive Transfer
Neural Network (EATNN) for social-aware recommenda-
tion. Metric learning-based method - CML [14].

• Networking embedding methods: DeepWalk [25] learns
embeddings via the prediction of the local neighborhood of
nodes, sampled from randomwalks on the graph. LINE [31]
is suitable for arbitrary types of information networks: undi-
rected, directed, and/or weighted. Node2Vec [6] is a state
of art graph representation learning method. It utilizes ran-
domwalk to capture the proximity in the network andmaps
all the nodes into a low-dimensional representation space
which preserves the proximity.
• GCN-based methods: NGCF achieves the target by lever-

aging high-order connectivities in the user-item integration
graph. NIA-GCN [30] can explicitly model the relational
information between neighbor nodes and exploit the het-
erogeneous nature of the user-item bipartite graph. LR-
GCCF [3] is a general GCN based CF model for recommen-
dation. LightGCN learns user and item embeddings by lin-
early propagating them on the user-item interaction graph,
and uses the weighted sum of the embeddings learned at all
layers as the final embedding and DGCF [36] considers user-
item relationships at the finer granularity of user intents
and generates disentangled user and item representations
to get better recommendation performance.

4.1.3 Evaluation Metrics. Given a user, a top-𝐾 item list recommen-
dation algorithm provides a list of ranked item lists according to
the predicted preference of them. To assess the ranked lists with re-
spect to the ground-truth lists set of what users actually interacted
with, we adopt three evaluation metrics: Normalized Discounted
Cumulative Gain (NDCG) [16] at 20 (NDCG@20), Hit Ratio at 20
(HR@20) and recall at 20 (Recall@20).

2http://files.grouplens.org/datasets/movielens/

Table 1: Statistics of the datasets.

Dataset #Users #Items #Interactions Density
Amazon-Books 52,643 91,599 2,984,108 0.062 %
MovieLens-10M 71,567 10,681 10,000,054 0.371 %

Gowalla 29,858 40,981 1,027,370 0.084 %
Yelp2018 31,668 38,048 1,561,406 0.130 %

4.1.4 Parameter Settings. We implement our SGCF model in Ten-
sorflow3. There are two important parameters in our model: 1)
the dimension 𝐷 of the user and item embedding matrix E, and
2) the regularization parameter _ in the objective function (Eq.12).
The embedding size is fixed to 64 for all models. In our proposed
SGCF model, we try the regularization parameter _ in the range
[0.0001, 0.001, 0.01, 0.1] and find _ = 0.01 reaches the best perfor-
mance. We adopt Gaussian distribution with 0 mean 10−4 standard
deviation to initialize embeddings. There are several parameters in
the baselines, for fail comparison, all the parameters in the baselines
are also tuned to achieve the best performance.

4.2 Quantitative Performance Comparison
Our experimental results are reported in Table 2. We have sev-
eral observations: 1) SGCF consistently outperforms all baseline
approaches across all four datasets. In particular, SGCF hugely im-
proves over the strongest GCN-based baseline on Amazon-Books by
10.16% and 10.15% by using Recall@20 and NDCG@20 respectively.
The results of significance testing indicates that our improvements
over the current strongest GCN-based baseline are statistically sig-
nificant. In particular, SGCF show the effectiveness of modeling the
information passing of a graph. NGCF is the baseline that captures
higher-order user-item bipartite graph structure. It performs better
than most baselines. Our proposed SGCF model consistently out-
performs NGCF, thus showing the effectiveness of modeling the
user preference by the residual preference prediction and the linear
embedding propagation. Compared with other baselines, SGCF can
leverage powerful graph convolution to exploit useful and deeper
collaborative information in graphs. These advantages jointly lead
to the superiority of SGCF than compared state-of-the-art models.
2) In total, network embedding models perform worse than GCN-
based models, especially on Gowalla. The reason might be that
the powerful graph convolution is more effective than traditional
random walk in many network embedding methods, to capture
collaborative information for recommendation. 3) Since SGCF is a
special fixed filter on the graph spectral domain, its architecture is
orthogonal to some stat-of-the-art models (e.g., SGC). Therefore,
similar to low-pass-type filters, SGCF can be deemed as an effective
and efficient CF framework which is possible to be incorporated
with other methods. such as enabling disentangled representation
for users and items as DGCF, to achieve better performance.

4.3 Efficiency Comparison
As highlighted in Section 3.5, SGCF is endowed with high training
efficiency for CF due to its concise and unified designs. In this sec-
tion, we further empirically demonstrate the superiority of SGCF on

3https://www.tensorflow.org/

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Simplifying Graph-based Collaborative Filtering for Recommendation

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Overall performance comparison. Improv. denotes the relative improvements over the best GNN-based baselines.

Model Amazon-Books Yelp2018 Gowalla MovieLens-10M
Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

ENMF 0.0334 0.0279 0.0614 0.0525 0.1532 0.1351 0.2345 0.2098
CML 0.0413 0.0313 0.0621 0.0536 0.1639 0.1298 0.1725 0.1536

MF-BPR 0.0324 0.0259 0.0539 0.0432 0.1623 0.1346 0.2134 0.2135
DeepWalk 0.0347 0.0266 0.0478 0.0382 0.1042 0.0741 0.1351 0.1047
Node2Vec 0.0412 0.0307 0.0448 0.0361 0.1020 0.0711 0.1476 0.1190

LINE 0.0412 0.0321 0.0547 0.0445 0.1336 0.1057 0.2338 0.2232
NGCF 0.0345 0.0261 0.0580 0.0478 0.1571 0.1337 0.2515 0.2513

LR-GCCF 0.0336 0.0264 0.0560 0.0345 0.1521 0.1286 0.2230 0.2131
LightGCN 0.0412 0.0314 0.0651 0.0529 0.1824 0.1548 0.2573 0.2423
NIA-GCN 0.0371 0.0289 0.0589 0.0492 0.1361 0.1116 0.2361 0.2243
DGCF 0.0423 0.0325 0.0654 0.0534 0.1843 0.1563 0.2640 0.2504
SGCF 0.0466 0.0358 0.0683 0.0561 0.1862 0.1580 0.2787 0.2642
Improv. 10.16 % 10.15 % 4.43 % 4.66 % 1.03 % 1.08 % 5.57 % 5.51 %

Table 3: Efficiency comparison with full training time

Model Epoch Count Time per Epoch Totally Time
MF-BPR 25 33s 13.75 m
LR-GCCF 170 70s 3h 30m
ENMF 85 135s 3h 11m

LightGCN 55s 850 12h 58m
SGCF 64 36s 38.4 m

training efficiency compared with other CF models, especially GCN-
based models. To be specific, we select MF-BPR, ENMF, LightGCN,
and LR-GCCF as the competitors, which are relatively efficient
models in their respective categories. To be more convincing, we
compare their training efficiency from two aspects: 1) The total
training time and epochs for achieving their best performance. 2)
Training them with the same epochs to see what performance they
can achieve. Note that Table 3 shows that the training speed (i.e.,
Time per Epoch) of SGCF is close to MF-BPR, which empirically
justifies our analysis that the time complexities of SGCF and MF
are on the same level. SGCF needs 64 epochs to converge which
is much less than LR-GCCF and LightGCN, leading to only 38.4
minutes for total training. Finally, SGCF has around 20x, 5x, 5x
speedup compared with LightGCN, LR-GCCF, and ENMF respec-
tively, demonstrating the big efficiency superiority of SGCF.

Moreover, Table 4 shows that when SGCF converges (i.e., train
the fixed 64 epochs), the performances of all the other compared
models are much worse than SGCF. That is to say, SGCF can achieve
much better performance with less time, which further demon-
strates the higher efficiency of SGCF that the other GCN-based CF
models.

4.4 SGCF Model Component Analysis
To explore the effect of different components in SGCF model, we
design a simplified version that removes the graph partition module
in our framework. We call the simplified version model as LGCF.
For LGCF and SGCF, with each predefined depth 𝑘 , we calculate
the cosine similarity of each pair of nodes (i.e., users and items)

Table 4: Efficiency comparison with same epochs. All models
are trained with the fixed 64 epochs except MF-BPR. Since
MF-BPR needs less than 64 epochs to converge, we report its
actual training time.

Model Training Time Recall@20 NDCG@20
MF-BPR 16m 0.0342 0.0264
ENMF 2h45m 0.0357 0.0281

LR-GCCF 1h25m 0.0314 0.0191
LightGCN 1h41m 0.0345 0.0264
SGCF 43m 0.0682 0.0561

1 2 3 4 5 6

k

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

u
se

r
em

b
ed

d
in

g
 s

im
ila

ri
ty

SGCF
LGCF

1 2 3 4 5 6

k

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

it
em

 e
m

b
ed

d
in

g
 s

im
ila

ri
ty

SGCF
LGCF

Figure 3: (left): Error-bar of user embedding similarity. (right):
Error-bar of item embedding similarity. Comparisons with
andwithout graph partition process structure under different
layers depth 𝑘 on Amazon-Books dataset.

between their𝑘-layer output embedding, i.e., 𝑒𝑘 for each node of the
graph. The statistics of the mean and variance of user-user (item-
item) embedding similarities are shown in Figure 3. It obviously
shows our proposed model has larger variance of the user-user
cosine similarity compared to its counterparts LGCF that does not
perform condensed graph learning. This empirically validates that
the condensed graph learning could partially alleviate the over
smoothing issue, and achieves better performance. Please note that,
the overall trend on the other three dataset is similar, and we do
not illustrate it due to page limit.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 5: Performance of HR@20 and NDCG@20 with differ-
ent depth 𝑘

Model Amazon-Books Gowalla
HR@20 NDCG@20 HR@20 NDCG@20

𝑘=0 0.0284 0.0219 0.1379 0.1126
𝑘=1 0.0317 0.0242 0.1506 0.1245
𝑘=2 0.0327 0.0248 0.1504 0.1246
𝑘=3 0.0337 0.0255 0.1518 0.1561
𝑘=4 0.0341 0.0324 0.1496 0.1241
𝑘=5 0.0340 0.0356 0.1504 0.1249

4.5 SGCF Model Parameter Study
4.5.1 Parameter Analysis. We would analyze the influence of the
recursive label propagation depth 𝑘 , and a detailed analysis of the
learned embeddings of the preference prediction with condensed
input graph in SGCF. Table 5 shows the results on SGCF with differ-
ent 𝑘 values. Specially, the layer-wise propagation part disappears
when k=0, i.e., our proposed model degenerates to BPR. As can be
observed from Table 5, when 𝑘 increase from 0 to 1, the perfor-
mance increase quickly on both datasets. For Amazon-Books, the
best performance reaches with four propagation depth. Meanwhile,
our model reaches the best performance when k=3 on Gowalla.

4.5.2 Scalability Analysis. As GCN-based networks are complex
and contain such a large number of nodes in the real world ap-
plication scenario, it is necessary for a model being feasible to be
applied in the large-scale datasets. We investigate the scalability of
SGCF model optimized by gradient descent, which deploys multiple
threads for parallel model optimization. Our experiments are con-
ducted in a computer server with 12 cores and 128GiB memory. We
run experiments with different threads from 1 to 20. We depict in
Figure 4 the speedup ratio vs. the number of threads. The speedup
ratio is very close to linear, which indicates that the optimization
algorithm of the SGCF is reasonably scalable.

Figure 4: Scalability of SGCF

5 RELATEDWORK
In this section, we briefly review some representative GCN-based
methods and their efforts for model simplification toward recom-
mendation tasks. With the development and success of GCN in
various machine learning areas, there appears a lot of users and
items could be naturally formed to a user-item bipartite graph and
adapted GCNs for recommendation [9, 13, 32]. Earlier works on
GCN based models relied on the spectral theories of graphs, and
are computationally costly when applying in real-world recom-
mendation. Some of recent works on GCN based recommendation
models focused on the spatial domain [19]. PinSage was designed
for similar item recommendation under the content based model,
with the item feature 𝑥𝑣 and the item-tiem correlation graph as the
inputs. GC-MC [1] and NGCF are specifically designed under the
CF setting. Although NGCF achieves good performance compared
with previous non-GNN based methods, its heavy designs limit
its efficiency and full exertion of GCN. To model the diversity of
user intents on items, Wang et al. [36] devise Disentangled Graph
Collaborative Filtering (DGCF) [33], which considers user-item re-
lationships at the finer granularity of user intents and generates
disentangled user and item representations to get better recommen-
dation performance.

Although GCN-based recommendationmodels have achieved im-
pressive performance, their efficiencies are still unsatisfactory when
facing large-scale recommendation scenarios. How to improve the
efficiency of GCNs and reserve their high performance for recom-
mendation becomes a urgency research problem. Recently, Dai et
al. [4] and Gu et al. [7] extend fixed-point theory on GNN for better
representation learning. Liu et al. [21] propose UCMF that simpli-
fies GCN for the node classification task. Wu et al. [34] find the
non-necessity of nonlinear activation and feature transformation
in GCN, proposing a simplified GCN (SGCN) model by removing
these two parts. Inspired by SGC, He et al. [13] devise LightGCN
for recommendation by removing nonlinear activation and feature
transformation too. However, its efficiency is still limited by the
time-consuming message passing. Qiu et al. [26] demonstrate that
many network embedding algorithms with negative sampling can
be unified into the MF framework which may be efficient, how-
ever,their performances still have a gap between that of GCNs. We
are inspired by these instructive studies, and propose SGCF for both
efficient and effective recommendation.

6 CONCLUSION
In this paper, we revisited the current GCN-based recommendation
models and proposed an SGCFmodel for CF-based recommendation.
SGCF consists of two main parts: First, with the recent progress of
simple GCNs, we empirically removed the non-linear transforma-
tions in GCNs, and replaced it with linear embedding propagation.
Second, to reduce the over smoothing effect introduced by higher
layers of graph convolutions, we designed a condensed graph learn-
ing process for the input network. Extensive experimental results
clearly showed the effectiveness and efficiency of our proposed
model. In the future, we will explore better integration of different
layers’ representations with well-defined deep neural architectures
to further enhance CF-based recommendation.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Simplifying Graph-based Collaborative Filtering for Recommendation

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Rianne van den Berg, Thomas N Kipf, and Max Welling. 2017. Graph convolu-

tional matrix completion. arXiv preprint arXiv:1706.02263 (2017).
[2] Aydın Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian

Schulz. 2016. Recent advances in graph partitioning. Algorithm engineering
(2016), 117–158.

[3] Lei Chen, Le Wu, Richang Hong, Kun Zhang, and Meng Wang. 2020. Revisiting
graph based collaborative filtering: A linear residual graph convolutional network
approach. In Proceedings of the AAAI conference on artificial intelligence, Vol. 34.
27–34.

[4] Hanjun Dai, Zornitsa Kozareva, Bo Dai, Alex Smola, and Le Song. 2018. Learning
steady-states of iterative algorithms over graphs. In International conference on
machine learning. PMLR, 1106–1114.

[5] Jingtao Ding, Yuhan Quan, Xiangnan He, Yong Li, and Depeng Jin. 2019. Rein-
forced Negative Sampling for Recommendation with Exposure Data.. In IJCAI.
2230–2236.

[6] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864.

[7] Fangda Gu, Heng Chang, Wenwu Zhu, Somayeh Sojoudi, and Laurent El Ghaoui.
2020. Implicit graph neural networks. Advances in Neural Information Processing
Systems 33 (2020), 11984–11995.

[8] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik. 2015. Hy-
percolumns for object segmentation and fine-grained localization. In Proceedings
of the IEEE conference on computer vision and pattern recognition. 447–456.

[9] Li He, Hongxu Chen, Dingxian Wang, Shoaib Jameel, Philip Yu, and Guandong
Xu. 2021. Click-Through Rate Prediction with Multi-Modal Hypergraphs. In
Proceedings of the 30th ACM International Conference on Information & Knowledge
Management. 690–699.

[10] Li He, Xianzhi Wang, Hongxu Chen, and Guandong Xu. 2022. Online Spam
Review Detection: A Survey of Literature. Human-Centric Intelligent Systems
(2022), 1–17.

[11] Li He, Guandong Xu, Shoaib Jameel, Xianzhi Wang, and Hongxu Chen. 2022.
Graph-Aware Deep Fusion Networks for Online Spam Review Detection. IEEE
Transactions on Computational Social Systems (2022).

[12] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering. In proceedings
of the 25th international conference on world wide web. 507–517.

[13] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for
recommendation. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval. 639–648.

[14] Cheng-Kang Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin, Serge Belongie, and
Deborah Estrin. 2017. Collaborative metric learning. In Proceedings of the 26th
international conference on world wide web. 193–201.

[15] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. 2016.
Deep networks with stochastic depth. In European conference on computer vision.
Springer, 646–661.

[16] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation
of IR techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002),
422–446.

[17] George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM Journal on scientific Computing 20, 1
(1998), 359–392.

[18] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[19] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with
graph convolutional networks. arXiv (2016).

[20] Wenqing Lin, Feng He, Faqiang Zhang, Xu Cheng, and Hongyun Cai. 2020.
Initialization for network embedding: A graph partition approach. In Proceedings
of the 13th International Conference on Web Search and Data Mining. 367–374.

[21] Qiang Liu, Haoli Zhang, and Zhaocheng Liu. 2020. Simplification of Graph Con-
volutional Networks: A Matrix Factorization-based Perspective. arXiv preprint
arXiv:2007.09036 (2020).

[22] Babak Loni, Roberto Pagano, Martha Larson, and Alan Hanjalic. 2016. Bayesian
personalized ranking with multi-channel user feedback. In Proceedings of the
10th ACM Conference on Recommender Systems. 361–364.

[23] Xiaoke Ma and Di Dong. 2017. Evolutionary nonnegative matrix factorization
algorithms for community detection in dynamic networks. IEEE transactions on
knowledge and data engineering 29, 5 (2017), 1045–1058.

[24] Aditya Pal, Chantat Eksombatchai, Yitong Zhou, Bo Zhao, Charles Rosenberg,
and Jure Leskovec. 2020. Pinnersage: Multi-modal user embedding framework
for recommendations at pinterest. In Proceedings of the 26th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining. 2311–2320.

[25] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 701–710.

[26] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.
Network embedding as matrix factorization: Unifying deepwalk, line, pte, and
node2vec. In Proceedings of the eleventh ACM international conference on web
search and data mining. 459–467.

[27] Steffen Rendle and Christoph Freudenthaler. 2014. Improving pairwise learning
for item recommendation from implicit feedback. In Proceedings of the 7th ACM
international conference on Web search and data mining. 273–282.

[28] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-
Thieme. 2012. BPR: Bayesian personalized ranking from implicit feedback. arXiv
preprint arXiv:1205.2618 (2012).

[29] Jinbo Song, Chao Chang, Fei Sun, Xinbo Song, and Peng Jiang. 2020. NGAT4Rec:
Neighbor-Aware Graph Attention Network For Recommendation. arXiv preprint
arXiv:2010.12256 (2020).

[30] Jianing Sun, Yingxue Zhang, Wei Guo, Huifeng Guo, Ruiming Tang, Xiuqiang He,
Chen Ma, and Mark Coates. 2020. Neighbor interaction aware graph convolution
networks for recommendation. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval. 1289–1298.

[31] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In Proceedings of the
24th international conference on world wide web. 1067–1077.

[32] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative filtering. In Proceedings of the 42nd international ACM
SIGIR conference on Research and development in Information Retrieval. 165–174.

[33] Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, and Tat-Seng
Chua. 2020. Disentangled graph collaborative filtering. In Proceedings of the 43rd
international ACM SIGIR conference on research and development in information
retrieval. 1001–1010.

[34] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying graph convolutional networks. In International
conference on machine learning. PMLR, 6861–6871.

[35] JiancanWu, XiangWang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, and
Xing Xie. 2021. Self-supervised graph learning for recommendation. In Proceed-
ings of the 44th international ACM SIGIR conference on research and development
in information retrieval. 726–735.

[36] Zekun Yin, Xiaoming Xu, Kaichao Fan, Ruilin Li, Weizhong Li, Weiguo Liu,
and Beifang Niu. 2019. DGCF: A Distributed Greedy Clustering Framework
for Large-scale Genomic Sequences. In 2019 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM). IEEE, 2272–2279.

9

	Clipboard Data(1)
	03014f65-7665-4bfc-b487-acdd3b79b0c3
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Graph Convolutional Networks
	2.2 Graph Convolutional based Recommendation
	2.3 Graph Partition Technique

	3 Method
	3.1 Overall Structure of Our Model
	3.2 Simplified Embedding Propagation
	3.3 Model Prediction with Condensed Graph
	3.4 Model Learning
	3.5 Model Analysis

	4 Experiments
	4.1 Experimental Setup
	4.2 Quantitative Performance Comparison
	4.3 Efficiency Comparison
	4.4 SGCF Model Component Analysis
	4.5 SGCF Model Parameter Study

	5 Related Work
	6 Conclusion
	References

